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Algorithmic Description of the Cox-Poisson Program 

Edward Hughes 

 

Introduction 

The Cox-Poisson program is designed to carry out estimation of Cox Regression 

survival models, from data giving, among other things, the time to a certain event (e.g. 

death) for each subject in the study. It differs from the survival modules of general 

statistical systems such as SAS, S-Plus, R, and Stata in two main ways: 

• It is designed to handle large data sets 

• Random effects are allowed to have a more complicated covariance structure than 

most other programs support. 

There are two ways to use the program: as a stand-alone system, and through an S 

interface, where we use “S” as a general term for the S language as implemented in the 

systems S-plus and R. The stand-alone version is somewhat restricted in what it allows, 

but it does all the important computational work, and this section will concentrate on it. 

We describe the structure of the data accepted by the program, the types of survival 

problem it can handle, and the estimation methods used and their computational 

implementation. 

The statistical theory on which this program is based is derived from (Ma et al 2000). 

Since that paper uses somewhat different notation from what appears here, we give in the 

section “Remark on Notation” a brief guide to the notational differences. 

 



 

Data Structure 

Matrix and Vector Notation 

If w is a column vector, we denote its ith entry by a superscript, wi. If x is a row vector, 

we denote its entries by subscripts: the jth entry is xj. If A is a matrix, we denote its ith row 

by Ai, its jth column by Aj, and the entry in the ith row and jth column by i
jA . 

 

Layout 

The form of data accepted and its interpretation is very similar to the form accepted by 

the S survival code authored by T. Therneau and described in Therneau and Grambsch 

(2000). Suppose the time-dependent data is a list of records (data matrix M) of the 

following form:  

 porgendstartz RRtttVV LL 11 χ  (1) 

Here we have a start and end time for this particular record (we use “row” or “record” 

interchangeably), a status indicator χ , and values of the time-dependent covariates 

pRR ,,1 K , considered constant on the time interval ],( endstart tt . The columns pRR ,,1 K  

are considered a submatrix R of M, and its row k is denoted by Rk. We have written the 

variables making up the data matrix in a conceptually convenient order, but in fact they 

can be in any order. The variables zVV ,,1 K  consist of all other variables in the data set: 

they play various roles, for example defining strata, clusters, and individuals. We will 

generally assume that the data consist of records pertaining to individuals, with each 

individual represented by one or more records and identified by a value of one of the “V” 



variables, which we will usually denote by e , but in fact this is not strictly necessary. If 

no individuals are identified in the data, then we can take kek = , i.e. identify individuals 

with records. With this understanding, we will refer to “individuals” without further 

qualification. 

The status indicator χ  codes the situation at the end of the interval, endt : say, 0 for 

censored or incomplete (i.e. “no event”), and non-0 for failure (or “event”) at endt . We 

assume that the records for one individual specify disjoint time intervals. We denote by 

τ  the “elapsed time” orgtt − , as will be explained later; similarly the interval  

],(],( orgendorgstart
k
end

k
start tttt −−=ττ  

The reasons why an individual might have more than one record are: 

1) Time-dependent covariates: These are represented as piecewise-constant in time. 

Each value, and the time interval over which it holds, will generate a separate record 

for an individual. The breakpoints are specific to an individual and to a variable; they 

can be different for different individuals. However, the fewer total breakpoints, the 

greater the computational efficiency. 

2) Multiple events per individual: If an event can occur more than once (e.g. recurrent 

spells of a disease, or of unemployment), then the periods at risk and the events can 

be represented by multiple records per individual. We assume that, for each record 

(i.e. row) k of M, the corresponding individual is at risk of an event in the interval 

],( k
end

k
start ττ , and the event occurs at k

endτ , if at all in this interval. If the individual 

continues at risk after the event, a new record must be used to start that new at-risk 

spell. Whether the event occurs at k
endτ  or not is indicated by the value of kχ . 



3) Multiple periods at risk: If there are time intervals when the individual is not at risk 

(or not under observation), these intervals will be omitted from the data. The 

complementary time intervals, when the individual is at risk, will each generate one 

or more records for the individual. See the definition of the function δ  below. 

In the simplest case, with (at most) one event per individual, with the event removing the 

individual from further risk, and no time-dependent covariates, each individual would 

have only one record in the data set, which would cover the full interval of risk for this 

individual, ending with either an event or censoring, according to the value of χ . 

The value orgt  represents a time origin, which will usually be either 0 or the earliest 

startt  for the individual, but may also represent other things: in a multi-state model it will 

be the time of entering the current state. Most of the interest is in the elapsed times 

orgt tt −=τ : what we have been calling the failure times shτ  are really these elapsed 

times, so that the earliest spell at risk usually starts at 0=τ . As mentioned before, we 

will write endτ  for orgend tt − . 

Let MN  denote the number of rows of M. 

 

Individuals at Risk 

Let ke  denote the individual referred to in kM , i.e. row k of M. Let E  denote the set 

of all individuals. Let us define a conceptual variable ],[ teδδ = , or sometimes )(teδ  

which, for each individual e , is 1 if e  is “at risk” and under observation at time t , 

otherwise 0. We assume that 1)( =teδ  for t in the union of all the time intervals 

],( endstart tt  for e , and 0 for all other times. The data cover precisely the time intervals that 



1=δ . This can be an arbitrary union of intervals. The use of δ  is here just a notational 

convenience that makes the likelihood formulas simpler to state, but it plays an important 

role in the counting-process formulation of survival models. The usual notation for δ  in 

the counting-process literature is )(tYe , but we use Y  below for another purpose. 

We also define the counting process ],[ teN , or sometimes )(tNe , which counts the 

number of events observed for individual e  in the interval ],( ttorg , i.e. in ],0( τ . The 

events in question are those for which the individual is “at risk” in the sense of 1=δ . We 

emphasize that N counts observed events, and δ  indicates “under observation and at 

risk” for an observable event. If the individual is not under observation, then 0=δ  and N 

remains constant, no matter what unobserved events befall the individual. We assume 

that δ  and all the covariates jR  are continuous from the left in time, and that N is 

continuous from the right in time. 

 

Time Origin 

The time-origin variable is similar to the same variable in the Therneau code; orgt  is a 

function of e  and t also, i.e. ],[ tett orgorg = , and we assume that  

],[for0],[ tettte org≤=δ  

We denote by τ  the “elapsed time”, orgtt −=τ , with t referring to “calendar time”, 

and denote the elapsed-time indexes by τ :  

orgendend

orgstartstart

tt
tt

−=

−=

τ

τ
 



Ordinarily we expect that ],[ tetorg  has jumps in t that occur infrequently, and is 

constant in t between jumps. It represents the beginning of the current spell of observed 

activity for the individual, and may be updated at every new spell, or it may not be. The 

issue here is the time interval over which the baseline hazard is parameterized. Consider a 

process in which an individual has recurrent spells under observation, interspersed with 

spells off observation. A spell may end with either an event or censoring. If each 

individual had only one such spell, we would ordinarily prepare the data placing the time 

origin orgt  at the beginning of the spell, so each person's spell starts at 0=τ . But with 

multiple spells per person, we may or not want to make this transformation. If we do 

make it, then we have a different value of orgt  for each new spell, so that all of an 

individual's spells start at 0=τ , and the baseline hazard would be defined on the τ -

interval from 0 to the maximum spell length: the spells are in effect superimposed, and 

this normally involves an implicit assumption that different spells for the same individual 

are independent. 

