-

APPENDIX AVAILABLE ON REQUEST

Research Report 140

Extended Follow-Up and Spatial Analysis of the American Cancer
Society Study Linking Particulate Air Pollution and Mortality

Daniel Krewski et. al.

Appendix B. Algorithmic Description of the Cox Poisson Program

Note: Appendices Available on the Web appear in a different order than in the original Investigators’
Report. HEI has not changed these documents.

Correspondence may be addressed to Dr. Daniel Krewski, McLaughlin Centre for Population Health Risk
Assessment, Room 320, University of Ottawa, One Stewart Street, Ottawa, ON K1N 6N5, Canada.
E-mail: cphra@uottawa.ca.

Although this document was produced with partial funding by the United States Environmental
Protection Agency under Assistance Award CR-83234701 to the Health Effects Institute, it has not been
subjected to the Agency’s peer and administrative review and therefore may not necessarily reflect the
views of the Agency, and no official endorsement by it should be inferred. The contents of this
document also have not been reviewed by private party institutions, including those that support the
Health Effects Institute; therefore, it may not reflect the views or policies of these parties, and no
endorsement by them should be inferred.

This document was reviewed by the HEI Health Review Committee
but did not undergo the HEI scientific editing and production process.

© 2009 Health Effects Institute, 101 Federal Street, Suite 500, Boston, MA 02110-1817



APPENDIX B: Algorithmic Description of the Cox-Poisson
Program



Algorithmic Description of the Cox-Poisson Program

Edward Hughes

Introduction

The Cox-Poisson program is designed to carry out estimation of Cox Regression
survival models, from data giving, among other things, the time to a certain event (e.g.
death) for each subject in the study. It differs from the survival modules of general
statistical systems such as SAS, S-Plus, R, and Stata in two main ways:

e [tis designed to handle large data sets
e Random effects are allowed to have a more complicated covariance structure than
most other programs support.

There are two ways to use the program: as a stand-alone system, and through an S
interface, where we use “S” as a general term for the S language as implemented in the
systems S-plus and R. The stand-alone version is somewhat restricted in what it allows,
but it does all the important computational work, and this section will concentrate on it.
We describe the structure of the data accepted by the program, the types of survival
problem it can handle, and the estimation methods used and their computational
implementation.

The statistical theory on which this program is based is derived from (Ma et al 2000).
Since that paper uses somewhat different notation from what appears here, we give in the

section “Remark on Notation” a brief guide to the notational differences.



Data Structure

Matrix and Vector Notation
If w is a column vector, we denote its i” entry by a superscript, w'. If x is a row vector,

we denote its entries by subscripts: the j” entry is x;. If A is a matrix, we denote its i" row

by A', its j/* column by A;, and the entry in the i" row and j” column by A; .

Layout

The form of data accepted and its interpretation is very similar to the form accepted by
the S survival code authored by T. Therneau and described in Therneau and Grambsch
(2000). Suppose the time-dependent data is a list of records (data matrix M) of the

following form:

I/1 t Vz ZLstart tend torg l Rl e Rp

Here we have a start and end time for this particular record (we use “row” or “record”

interchangeably), a status indicator y , and values of the time-dependent covariates

R,,...,R,, considered constant on the time interval (¢,,,,,Z,,,]. The columns R,,...,R

start D

are considered a submatrix R of M, and its row & is denoted by R*. We have written the
variables making up the data matrix in a conceptually convenient order, but in fact they

can be in any order. The variables V,...,V, consist of all other variables in the data set:

z

they play various roles, for example defining strata, clusters, and individuals. We will
generally assume that the data consist of records pertaining to individuals, with each

individual represented by one or more records and identified by a value of one of the “V”

(1)



variables, which we will usually denote by e, but in fact this is not strictly necessary. If

no individuals are identified in the data, then we can take " =k, i.e. identify individuals
with records. With this understanding, we will refer to “individuals” without further
qualification.

The status indicator y codes the situation at the end of the interval, ¢, ,: say, O for
censored or incomplete (i.e. “no event”), and non-0 for failure (or “event”) at ¢, ,. We

assume that the records for one individual specify disjoint time intervals. We denote by

7 the “elapsed time” ¢ —¢ ., as will be explained later; similarly the interval

org

(T‘fmn 5 Teknd] = (Cygars — Lorgs Lena — torg]
The reasons why an individual might have more than one record are:

1) Time-dependent covariates: These are represented as piecewise-constant in time.
Each value, and the time interval over which it holds, will generate a separate record
for an individual. The breakpoints are specific to an individual and to a variable; they
can be different for different individuals. However, the fewer total breakpoints, the
greater the computational efficiency.

2) Multiple events per individual: If an event can occur more than once (e.g. recurrent
spells of a disease, or of unemployment), then the periods at risk and the events can
be represented by multiple records per individual. We assume that, for each record

(i.e. row) k of M, the corresponding individual is at risk of an event in the interval

k
end

(zX ,7* 1, and the event occurs at z* ,, if at all in this interval. If the individual

start >

continues at risk after the event, a new record must be used to start that new at-risk

spell. Whether the event occurs at 7/, or not is indicated by the value of y*.



3) Multiple periods at risk: If there are time intervals when the individual is not at risk
(or not under observation), these intervals will be omitted from the data. The
complementary time intervals, when the individual is at risk, will each generate one
or more records for the individual. See the definition of the function 6 below.

In the simplest case, with (at most) one event per individual, with the event removing the

individual from further risk, and no time-dependent covariates, each individual would

have only one record in the data set, which would cover the full interval of risk for this

individual, ending with either an event or censoring, according to the value of y .

The value 7,,, represents a time origin, which will usually be either 0 or the earliest

t,.. forthe individual, but may also represent other things: in a multi-state model it will

be the time of entering the current state. Most of the interest is in the elapsed times

7, =t—1,,: what we have been calling the failure times 7, are really these elapsed

times, so that the earliest spell at risk usually starts at 7 = 0. As mentioned before, we

will write 7, for ¢, —¢

org *

Let N,, denote the number of rows of M.

Individuals at Risk
Let " denote the individual referred to in M*, i.e. row k of M. Let E denote the set

of all individuals. Let us define a conceptual variable o = d[e,?], or sometimes o, ()

which, for each individual e, is 1 if e is “at risk” and under observation at time ¢,

otherwise 0. We assume that J,(¢) =1 for ¢ in the union of all the time intervals

(s -t.nq) for e, and O for all other times. The data cover precisely the time intervals that



o =1. This can be an arbitrary union of intervals. The use of ¢ is here just a notational
convenience that makes the likelihood formulas simpler to state, but it plays an important
role in the counting-process formulation of survival models. The usual notation for J in

the counting-process literature is Y, (¢), but we use ¥ below for another purpose.
We also define the counting process N[e,?], or sometimes N, (¢), which counts the

number of events observed for individual e in the interval (¢, ,¢],1i.e.in (0,7]. The

org®
events in question are those for which the individual is “at risk” in the sense of 0 =1. We
emphasize that N counts observed events, and ¢ indicates “under observation and at
risk” for an observable event. If the individual is not under observation, then 6 =0 and N
remains constant, no matter what unobserved events befall the individual. We assume

that 0 and all the covariates R, are continuous from the left in time, and that N is

continuous from the right in time.

Time Origin

The time-origin variable is similar to the same variable in the Therneau code; ¢z is a

org

function of e and 7 also, i.e. 7, =1,,[e,?], and we assume that

org
ole,t]=0fors<z,,[e1]

We denote by 7 the “elapsed time”, 7 =¢—¢__, with ¢ referring to “calendar time”,

org?
and denote the elapsed-time indexes by 7 :

=t 4

start org
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Ordinarily we expect that 7, _[e,?] has jumps in ¢ that occur infrequently, and is

org
constant in ¢ between jumps. It represents the beginning of the current spell of observed
activity for the individual, and may be updated at every new spell, or it may not be. The
issue here is the time interval over which the baseline hazard is parameterized. Consider a
process in which an individual has recurrent spells under observation, interspersed with
spells off observation. A spell may end with either an event or censoring. If each
individual had only one such spell, we would ordinarily prepare the data placing the time

origin 7, at the beginning of the spell, so each person's spell starts at 7 = 0. But with

multiple spells per person, we may or not want to make this transformation. If we do

make it, then we have a different value of 7, for each new spell, so that all of an

individual's spells start at 7 = 0, and the baseline hazard would be defined on the 7 -
interval from 0 to the maximum spell length: the spells are in effect superimposed, and
this normally involves an implicit assumption that different spells for the same individual
are independent.

In some problems, on the other hand, we might not want to make that assumption, i.e.

we might not want to redefine 7,,, at each new spell, but instead to consider the whole
series of spells for each individual, leaving ¢, fixed (i.e. varying only with individual).

In this case, the baseline hazard is defined on a time interval that contains all the separate

spells, not superimposed.



Strata

We allow time-dependent strata, which means in effect that a stratum s is not
necessarily a set of individuals {e}, but a set of individual-time pairs {[e,?]}. Let ¢’ (e,?)
be the indicator of stratum s, i.e.

) 1 if [s,t]es
¢ (e,t) = :
0 if [s,t]¢s
We can state this more briefly by saying that a stratification is a partitioning of the set
of rows of M into disjoint subsets, and each one of these subsets is a stratum. We will

write k € s to mean that row £ is in stratum s. Multi-state models can be implemented by

the use of time-dependent strata: see Therneau and Grambsch (2000).

Risk and Event Sets

Form (once and for all) the list F ={r,7,,7,...,7 o of sorted distinct event-times (i.e.

times for which y =1). Note the distinction: the values {z* } are all the z,,, times,

end

whether event or censoring; the values {r,} are just the event-times. If there is

stratification, then we do this by strata: for each stratum s, we have a separate list

{T0,T025T 35057, + OF distinct event-times in stratum s.

We define the risk set R(7) in terms of the data matrix M:

R(T) = {k|7’- € (T:{tart’feknd]}

k
start

t and ¢

where 7! and 7!, are the 7 -values (i.e. t,,, — org end — Lorg

) for row k of M. In

general, we indicate row k by a superscript. If there are strata, we can also define



R(r,s)={klre(c! 7t 1 &kes}

start ?
Similarly, define the event-sets D (7) as

D(r)={kltr=7' & y"' =1}

end

D(r,s)={klr=1',6 & y* =1& ke s}
The event multiplicity m(7) is the size of this D:

m(7) =#(D(7))
m(z,s) =#(D(z,s))

where #(S) means the number of members of the set S. We use the notation

R, =R(z,,s), and similarly Ry, Dy, Dp, m,, m, . Note that both R and D are sets of
rows of M. This is more general than defining them as sets of individuals, since each row
corresponds to an individual and a time interval. Even though the sets R and D are sets of

rows of M (i.e. sets of k), we shall sometimes abuse notation by writing e € R, , where e

1s an individual.

Clusters

Suppose we have a nested system (tree) of clusters (sets of individuals, or of rows of
M), ordered by the “<” relation. Let the “roots” or “level-1” clusters be those clusters
with no parent (no larger cluster of which the given one is a subset). Let the “leaves”, or
“finest-level” clusters be those with no children. These are disjoint. A cluster can be both
root and leaf. We define the level of a cluster A4 recursively by:
e The level of a level-1 cluster is 1

e If'the parent of A haslevel 7, then A haslevel /+1.



The clusters of any level ¢ are disjoint. Let N,,,. be the total number of leaves.

Ordinarily a 1-level clustering is defined by one variable V, say, with each value of V'

corresponding to one cluster. A two-level clustering is defined by two variables ¥, and
V,, say, so that the values of V| define the level-1 clusters, and within a level-1 cluster,
the values of ¥, define the level-2 clusters. A L -level cluster tree is defined similarly by

L variables. We can order leaf clusters lexically, by values of the variables defining
them. Note that not all leaf clusters are necessarily at level L.

By a “leaf-vector” we mean a vector of dimension N, whose components are

associated with the corresponding leaf-clusters. For each level A of the tree, there is a

vector of random effects U, , but only the leaf-level random effects play a role in the

estimation process: the lower levels are computed as part of post-processing, when
estimation is complete. The notation U, with no level specified, will usually mean the

leaf-level random effects.

For each row k of M, we denote by #* the leaf cluster of which e* is a member.

Primary and Secondary Data Tables

As mentioned above, time-dependent (TD) covariates, which are always considered
piecewise-constant, can be given in the data by multiple records per individual, each
record giving the value of the covariates on one time interval, with the non-time-
dependent variables simply duplicated. For problems in which most of the covariates are
time-dependent, this is usually the best way to organize the data. But if only one or two
covariates out of, say, 30 or 40 are time-dependent, this is wasteful, since most of the

information on each record will be redundant. In this case memory and (sometimes) run-



time can be saved by splitting the data into two tables, called “primary” and “secondary”.
The primary table holds the non-time-dependent (NTD) covariates, along with the event

indicators and other variables as described above for the matrix M. The secondary table

lists the values of the TD covariates and corresponding time-intervals. It must also have a
“key” variable, which determines the correspondence between the primary and secondary
tables. If the individual's ID is used as the key variable, then each record in the secondary
file has an ID, a start time, an end time, possibly a time origin, and a value for each of the
TD covariates for the time interval specified by the times. An example of a secondary file

1S:

ID StTime  EndTime  Weight Cholesterol # Name-record

1 2 2 2 2 # type-record

307 0 5 76.3 38.2 # 1st record for indiv 307
307 5 8 78.2 39.3

307 8 12 81.7 39.7

523 0 7 66.2 28.4 # 1st record for indiv 523
523 7 15 69.1 29.3

S etc. - - - ---- ----

Here there are two TD variables, Weight and Cholesterol, given on adjacent time-
intervals for each individual. There can be as many records for an individual as
necessary. In this example, the variable names and types are given in the data file.