In some problems, on the other hand, we might not want to make that assumption, i.e. 

we might not want to redefine orgt  at each new spell, but instead to consider the whole 

series of spells for each individual, leaving orgt  fixed (i.e. varying only with individual). 

In this case, the baseline hazard is defined on a time interval that contains all the separate 

spells, not superimposed. 



 

Strata 

We allow time-dependent strata, which means in effect that a stratum s is not 

necessarily a set of individuals }{e , but a set of individual-time pairs }],[{ te . Let ),( tesφ  

be the indicator of stratum s, i.e.  





∉
∈

=
sts
sts

tes

],[ if0
],[ if1

),(φ  

We can state this more briefly by saying that a stratification is a partitioning of the set 

of rows of M into disjoint subsets, and each one of these subsets is a stratum. We will 

write sk ∈  to mean that row k is in stratum s. Multi-state models can be implemented by 

the use of time-dependent strata: see Therneau and Grambsch (2000). 

 

Risk and Event Sets 

Form (once and for all) the list },,,,{ 321 qF ττττ K=  of sorted distinct event-times (i.e. 

times for which 1=χ ). Note the distinction: the values }{ k
endτ  are all the endτ  times, 

whether event or censoring; the values }{ hτ  are just the event-times. If there is 

stratification, then we do this by strata: for each stratum s, we have a separate list 

},,,,{ 321 ssqsss ττττ K  of distinct event-times in stratum s. 

We define the risk set R )(τ  in terms of the data matrix M:  

}],(|{)( k
end

k
startkR ττττ ∈=  

where k
startτ  and k

endτ  are the τ -values (i.e. orgstart tt −  and orgend tt −  ) for row k of M. In 

general, we indicate row k by a superscript. If there are strata, we can also define  



}&],(|{),( skksR k
end

k
start ∈∈= ττττ  

Similarly, define the event-sets D )(τ  as  

}&1&|{),(

}1&|{)(

skksD
kD

kk
end

kk
end

∈===

===

χτττ

χτττ
 

The event multiplicity )(τm  is the size of this D:  

)),((#),(
))((#)(
sDsm

Dm
ττ
ττ

=
=

 

where )(# S  means the number of members of the set S. We use the notation 

),( sRR hsh τ= , and similarly Rh, Dsh, Dh, shm , hm . Note that both R and D are sets of 

rows of M. This is more general than defining them as sets of individuals, since each row 

corresponds to an individual and a time interval. Even though the sets R and D are sets of 

rows of M (i.e. sets of k), we shall sometimes abuse notation by writing shRe∈ , where e  

is an individual. 

 

Clusters 

Suppose we have a nested system (tree) of clusters (sets of individuals, or of rows of 

M ), ordered by the “⊆ ” relation. Let the “roots” or “level-1” clusters be those clusters 

with no parent (no larger cluster of which the given one is a subset). Let the “leaves”, or 

“finest-level” clusters be those with no children. These are disjoint. A cluster can be both 

root and leaf. We define the level of a cluster λ  recursively by: 

• The level of a level-1 cluster is 1 

• If the parent of λ  has level l , then λ  has level 1+l . 



The clusters of any level l  are disjoint. Let leafN  be the total number of leaves. 

Ordinarily a 1-level clustering is defined by one variable V, say, with each value of V 

corresponding to one cluster. A two-level clustering is defined by two variables 1V  and 

2V , say, so that the values of 1V  define the level-1 clusters, and within a level-1 cluster, 

the values of 2V  define the level-2 clusters. A L -level cluster tree is defined similarly by 

L  variables. We can order leaf clusters lexically, by values of the variables defining 

them. Note that not all leaf clusters are necessarily at level L . 

By a “leaf-vector” we mean a vector of dimension leafN  whose components are 

associated with the corresponding leaf-clusters. For each level λ  of the tree, there is a 

vector of random effects λU , but only the leaf-level random effects play a role in the 

estimation process: the lower levels are computed as part of post-processing, when 

estimation is complete. The notation U, with no level specified, will usually mean the 

leaf-level random effects. 

For each row k of M, we denote by kr  the leaf cluster of which ke  is a member. 

 

Primary and Secondary Data Tables 

As mentioned above, time-dependent (TD) covariates, which are always considered 

piecewise-constant, can be given in the data by multiple records per individual, each 

record giving the value of the covariates on one time interval, with the non-time-

dependent variables simply duplicated. For problems in which most of the covariates are 

time-dependent, this is usually the best way to organize the data. But if only one or two 

covariates out of, say, 30 or 40 are time-dependent, this is wasteful, since most of the 

information on each record will be redundant. In this case memory and (sometimes) run-



time can be saved by splitting the data into two tables, called “primary” and “secondary”. 

The primary table holds the non-time-dependent (NTD) covariates, along with the event 

indicators and other variables as described above for the matrix M. The secondary table 

lists the values of the TD covariates and corresponding time-intervals. It must also have a 

“key” variable, which determines the correspondence between the primary and secondary 

tables. If the individual's ID is used as the key variable, then each record in the secondary 

file has an ID, a start time, an end time, possibly a time origin, and a value for each of the 

TD covariates for the time interval specified by the times. An example of a secondary file 

is: 

ID StTime EndTime Weight Cholesterol     # Name-record 
1 2 2 2 2     # type-record 
307 0 5 76.3 38.2     # 1st record for indiv 307 
307 5 8 78.2 39.3  
307 8 12 81.7 39.7  
523 0 7 66.2 28.4     # 1st record for indiv 523 
523 7 15 69.1 29.3  
- - - - - - - - etc. - - - - - - - - - - -  
 

Here there are two TD variables, Weight and Cholesterol, given on adjacent time-

intervals for each individual. There can be as many records for an individual as 

necessary. In this example, the variable names and types are given in the data file. 

In some cases, it may be more appropriate to use a different key variable. For 

example, a single air pollution monitor located in a city will be associated with every 

individual living in the city, and if the data give the readouts for monitors located in 

several cities, then these variables will be indexed by city rather than by individual. The 

ACS data set is structured like that. Table 1 is the beginning of the fictional secondary 



file ACSlikeSec.dat, which is included in the test problems supplied with the program 

package. 

The variable CITY corresponds to the same variable in the primary file, allowing the 

association to be made for each individual's city. The use of a secondary table can give a 

considerable saving in memory space, and sometimes a small saving in running time, 

compared with the same problem using only a primary file with time-dependence 

represented by “record-repeating”. In Table 1 below, the set of time-intervals for each 

city are the same; this is not necessary: the records for each city can divide up time in any 

way desired (although two intervals for the same city can not overlap). For saving both 

run-time and storage, it is advantageous to have as few time-intervals per individual as 

possible, consistent with a good approximation of the data. 