In some cases, it may be more appropriate to use a different key variable. For
example, a single air pollution monitor located in a city will be associated with every
individual living in the city, and if the data give the readouts for monitors located in
several cities, then these variables will be indexed by city rather than by individual. The

ACS data set is structured like that. Table 1 is the beginning of the fictional secondary



file ACSlikeSec.dat, which is included in the test problems supplied with the program
package.

The variable CITY corresponds to the same variable in the primary file, allowing the
association to be made for each individual's city. The use of a secondary table can give a
considerable saving in memory space, and sometimes a small saving in running time,
compared with the same problem using only a primary file with time-dependence
represented by “record-repeating”. In Table 1 below, the set of time-intervals for each
city are the same; this is not necessary: the records for each city can divide up time in any
way desired (although two intervals for the same city can not overlap). For saving both
run-time and storage, it is advantageous to have as few time-intervals per individual as
possible, consistent with a good approximation of the data.

The conceptual data matrix M is the same whether a secondary table is used or not: a
secondary table is just a matter of how M is represented in the data files and in the
computer. The algorithms for using a secondary table are different in detail from those

used when no secondary table is supplied, but similar in essence.

Table 1: A Secondary Table

CITY STTIME ENDTIME PM10 # Name-record

1 2 2 2 # type-record

1 0.0 7.5 0.4900 # start of data for city 1
1 7.5 15.0 0.5710

1 15.0 22.5 0.3373

1 22.5 30.0 0.8295

1 30.0 37.5 0.7811

1 37.5 45.0 0.8075

2 0.0 7.5 0.5341 # start of data for city 2
2 7.5 15.0 0.8151

2 15.0 22.5 0.7458

2 22.5 30.0 0.5872



2 30.0 37.5 0.4977

2 37.5 45.0 0.7124

3 0.0 7.5 0.5999 # start of data for city 3
3 7.5 15.0 0.7713

3 15.0 22.5 0.4948

3 22.5 30.0 0.7268

---- ---- etc. - - - ----

Z-Vectors

Given a pair [e, 7], with e an individual and 7 an elapsed time: if e is at risk (and
under observation) at 7, there is a unique & such that row k of M corresponds to e = ",
and 7 e (¢! 7% 1; denote this k value by k(e, 7). If e is not at risk at 7, define
k(e,7)=0.

We define a conceptual index-set Z, first assuming there is no stratification: let Z
denote the set of pairs [e,7], where
1. e is atrisk and under observation at 7 .

2. r=rt,,forsomeh, 1<h<gq.Here 7, is one of the list /" of event times defined

earlier.

If there is stratification, then we define Z as the set of pairs [e,7] such that
1. e is atrisk and under observation at 7 (i.e. k[e,7] <)
2. t=r,,forsome h, 1<h<gq,, wheres is the stratum of k[e,7].
The map k[e, ] is many-to-one; the multiplicity n(k) is defined as the number of
pairs [e,7] that map to the same value &:
n(k) =#{le,r]l€e Z | k(e,7) =k} (2)

This is the same as the number of 7, that lie in (z%,,7%,].



The set Z is ordered by 7 within e within stratum. It is a conceptual index-set, which
is never actually formed in the computation. Let N, be the size of Z. Any vector which is

indexed by Z is called a Z-vector, and normally considered a column vector. These Z-

vectors are also never formed explicitly. We will write the entry of a Z-vector 6
corresponding to [e,7] as either fe,r] or 8“7, Sometimes we denote pairs in Z by «,
and then we use the notation 8* . This convention also holds for matrices A whose
columns are Z-vectors: Ale,7] or A“”) or A* means the row of A corresponding to
K =[e,7].

Given an extended vector [a® B*]" of regression coefficients (the a will be defined

later, in section “Poisson models and Likelihood”), let the Z-vector x be defined as
ple.r,]=p' "™ =exp(a™ + R f)
for all [e,7,, ] € Z . Another way of stating this is to define a conceptual matrix R

corresponding to R : R will have columns which are Z-vectors. Define the [e,7] row of

~

R as
ﬁ[e,f] — Rk(e,z‘)

That is, the [e,7] row of R is the kle,7] row of R . Then we can define x simply as

u=exp(a)oexp(Rp)
where the exponential is applied entrywise, and “o” means the entrywise product, with
the vector exp(«) expanded to the size of a Z-vector, i.e

e,z ] sh

a =

forall s, i, and e.



We now define the Z-vector Y as

1 If ehasaneventat time r

Y[e,r]=Y!" =
0 else
for all [e,7] € Z . Under the survivals models that are estimated, we have E(Y) = u.

Notice that ¥ and y contain essentially the same information, but they are vectors of

(usually) different dimension. Another characterization of Y is

1 f k(e,7) :1 — k(e,7)
Yle.r]= { if y &r=r1,,
else

For any cluster A, and any Z-vector @, define the Z-vector 8! as

Ole,r] ifeeci
0 ifegi

0"e, 7] = {
for all [e,z] € Z . Then 8" is a Z-vector. It coincides with @ on the pairs corresponding
to cluster A, and is 0 in all other entries. We also define the sum of the entries of 8" as

sum(6'") = Z{H[e,r]] eel}

that is, the sum of [e, 7] for all pairs [e,7] such that e 4.

Summations of the form

a 9
Z A(s, h, k)
s=1 h=1 k eR,,

over strata s, event-times 7, and members k of the risk set Ry, occur frequently in the

formulation of the problem. We note that such a sum is in fact a sum over Z, as follows:

S Ashk)= Y Ak

s=1 h=1k eR,, lef.ry ez

since [¢",7,]e Z ifand only if keR .



As we will see in the next section, Z-vectors are fundamental in the formulation of the
survival models; for example, the log-likelihood is a summation over a Z-vector. This
leads to a difficulty: the dimension of any Z-vector is N,, which can be very large. In the
ACS data, the number of individuals is about half a million, and the average number of
distinct event times per stratum is about 90, so N, is around 45 million. A naive
algorithm for computing the log-likelihood and its derivatives requires stepping through
Z on each iteration, a very time-consuming process. We describe below algorithms which
avoid this in many important cases, and require stepping only through the rows of M. In

many, if not most, problems, the number N, of rows of M will be much smaller than
N, . If there are no time-dependent covariates, for example, then N,; will be smaller than

N, by a factor equal to the average number of distinct event-times per stratum, about 90

for the ACS data.

Remark on Notation

As mentioned in the introduction, the algorithms given here depend on the statistical
theory provided by Ma and colleagues (2000), here called “MKB”’for brevity. We give
here a brief explanation of how the notation of MKB differs from that used here. The

main difference lies in the indexing of the set of individuals, and of the risk sets. For a 2-

level random effects covariance model, MKB denotes by x;‘};), the vector of covariates

associated with individual & in sub-cluster j of cluster 7, in stratum s. The indexing of
individuals is by cluster and subcluster, with the individual’s ID & being assumed unique
only within the subcluster. Here, in contrast, we denote the set of individuals by E, and

usually index this set by e, which we think of as a globally unique identifier of the



individual (this does not imply that such an ID variable must be in the data: see below).
We denote the full row vector of covariates (include the dummy covariates associated
with the “alpha” coefficients) belonging to individual e, by X%, or X°(7) in the case of
time-dependent covariates, where 7 denotes elapsed time. The original covariate vector,
(a row vector) without the dummies, we denote by R® or R°(7) . We denote the “leaf”
cluster to which e belongs by r(e) and the random effect associated with a leaf cluster r,
by U

In a stratum s, we denote by 7, the distinct event times in that stratum, where 4 runs
from 1 to g;, the number of such times. This is the same notation as used by MKB. As in

MKB, we denote the risk set at time 7 by R(7 ), and the risk set at time 7, by R,,. The

risk set is conceptually a set of individuals, but for practical purposes we take it as a set
of records in the data file. In fact, all the computations are organized around data records,
and individuals play no direct role; an ID variable for individuals is not needed, except
possibly for grouping in a robust variance estimation. Each data record & is associated
conceptually with an individual e and a time 7, and we write k = k(e, 7 ). Similarly we
write e(k) to denote the individual associated with a data record k. Extending this scheme,

we write 7 = r(e(k)), the leaf-cluster containing the individual belonging to record ; also

X* and RY, the extended and original covariate vectors associated with e(k), and U a , the
random effect associated with the leaf cluster containing the individual belonging to
record k. The risk set Ry is the set of data records belonging to the individuals at risk at

time 7, . Using the notation scheme, we can write the conditional Poisson log-likelihood

(see section Poisson Models and Likelihood) as:



log(/(a, B;Y |U)) = Zalzq: Z[(log(U’k)nLaSh +Rk,8)vk ~U" exp(a™ +R*B)

s=1 h=1 keR,

Here the summation is over strata s, event-times 7, , and risk-set members k € Ry, o

denotes the alpha-coefficient of stratum s and event time 7z, ,  is the coefficient vector

corresponding to the covariates R, and " is the event-indicator (0 or 1) of the data-record

k. The same formula in the MKB notation is:

a q
log(t(a, B;Y 1UN=D"3" 3 [llog, ) +a,, +x7,, BV, —u,, expla,, +x],,5)]

s=1 h=l (i,j.k)eRy,
Summation over all event-times and over their associated risk sets is equivalent to
summation over the index-vector Z described above (section Z -Vectors). We use this

equivalence frequently in what follows.

Log-Likelihood

Cox Model

We consider the Cox proportional hazards model
A (7) = A (7)exp(R*(7) f)
where A°(7) is the hazard function for individual e, A,(7) is the baseline hazard,

common to all individuals in a stratum, £ is a regression coefficient vector, and R°(7) is

a row vector of covariate values for individual e and time 7 .

No Ties, No Strata
Consider first the case of unstratified data, and no ties. We let u"“ denote the random

effect associated with the leaf-cluster (e) containing individual e. The log-likelithood



conditional on the random effects U is (Andersen and Gill 1982; Therneau and Grambsch

2000)

log(pt(p;Y|U)) =
C+ Y[ [ster 1o ) + R )

e€k

log( > olg.7]U" exp(R* ﬂ)ﬂdl\’ (7)

g €k

where N,( 7 ) is the number of events suffered by individual e up to time 7 . The factor of

ole, 7] on the first term inside the integral is redundant, since N, cannot have a jump at
7 unless d[e,7]=1. The constant C includes various terms, and is independent of the

regression coefficients and the random effects. This expression is a summation over
individuals and event-times, so in effect over Z. We can write it out explicitly as a sum
over event times and the rows of M, interchanging the summations over individuals and
times, giving

log(pl(p;Y|U)) =

q . ] 3
C+Z z [log(U" )+Rkﬂ]—log( Z U’ exp(Rkﬂ)H )

h=1| k €D, k €R,

With Ties
For tied data (still with no stratification), in which more than one event can occur at
one time, we assume that the multiplicities are the result of grouping of continuous-time

data. Then we have:



log(pt(p;Y|U))

=C+ Zj:[é’[e,r](log(U’(e)) + ﬁ[e,r]ﬂ) — mz(?log(Pj (Z‘,ﬂ,U))} dN,(7)

eck

=C+ Z{ > [log(U" )+ Rkﬂ]—ilog(Pj(rh,ﬂ,U))}

h=1| k eD, Jj=1
where m, =m(z,) is the multiplicity at time 7z, (the number of failures in the grouping

interval around 7 ), and we have absorbed a term of log(m!) into the constant C; and for

the Breslow-Peto approximation,

P/(r.f.U) =B(z.f.U) = 3 8g.7]U"" exp(R1“" )

g €E

= > U" exp(R'f)

k eR(7)

SO

P, (7,,5.0)= Y U™ exp(R*)  (Breslow - Peto)

K <Ry,
Weighted: Let w be a case-weight vector. We then have

log(pt(p;Y|U))

=C+ qul: Z [log(U”k )+log(w" )+ R*B]—- ilog(Pj(rh,ﬂ,U,w))}

h=1| k eD, j=1

and

P,(7,,5,Uw)= z U wh exp(R*S)  (Breslow - Peto)

k €Ry,

So, for the Breslow-Peto approximation,

log(pl(B;Y|U))=C + Z{ > [logU" ) +log(w') + R* B1-m, log(P(rh,ﬂ,U,w))}

h=1| k eD,

For the Efron approximation,



p’ (r,4,U) = Z olg,7] {1 + (ﬁ — 1)Y[g,r]j| Ure exp(ﬁ[g,r] A)

g €k

= z {1+(m{r) —1];{"} U exp(R" B)

k eR(7)

SO

P/(z,,5,U) = z {1+(L_ ];("} U exp(R* ) (Efron)
m

k <R, h
where, as before, Y[g,7]=1 if g fails at time 7 . In terms of the matrix M, this is
equivalent to y* =1, where k =k(g,7).
We can write the log-likelihood for the Breslow-Peto approximation as:
log(pt(p;Y|U))

=C+ Zq: z [log(U’k )+ log(w* )+ R*B]- m,, log(P(rh,ﬂ,U,w))

h=1| k €D,

As shown by Whitehead (1980) (see also Ma and colleagues (2000)), this is equivalent
to a Poisson generalized linear model, which we describe in the next-but-one section. The
Efron approximation does not seem to be equivalent to a Poisson model, or indeed to any

GLM, so we will emphasize the Breslow-Peto approximation in what follows.

With Stratification
A stratum is a set of rows of M, and the log-likelihood is formed independently in
each stratum; the separate stratum values are simply added. It follows that we can accom-

modate stratification simply by sorting the rows of M by r,, within 7,,, within stratum.

Start
Then each stratum s corresponds to a submatrix M"! of M, and we can simply sum up

the log-likelihoods from the M™.

4)



Poisson models and Likelihood
We introduce values {a"} for each stratum s and event-time 7, : we postulate that,
given random effects U =u, the values Y[e, 7z, ] are conditionally independent, and have
conditional distribution
YU ~ Poisson(U" exp(a*" + R'“™! 3))
Weighted: if w is a weight vector, assumed to be a Z -vector,
YU ~ Poisson(U " w' ™ exp(a®” + R'™ B))

So

e |(U)y=Uewopu
e(Y)=¢,(e(Y[(V))
=&,(Uowou)=wo

where the notation w o # means the entry-wise product of two vectors.

This is the same, letting k =k(e,7,,), as

Y'm | U ~ Poisson(U” w* exp(a” + R* B))
The conditional log-likelihood for this, given the random effects, (ignoring an additive
constant) is
log(/(a, ;Y| U)) =

Y3 Y [loa@ )+ logw) +a* +R Bl 24 ~U” ' exp(a” +R* )

s=1 h=1 k €Ry,

= Z [[log(U’k )+ log(W* )+ ™ + Rkﬁ]Y[ek”“‘h] ~u" wk,u[ek”"‘h]]

le*.7,]eZ



where ¥ and u are Z-vectors defined above. With a little more notation, we can make
this more compact. Recall the conceptual matrix R, whose columns are Z-vectors: we
define another matrix E , with a column for each stratum-event-time pair s4, and whose

columns are Z-vectors. The [e,7,,] row of E has 1 in column sk, and 0 elsewhere; so

(Ea) " = " . Now let

X-[ R]
and
B o

’ __ﬂ}

Then we can write the log-likelihood as
log(¢(a, ;Y [w)) = Y*[log(U") +log(w) + X 7] - (U")" (wo 1)
where u” is the vector of leaf-level random effects, expanded into a Z-vector, i.e.
U'le',z,1=U"

sh
As mentioned above, this Poisson generalized linear model is equivalent to the Cox

proportional hazards model using the Breslow-Peto approximation for ties. The proof is

given in Whitehead (1980) and in Ma and colleagues (2000). Whitehead also gives (in

formula 5.2) an interpretation of the & 's: for each stratum s, the cumulative sum of
exp(a?) up to j=h,is an estimate of the baseline cumulative hazard function for
stratum s, at time 7, .

For a given random effects vector U, we estimate the regression coefficients o and S

by maximizing the log-likelihood, which depends on « and £ through the terms Y X y

)



and (U")" . This is easy for « : differentiating the log-likelihood with respect to a”,

we find

(6/0a" Jog(t(@, BYU) = 3 |7 —u' w* exp(a™ + R )]

k €Ry,
=m,, —exp(a™)P,, (B, U,w)
where
Psh (ﬂ: Us W) = Z Ur' Wk eXp(Rkﬂ)

k €Ry,

and m, is defined above as the event count in stratum s at time 7, . It follows that

exp(a™) =m,; (B, (8,U, W)
so that @” can be determined as soon as 3 and the random effects are known.
Differentiating (5) with respect to y gives
dlog(!(a, B;Y|U))/ 0y =YX —(U*)" diag(w o )X
whose transpose is
¥(7|U) =V, log({(a, B;Y| U)) = X*[Y — diag(w o £)(U")]
where diag(w o 1) means the diagonal matrix whose diagonal is the vector wo . We
now introduce more notation: let
A = diag(w o )
and let B be a matrix whose columns are Z-vectors, with each column corresponding to a
leaf cluster 7. The column of cluster 7 is the Z-vector (w o )"}, defined above as equal
to wo u at all positions [e* ,T,,] for which e* er, and 0 elsewhere; that is,

k
€ ’T:h]

k k
B[Ckaf.ch]: w /Ll[ , € €r
.
0, e er

In this notation, we have

(6)



diag(wo x)U" =BU
and

¥(7|U) =V, log({(a, B;Y| V) = X*[Y = BU]

Equivalence with Cox Model

Now as before, letting

P(r,,H,U,w)= Z U wt exp(R* B)

k €Ry,

we have

log(t(e. Y [w) =YY | T og(u™ ) +log(w') + ™ + R*A] 7 —exp(a™ B(z,,. f.u. W)

s=1 h=1| k eR,

The value of « at the maximum is determined by

0 =0dlog({(ex, B;Y|U))/0a™ = Y x* —exp(a™)P(z,,, 5,U,wW)

k eRy,

=m, —exp(a”)P(z,,,,U,W)
Setting this to zero gives

exp(a”’) =mg, | P(t,,5,U,w)

aSh = log(msh / P(Tsh ’ﬂ:an)) = gSh (ﬂ’ U’ W)
or

a =g(f,U,w)

(7)

say. This is the value of a” at the maximum of log(¢(c, 5;Y| U)).

Substituting this for & in log(¢(a, B;| U)) gives

log(t(e, 5;Y|U)) =qu: Y [og(U" ) +log(w')+a" +R*B1 ' -

s=1 h=1| k €eRy,

exp(aSh)P(Tsh,ﬂ,U,W)]



S { > [logU" ) +log(w") +log(m,, ) -

s=1 h €R,

log(P(Tsh 9ﬂ7 U: W)) + Rkﬂ]}(k —mg, ]

- CI(Y)+Zu:Zq:{ > [logU" ) +log(w") -

s=1 h=1| k R,

log(P(z,,, 4, U,w) +R" Blx"]

- cmnéi{ S logU" ) +log(w*) + R* 17" -

s=1 h=1| k R,

> 1 log(®(z,,. B, U,W))}

k eRy,

s=1 h=1| k eDy,

=CI(Y)+ii{ S [og@" ) +log(w') + R ] -

m,, log(P(z,,, 3, U,w))]
where

(V)= zz{ S log(m,) 7" —msh}

s=1 h=1 | k eR,,
Comparing the expression for log(/(a, #;Y|u)) given here, with Therneau and Li

(1998), we see they differ by an expression independent of £ and u, when strata are

allowed for. It follows that the Poisson model gives identical estimates of £, to the Cox

model of Therneau and Li (1998). Unfortunately, it appears no such argument is possible

for the Efron approximation.

Derivatives of log(?)

We have, letting z be an offset variable,



L=log(t(e. BV U) =3 3| 3 Hogu” ) +log(w') + ™ + R f+2°1 7 ~exp(a™ )2, (B.U.w.2)

s=1 h=1| k €Ry,

where

(B UwWz)= > u" w'exp(R*f+2")

k €Ry,
The various derivatives of L are given in the table below, where a subscript «, £, or
U means a partial derivative with respect to the variable in the subscript. Recall that R* is

a row vector, row k of R, and « , #, and U are column vectors. The notation {L, }Sh , for
example, means the sh-component of the gradient vector L, =V L, or in other words
{L}" =0L /0a” . Here sh means stratum s and stratum s’s event-time /.

(L} ={0log(l(a, B;Y|U))/ 0}, =m,, —e“" P, (B, U,W,2)

a g k - -
L, =0log(l(a, B;Y|U))/ 08 = |: > 7'RE—exp(@™) D U” w' exp(R* f+2")R*
s=1 h=1| k eRy, k eRg,
Y, u” W exp(R'B+2" )R’
mv sh - . . -
k eRy i, U W exp(R' B +2")

z{ S /'R -m,R, w)}

s=1 h=1 €Ry,

] at max

8

where
Zﬁ‘ERw Ur/ w' eXp(Rﬁﬂ+ Z/)Rﬂ Zcekw u" w' eXp(R/,B+ Zﬁ)R[
S, U W' exp(R'f+2") P, (B.U.w,2)

R, (B) =

{L,, }j: ={0 log(/(ax, B;Y|U))/ 0cr® Yonon = " P, (B, U,w,z)=—m, atmax (matrix is diagonal)

(L, =0 log(U(a, B Y| U))/ 0adf =—e*" 0P, (B, U,w,2)/ 0f = > U" w* exp(R* f+2“)R" (sh-row)

k €Ry,



L, =0 log({(a, B;Y|U))/ 0f% = -

a q " k
e Y U” whexpRfp+z" )(RF)*R

s=1 h k eRy,

{op, (B, U,w,z)/0U}" = Z w* exp(R* B +z")

k eRy, &rk=r

L} =m" /U —sum((wo )"

where m” = sum( y'"), the event count for leaf - cluster 7

(Lo} =07 log(l(a, f;Y| V) /000U = —e*" (0P, (B, U,w,2)/ U} == > wh exp(R*f+2")

k eRy &rk=r

{Ly}" =10° log(l(a, B;Y | U))/ 0poU}" :ZZ’) —e" > whexp(R“S+z")R* | (r" column)

s=1 h=1 k eRy, &rf=r

For future reference, we note the following: let the si-row of L, be denoted by G,

G, =-e" > U whexp(R* B +z*)R*

k €Ry,

then, if (e, /) maximize L for given U,

Lyl 'L, =YY G,)rG, ®)

s=1 h=1 M

BLUP Predictors

Definitions and Properties
Now we consider the method of predicting the components of the random effect vector
U. We recall that N,,is the total number of leaves, which are ordered lexically. For this

section we will assume that values («, ) are given, which in turn determine the Z-vector

4 . The matrices 4 and B were defined above as 4 = diag(wo x), and Bis N, x N,

eaf
with column 7 of B being the Z-vector (w o u)") (recall that v'"! is equal to v on pairs

[e,7] such that e € r, and 0 elsewhere, for any Z-vector v). We note that the matrix



O=B"4"'B

is diagonal; it plays an important role in predicting U.

Expressions for var(Y) and cov(U,Y)

As mentioned before, the clusters of any level k are disjoint. By a leaf-vector we mean
a vector of dimension N, whose components are associated with the corresponding
leaves. The random-effects vector U is a leaf-vector. We start from the formulas

var(Y) = A+ Bvar(U) B*
=A+BDB*
and 9)
cov(U,Y) = var(U)B* = DB*
eY)=wou

where var(Y)=cov(Y,Y), D =var(U), w is a weight vector, and "o" means the entry-
wise product of vectors. We note here that var(Y) is N, xN,, and var(U) is

N,

(<

o % N - It 18 €asy to see that if the weight vector w has positive entries, then B has

full rank, which implies that D = var(U) is uniquely determined by var(Y).
We will assume here that D = var(U) is simply given; in fact, we need to have a
model for var(U), and the available models normally contain parameters, called

“dispersion parameters”, which must be estimated as part of the overall estimation

process. We will denote a particular covariance model by D(7), where 7 is the vector of

dispersion parameters, whose dimension and nature are specific to the covariance model

considered. It is assumed that D() is a known function, and that any admissible value of

n determines the covariance matrix D(7).



BLUP Formula

The BLUP predictor of U has the form U = m+ HY , where the vector m and matrix
H are to be determined. The defining requirements are that 8((} )=¢U) =1, and that
U-U be orthogonal to any linear transformation GY of Y, for any matrix G . This
implies

eU)=m+He(Y)=m+H(wo u)=1
SO
m=1-H(wo u)

(note that 1 here is a leaf-vector whose entries are all 1), and

cov(U —U,GY) =0
or
cov(HY,GY) =cov(U,GY)
SO
Hvar(Y)G* =cov(U,Y)G",all G,
so H =cov(U,Y)var(Y)™

It follows that
U =1+cov(U,Y)var(Y) " (Y —wo u)

This is the BLUP formula. Using (9) and the Sherman-Morrison-Woodbury formula,
A+ = A7 — AW+ WA W)yt T 4!

we can determine the matrix H by



var(Y)" =(A+BDB*) ' =(A+WW™)"!

where
W =BD"?

SO

var(Y)! =A™ — A WA +W A W)Y 'wT4™
=A"-A"'B(D"'+0)"'BT4™
=4"-A4"'BO (O +D)"'DB* 4™
=A" —A"'B(I+DQ)"'DB* 4™
and

H =cov(U,Y)var(Y)" =DB*[4" — 4" B0 (0™ + D) DB 4|
=DB*A" —D(Q"' +D)"' DB 4™
=[I-D(Q "' +D)"'1DB* 4™
=0 (0" +D)"'DB" 4™
The predicted random effect is
U=1+0"(Q"'+D)"'DB*A™ (Y — 1)
=1+07(Q"'+D)"'Dw

=1+(I+DQ)"'Dw
=1+BLUPw

where

O=B"4"'B
BLUP =(/+DQ)"'D
=D +D)"Q"
=07 (0" +D)"'D
and
w=BTA" (Y -wopu)

We note that Q is a diagonal matrix, whose diagonal entry corresponding to the leaf-
cluster » is
0/ =(B"A4™'B) =sum((wo u)"))

and



w=B"A"(Y —wo u)
w" =sum((Y —wo )l

var(w) =Q0+0DQ

Clearly,

var(U) = H var(Y)H™ = DB" var(Y) ™' BD
= +DQ)"'DB*A'BD
= (I +DQ)"' DOD
=[I-(I+DQ)"1D
=D-(I+DQO)'D

var(U) = DO(I + DQ)™"' D
= DO(Q+0DQ)" 0D

and
cov(U,U) = cov(lj,l}) = Var(U)
We can also write this relation in the form

D =var(U) = var(U)+ (I + DQ)™"' D

n (10)
=var(U)+ BLUP

which can be considered a bias-correction formula.