The conceptual data matrix M is the same whether a secondary table is used or not: a 

secondary table is just a matter of how M is represented in the data files and in the 

computer. The algorithms for using a secondary table are different in detail from those 

used when no secondary table is supplied, but similar in essence. 

 

Table 1: A Secondary Table 

CITY STTIME ENDTIME PM10     # Name-record 
1 2 2 2     # type-record 
1 0.0 7.5 0.4900     # start of data for city 1 
1 7.5 15.0 0.5710  
1 15.0 22.5 0.3373  
1 22.5 30.0 0.8295  
1 30.0 37.5 0.7811  
1 37.5 45.0 0.8075  
2 0.0 7.5 0.5341     # start of data for city 2 
2 7.5 15.0 0.8151  
2 15.0 22.5 0.7458  
2 22.5 30.0 0.5872  



2 30.0 37.5 0.4977  
2 37.5 45.0 0.7124  
3 0.0 7.5 0.5999     # start of data for city 3 
3 7.5 15.0 0.7713  
3 15.0 22.5 0.4948  
3 22.5 30.0 0.7268  
- - - - - - - - etc. - - - - - - -  
 

 Z-Vectors 

Given a pair ],[ τe , with e  an individual and τ  an elapsed time: if e  is at risk (and 

under observation) at τ , there is a unique k such that row k of M corresponds to kee = , 

and ],( k
end

k
start τττ ∈ ; denote this k value by ),( τek . If e  is not at risk at τ , define 

∞=),( τek . 

We define a conceptual index-set Z , first assuming there is no stratification: let Z  

denote the set of pairs ],[ τe , where 

1. e  is at risk and under observation at τ . 

2. hττ = , for some h, qh ≤≤1 . Here hτ  is one of the list F of event times defined 

earlier.  

If there is stratification, then we define Z as the set of pairs ],[ τe  such that 

1. e  is at risk and under observation at τ  (i.e. ∞<],[ τek ) 

2. shττ = , for some h, sqh ≤≤1 , where s is the stratum of ],[ τek . 

The map ],[ τek  is many-to-one; the multiplicity )(kn  is defined as the number of 

pairs ],[ τe  that map to the same value k:  

 }),(|],[{#)( kekZekn =∈= ττ  (2) 

This is the same as the number of hτ  that lie in ],( k
end

k
start ττ . 



The set Z is ordered by τ  within e  within stratum. It is a conceptual index-set, which 

is never actually formed in the computation. Let ZN  be the size of Z. Any vector which is 

indexed by Z  is called a Z-vector, and normally considered a column vector. These Z-

vectors are also never formed explicitly. We will write the entry of a Z-vector θ  

corresponding to ],[ τe  as either ],[ τθ e  or ],[ τθ e . Sometimes we denote pairs in Z by κ , 

and then we use the notation κθ . This convention also holds for matrices A whose 

columns are Z-vectors: ],[ τeA  or ],[ τeA  or κA  means the row of A corresponding to 

],[ τκ e= . 

Given an extended vector TTT ][ βα  of regression coefficients (the α  will be defined 

later, in section “Poisson models and Likelihood”), let the Z-vector µ  be defined as  

)exp(],[ ),(],[ βαµτµ ττ shsh ekshe
she R+==  

for all Ze sh ∈],[ τ . Another way of stating this is to define a conceptual matrix R~  

corresponding to R : R~  will have columns which are Z-vectors. Define the ],[ τe  row of 

R~  as  

),(],[~ ττ eke RR =  

That is, the ],[ τe  row of R~  is the ],[ τek  row of R . Then we can define µ  simply as  

)~exp()exp( βαµ Ro=  

where the exponential is applied entrywise, and “o ” means the entrywise product, with 

the vector )exp(α  expanded to the size of a Z-vector, i.e  

she sh αα τ =],[  

for all s, h, and e . 



We now define the Z-vector Y  as  





==
else0

 at timeevent an  has  If1
],[ ],[ τ

τ τ e
YeY e  

for all Ze ∈],[ τ . Under the survivals models that are estimated, we have µ=)(YE . 

Notice that Y  and χ  contain essentially the same information, but they are vectors of 

(usually) different dimension. Another characterization of Y  is  



 ==

=
else0

&1if1
],[

),(),( ττ ττχ
τ

ek
end

ek

eY  

For any cluster λ , and any Z-vector θ , define the Z-vector ][λθ  as  





∉
∈

=
ie
iee

e
if0
if],[

],[][ τθ
τθ λ  

for all Ze ∈],[ τ . Then ][λθ  is a Z-vector. It coincides with θ  on the pairs corresponding 

to cluster λ , and is 0 in all other entries. We also define the sum of the entries of ][λθ  as  

}|],[{)(sum ][ λτθθ λ ∈= ∑ ee  

that is, the sum of ],[ τθ e  for all pairs ],[ τe  such that λ∈e . 

Summations of the form 

),,(
11

khsA
shRk

q

h

a

s
∑∑∑
∈==

 

over strata s, event-times shτ  and members k of the risk set Rsh, occur frequently in the 

formulation of the problem. We note that such a sum is in fact a sum over  Z, as follows: 

),,(),,(
],[11

khsAkhsA
ZeRk

q

h

a

s sh
k

sh

∑∑∑∑
∈∈==

=
τ

 

since Ze sh
k ∈],[ τ  if and only if shk R∈ . 



As we will see in the next section, Z-vectors are fundamental in the formulation of the 

survival models; for example, the log-likelihood is a summation over a Z-vector. This 

leads to a difficulty: the dimension of any Z-vector is ZN , which can be very large. In the 

ACS data, the number of individuals is about half a million, and the average number of 

distinct event times per stratum is about 90, so ZN  is around 45 million. A naive 

algorithm for computing the log-likelihood and its derivatives requires stepping through 

Z on each iteration, a very time-consuming process. We describe below algorithms which 

avoid this in many important cases, and require stepping only through the rows of M. In 

many, if not most, problems, the number MN  of rows of M will be much smaller than 

ZN . If there are no time-dependent covariates, for example, then MN  will be smaller than 

ZN  by a factor equal to the average number of distinct event-times per stratum, about 90 

for the ACS data. 

 

Remark on Notation 

As mentioned in the introduction, the algorithms given here depend on the statistical 

theory provided by Ma and colleagues (2000), here called “MKB”for brevity. We give 

here a brief explanation of how the notation of MKB differs from that used here. The 

main difference lies in the indexing of the set of individuals, and of the risk sets. For a 2-

level random effects covariance model, MKB denotes by )(s
ijkx , the vector of covariates 

associated with individual k in sub-cluster j of cluster i, in stratum s. The indexing of 

individuals is by cluster and subcluster, with the individual’s ID k being assumed unique 

only within the subcluster. Here, in contrast, we denote the set of individuals by E, and 

usually index this set by e , which we think of as a globally unique identifier of the 



individual (this does not imply that such an ID variable must be in the data: see below). 