Estimation of s

Basic Formulas
It is shown above that the Poisson model gives the same estimates for the regression

coefficients £ as does the Cox model with the Breslow-Peto approximation for ties. We

develop here a method for estimating £ from the Poisson model, which produces

simultaneously the BLUP-predicted random effects U . Recall that the conditional log-

likelihood and its gradient are given by



log(t(a, B;Y|U)) = Y*[log(U") +log(w) + X y]— (U")* (W o 1)
Y(y|U) =V, log(t(a, B;Y|U)) = X*[Y — diag(w o 1)U "]
=X"[Y - AU 1= X*[Y - BU]

where we note in passing that AU" = BU .

The conditional expectation of W(y|U) over U, given Y, is
&y (PID)IY) =X[Y - Bs(U |Y)]
We approximate £(U |Y) by the BLUP predictor, defining a function y(y):

w(7)=y(y,Y)=X"[Y - BU]

This is also equal to

w(y)=X"Avar(Y)" (Y - p)

as can be proved by a simple argument. We will estimate y by the equation y(y)=0.

Derivatives

Now we need some differentiation formulas:

d(wo 1)/ 0y = diag(p)X = AX
(6/07)(“7 o ﬂ)[e"f] — (W o ﬂ)[e,f] i[e,r]
(5/87/)(W ° lu)[e,r] (i[e,r])T — (i[e,r])T(W o Iu)[e,r] )N([g,r]

/0y wldy] =-X"Avar(Y) " AX[dy]+
X" {04 / oy}[dylvar(Y)™ (Y - p)

@y 10y) =-X"Avar(Y)" AX =-S(»)



That is, we let S(y) denote the expectation (over Y') of the derivative of y(y) with

respect to y . If there is stratification,

S(7) = £@p 197 =38, (7,)

s=1
Least Squares Equivalence

Define

q(u) = (1/2)(Y = (w o )" var(¥) ™ (Y — (W o p1))
=(1/2)2*Z

where Z is defined as
var(Y) " (Y = (wo u))
Then
0q /o= (Y —(wo 1)) diag(w) var(Y)™
It follows that

w(y) =1 — )" var(Y) " AX]*
= ((Oq/ 0p) (Ou/ 0y))* =(9/0y) q(u(y))

so that the condition y/(y) =0 is equivalent to minimizing g(u(y)) with respectto v,

and amounts to a nonlinear least-squares criterion.

Estimating Equations
The basic estimating equations are then () =0 and the BLUP formula for U :

w(7) =X"[Y-BU]=0

. (11)
U=1+{+DQ)"' DB A7 (Y — 1)



Note that these are stated in terms of the conceptual vectors and matrices Y, X, U,
A, B ; we still must develop computational algorithms in terms of the data matrix M.

We note that the BLUP formula for U depends on D = var(U), which in turn
depends on the dispersion parameters of the particular model for var(U) that is used. To

the estimating equations must be added one more, for determining the dispersion

parameter vector 77 of the covariance model D(77). Let us suppose that the dispersion
parameter vector 77 is estimated with the help of an estimating equation
G(y.m,U)=0
or, in an equivalent fixed-point form,
n=H(y.nU)

and the full system of estimating equations becomes

w(y)=X"[Y-BU]=0 (Score equation for y)
U=1+(+D0O)"DB*A™(Y - u) (BLUP predictor of U)
D = D(n) (Model for var(U))
n=H(y,n, U ) (Estimation of dispersion parameters)

Solving for « and g

Newton-Picard Iteration
Given the values of U , the Fisher scoring algorithm for solving the first of the esti-
mating equations above is given by
SC ot )V new = Voia) ==YV ota)
Now recall that the matrix X is partitioned into “alpha” and “beta” columns by

x-[f R

(12)
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anew - aold

ﬂnew _ﬂold_

With this partitioning, we can write the Fisher scoring equation as

1o

or

v ol

where
M =E*Avar(Y) "' AE
N =E%A4var(Y)" AR
P =R%4var(Y)" AR
and
p =E*[Y-BU]
g =R*[Y - BU]
Practicalities

The partitioned form of the score equation indicates a practical difficulty: the vector
a can be large. For the ACS data, there can be around 200 strata, averaging nearly 90
distinct event-times each (because of ties, the average number of event-times per stratum
is only weakly dependent on the fineness of the stratification). This means that the matrix

M above is about 18,000x18,000, and would require over 2.5 gigabytes to store. We

need a way to avoid forming this matrix or any of similar size. Since the « -vector is in

some sense a nuisance parameter, and the real focus is on the regression coefficients 3,
we try eliminating Aa from the partitioned system. The result is

[P-N"M'NJAB=g-N"M"'p



Now we have already seen that the « -component of y(y) is the vector

p= E’[Y - BU], the gradient of the log-likelihood L with respect to « , and from

section “Derivatives of log(£)” this is given by

p" ={E*[Y =BUL" =m,, —e"B,(A.U)
If we then choose each " to satisfy
e’ =m, /B, (8,0)
then p =0 for this choice, and the equation (13) simplifies to
[P-N"M'N]JAB=¢q
The matrix K = P— N"M "' N is called the Schur complement of the original matrix
S, and it is the matrix needed to determine the new regression coefficients £ on each

iteration. As we shall see later, it is possible and practical to compute the Schur
complement exactly, but the computation is time-consuming, and computing it on every
iteration is too slow. It can be computed once, at the end, to determine standard errors,
but for the iterations, we must find an approximation. For approximating, we have two

choices: either compute the exact Schur complement and re-use it for several iterations to

amortize the cost, or use an approximate Schur complement K for the iterations, then the
exact K for standard errors. At present, the program uses the second alternative. The

approximation to K used is the matrix
> -1
K_Lﬁﬁ _Lﬂa(Laa) l’af/)7

Formulas for the terms are given in section “Derivatives of log()”, and K is

reasonably fast to compute. The matrix K differs from K in that K is formed treating

(13)



the random effects vector U as a constant in the derivatives; that is, the derivatives with
respectto a and £ in K do not take account of the variation of U with & and p. 1t

works adequately for the iterations, but is not accurate enough for standard errors.

One iteration of the full system is

[Lﬂﬂ _Lﬁa (Laa )_lLaﬂ]Aﬂ = q = l,iT[}/ - Boldl")old] = Lﬂ
ﬂnew :ﬂold +Aﬂ

al =log(m, /2, (... U,)), alls,h

new

Opew = XA Brery) (14)

~

U :1+(1+Dold Qnew)_l Dold BTA_I (Y_ILlnew)

new

nnew = H(anew’ lgnew ’ 770ld ’ Unew)

Dnew = D(nnew)

Here the notation Q(«,,,,f3,.,) means B A™' B, computed with the new « and S

values. Note that the term B™4™' iz in the formula for U is actually the diagonal of O,

new

written as a vector, so B*4~'u, is available as soon as Q,,, is. Note also that the

matrix B A", although defined in terms of the vector 1, is a constant independent of
1, so that the term BT A™'Y only needs to be computed once, and indeed
(B"A'YY =m"

for each leaf-cluster r.



In the actual iterations, the matrix K and the right side vector ¢ are computed first,

using the previous random effects vector U,,,. This is the most time-consuming part of

the computation, and it requires special algorithms, discussed in the Appendix, to be done
in a reasonable time. The vector p is never actually formed and stored, although entries
are computed, used, and discarded. The updates of U and 7 are done by one of a set of
special program modules that implement the covariance models the program recognizes.
These modules are self-contained, all with the same interface to the rest of the program,
so that it is relatively easy to add new covariance models. The last three lines of (14) are
implemented by the code module for the chosen covariance model.

The structure of the iteration (14) can be seen to be Newton-like in the regression

coefficients f# and Picard-like in the dispersion parameters 7. The random effects vector

U is not an independent solution component, but is determined by £ and 7, so is just a

reporting variable.
It can be shown that the algorithm of (14) amounts to an approximate EM algorithm,
the approximation consisting of replacing the conditional expectation of the U 's given

Y, by the BLUP predictor.

Residuals

Martingale Residuals

The cumulative baseline hazard function A (¢) can be estimated Therneau and

Grambsch (2000, ch. 4) by



:J" d(ZlNz(S)) §
02,;6,(s)exp(R;(s) f)

Ay(0)

In the notation used here, this is

n d m
A, ()=) I(r, <1) —
=21 =05 0, U” W' exp(R* )

where /() is the indicator function. This simplifies to

/A\O(f) = i[(fh < t)ﬁ

= > expa")

thlz, <1}

since

B,(Auw)= > U w'exp(R* )

k €Ry,

and

exp(a™) =m, | B(z,,3,U,W)
The martingale residuals are defined by Therneau and Grambsch as:
M,(0) = N(0) - [ 8,0 exp(R(O)A)dA (1)

or in our notation as

=NO- Y U exp(@’)exp(R'f)

{hlt, <t &i eR,}

If subject i has the time interval at risk (z!,_,7. ], this is

start

1 - Z{M?Zmrr <7 < T(‘;nd} Ur(i)w[[,rh] eXp(ah ) exp(Riﬂ)o

= C LU O exn(a™)exp(R ),
{hl Ty < 7 < 1} p p

1- U"(i) eXp(Riﬂ) Z{hlrs’,m <7, < Togt W[iyrh] eXp(ah )’

~U" " expR'B) el <o, < g W™ expla”),



Or, if the k" data record has interval (% ,z5 1,

1-U" U™ w exp(R*B) e exp(@”), 127, &k e D(zh,)

Mk (t)=1-U" wh exp(Rkﬂ)Z{h\keRh}eXp(ah)a tz T:nd &ke D(T:nd)

ko k k h k
-U" w" exp(R ﬂ)Z{hpjm,.,qhgt}eXP(a ) 12T,

7" - U wt exp(R" ) Z{h|keRh}eXp(ah ), t21,,

ko k Kk h k
-U" w" exp(R ﬂ)Z{h\r;m,,qhsz}exp(a ) 1<T,,

and
[7 royant, )= z PV (2)~ M (2, ]
= f (o) ~ {m; f} (c)U" W exp(a”)exp(R’ )
Note that

{h|k € Rh}z{hh-h E(Tsktart’z-fnd]}

Score Residuals

Therneau and Grambsch (2000) define the score residuals as follows: first let
U (7.0 = [ IR (1) = F(B,9)1dM (s)

where



%, 0,()exp(R’(1) B)R' (1)

F(But) = :
F(B,1) Y,8,()exp(R’ (1) B)
or
r(B,t) = 2k < ROy Urkr:}k ixp(Rk f) S
Zk € R(t) U'w eXp(R IB)
N LU W ep® AR
F(B.0) = P(t, 4,U, W)

Now: the score residual U, () is defined as

U ) =U,(0) = [ [R=F(B,9)ldM(s)

or
U, () = SR — (8.7, (c,) ~ M, (¢, )]

=[R' =F(B. ety D —U" w exp(a”)exp(R* S)R" —F(8,7,)]

{hlk < R}

= [R' =F(B. el )r" ~U W expR* ) > expe”)R' ~7(B.7,)

{hlk € R}

or,

U ) =[R* =F(B,cb lx* —U" w' exp(R*B) Y exp(a”)[R* —7(B,7,)]

{hlk e Ry}

=[R* —F(B.clx' ~U" w' exp(R*HR* > exp(a”)

(hlk < Ry}

+U" wexpR B) Y exp(a")F(B,1,)

thlk € Ry}

Now



YU ()=

SR —F(B i )17 ~U" w expR! ) Y exp(a)[R! —F(B,z, )]}

T {(hlk e R}

—Z[R" ~F(Bro )" Z U”w expR'B) Y exp(a”)[R" —F(B, fh)]}

{hlk e Ry}

—ZR";(" Zexp(a ) Z U'w “exp(R* B)R" +

k e R,

zeXp(a 7 (B.7,) D, U w' exp(R*B) - zr(ﬁ To) X

keR,

Zq: Z R* y* —exp(a’) Z U™ wh exp(R* B)R* |+

h=l| k € R, k € R,

Zexpm JF(B.7,) Y U w' exp(R' ) - 2r Bty

k e R,

The third and fourth terms are

Zexp(a ) (B.ty) Y U w' exp(R* ) - Z”(ﬂ T X

iwu T BERBUw) - ;k;f(ﬂ )
—zmh”(ﬂ 7,)— z Z F(p.t;)

=i F(Bor,) - thr(ﬂrh) 0

so, we have

ZUk V) :Lﬁ

and



F(ﬂ, z-fnal) = zj - R(Tf”‘/)Ur j/‘//j exp(RJ ﬁ) Rj
2jereinU w’ exp(R’ )

_ Y, cn U W exp(R’ SR/
F(B.7,) = —— ‘
Y, .2 U exp(R p)

:—exp(ah) > U w' exp(R’ )R’

m,  jer,

Note that the denominator of 7(f3,?) is

p(t,B,U,w)= > U" w exp(R*3)

k eR(t)
and

F(B.1) = %log@a,ﬂ,u,w»

The score residuals form a N,, x p matrix U(y). Note also that at the solution we

have

Zk:Uk (ﬂ):Lﬂ =0

dfbeta Residuals
The dfbeta residuals Therneau and Grambsch (2000, ch. 7.1) form a N,, x p matrix
D(7), defined from the score residual matrix U (y) as
D(7)=U K"
where K(y) is the Schur-complement matrix used for standard errors and defined in (27).