We denote the full row vector of covariates (include the dummy covariates associated 

with the “alpha” coefficients) belonging to individual e , by Xe, or Xe )(τ  in the case of 

time-dependent covariates, where τ  denotes elapsed time. The original covariate vector, 

(a row vector) without the dummies, we denote by Re or Re )(τ . We denote the “leaf” 

cluster to which e belongs by r(e) and the random effect associated with a leaf cluster r, 

by Ur. 

In a stratum s, we denote by shτ  the distinct event times in that stratum, where h runs 

from 1 to qs, the number of such times. This is the same notation as used by MKB. As in 

MKB, we denote the risk set at time τ  by R(τ ), and the risk set at time shτ  by Rsh. The 

risk set is conceptually a set of individuals, but for practical purposes we take it as a set 

of records in the data file. In fact, all the computations are organized around data records, 

and individuals play no direct role; an ID variable for individuals is not needed, except 

possibly for grouping in a robust variance estimation. Each data record k is associated 

conceptually with an individual e and a time τ , and we write k = k(e,τ ). Similarly we 

write e(k) to denote the individual associated with a data record k. Extending this scheme, 

we write rk = r(e(k)), the leaf-cluster containing the individual belonging to record k; also 

Xk and Rk, the extended and original covariate vectors associated with e(k), and 
krU , the 

random effect associated with the leaf cluster containing the individual belonging to 

record k. The risk set Rsh is the set of data records belonging to the individuals at risk at 

time shτ . Using the notation scheme, we can write the conditional Poisson log-likelihood 

(see section Poisson Models and Likelihood) as: 
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Here the summation is over strata s, event-times shτ , and risk-set members k ∈  Rsh, αsh 

denotes the alpha-coefficient of stratum s and event time shτ , β is the coefficient vector 

corresponding to the covariates R, and χk is the event-indicator (0 or 1) of the data-record 

k. The same formula in the MKB notation is: 
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Summation over all event-times and over their associated risk sets is equivalent to 

summation over the index-vector Z described above (section Z  -Vectors). We use this 

equivalence frequently in what follows. 

 

Log-Likelihood 

Cox Model 

We consider the Cox proportional hazards model  

))(exp()()( 0 βττλτλ ee R=  

where )(τλe  is the hazard function for individual e , )(0 τλ  is the baseline hazard, 

common to all individuals in a stratum, β  is a regression coefficient vector, and )(τeR  is 

a row vector of covariate values for individual e  and time τ . 

 

No Ties, No Strata 

Consider first the case of unstratified data, and no ties. We let )(eru  denote the random 

effect associated with the leaf-cluster )(er  containing individual e . The log-likelihood 



conditional on the random effects U is (Andersen and Gill 1982; Therneau and Grambsch 

2000) 
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where Ne(τ ) is the number of events suffered by individual e up to time τ . The factor of 

],[ τδ e  on the first term inside the integral is redundant, since eN  cannot have a jump at 

τ  unless 1],[ =τδ e . The constant C  includes various terms, and is independent of the 

regression coefficients and the random effects. This expression is a summation over 

individuals and event-times, so in effect over Z. We can write it out explicitly as a sum 

over event times and the rows of M, interchanging the summations over individuals and 

times, giving 
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With Ties 

For tied data (still with no stratification), in which more than one event can occur at 

one time, we assume that the multiplicities are the result of grouping of continuous-time 

data. Then we have:  
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where )( hh mm τ=  is the multiplicity at time hτ  (the number of failures in the grouping 

interval around τ ), and we have absorbed a term of log( !m ) into the constant C ; and for 

the Breslow-Peto approximation,  
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Weighted: Let w  be a case-weight vector. We then have  
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So, for the Breslow-Peto approximation, 
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For the Efron approximation, 
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where, as before, 1],[ =τgY  if g  fails at time τ . In terms of the matrix M, this is 

equivalent to 1=kχ , where ),( τgkk = . 

We can write the log-likelihood for the Breslow-Peto approximation as:  
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As shown by Whitehead (1980) (see also Ma and colleagues (2000)), this is equivalent 

to a Poisson generalized linear model, which we describe in the next-but-one section. The 

Efron approximation does not seem to be equivalent to a Poisson model, or indeed to any 

GLM, so we will emphasize the Breslow-Peto approximation in what follows. 

 

With Stratification 

A stratum is a set of rows of M, and the log-likelihood is formed independently in 

each stratum; the separate stratum values are simply added. It follows that we can accom-

modate stratification simply by sorting the rows of M by startτ  within endτ  within stratum. 

Then each stratum s corresponds to a submatrix ][sM  of M, and we can simply sum up 

the log-likelihoods from the ][sM . 



 

Poisson models and Likelihood 

We introduce values }{ shα  for each stratum s and event-time shτ : we postulate that, 

given random effects u=U , the values ],[ sheY τ  are conditionally independent, and have 

conditional distribution  
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Weighted: if w  is a weight vector, assumed to be a Z -vector, 
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where the notation µow  means the entry-wise product of two vectors. 

This is the same, letting ),( shekk τ= , as  

))exp((Poisson|],[ βατ kshkre wUUY
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The conditional log-likelihood for this, given the random effects, (ignoring an additive 

constant) is  
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where Y  and µ  are Z-vectors defined above. With a little more notation, we can make 

this more compact. Recall the conceptual matrix R~ , whose columns are Z-vectors: we 

define another matrix E~ , with a column for each stratum-event-time pair sh , and whose 

columns are Z-vectors. The ],[ she τ  row of E~  has 1 in column sh , and 0 elsewhere; so 

she sh ατ =],[)~( αE . Now let  
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Then we can write the log-likelihood as  
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where ∗u  is the vector of leaf-level random effects, expanded into a Z-vector, i.e.  
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sh

k UeU =∗ ],[ τ  

As mentioned above, this Poisson generalized linear model is equivalent to the Cox 

proportional hazards model using the Breslow-Peto approximation for ties. The proof is 

given in Whitehead (1980) and in Ma and colleagues (2000). Whitehead also gives (in 

formula 5.2) an interpretation of the α 's: for each stratum s, the cumulative sum of 

)exp( sjα  up to hj = , is an estimate of the baseline cumulative hazard function for 

stratum s, at time shτ . 

For a given random effects vector U, we estimate the regression coefficients α  and β  

by maximizing the log-likelihood, which depends on α  and β  through the terms γX~TY  



and µT)( ∗U . This is easy for α : differentiating the log-likelihood with respect to shα , 

we find  
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and shm  is defined above as the event count in stratum s at time shτ . It follows that  

( ),,(.)exp( wUβα shsh
sh m P=  

so that shα  can be determined as soon as β  and the random effects are known. 

Differentiating (5) with respect to γ  gives  
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whose transpose is  
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where )diag( µow  means the diagonal matrix whose diagonal is the vector µow . We 

now introduce more notation: let  

)(diag µow=A  

and let B  be a matrix whose columns are Z-vectors, with each column corresponding to a 

leaf cluster r . The column of cluster r  is the Z-vector ][)( rµow , defined above as equal 

to µow  at all positions ],[ sh
ke τ  for which ,rek ∈  and 0 elsewhere; that is, 
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In this notation, we have  
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Equivalence with Cox Model 
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say. This is the value of shα  at the maximum of ))|;,(log( UYβαl . 