The dfbeta residuals are used by the program to compute robust variance estimates.



Models for var(U)
We give a few standard forms for D = var(U) . Each of the forms contains
undetermined parameters, called “dispersion parameters”. These must be estimated,

generally by estimating functions involving U.

One-Level Distance-Decay Form

General

Let d , denote the distance between clusters » and s, in a one-level hierarchy. The

distance can be any suitable distance measure, satisfying

drr = O
d,>0ifr#s
dVS = dsr

and sometimes
d. < d,q + a’qs

The last is the triangle inequality, which may not be satisfied by some distance
measures.
Suppose that w is a fixed vector of cluster weights (e.g. city populations, etc.), which

is supplied as data. It is assumed that w,_ >0, for all ». We specify

Dl = COV(UwUs) = 62 W, W, g(drs /h)

N

where g = g(x,---) is a function of x =d /h, with possibly other parameters. We require



g(0)=1

g continuous
g decreasing
g(x)20 (15)
g(x)>0asx >
and sometimes
g(x)=0if x>1

The first requirement is just a normalization. The last requirement, which may or may
not be invoked in a particular problem, gives some sparseness to the matrix D . The
choice of x =1 as the cutoff value is arbitrary, since it is just a matter of the scaling of 4.

More generally, we note that / is not really a parameter of the distribution, but simply

a normalization of the distance function d(). The function d() and the normalizing

constant / are assumed to be chosen a priori. The choice of /4 reflects the spatial
resolution that is thought to be important.
We also require that the matrix D be positive definite, which restricts the choice of

functions g and parameter values /. some possibilities are:

g(x) = exp(—x)

g(x) =exp(-x?)
g(x) =(1-x)’
g(x)=1-x
gx)=p" 0<p<l

This last is the same as
g(x) = exp(log(p)x)

So the parameter p is essentially equivalent to the resolution parameter /. Now let

do = mines(drs). If h is chosen small enough that 0 < g(d,/h)<1/N,

eaf >

where N, is

the number of clusters, then D is positive definite:



Z g(d, /h)< Z g(dy/h) < (N, =)/ N, <1=g(d, | h)

S#r S#Er

so the matrix without the weights is diagonally dominant, and hence positive definite.
The weighted matrix is just a matter of multiplying on left and right by a positive
diagonal matrix, which preserves positive definiteness. We conclude that, given the

metric {d,_}, and given an arbitrary function g having the first five properties specified
in (15), there is a non-empty open interval (0,4,) of & -values that make D positive

definite. This does not require the distance to satisfy the triangle inequality.

Example: p*

Now let us consider the last example listed above in more detail. We have g(x) = p"*,
for some p with 0< p <1, and

D =cov(U,U)=c"w,w, p"'"=c’w w_exp(log(p)d,/h)

As already pointed out, the parameters p and % are redundant, since whatever value

is chosen for /4, we can replace it with h=-h/ log(p), and absorb p into h, giving
D’ =cov(U,,U)=0c"w,w exp(-d, /h)
Or, we can absorb / into p, defining
log(p) =log(p)/ h

p =exp(log(p)/ h)

_ A/h

Yo,

So, without loss of generality we can take either £ =1, and consider
cov(U,,U)=c>w,w, p™

or take p=e"' and consider



cov(U,,U,)=c’w,w_ exp(—d,/h)
These are equivalent. Let us choose the first form, and consider
D =cov(U,U)=c"w,w, p'"
As mentioned, the parameter p is just a matter of the scaling of the metric d .

However, let us suppose the metric is already fixed: in that case, p becomes a parameter

to be fitted from the data.

Estimating o and p

We have seen from (10)
D = var(U) = var(U) + (I + DQ)"' D

and

D =&(U" =) +{(I + DQ)"' D}
D, =&((U" -D(U* =1)+{(I + DQ)"' D}’

Note that
(I+DQ)'D=(D"+0)"

is positive definite, so
{I+DQ)"' D} >0
We note that under the assumed form of D,
Dl =w2c?, allr

This leads to the equation

cl=w’ [g((U’ —DH)+{( + DQ)_ID}:]



for all », and estimating the expectation by a sample average, we have the estimating

equation

o’ =average(w2[(U" -1)* +{(I + DO)"'D}"])

ls

where the average is taken over all leaf clusters ». Note that the right side depends on D,
which depends on &*. We can regard this as an equation in ¢, which occurs on both
sides. Its solution &7 is necessarily positive.

However, the above procedure for 6° may not be very robust when the weight vector
has some small values, since those terms will tend to dominate the estimate. We proceed

instead as follows: define

Ky = [0~ 1? + {(+ DO D};]

and choose &~ to satisfy

mi2n<{e0(0'2)|0'2 >0} = mizn{Z[K: -o'w’T

O'2>0}

This gives

Oe,/00” =2 K] —o’wilw; =0

which leads to

2¢r
6-2 _ errKr

o ow
which should be less sensitive to small weight values. Again, the right side depends on

D, which depends on ¢”.

Now consider p ; we have



D/ =c’w,w, p" =&(U" -1)U' -1)+{(I+DQ)" D},
For some “contiguity” metrics, we can do something for o similar to the above
method for o”. However, it requires that there be many pairs with d,. =1, and this is a

strong assumption on the metric. Instead we can proceed as follows: let

K =|@ -0@ -1+ {1+ DO) ' DY
or

K =[0 -1 -1+ + DO)"' D]
Or, if D 1is large and sparse, we might want to approximate K by

K = |0 =10 -1 + (1 + diag(DQ)) ' D|
K =0 - 1)@ -1)* + 0" diag(Q™' + D) D]

or some similar sparse approximation. The reason for this is that sparse matrices rarely

have sparse inverses, and forming (/ + DQ)™' may not be feasible.
Then we want to choose o and either p or / so that the matrix { o> w, w,_p™} or

{o’w, w, exp(—d,/h)} most closely resembles K . We must have 0< p<1, or 2>0.

We can try minimizing the difference in some matrix norm, such as the Frobenius norm,

o’ >O}

. , 2 d, 12
mhln{Z[Ks o'w,w, p ]

separating the diagonal and off-diagonal entries:

mizn{Z[K: ~o'w’T

and

r#Ss

h>0}

where o is taken as given, in the second line. Then &~ is determined as before. Let

o(p) =Y S IK ~o*w,w, p ')

r#S r#s



We want to minimize this for 0 < p <1. There are many codes available for one-

dimensional minimization problems; the program uses one called fmin, due originally to

Richard Brent.

Another Approach to Estimating p
Suppose that d is a neighbor-type distance matrix, i.e. every value is either 1 or oo,

meaning that clusters are either neighbors or strangers. Assume for the moment that we

have an estimate 6> for o, from somewhere. We have from (9) that if x and v are Z-

indices, with x # v, then

cov(Y*,Y") = ,u",uVD;f

where D, again, is cov(U,U), and r"* is the leaf-cluster corresponding to the Z-index « .

Now let r,s be leaf clusters. We write » <> s tomean d, =1, 1.e. r and s are

neighbors. Then

Ye y” Y v
D! :—COV( 240 :cov[—K, VJ
Hu

pu
for any x =[e,7] and v =[g,&] with eer and g €s. We will abuse notation by writing
xker and v es. It follows that
D = mean{cov(i—i,i—i) | Viker,Vve s}

Noting that

we can estimate the right side of (16) by

(16)



D =mean{(y—f—l)(jl—:—1) |Vker, Vve s}

Y73

-y bk )

r'ts ker ves

=mean|X-—1 mean(y—: — 1)
xer H ves M

=M"M*

say, where we define

M’ = mean(y—i — 1)

ker H

which is easily computed for all 7 on each iteration. Now, we are postulating

Dl‘ — 0_2

N

o = o’p ifros
0 else

It follows that

o’ p~mean(M"M?*)

r<>s

where mean denotes the mean over all pairs (7,s) that are neighbors, and so we define

IS

the estimator

mean(M"M?)

r<>s

>
Il

>

)

One-Level Moving Average

Suppose that d is a distance matrix; we derive a matrix 4 from d as follows:
replace any infinite entries by 0, and scale the rows so that each row sums to 1. The
matrix A4 then has the properties:

e A2>0,and 4, >0 if clusters r and s are neighbors.

e A1=1, where 1 is the vector of all 1's.



o diag(4) isO.

e A A is symmetric, for some diagonal matrix A.

We postulate the following model for the random effects vector U ={U }:
U=(0-p)V+pAV =P(p)V

where:

e V isarandom vector assumed iid and V' >0, &(J')=1, and var(}V) = o/
e o’ and p are parameters to be estimated, with > >0 and 0< p <7
then, letting P(p) be

P(p)=(1-p)+pA

we have &(U)=1, and the covariance matrix of U is

var(U) = D(c?, p) = 6*P(p)P(p)"
= o[- p)2T + p(1= p)(A+ A™)+ p*AA" ]

Still supposing that the distance matrix is neighbor type, we have as above, for r # s,

mean(D; ) ~ mean(M "M ")
r<>s r<>s
or

o’[p(1- p)mean(4 + 4%) + p* mean(44")] ~ mean(M"M")
The left side is
o’[2p(1- pymean(4]) + p* mean(Y_ 4/ 47)]
=o’[2p(1- p)R + p’S] |
where R and S need to be computed from A4 only once. So we have the quadratic equation

in p:



mean(M"M*)
2p(1-p)R+ p*S =2 ——

6_2
The left side is 0 when p =0.1If § < 2R, then the left side is increasing in p on
[0,),s0 p is either uniquely defined, or must be taken to be § (i.e. the model doesn't fit

well). If § > 2R, then there is no positive solution, so we must take p =0, again

observing that the model doesn't fit well.

Multi-Level Nested Form
Definitions and Properties

Assumptions:

Suppose we have a nested system (tree) of clusters (sets of individuals), ordered by the
“c” relation. Let the “level-1” clusters be those clusters with no parent (no larger cluster
of which the given one is a subset). Let the “leaves”, or “finest-level” clusters be those
with no children. A cluster can be both root and leaf. We define the level of a cluster ¢

recursively by:

e The level of a level-1 cluster is 1
e If'the parent of ¢ has level 7, then ¢ has level /7 +1.

The clusters of any level ¢ are disjoint. Let N, be the total number of leaves,

ordered lexically (this assumes a multi-index representation of the cluster tree). Recall

that U is a leaf-vector, so has dimension N, . Let L be the highest level in the tree.

We are now going to assign a random effect vector U, to every cluster i at any level,

not merely the leaves. If i is a cluster at some level, let P(i) be the set consisting of i,



the parent of 7, the grandparent of i,..., back to level 1. We also write U{P(i)} to denote

the vector of values of all the corresponding random effects of ¢ and its ancestors. We

will write U{/} to denote the vector of level- / random effects. So what we have been

denoting by U so faris U{L}. We write U{/}' to denote the i” component of the vector

U{¢} . We will suppress the “{/} ” when it is clear from the context.
We will impose the following assumptions:
1) If i is acluster of level 7, and {il,i2,---,iq} are the children of i, then
U",U"?,...,U" are conditionally IID, given U{P(i)}, and

e(U, |ULP()}) = U’
var(U, [U{P(i)}) = o2, U’

where o}, is a dispersion parameter that must be estimated.
2) If r is a leaf-cluster, and €,€,,...,e, are the individuals in », and
x =le,1 ], K, =[e,,7,],...,5, =[e,,7,] are pairs in Z , then the Y*' are
conditionally independent given U{P(r)}, and
e(Y"V [U{P(r)}) = u"U"
To make these statements apply to level 1, we define a “root” or level-0 cluster to be

the set of all individuals, and then each level-1 cluster is a child of the root. Define the

root’s random effect value (degenerate) as U{0} =1. Then the above assumptions also

hold for level-1 clusters.

Definition: Sometimes we will consider the cluster tree truncated or trimmed at level

¢ < L. By the /-trimmed tree, we mean the tree with all clusters of higher level than /¢



removed, so that the leaves of the trimmed tree (the “ ¢ -leaves™) are the clusters of level

¢, together with the leaves of the full tree that are of level less than 7.

For a 1-level model, the assumptions clearly imply cov(U,U) = oI . For a 2-level

model, two level-2 clusters are independent if they are children of different parents. If

clusters ij and ik are both children of cluster i, with j# k , then

cov(U",U™) = g,(cov(U" ,U*|U")) + cov,(e(U"|U"),e(U*|U.))
=0+cov,(U, U =0}

and

var(U") = g,(var(U"|U")) + var.(e(U"|U"))

=g (U +var(U) =0, + o]
So if all leaves are at level 2, we have
D=cov(U,U)=06]M+0o; ]

where M is block-diagonal, with a block for each main (i.e. level-1) cluster, and each

block M, is all 1's on the rows and columns corresponding to cluster i.

Continuing this sequence, consider 3-level models: suppose that cluster i is at level 2,

that i ’s children are {il,i2,---,ig}, and that i ’s parentis ¢. Thenif j#k,



cov(U",U") = ¢, (cov(U", U |U",U))+
cov, (e(U"|U",U"),e(U*|U',U))
=0+cov, (U, U") =var(U")
=¢ (var(U'|U°)) + var,(e(U'|U))
=¢,(03U)+var,(U) =0, +o;
and
var(U") = ¢, (var(U" |U",U°)) + var, (eU"|U",U*))
=¢(o;U") + var(U")

=0, +0, +0]
It follows that if all leaves are at level 3, we have
D=cov(U,U)=0;M+o.L+05; 1

where M is block-diagonal with blocks M corresponding to level-1 clusters, and each
M, is all 1’s on the leaves descending from cluster i. Similarly, the matrix L is block-
diagonal with blocks L, corresponding to level-2 clusters, and each L, is all 1’s on the
leaves that are children of ;.

We also have: if cluster i is at level 1, and i’s children are {il, i2, ,ig},, atlevel 2,

and if also cluster m is at level 1, then

cov(U',U") =57 6,
cov(U",U™) = &.(cov(U",U" |U") +cov,(e(U"|U"),eU*|U"))
=0+cov(U",U") =0}
var(U") = g,(var(U"|U")) + var,(¢(U" |U"))

=g (U +var(U) =0, + 07

It follows that



D{1} =cov(U{1},U{l}) =o71'

(17)
D2} = cov(U{2},U{2}) = oM} + 021

where M. is block-diagonal with blocks of all 1’s corresponding to the level-1 clusters.
Note that cov(U{1},U{l}) is n, xn,, where n, is the number of level-1 clusters, and
cov(U{2},U{2}) is n, x n,, with n, the number of level-2 clusters. The notations /' and

I* mean the n, xn, and n, x n, identities, respectively. In this notation scheme, we can

write the leaf-level covariance above as

D’ =cov(U*,U*) =0 M, +o;M; +0:. I’

so M, correspondsto M , M; to L.

Suppose now that i and m are at level 7, with highest-level common ancestor 7.

Then it can be shown that U’ and U" are conditionally independent given U”, and we
have, if i #m,

cov(U",U™) = g(cov(U', U™ |U™)) + cov(e(U'|U™),e(U"|U"))

18
=0+ var(U") (1%)

and if i =m , then 7 is the parent of i:

cov(U",U") = g(cov(U" U |U™))+cov(e(U'|U™),e(U'|U™))
=¢(o,U™)+ var(U™) (19)

=0, +var(U"),

say. We can therefore proceed by induction on the level 7, to derive expressions for the

covariance matrix of the U ’s at any level, analogous to (17). The general form is given

in (22).



Examples

We now consider two examples.

Example 1: Consider the following simple cluster hierarchy. There are two clusters:

Cluster 1 has subclusters 1.1 and 1.2, and Cluster 2 is not subdivided into subclusters.
Then the U -vector consists of [U'"!, U'*, U], corresponding to the leaves, and we

have

var(Y) = A+ o[ () + i () T 0L ) ()]

where we let 0> =0 and @’ = o, . Then,

1 10 1 00
D=D’=cov(U,U)=c’|1 1 0|+®’|0 1 0
0 0 1 0 00

Example 2: Consider a three-level example: clusters 1 and 2 are the same as in
Example 1. Cluster 3 has subclusters 3.1 and 3.2, and subcluster 3.1 has subsubclusters

3.1.1 and 3.1.2. Then
U=[U,,, U, U,, U, U, U]
or (in another notation)
U=[UM0, U120, 220, g3t g iy

Then



cov(U,U) =o” +o

—_— = = OO O
S O O O O O
S = = O O O
S = = O O O
—_— o O O O O

S O O O O =
S O O O~ O

S O O O = =
S O O O = =
S O O = O O

c oo oo O — = =0 o o
S s N
o o o o o o
S o~ o o O
o = o o © o
o o o o o o

L

General Forms For Covariance: Leaf Clusters

Now we need a few definitions: For each leaf r, let ¢, be the indicator leaf-vector of

leaf 7, i.e.
(é/r)j = 617‘

The right side is the Kronecker delta. For each non-leaf cluster i, let £, be the
indicator leaf-vector of i, i.e. {; =1 on the leaves that descend from 7, and 0 otherwise.

Then clearly

where » — i means that leaf-cluster » is a descendant of cluster i. Let L be the

maximum level in the cluster-tree.

For Example 2 above, we have L =3, and for the leaves,



&,=[1 000 0 O
£,=[0 100 0 O
&, =[0 0100 O
& =[0 0 01 0 O
£, =[0 00 01 O
&, =[0 0 00 0 I

For the coarser clusters, we have

S=[1 100 0 O
&, =[0 0 011 0
&=[0 00111

Arguing conditionally in a recursive sequence, we can show in the same way as for

one-, two- and three-level models, that the general formula for cov(U,U) is

D=cov(U,U)=>0; > <{(&)"

/=1 level(i)=/

The inner summation is taken over all clusters i at level /. This can also be written as

D=%+ z O-lzevel(i)gi (gi)T

inot a leaf

where ¥ is a diagonal matrix whose diagonal entry for each leaf r is o7, . If all leaves

are at level L, then Z=0,1 .

We clearly have

(20)



since it is the sum of the vectors u!"! for all leaves r < i. The vector £, is the only leaf-

1

vector with this property, since B has full rank. From (9) and (20) it follows that

L
var(Y) =diag(u)+ Y 07 > (4"

(=1 level(i)=/

Lower-Level BLUP Formulas and Covariances
By a similar inductive argument, of which the first three levels are given above, the

covariance of the level- ¢ random effects can be shown to be

D{E} — VaI‘(U{“) — Z(:O.‘f Z é'i{é} (é’i{é})T

v=l level(i)=v

where ¢! is defined analogously to ¢, but on the cluster tree truncated at level 7, so
that the leaves are either of level ¢ or are lower-level leaves of the full tree. Since there

are fewer leaves in the truncated tree than in the full L -level tree, the vectors {¢/"} are

of smaller dimension than the full-tree leaf vectors {¢ "/} .

The general form of the lower-level covariance matrices is given by (22), where again

we write U for the vector of random effects corresponding to ¢ -leaves. Note that in an

unbalanced tree, this vector may contain some of the leaf clusters, even if ¢ # L.

Definition: We define B!, the level-/ B -matrix, to be the B -matrix defined for the

leaves of the level- ¢ trimmed tree. That is, each column of B'"' corresponds to a leaf r

21)

(22)



of the / -trimmed tree, and consists of the Z-vector . In the case that r is a leaf of the

full tree of level less than /¢, the corresponding column of B!/ is identical to that of B .
As before, we define
A{V} — A—IB{V}

which has the same pattern of non-zeros as B'"', but all non-zeros are 1. We note that

AY'U™ is an expansion of the vector U into a Z-vector, in the sense that
(AU Z (i)
where i(e) is the / -leaf containing the individual e.
Lemma:
cov(Y,U'"")=B" D"
In this notation,
cov(Y, U")y=BD=B" D"
Proof:

Let x =[e,7] € Z, and suppose that » = r(e) is the leaf-cluster containing e. If
level(r) > 7, then let i =i(e) be the /-leaf ancestral to ». If level(r) </, thenlet i be r
itself. We first note that if 77(r) is the parent of 7, then (U” |[U"")=U"", and by
induction we can show that
eU"|UHY=U"
We also note that

e(Y"|U)=e(e(Y" U UN|U")=e(uU"|U") = u*U’



In matrix terms, this says
e(Y |U) =diag(u)A"U" = 4N"U" = BYU"
Now we consider cov(Y,U'"):

cov(Y,U'") = g(cov(Y, U U )) + cov(e(Y|U),U"™)
— 0+ cov(BU,UM)
— B{é}D{f}

This completes the proof.

The BLUP estimator U of U is again characterized by the orthogonality relation:

Ut - s orthogonal to any linear transformation of Y . This implies, by the

argument given in the section “BLUP Formula”, that
U =gU'")+covU", V) var(Y) (Y - p)
By again substituting the formulas for var(Y)™ and cov(U'",Y), we obtain
U =1+ D" (B[4 = A'B(I+ DQ) ' DB* A7 |(Y — 1)
where here D means D{L}, and similarly B, Q and A4 have their original meanings of
B{L}, O{L} and A{L} . It is straightforward to check that for any leaf » of the full tree,
with level(r) < 7, the value ( U )" is the same for all values of ¢/ < L. We just carry the

lower-level leaves along in the vectors U for convenience.

Now letting
P =(B")A4A'B

after some algebra, we get the following alternative expression for U’



U{f} =1+ D" (B{é})T A7 (Y_’u)_D{é/}P{f} [U{L} ~1]
— 1+D{f}w{f} _D{Z}P{f} [U{L} _1]

where w'" =(B"")* 47 (Y — 1) . Note that the two 1°s in this formula have different

dimension. This shows that once we have U, we can get any U"" without much extra
work. We can save even more work by noting that w'"’ is simply an aggregation of
w=(B")T A7 (Y — u): that is, the entry of w'"' corresponding to level- ¢ cluster i is the

sum of the entries of w corresponding to leaves that descend from i .

The matrix """ that expresses the aggregation has rows corresponding to / -leaves

{0}

and columns corresponding to level- L leaves. Each row of '’ corresponding to a level-

¢ cluster i has a 1 in each column corresponding to a level- L leaf descending from
cluster 7 ; and each row of T''"! corresponding to a leaf  of level </ hasa 1 in the

column corresponding to r. To put it another way, each row i is just (£,)*. We have the

properties

W =T,

B =B(r‘{f})T

P =10

QM} — (B{/«})TA—IB{Z} — r{ﬂ}Q(r{/«})T
and

Qﬂj:

" =1+D"'T"w—-D"PY (I1+DQ)" Dw
=1+D"[I'" - P" (I+DQ)" D]w
=1+ DT [I -0 +DQ)" Dlw
=1+D"'T"'[I-(Q" + D) Dlw

U =1+D"T" Q" +D)'0'w



Note that everything past the factor I'*" is the same as for the leaf-level U . This

means that the lower-level random effects can be obtained for little extra work, once the

leaf-level computations are done.

Finally, we use the same short notation as before:
U =1+ H"(Y - p)
where
H'" =D"(B")* 4" —A"'B(I+DQ)"'DB*4™']
It follows that
Var(ﬁw}) = H" var(Y)(H'")"
After some algebra, this becomes

var(U'") = DT Q(1 + DQ) ™ (T'")* D"
= pisr (Q—l +D)_1 (F{é})TD{f}

As already pointed out, U —U" is orthogonal to any linear transformation of Y .

We also have
var(U" —U'"™)y = —cov(U" —U'" ,U") = var(U") —var(U'")
:D{f} _D{f}r{f} (Q—l +D)—1 (F{Z})TD{(}

=V, say.

Estimating the o

It is easy to produce schemes for estimating the dispersion parameters, but we need to

ensure that the estimates are positive. We start with the following observation: let i be a

cluster of level ¢ = /(i) and let 7 = z(i) be its parent. Then

(23)



var(U' —=U") = g(var(U' —=U"|U")) + var(e(U' —U"|U™))
=g(var(U'|U™))+0

=¢(o,U") =0,
or

i x()y 2
var(U' -U"") = Olevel(i)

Letting d =U' ~U"™ and d =U' —=U"?, we have: cov(d —d,GY)=0, G any linear
transformation of Y . So
cov(d —d,U")=0=cov(d —d,U")
and
var(d — c;’) =cov(d — c;’,d) =var(d) — cov(c;’,d) =var(d) — Var(c;’)
Also

Var(d—c?) =var(U' -U"—(U" -U"))
=var[U' -U")=2cov(U' -U',U" =U")+var(U" -U")
=var([U' —=U")=2cov(U' =U",U")+var(U" -U")

cov(U',U™) = g(cov(U', U™ |U™)) +cov(e(U'|U™),e(U"|U™)
=0+cov(U",U")=var(U")

We also have

cov(U",U"™") =cov1+ D" [T =D P (1 + DQ) " DIw,U ™)
=D [T =D P (I +DQ)" Dlcov(w,U"™)
= D" =DM PY (I+DQ)" DIB" 4™ cov(Y,U"™)
— D{é}[r{f} _D{é}P{é} ([+DQ)—ID]BTA—lB{é—l}D{H}



or

COV(U{“,U{H}) :D{f}[r{f} _ D p (1+DQ)_ID]BTA_IB{H}D{H}
=D"T"[I-Q(+DQ)" DIB*A™ B('"")* D"
=D"'T"[I-0(I+DQ)" DIO(r"™")* D"
=DT"[Q-Q(I+DQ)" DOYIT )" D"
:D{K}F{K}Q([_i_DQ)*l(l—*{/fl})TD{zi—l}

:D{é}r{f} (Q—l +D)_1 (r{(—l})TD{(—l}
=¥ say.

It follows that

cov(U' =U",U™) =cov(U',U")—cov(U',U")

=var(U")—{¥""},

so finally, using (23)

0<var(d—d) =var(U' —-U")=2cov(U' =U",U™ )+ var(U” —=U")

= VU = 2var(U ) — (P 1+

where

\P{V} :D{l’}r{(} (Q—l _i_D)—l(l—w{(—l})TD{(—l}
i = pt Z piiris (Q*l +D)71 (F{f})TD{f}

So

var(d) = o] = Var(a?) + var(d — a?)
= var(d)+ (] 20D (]

So the second part is positive, and it follows that this estimating equation for o, gives
positive estimates. Averaging over all the clusters i of level £ ( N of them, say), and

estimating Var(c;’ ) by the sample variance, we estimate &, by solving



N
&; =(1/N'"H> [(U" —U™ ) ity —

i=1

2Dy — Y )+ 7

The right side is also a function of &, and &, ; so this is an equation which

represents the vector of {&;} as a function of the same vector. We will normally use it

for Picard iteration, i.e. with new values on the left, and old ones on the right.