Substituting this for shα  in ))|;,(log( Uβαl  gives  
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Comparing the expression for ))|;,(log( uYβαl  given here, with Therneau and Li 

(1998), we see they differ by an expression independent of β  and u , when strata are 

allowed for. It follows that the Poisson model gives identical estimates of β , to the Cox 

model of Therneau and Li (1998). Unfortunately, it appears no such argument is possible 

for the Efron approximation. 

 

Derivatives of )log(l   

We have, letting z  be an offset variable, 
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For future reference, we note the following: let the sh-row of αβL  be denoted by shG : 
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BLUP Predictors 

Definitions and Properties 

Now we consider the method of predicting the components of the random effect vector 

U. We recall that Nleaf is the total number of leaves, which are ordered lexically. For this 

section we will assume that values ),( βα  are given, which in turn determine the Z-vector 

µ . The matrices A and B were defined above as )diag( µow=A , and B is leafNN ×Z , 

with column r  of B being the Z-vector ][)( rµow  (recall that ][rv  is equal to v  on pairs 

],[ τe  such that re∈ , and 0 elsewhere, for any Z-vector v ). We note that the matrix  



Q = BT A−1B
 

is diagonal; it plays an important role in predicting U. 

 

Expressions for )var(Y  and ),cov( YU   

As mentioned before, the clusters of any level k are disjoint. By a leaf-vector we mean 

a vector of dimension leafN  whose components are associated with the corresponding 

leaves. The random-effects vector U is a leaf-vector. We start from the formulas  
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where ),cov()var( YYY = , )var(UD = , w  is a weight vector, and ""o  means the entry-

wise product of vectors. We note here that )var(Y  is ZZ NN × , and )var(U  is 

leafleaf NN × . It is easy to see that if the weight vector w  has positive entries, then B  has 

full rank, which implies that )var(UD =  is uniquely determined by )var(Y . 

We will assume here that )var(UD =  is simply given; in fact, we need to have a 

model for )var(U , and the available models normally contain parameters, called 

“dispersion parameters”, which must be estimated as part of the overall estimation 

process. We will denote a particular covariance model by )(ηD , where η  is the vector of 

dispersion parameters, whose dimension and nature are specific to the covariance model 

considered. It is assumed that )(D  is a known function, and that any admissible value of 

η  determines the covariance matrix )(ηD . 



 

BLUP Formula 

The BLUP predictor of U  has the form HYmU +=ˆ , where the vector m  and matrix 

H  are to be determined. The defining requirements are that 1)()ˆ( == UU εε , and that 

UU −ˆ  be orthogonal to any linear transformation GY  of Y , for any matrix G . This 

implies  
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It follows that  

)()(var),(cov1ˆ 1 µow−+= − YYYUU  

This is the BLUP formula. Using (9) and the Sherman-Morrison-Woodbury formula,  

(A + WWT )−1 = A−1 − A−1W(I + WT A−1W)−1WT A−1

 

we can determine the matrix H  by 
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We note that Q  is a diagonal matrix, whose diagonal entry corresponding to the leaf-

cluster r  is  
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and  
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We can also write this relation in the form  

BLUP)ˆ(var
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which can be considered a bias-correction formula. 

 

Estimation of β   

Basic Formulas  

It is shown above that the Poisson model gives the same estimates for the regression 

coefficients β  as does the Cox model with the Breslow-Peto approximation for ties. We 

develop here a method for estimating β  from the Poisson model, which produces 

simultaneously the BLUP-predicted random effects Û . Recall that the conditional log-

likelihood and its gradient are given by  
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where we note in passing that BUAU =∗ . 

The conditional expectation of )|( UγΨ  over U , given Y , is  

)]|([~)|)|(( YUBYYUU εγε −=Ψ TX  

We approximate )|( YUε  by the BLUP predictor, defining a function )(γψ :  

]ˆ[~),()( UBYY −== TXγψγψ  

This is also equal to 

)()(var~)( 1 µγψ −= − YYATX  

as can be proved by a simple argument. We will estimate γ  by the equation 0)( =γψ . 

 

Derivatives 

Now we need some differentiation formulas: 
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That is, we let )(γS  denote the expectation (over Y ) of the derivative of )(γψ  with 

respect to γ . If there is stratification, 
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where Z  is defined as  
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so that the condition 0)( =γψ  is equivalent to minimizing ))(( γµq  with respect to γ , 

and amounts to a nonlinear least-squares criterion. 

 

Estimating Equations 

The basic estimating equations are then 0)( =γψ  and the BLUP formula for U :  
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Note that these are stated in terms of the conceptual vectors and matrices Y , X~ , µ , 

A , B ; we still must develop computational algorithms in terms of the data matrix M . 

We note that the BLUP formula for Û  depends on )var(UD = , which in turn 

depends on the dispersion parameters of the particular model for )var(U  that is used. To 

the estimating equations must be added one more, for determining the dispersion 

parameter vector η  of the covariance model )(ηD . Let us suppose that the dispersion 

parameter vector η  is estimated with the help of an estimating equation  

0),,( =UG ηγ  

or, in an equivalent fixed-point form,  

),,( UH ηγη =  

and the full system of estimating equations becomes 
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Solving for α  and β   

Newton-Picard Iteration 

Given the values of Û , the Fisher scoring algorithm for solving the first of the esti-

mating equations above is given by  

)())(( oldoldnewold γψγγγ −=−S  (12) 

Now recall that the matrix X~  is partitioned into “alpha” and “beta” columns by  

[ ]REX ~~~ =  



With this partitioning, we can write the Fisher scoring equation as  
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Practicalities 

The partitioned form of the score equation indicates a practical difficulty: the vector 

α  can be large. For the ACS data, there can be around 200 strata, averaging nearly 90 

distinct event-times each (because of ties, the average number of event-times per stratum 

is only weakly dependent on the fineness of the stratification). This means that the matrix 

M  above is about 000,18000,18 × , and would require over 2.5 gigabytes to store. We 

need a way to avoid forming this matrix or any of similar size. Since the α -vector is in 

some sense a nuisance parameter, and the real focus is on the regression coefficients β , 

we try eliminating α∆  from the partitioned system. The result is  

pMNqNMNP 11 ][ −− −=∆− TT β  



Now we have already seen that the α -component of )(γψ  is the vector 

=p ]ˆ[~ UBY −TE , the gradient of the log-likelihood L  with respect to α , and from 

section “Derivatives of log(ℓ)” this is given by  
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If we then choose each shα  to satisfy  

)ˆ,(/ Ume shsh
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βα P=  

then 0=p  for this choice, and the equation (13) simplifies to  

qNMNP =∆− − β][ 1T  

The matrix NMNPK 1−−= T  is called the Schur complement of the original matrix 

S , and it is the matrix needed to determine the new regression coefficients β  on each 

iteration. As we shall see later, it is possible and practical to compute the Schur 

complement exactly, but the computation is time-consuming, and computing it on every 

iteration is too slow. It can be computed once, at the end, to determine standard errors, 

but for the iterations, we must find an approximation. For approximating, we have two 

choices: either compute the exact Schur complement and re-use it for several iterations to 

amortize the cost, or use an approximate Schur complement K̂  for the iterations, then the 

exact K  for standard errors. At present, the program uses the second alternative. The 

approximation to K  used is the matrix  

αβααβαββ LLLLK 1)(ˆ −−=  

Formulas for the terms are given in section “Derivatives of log(ℓ)”, and K̂  is 

reasonably fast to compute. The matrix K̂  differs from K  in that K̂  is formed treating 



the random effects vector Û  as a constant in the derivatives; that is, the derivatives with 

respect to α  and β  in K̂  do not take account of the variation of Û  with α  and β . It 

works adequately for the iterations, but is not accurate enough for standard errors. 