Two-Level Distance Decay
Assume there are two levels of clusters: “clusters” and “subclusters” (e.g. SMA's and

zip-codes). Clusters are indexed by
i=1,2,....m
and the subclusters of cluster i are indexed by
j=12,...,J

Some clusters may have no subclusters, i.e. J;, =0. Let U denote the vector of

cluster-level random effects {U; : i = 1,2, ...,m} and let U denote the vector of
subcluster-level random effects, 1% :J = 1,2, ..., Ji, i = 1,2, ...,m } This has
dimension J =3} J,.

The assumptions we make are:

. &(u,|U)=U,

2. cov(u,,u, |U,)=0 unless subclusters / and k are neighbors (by some definition)

ij°



3. var(u,|U,)=05,U,, where o;, is a parameter. We will make more explicit

covariance assumptions below.

4. (u,,u,,) are conditionally independent, given (U,,U,),if i # p

5. The matrix D" =cov(U,,U,) is dense, in general

Let W denote the expected conditional covariance matrix

W =gy(cov(u,u|U))

W, :‘C“U(g((uij _Ui)(upq _UP)|Ui’UP))

i, pq

0 ifi#p
&y, (5((”;'/ - Ui)(uiq -U)IU))) ifi=p

Then the assumptions above imply that W is block-diagonal, with blocks

corresponding to the clusters, and block i is J, xJ,. Now

cov(u,,u,,) = e(cov(u

=W.

i, pq

U,U,))+cov(e(u;|U,U ), &(u

1

U,U,))

ij’upq| pq|

+cov(U,,U,)

ijo

From this it follows that the full covariance matrix of u is given by
D% =cov(wu) =W +I" DT =W + 0, (24)

say, where I" is a mxJ block-diagonal matrix, the i block of which is a row of 1's of
length J,.

The numbers mentioned so far are m =156 and J about 3000, so each SMA (cluster)
has, on average, about 20 zip codes (i.e. J, averages about 20). The matrix W can be
inverted directly by a Cholesky factorization of each block, and also we can Cholesky-
factor D' as LL®, so we have

D® =W +T"L(T'"L)"

which is in a form suitable for Sherman-Morrison-Woodbury:



A+ UV =47 A UI+ VT A Uy 7T 4!
if V=0,
A+UUTY =47 -4 UI+ UT A Uy UT 47!

So, letting D = D'}

(OQ'+D)' =G-GI'"L{I +(T*L)*GI'* L} (I L)*G
where
G=Q" +m)"

However, we may find it simpler to use conjugate gradient directly on the original
form (24). In that case, we can relax some of the assumptions above:

1. We don't need much (perhaps not any) sparseness in the blocks of /', so unless an
SMA is huge there is no need to restrict the interactions of zip codes to neighbors:
nearly any covariance pattern at the subcluster level will do.

2. We can partially relax the assumption (4) of conditional independence, to allow a few
direct interactions between zip codes in different SMA's, so long as they are sparse.

This model, for cov(u,u) is very feasible for computations, with m = 156 and J =

3000. In fact, we could probably triple these numbers without much trouble, although the

volume of linear-algebra calculations slows the program considerably.

Distance-Decay
If the clusters and subclusters each have a distance-decay covariance form, then

m 2 dylh
Di,p_o_l pl

and



. 0 ifizp

We may impose a condition that all o, and p,. be equal, but we don't do so here.

The distance functions d' and d* need not be the same, i.e. the distance functions at

different levels are completely independent.

Nested Independence
Here we assume that the clusters at each level are conditionally independent, given the

U -values at the parent level. It follows that
DY =01
and W is diagonal, with o 1, on the i" block. We have again

D® =W +TTL(T*L)"
=W +o;T'T

and I''T" is block-diagonal with each block consisting of all 1's.
Now letting D=D"* and H=(Q"'+ D)™,

H=(Q"'+D)'=G-0]GI'"{I +oTGI'"}'TG
where
G="+w)"

which is very easy to apply because Q™' +W and I'(Q™' +W)™'T'" are diagonal.

Clusters Without Subclusters

If there is a cluster p not subdivided into subclusters, then all subcluster values {u,}

are conditionally independent of U, given all {U,|i # p} . This means that the matrix W



has a diagonal block corresponding to p, which is 1x1. Also p is a leaf cluster, so
should appear in the list of leaves. The simplest way to do this is to give p a fictional

subcluster pl, consisting of the whole cluster p . From the definition of W it follows

that the diagonal entry W, ,, = 0. From the formulas for u and U given below in (26)

1,pl

and (25), a simple algebraic argument shows that 7, = U , »and so for convenience we

can carry u,, along in the computations without fear of inconsistency.

Parameter Estimation

General Approach
Let D= D™ be the covariance matrix at level 2. Letting

Q=B"4"'B
w=B"A"(Y - u)

Q is a diagonal matrix depending on 1 =exp(Xy).

var(w) =Q0+Q0DQ
O'varw)0"' =0 +D

The BLUP formulas give

a=1+0 Q"' +D)y'Dw
=1+DQ!'+D)'Olw
var() = D(Q' + D)1 Q7! varw)Q ' (O + D)T'D
= D(Q™" +D)'D
D = var(u) = var(ft) + var(u — @)

= D(Q! + D)"' D + var(u — i)
(25)



var(u—1) = var(u)—var(@)=D-D(D+0")"'D

=0 (D+Q0")"'D
Also:
i=1+DQ"'+D)'Q0'w
; (¢ ) 0 26)
U=1+D"T(Q"+D)"'0"'w
and
var(U) =D"'T(Q"+D)'Q'[Q+0D Q10" (Q"' + D) 'T* D"
=D""T(Q"'+D)'[0"+DI(Q"' +D)'T*D"
=D"T(Q"' +D)'T*D"
var(U - U) = var(U) - var(U)=D" - DT (0™ + D)"'T*D"
=DV [I-T(Q" +D)"T"D"]
var(T*U-T"0) =T*DUT -T*D"T(Q™ + D) 'T* DT =V, say
We have
var(u, |U,) = o,,U,
and
var(u; —U,) = e(var(u, —U,|U,)) + var(e(u, —U,|U,))
= g(var(u, |U;))+0
= 0_221‘ = WZ; i
cov(u; —U,u, -U,)) =¢e(cov(u; —U,u, -U, |U,U,))+cov(e(u, -U,|U,),&(u, -U,|U,))
0 if i#p
- VVU w i i=p
so finally

var(d) = var(u -T*U) =W
where we let d; =u; —U,, or d=u-T"U. We note that
W =var(d) = Var(a) + var(d - &)

and we need a formula for var(d — ﬁ) :



var(d, —d,;) = var((u, —U,)~ (i, =U,)) = var((u, —ii,) — (U, = U,))
var(d, — c;’l.].) = var(d,) - Var(c;’i].) = var(u, —u,;)—2cov(u,; —u,,U,)+ var(U, - Ul.)
U,)+var(U, -U,)

var(d,; —d;) = var(u, —u,)—2cov(u; —i,,

So now we need a formula for cov(u, —u,,U,). We have

ij>

cov(u,,U,) = e(cov(u,,U,|U,)) + cov(e(u, |U,),&(U,|U,)) = 0 + var(U,)
U,)=cov(U,U,), p#i

or
cov(u,U) =T" var(U) =T""D"

cov(u,['"U) =T DT

i

cov(u

ij2

and

cov(l,U) =cov(1+ 0 (O™ + D) Dw,U)
=07 (0" + D) Dcov(w,U)
=07 (Q"'+D)"'DB* 47 cov(Y,U)
=0 (Q"'+D)"'DB*A"'B" D"
=0(Q"'+D)"'DB* 4" BT D"
=070 +D)" DOr*D"

So, we obtain

cov(u—a,U) =I"p" -0 (0" + D) DOr*n"
=(I-Q7(Q" + D) DOI*D"
=(I+DQ)"'T*D"
=0(Q" +D)'T*D"
cov(u—4,I"U) =0 (0" + D)'I* DT
=Q'HI'DYT
=0 'HO

where
H= (Q’1 + D)’1

Let



O=T"D"T =T"L(I'"L)" =T*LL'T
note that ® is constant on each block (7, p). Let

G=Q"+w)"

H=Q"'+D)'=Q"+W+0)"
=(Q' +W +TTLIL)")”

H=G-GI''L[I+L'TGT*L]'L'TG

Also

H=Q"'+D)'=(Q"'+W+0)"
=(Q'+W+I"D'T)"
(A+UV") =47 =AU +VAUY' V4™
SO
A=0" +W
U=r'n' =
V=r"
H=G-GI'"D'(I+I'GI'*D"'TG
=G-GI'"'D'(I+CD"Y'TG

Now: we have

[GI™ = C = diag({y,})

where y, = lf, G,1, , the sum of all entries of G, . This gives

H=G-GI''L[I+L*CL]"'L'TG
H=G-GI'ZTG

where
Z=I[I+LCL]"'L"

=[L"L" +C]"

=[(D"™)" +CT"

= +cD")"' D"
Z=Cc'(c'+D")'p"

and I'G can be constructed from the vector G1.



Then

var(d, —d,) = var(u, —ii,) —2cov(u, —i,;,U,) + var(U, —U,)
or

var(d —d) = var((u—a)-I'"(U - U))

var(d—d) = var(u—t) —cov(u—a,I"*U) — cov(I'*U,u — i) + var(I'*U - T""U)
since

cov(u—1,AU) =0
for any matrix A ; so

var(d —d) = var(u—i) - Q"' HO —OHQO ™" + var(I'"U -I'*U)
=0"'HD-Q"'HO-OHO ™" +I'* var(U - U)T
=Q"'HD-Q"'H®-OHQ "' + ®-BOHO
=P-Y-¥Y"+V

Then,

P=DHO'=Q0'HD=Q'H(W +0©) =
¥ =Q'HI"D"'T = 0" H®
¥* =T"D"THQO™
V =I"DYT -T"DVTHI"D"T = © - OHO
=T*[D" - D"THI*D"]T
=T var(U-U)T

Now:

W =var(d) = Var(a) + var(d - a)
=var(d)+[P-¥Y -¥" +V]

then

var(d—d) =0 'HD - 0"'"HO - OHQ ™' + ® — OHO
=Q"HW +©)- 0" HO -OHQ" +© - OHO
=Q"HQ'"+W+0®)-0"'HO"' —Q"'H® -OHO "' + ® —-OHO
var(d—d) =07 —Q"'HO" —O'HO® - OHO ™ + ® — OH®O
—P-¥-¥T+V



where

H=Q"'+D)"'=(Q"'+W+0)"
@ =T"D"T =I"L(*L)" =T"LL'T

Since W is block-diagonal, the off-block-diagonal entries of var(d) and
[P—¥ —W¥" +V] cancel. Now let
K=@-TU)@-TU)* +[P-¥-¥" +V]
We consider only the block-diagonal entries of K, i.e. block i is
K'=(,-U)@,~U)" +[P-¥ -¥" +V]
where 1, is the J;-vector of entries {u,}, and [P—¥ =¥ +V]" is the J, xJ, block

corresponding to cluster i. Then we want to choose the parameters so that K and W are

similar, say in the Frobenius norm. Now we are postulating that

W 0 ifi#p
o s ifi=p

So we let W' be the block i of W, and considering first the diagonal, minimize

J; '
| diag(K) —diag(W) |*= Y (K, - 03.)?

P=

with respect to o;,. The minimum is clearly achieved by
J; )
61 =117)Y K,
j=1

Now consider the off-diagonal entries, taking &5, as given. We minimize

J; -l

e(p) = 4 || offdiag(K) - offdiag(W) |I’= > > (K}, — o, pliny?

J=1 ¢=1



This can be minimized in various ways, and the result is p,, . Note, of course, that K

is a function of the dispersion parameters, so these formulas for o3, and p,, define
estimating equations that must be solved by iteration.

To estimate the first-level parameters o, and p,, we use

var(U - U) = var(U) - var(U) = D" — DTHT*D"
=D"[I-THT"D"]

D" =var(U) = var(U) + var(U — U)
=var(U)+ D" [I -THT*D"]

So let
L=U-1)(U-1)"+D" -D"THT"D"
The second term is formed from the current estimates of all dispersion parameters. We

now proceed as in the one-level case, to choose the parameters &, and p, to minimize

the Frobenius norm of L—D" (c*, p).



Appendix: Algorithms
The Problem

On each iteration, we must compute the approximate Schur complement matrix K,
the right side vector g = L, the diagonal matrix O, and several other quantities. At the
end of the iterations, we must compute the exact Schur complement matrix K, to obtain
standard errors of the regression coefficients. The formulas of section “Derivatives of
log(0)” suggest the difficulty in computing these quantities: they involve a summation
over the risk-set index vector Z, which can be very large. To illustrate the problem and

the algorithms that solve it, we will take as an example the right side vector ¢ ; the

algorithms for computing the other quantities (the terms of K ) are variants of the ones
given here for ¢ .

There are several ways to write the vector ¢ : as we have seen,

q=1L,
= ﬁ [Y - and old]
a q
=31 D ¥R —expa™) > U exp(R*B)R
s=1 h=1| k eR, k eRy,

This last comes from section “Derivatives of log(£)”. The first term of ¢ is easy, since

7" =0 unless there is an event at ¢* ,. So we can simply step through the data matrix M,

end *
adding covariate rows R"* for the records with an event. The total time for this is

proportional to the numbers N,, of rows of M, which is optimal. The second term is
more difficult, since as pointed out in section “Z -Vectors”, a summation of the form

2e-1 2412k er, 18 the same as a summation over Z, something we want to avoid, as we



can have N, / N,, 290. Let us rewrite the expression above as (letting g, denote the

second term of ¢ )

—Za:Zexp(a“h){ > e exp(Rkﬂ)Rk}

s=1 h=1
Nleaf
=- Z U Zexp(a”’){ exp(Rkﬁ)Rk:I
s=1 h=1 k eR Yavs

We will first focus on sums of the form

s=1 h=1 keR,,&rk =r
where a and b can be scalar, vector, or matrix-valued, so long as the product is

conformable. The vector ¢, is a sum over leaf-clusters of terms of this form. We want to
be able to compute such expressions S, for all leaf-clusters r, in time proportional to
Ny, or as close as we can come to this bound.

Now we assumed the rows of M are ordered by 7

Start

within 7,,, within stratum s .
We assume that, for each record (i.e. row) k& of M, the corresponding individual is at
risk of an event in the interval (z*_.,z* ], and the event occurs at z* , if at all in this
interval. Whether the event occurs at 7+, or not is indicated by the value of y*. Recall
the list F, ={7,,,7,,,73,...,7,, } of sorted distinct event-times in each stratum. Note the
difference: the values {z* } are all the 7, , times, whether event or censoring; the values
{r,} are just the event-times.

Definition: For each event-time r, define the “delete list” d, as (for h=1,---, g, —1)



dy ={keslkeR(z,, ) &k &R(z,)}
={keslkeR(r,,,,) &1, <1,

start }
k k
={kes|ty ST <Typn < Tt

if (¢f  ==0, Vk), d, =0, the empty set

start

For each s and 7, the delete-list d, consists of those rows k in stratum s that leave
the risk-set at 7, , as we step backward in time through the event-time list. The sets F|
and d, can all be formed with a single backward pass through M.

The idea of the algorithms to follow is simple: in each stratum, we step backward
through the stratum's rows in M, keeping a running tally of the risk set, adding rows as
they enter the risk set, and deleting them as they leave. The sum of b* over the risk set is
updated, rather than fully summed anew for each event-time. This is the source of the

saving.

No Secondary Table

We first assume there is no secondary data table, so either there are no time-dependent
covariates, or the time-dependence is represented by repeating rows of M.

The following algorithm computes sums of the form

s=1 h=1 keRy, &rk=r

for all leaf clusters 7, for any values a” defined on the list {z,,7.,,7

512 %525 %539° "

-7, { of event

times, and for any values »* computable from the rows of M. Since strata do not really
enter into the algorithm, we state it for one stratum and drop the index s. Accomodating

stratification is just a matter of summing over s afterward.



Algorithm 1: To form the sums S, as defined above, for all leaf clusters 7.

Input: the matrix M, the list {7,7,,7;,...,7,} of event times, the lists {d,} of delete-

lists, and the values {a"}, forall h=1,...,q, and {b*} for all rows k of M (or a way
of computing " and b* on the fly)
Initialize S, =0, P" =0, for all leaf clusters r; k = last row of M in ordering given
above.
Step h=gq,...,1

While 7, < 7!

If( ¢k, <z, )/ if k is in the risk set of 7,

start

P = P" + b* /) Add new values that enter the pool in (7,70 ]

EndWhile (on £ )

Step v through d,

P" =P" —b" // Subtract old values that leave the pool in (z,,7,,,]
EndLoop (on v)
Step r through the set of leaf clusters

S =S +ad'P
EndLoop (on )

EndLoop (on #)



In this algorithm, the value of & is stepped from N,, down to 1, and the value of v is

stepped through all the delete-lists, which are disjoint. It follows that the time required for

Algorithm 1 is proportional to Ny + N, N,,,., where N_ is the total number of distinct
event-times per stratum, totalled over all strata. The term N, N, is often much smaller

than N,,, although it can be much larger; it comes from the final loop on 7.

There are several variants of Algorithm 1 that are used: for example, sometimes we

want to sum on 7, but not on /, producing expressions of the form

oS b
s=1

keR,,
It is easy to modify the above algorithm to produce these terms: we just don't split out
the clusters r, and don't sum on / ; the algorithm requires time proportional to N,,. We
can also sum on both / and r: the vector ¢, is actually of that form. We showed the
algorithm that splits out » for illustration. It is necessary only for computing the diagonal
matrix Q.
It is also possible, at the cost of additional complexity, to modify Algorithm 1 so that

its run-time is proportional to Ny, + N_+ N, . This can be a considerable improvement

if the number of strata and the number of leaf clusters are large; for the ACS data, for

which N, is about half a million, values of N, can be on the order of 18,000 and N,

on the order of 10,000 for the most ambitious models. Clearly we prefer the run-time to
depend on their sum rather than their product! The modified algorithm is based on the
principle that on one pass through the /4 -loop, not too many leaf-clusters (7 ) will be

encountered, but in Algorithm 1, all leaf-clusters are updated on every /4 -value. Instead,



we can keep track, for each leaf », of the /& -value on which it was last updated; each
time 7 is encountered, we do a batch update for all % -values since the last update. The

algorithm is as follows, again for sums

Algorithm 2: To form the sums S, as defined above, for all leaf clusters ». (Modified
version, faster for large problems)
Input: the matrix M, the list {7,,7,,73,...,7,} of event times, the lists {d,} of delete-
lists, and the values {a"}, forall h=1,...,q, and {b*} for all rows k of M (or a way
of computing a”" and b* on the fly), and the cumulative sums C, = 2 a’; we define
C. =0.
Initialize S, =0, P" =0, V[r]=g+1, for all leaf clusters r; and k = last row of M

in ordering given above.

Step h=gq,...,1
While 7, <z,
If (¢!, <7,)//if k is in the risk set of 7,
Si=Si+dP" +a"b*
P" =P +b" // Add new values that enter the pool in (7)571]

Vir*1=h // Last h on which 7" is updated

EndIf



k=k—-1
EndWhile (on k)

Step v through d,

S,=S,+dP"
P" =P" —b" // Subtract old values that leave the pool in (z,,7,,,]
Vir'l=h
EndLoop (on v)
EndLoop (on 4)
Step r through the set of leaf clusters  // Cleanup loop
d=C-C,,
S =S +dP

EndLoop (on r)

Algorithm 1 or 2, and their variants, are sufficient for computing all the terms of the
equation K AB = q, for the vector B* A" (the diagonal of the matrix Q), and for the

vector «a, all in time proportional to Ny, + N, N, or Ny +N_+ N, . Naive algorithms

would require time proportional to N, .

With Secondary Table

The defining feature of a secondary table is that the conceptual covariate matrix R

has a set of non-time-dependent columns, and a set of time-dependent ones. Let the key-



variable be denoted by &; we assume that each individual has a & -value £(e) associated.
For example, if & represents cities, then &(e) is the city of residence of the individual e.

We can of course have &(e) = e, i.e. that the table is keyed by individual. Under the

assumptions, each row Rle, 7,] of R has two parts: the first part depends on individual,

but not on time, and the second part depends on time, but on individual only through the

key-variable &(e). If, for example, the second part is an air-pollution reading from a

single monitor located in each city, then the values depend on individuals only through

their city of residence.
Rle,7,1=[Ri[e] R,[£(e).,]
We suppose that the covariates flz[é,rh] are stored separately, in a secondary table

indexed by { & -values x time-breakpoints}. If the key variable is a much coarser

breakdown than individual (e.g. city), then preparing the secondary table is
correspondingly easier. The secondary table properties (e.g. filename, key-variable, etc.)
are given to the program in the control file, as described in the manual.

The algorithms for using a secondary table are essentially the same as Algorithm 2
above; as already mentioned, the conceptual data matrix M is the same in either case. To
handle a secondary table, we construct indexing structures that allow stepping through
the primary and secondary rows in the same order as the rows of M. In effect we apply

Algorithm 2, building the rows of M on the fly.



Indexing Algorithms

There are many other algorithms required for handling the data structures used by the
program: we must compile lists of event times, compile delete-lists for each event-time,
construct the cluster-tree, and other similar tasks. These indexing algorithms are
sometimes complicated, but they raise no conceptual issues, so we will not give them

here.

Standard Errors
Preliminaries

As already described, the regression coefficients & and £ can be found by an
iteration of the form
S(7<)ld )(7new B 70111) = _l//(j/old)

Since the o -vector can be large, the equation is impractical in this form, and we

instead use

Kf=q
where K is the Schur complement of S with respect to « . The standard errors of the y -
coefficients (composite of & and f) are the diagonal entries of the inverse of the final

converged value of S, and it is easy to show that the standard errors of £ alone are the

diagonal entries of the inverse of K . For the iterations, we approximate K by K as

already described, but K is not accurate enough to use for standard errors. So once, after

convergence, we have to compute the exact K itself. This is a somewhat difficult



computation, because with the size of problems we are trying to handle, the matrices may
be too big to hold in memory.
With the notation introduced in the first few sections, in particular the matrices X, E,

R, S, 4, B, O, D, etc., we note from section “Estimation of B that
S=X"Avar(Y)"'4X

and

var(Y) ' =47 —A'B(D' + Q) "' BT 4™
SO
Avar(Y)'A=A-B(D"'+Q)"'B*

It follows, then, that

S =X"[4-B(D"'+0)"'B*1X
"E*(4-B(D"'+0)'BH)E E*(4-B(D'+0)'B")R
R*(4-B(D"'+0Q)'B")X R*(4-B(D"'+0Q)"'B")R
'S¢ s
a B
s S§ , say.

Our goal, then, is to compute the Schur complement
K =8/, -S/(S2)"'s (27)
Since the coefficient vector £ can be expected to be of relatively relatively low
dimension (<100, say) it is generally feasible to store the matrices S = (SHHT, S§ and
K, and to invert K, but in large problems storing and inverting S? is out of the question
on most machines. We must find a relatively efficient way of computing S” (sg)*sg

“out of core”.



The Basic Algorithm

We note that

S” =E*(4-B(D"'+Q)'B")E
=E*AE-E*B(D"'+0)'B"E
=H -7, say,

and H =E*AE isa diagonal matrix, since A4 is. We concentrate, then, on
Z=E"B(D"'+0Q)"'B"E.
Now suppose that we can factor the BLUP matrix (D' + Q)" in some way:
(D'+0)' =FG”
for some suitable choice of matrices /' and G . One possibility is the Cholesky
factorization, in which case F' = G, but we leave open for now the particular

factorization chosen: it may depend on the random effects covariance model used. With

this factorization, the matrix Z can be written
7Z =E"BFG"B"E = NM", say,
and if F'=G,then N =M . By the Sherman-Morrison-Woodbury formula,

(i)' =(H=-2)" =(H-NM")"

_ oyl -1 Trr-1am-1 27T r7-1 (28)
=H'+H'NUI-M*H'N)'M*H

The matrices N and M are of dimension “«a by leaves”, i.e. the rows are indexed by

pairs sh of strata s and stratum event-times 7, , and columns are indexed by leaf-

clusters. The rows of N and M corresponding to stratum-time pair sh are:



N" =(E"BF)" =¢*" Y exp(R'B)F"

k €Ry,

M" =(E'BG)" =¢”" Y exp(R'S)G"

k eRy,
where F" and G are the rows of /' and G corresponding to leaf-cluster ». Assuming
that rows of F' and G are available as needed, these forms can be computed by a variant
of Algorithm 2 above: for a given stratum s, that algorithm steps through the event-times
7, belonging to s, and on pass &, the rows N and M are produced, and immediately
written to a binary file. On the same execution of Algorithm 2, we produce the other

quantities needed, in particular R*AR, H, B"R, and E*R. The factorization

(D' + Q)" = FG* and the other computations involving the BLUP matrix are carried out
by the modules of the covariance models, in whatever way is most efficient for the

particular model. Having these, we can form the matrices S” , S% and M TH'N . Most

of these require matrix products with N or M , or both. We do this by reading the rows
of N and M back in sequence, and forming and accumulating rank-1 matrices with the
individual rows, to produce the full matrix product. Reading and writing binary files are
fast operations, but the overall process is nevertheless slow. Still, it is fast enough to be

just feasible with large problems.

The matrix (/ - M H'N)™
As mentioned, the matrix M*H 'N can be formed sequentially by reading the rows of

N and M. Itis N

leaf

X N,,r » Which is not a problem if N, . is moderate. In some

problems N, can be large, however, and storing and inverting [ — M "H™'N becomes



difficult or impossible. Instead we approximate the product (I —-M*H'N)™' M TSZ by
solving the matrix equation

(I-MH'N)X=M*
for X, using the GMRES method of Saad and Schultz (1986) or Saad (2003). This
method requires only that we be able to form (I —M*H 'N)v, for given vectors v, and
this can be done as outlined above, by successively reading in the rows of N and M ,
and forming dot products. The result of the process is the matrix
S/(I-MTH'N)" M7S$, formed without ever storing M™H'N . However, GMRES is
an iterative algorithm, and the issue arises of convergence and accuracy. It can be shown
that N(/ -M*H'N)"' M7 is symmetric positive definite, and so we should expect

I-MTH'N to be reasonably well-conditioned. We have found in tests that only a few

GMRES iterations are required to give accurate standard errors.
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