One iteration of the full system is  
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 (14) 

Here the notation ),( newnewQ βα  means BAB 1−T , computed with the new α  and β  

values. Note that the term µ1−ABT  in the formula for newU  is actually the diagonal of Q, 

written as a vector, so newAB µ1−T  is available as soon as newQ  is. Note also that the 

matrix 1−ABT , although defined in terms of the vector µ , is a constant independent of 

µ , so that the term YAB 1−T  only needs to be computed once, and indeed  

rr mYAB =− }{ 1T  

for each leaf-cluster r . 



In the actual iterations, the matrix K̂  and the right side vector q  are computed first, 

using the previous random effects vector oldÛ . This is the most time-consuming part of 

the computation, and it requires special algorithms, discussed in the Appendix, to be done 

in a reasonable time. The vector µ is never actually formed and stored, although entries 

are computed, used, and discarded. The updates of Û  and η  are done by one of a set of 

special program modules that implement the covariance models the program recognizes. 

These modules are self-contained, all with the same interface to the rest of the program, 

so that it is relatively easy to add new covariance models. The last three lines of (14) are 

implemented by the code module for the chosen covariance model. 

The structure of the iteration (14) can be seen to be Newton-like in the regression 

coefficients β  and Picard-like in the dispersion parameters η . The random effects vector 

Û  is not an independent solution component, but is determined by β  and η , so is just a 

reporting variable. 

It can be shown that the algorithm of (14) amounts to an approximate EM algorithm, 

the approximation consisting of replacing the conditional expectation of the U 's given 

Y , by the BLUP predictor. 

 

Residuals  

Martingale Residuals 

The cumulative baseline hazard function )(0 tΛ  can be estimated Therneau and 

Grambsch (2000, ch. 4) by 
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The martingale residuals are defined by Therneau and Grambsch as: 
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Score Residuals 

Therneau and Grambsch (2000) define the score residuals as follows: first let 
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Now  
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The third and fourth terms are  
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so, we have  
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Note that the denominator of ),( tr β  is  
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The score residuals form a pNM ×  matrix )(γU . Note also that at the solution we 

have  
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dfbeta Residuals 

The dfbeta residuals Therneau and Grambsch (2000, ch. 7.1) form a pNM ×  matrix 

)(γD , defined from the score residual matrix )(γU  as  

1)()()( −= γγγ KUD  

where )(γK  is the Schur-complement matrix used for standard errors and defined in (27). 

The dfbeta residuals are used by the program to compute robust variance estimates. 



 

Models for )var(U   

We give a few standard forms for )var(UD = . Each of the forms contains 

undetermined parameters, called “dispersion parameters”. These must be estimated, 

generally by estimating functions involving Û . 

 

One-Level Distance-Decay Form 

General  

Let rsd  denote the distance between clusters r  and s , in a one-level hierarchy. The 

distance can be any suitable distance measure, satisfying  
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The last is the triangle inequality, which may not be satisfied by some distance 

measures. 

Suppose that w  is a fixed vector of cluster weights (e.g. city populations, etc.), which 

is supplied as data. It is assumed that 0>rw , for all r . We specify  
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where ),( Lxgg =  is a function of hdx /= , with possibly other parameters. We require  
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 (15) 

The first requirement is just a normalization. The last requirement, which may or may 

not be invoked in a particular problem, gives some sparseness to the matrix D . The 

choice of 1=x  as the cutoff value is arbitrary, since it is just a matter of the scaling of h . 

More generally, we note that h  is not really a parameter of the distribution, but simply 

a normalization of the distance function ()d . The function ()d  and the normalizing 

constant h  are assumed to be chosen a priori. The choice of h  reflects the spatial 

resolution that is thought to be important. 

We also require that the matrix D  be positive definite, which restricts the choice of 

functions g  and parameter values h . some possibilities are:  
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This last is the same as  

))exp(log()( xxg ρ=  

So the parameter ρ  is essentially equivalent to the resolution parameter h . Now let 

d0 = minr≠s(drs). If h  is chosen small enough that leafNhdg /1)/(0 0 << , where leafN  is 

the number of clusters, then D  is positive definite:  
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so the matrix without the weights is diagonally dominant, and hence positive definite. 

The weighted matrix is just a matter of multiplying on left and right by a positive 

diagonal matrix, which preserves positive definiteness. We conclude that, given the 

metric }{ rsd , and given an arbitrary function g  having the first five properties specified 

in (15), there is a non-empty open interval ),0( mh  of h -values that make D  positive 

definite. This does not require the distance to satisfy the triangle inequality. 

 

Example: xρ   

Now let us consider the last example listed above in more detail. We have xxg ρ=)( , 

for some ρ  with 10 << ρ , and  

)/)exp(log(),(cov 2/2 hdUUD rssr
hd

srsr
r
s

rs ρσρσ wwww ===  

As already pointed out, the parameters ρ  and h  are redundant, since whatever value 

is chosen for h , we can replace it with )log(/~ ρhh −= , and absorb ρ  into h~ , giving  

)~/exp(),(cov 2 hdUUD rssrsr
r
s −== wwσ  

Or, we can absorb h  into ρ~ , defining  
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So, without loss of generality we can take either 1=h , and consider  

rsd
srsr UU ρσ ww2),(cov =  

or take 1−= eρ  and consider  



)/exp(),(cov 2 hdUU rssrsr −= wwσ  

These are equivalent. Let us choose the first form, and consider  

rsd
srsr

r
s UUD ρσ ww2),(cov ==  

As mentioned, the parameter ρ  is just a matter of the scaling of the metric rsd . 

However, let us suppose the metric is already fixed: in that case, ρ  becomes a parameter 

to be fitted from the data. 

 

Estimating 2σ  and ρ   

We have seen from (10) 

D = var(U) = var(Û) + (I + DQ)−1D
 

and  
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Note that  
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is positive definite, so  

{(I + DQ)−1D}r
r > 0

 

We note that under the assumed form of D ,  

rD r
r
r  all  ,22σw=  

This leads to the equation  
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r
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for all r , and estimating the expectation by a sample average, we have the estimating 

equation  

])}){()1ˆ([(average 1222 r
r

r
r

r
DDQIU −− ++−= wσ  

where the average is taken over all leaf clusters r . Note that the right side depends on D , 

which depends on 2σ . We can regard this as an equation in 2σ , which occurs on both 

sides. Its solution 2σ̂  is necessarily positive. 

However, the above procedure for 2σ̂  may not be very robust when the weight vector 

has some small values, since those terms will tend to dominate the estimate. We proceed 

instead as follows: define  

Kr
r = (Ûr − 1)2 + {(I + DQ)−1D}r

r

 

and choose 2σ̂  to satisfy  
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which should be less sensitive to small weight values. Again, the right side depends on 

D , which depends on 2σ . 

Now consider ρ ; we have  
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For some “contiguity” metrics, we can do something for ρ  similar to the above 

method for 2σ . However, it requires that there be many pairs with 1=rsd , and this is a 

strong assumption on the metric. Instead we can proceed as follows: let  
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Or, if D  is large and sparse, we might want to approximate K  by  
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or some similar sparse approximation. The reason for this is that sparse matrices rarely 

have sparse inverses, and forming 1)( −+ DQI  may not be feasible. 

Then we want to choose 2σ  and either ρ  or h  so that the matrix { }2 rsd
sr ρσ ww  or 

)}/exp({ 2 hdrssr −wwσ  most closely resembles K . We must have 10 << ρ , or 0>h . 

We can try minimizing the difference in some matrix norm, such as the Frobenius norm, 

separating the diagonal and off-diagonal entries:  
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where 2σ  is taken as given, in the second line. Then 2σ̂  is determined as before. Let  
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We want to minimize this for 10 ≤≤ ρ . There are many codes available for one-

dimensional minimization problems; the program uses one called fmin, due originally to 

Richard Brent. 

 

Another Approach to Estimating ρ   

Suppose that rsd  is a neighbor-type distance matrix, i.e . every value is either 1 or ∞ , 

meaning that clusters are either neighbors or strangers. Assume for the moment that we 

have an estimate 2σ̂  for 2σ , from somewhere. We have from (9) that if κ  and ν  are Z-

indices, with νκ ≠ , then  

κ

ν
νκνκ µµ r

rDYY =),(cov  

where D , again, is ),cov( UU , and κr  is the leaf-cluster corresponding to the Z-index κ . 

Now let sr,  be leaf clusters. We write sr ↔  to mean 1=rsd , i.e. r  and s  are 

neighbors. Then  
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for any ],[ τκ e=  and ],[ ξν g=  with re∈  and sg∈ . We will abuse notation by writing 

r∈κ  and s∈ν . It follows that  
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Noting that  
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we can estimate the right side of (16) by  
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say, where we define  

( )1mean −=
∈

κ

κ

µκ

Y
r

rM  

which is easily computed for all r  on each iteration. Now, we are postulating  
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It follows that  
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where 
sr↔

mean  denotes the mean over all pairs ),( sr  that are neighbors, and so we define 

the estimator 
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One-Level Moving Average 

Suppose that rsd  is a distance matrix; we derive a matrix A  from d  as follows: 

replace any infinite entries by 0, and scale the rows so that each row sums to 1. The 

matrix A  then has the properties: 

•  0≥A , and 0>rsA  if clusters r  and s  are neighbors. 

•  11 =A , where 1  is the vector of all 1's. 



•  )diag(A  is 0. 

• A∆  is symmetric, for some diagonal matrix ∆ . 

 

We postulate the following model for the random effects vector }{ rUU = : 

VPVAVU )()1( ρρρ =+−=  

where: 

•  V  is a random vector assumed iid and 0>V , 1=)(Vε , and IV 2)var( σ=   

• 2σ  and ρ  are parameters to be estimated, with 02 >σ  and 2
10 <≤ ρ  

then, letting )(ρP  be 

AIP ρρρ +−= )1()(  

we have ε(U)=1, and the covariance matrix of U is 
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Still supposing that the distance matrix is neighbor type, we have as above, for r ≠ s, 
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The left side is  
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where R and S need to be computed from A only once. So we have the quadratic equation 

in ρ :  
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The left side is 0 when 0=ρ . If RS 2< , then the left side is increasing in ρ  on 

),0[ 2
1 , so ρ  is either uniquely defined, or must be taken to be 2

1  (i.e. the model doesn't fit 

well). If RS 2> , then there is no positive solution, so we must take 0=ρ , again 

observing that the model doesn't fit well. 

 

Multi-Level Nested Form 

Definitions and Properties 

Assumptions: 

 
Suppose we have a nested system (tree) of clusters (sets of individuals), ordered by the 

“⊆ ” relation. Let the “level-1” clusters be those clusters with no parent (no larger cluster 

of which the given one is a subset). Let the “leaves”, or “finest-level” clusters be those 

with no children. A cluster can be both root and leaf. We define the level of a cluster c  

recursively by: 

• The level of a level-1 cluster is 1 

• If the parent of c  has level l , then c  has level 1+l . 

The clusters of any level l  are disjoint. Let leafN  be the total number of leaves, 

ordered lexically (this assumes a multi-index representation of the cluster tree). Recall 

that U  is a leaf-vector, so has dimension leafN . Let L  be the highest level in the tree. 

We are now going to assign a random effect vector iU  to every cluster i  at any level, 

not merely the leaves. If i  is a cluster at some level, let )(iP  be the set consisting of i , 



the parent of ,i  the grandparent of ,,Ki  back to level 1. We also write )}({ iPU  to denote 

the vector of values of all the corresponding random effects of i and its ancestors. We 

will write }{lU  to denote the vector of level- l  random effects. So what we have been 

denoting by U  so far is }{LU . We write iU }{l  to denote the thi  component of the vector 

}{lU . We will suppress the “ }{l ” when it is clear from the context. 

We will impose the following assumptions: 

1) If i  is a cluster of level l , and },,2,1{ iqii L  are the children of i , then 

iqii UUU ,,, 21 K  are conditionally IID, given )}({ iPU , and  

i
ij

i
ij

UiPUU

UiPUU
2

1)})({|(var

)})({|(

+=

=

lσ

ε
 

where 2
1+lσ  is a dispersion parameter that must be estimated. 

2) If r  is a leaf-cluster, and peee ,,, 21 K  are the individuals in r , and 

],[,],,[],,[ 222111 ppp eee τκτκτκ === K  are pairs in Z , then the jY κ  are 

conditionally independent given )}({ rPU , and  

rUrPUY jj κκ µε =)})({|(  

To make these statements apply to level 1, we define a “root” or level-0 cluster to be 

the set of all individuals, and then each level-1 cluster is a child of the root. Define the 

root’s random effect value (degenerate) as 1}0{ =U . Then the above assumptions also 

hold for level-1 clusters. 

Definition: Sometimes we will consider the cluster tree truncated or trimmed at level 

L<l . By the l -trimmed tree, we mean the tree with all clusters of higher level than l  



removed, so that the leaves of the trimmed tree (the “ l -leaves”') are the clusters of level 

l , together with the leaves of the full tree that are of level less than l .  

 

For a 1-level model, the assumptions clearly imply IUU 2
1),cov( σ= . For a 2-level 

model, two level-2 clusters are independent if they are children of different parents. If 

clusters ij  and ik  are both children of cluster i , with kj ≠ , then  
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So if all leaves are at level 2, we have  
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where M  is block-diagonal, with a block for each main (i.e. level-1) cluster, and each 

block iM  is all 1's on the rows and columns corresponding to cluster i . 

Continuing this sequence, consider 3-level models: suppose that cluster i  is at level 2, 

that i ’s children are },,2,1{ iqii L , and that i ’s parent is c . Then if kj ≠ , 
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It follows that if all leaves are at level 3, we have  

ILMUUD 2
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where M  is block-diagonal with blocks iM  corresponding to level-1 clusters, and each 

iM  is all 1’s on the leaves descending from cluster  i . Similarly, the matrix L  is block-

diagonal with blocks jL  corresponding to level-2 clusters, and each jL  is all 1’s on the 

leaves that are children of j . 

We also have: if cluster i  is at level 1, and i ’s children are {il, i2,   , iq}, , at level 2, 

and if also cluster m  is at level 1, then  
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It follows that  
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where 2
1M  is block-diagonal with blocks of all 1’s corresponding to the level-1 clusters. 

Note that })1{},1{cov( UU  is 11 nn × , where 1n  is the number of level-1 clusters, and 

})2{},2{cov( UU  is 22 nn × , with 2n  the number of level-2 clusters. The notations 1I  and 

2I  mean the 11 nn ×  and 22 nn ×  identities, respectively. In this notation scheme, we can 

write the leaf-level covariance above as  
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so 3
1M  corresponds to M , 3

2M  to L . 

Suppose now that i  and m  are at level l , with highest-level common ancestor π . 

Then it can be shown that iU  and mU  are conditionally independent given πU , and we 

have, if mi ≠ ,  
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and if mi = , then π  is the parent of i :  
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say. We can therefore proceed by induction on the level l , to derive expressions for the 

covariance matrix of the U ’s at any level, analogous to (17). The general form is given 

in (22). 



 

Examples 

We now consider two examples. 

Example 1: Consider the following simple cluster hierarchy. There are two clusters: 

Cluster 1 has subclusters 1.1 and 1.2, and Cluster 2 is not subdivided into subclusters. 

Then the U -vector consists of T],,[ 22.11.1 UUU , corresponding to the leaves, and we 

have  
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where we let 2
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Example 2: Consider a three-level example: clusters 1 and 2 are the same as in 

Example 1. Cluster 3 has subclusters 3.1 and 3.2, and subcluster 3.1 has subsubclusters 

3.1.1 and 3.1.2. Then 

T],,,,,[ 2.32.1.31.1.3
22.11.1 UUUUUUU =  

or (in another notation)  

T],,,,,[ 0.2.32.1.31.1.30.2.20.2.10.1.1 UUUUUUU =  

Then  
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General Forms For Covariance: Leaf Clusters 

Now we need a few definitions: For each leaf r , let rζ  be the indicator leaf-vector of 

leaf r , i.e.  

rj
j

r δζ =)(  

The right side is the Kronecker delta. For each non-leaf cluster i , let iζ  be the 

indicator leaf-vector of i , i.e. 1=iζ  on the leaves that descend from i , and 0 otherwise. 

Then clearly  

r
ir

i ζζ ∑
⊆

=  

where ir ⊆  means that leaf-cluster r  is a descendant of cluster i . Let L  be the 

maximum level in the cluster-tree. 

For Example 2 above, we have 3=L , and for the leaves,  
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For the coarser clusters, we have  
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Arguing conditionally in a recursive sequence, we can show in the same way as for 

one-, two- and three-level models, that the general formula for ),cov( UU  is  
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The inner summation is taken over all clusters i  at level l . This can also be written as  

T)(2
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where Σ  is a diagonal matrix whose diagonal entry for each leaf r  is 2
)level(rσ . If all leaves 

are at level L , then IL
2σ=Σ . 

We clearly have  

][i
iB µζ =  



since it is the sum of the vectors ][rµ  for all leaves ir ⊆ . The vector iζ  is the only leaf-

vector with this property, since B  has full rank. From (9) and (20) it follows that  
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Lower-Level BLUP Formulas and Covariances 

By a similar inductive argument, of which the first three levels are given above, the 

covariance of the level- l  random effects can be shown to be  
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where }{l
iζ  is defined analogously to iζ , but on the cluster tree truncated at level l , so 

that the leaves are either of level l  or are lower-level leaves of the full tree. Since there 

are fewer leaves in the truncated tree than in the full L -level tree, the vectors }{ }{l
iζ  are 

of smaller dimension than the full-tree leaf vectors }{ }{L
iζ . 

The general form of the lower-level covariance matrices is given by (22), where again 

we write }{lU  for the vector of random effects corresponding to l -leaves. Note that in an 

unbalanced tree, this vector may contain some of the leaf clusters, even if L≠l . 

Definition: We define }{lB , the level- l  B -matrix, to be the B -matrix defined for the 

leaves of the level- l  trimmed tree. That is, each column of }{lB  corresponds to a leaf r  



of the l -trimmed tree, and consists of the Z-vector ][rµ . In the case that r  is a leaf of the 

full tree of level less than l , the corresponding column of }{lB  is identical to that of B . 

As before, we define  

}{1}{ ll BA−=∆  

which has the same pattern of non-zeros as }{lB , but all non-zeros are 1. We note that 

}{}{ ll U∆  is an expansion of the vector }{lU  into a  Z -vector, in the sense that  

)(}{],[}{}{ )()( eie UU lll =∆ τ  

where )(ei  is the l -leaf containing the individual e . 

Lemma:  

}{}{}{ ),(cov lll DBUY =  

In this notation,  

}{}{}{ ),(cov LLL DBBDUY ==  

Proof: 

Let Ze ∈= ],[ τκ , and suppose that )(err =  is the leaf-cluster containing e . If  

l>)level(r , then let )(eii =  be the l -leaf ancestral to r . If  l≤)level(r , then let i  be r  

itself. We first note that if )(rπ  is the parent of r , then )()( )|( rrr UUU ππε = , and by 

induction we can show that  

iir UUU =)|(ε  

We also note that  

iiririi UUUUUUYUY κκκκ µµεεεε === )|()|),|(()|(  



In matrix terms, this says  

}{}{}{}{}{}{)(diag)|( llllll UBUAUUY =∆=∆= µε  

Now we consider ),cov( }{lUY :  
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This completes the proof. 

The BLUP estimator }{ˆ lU  of }{lU  is again characterized by the orthogonality relation: 

}{}{ ˆ ll UU −  is orthogonal to any linear transformation of Y . This implies, by the 

argument given in the section “BLUP Formula”, that  

)()(var),(cov)(ˆ 1}{}{}{ µε −+= − YYYUUU lll  

By again substituting the formulas for 1)var( −Y  and ),cov( }{ YU l , we obtain  

)]()([)(ˆ 1111}{}{}{ µ−+−+= −−−− YADBDQIBAABDU TTlll 1  

where here D  means }{LD , and similarly B , Q  and A  have their original meanings of 

}{LB , Q{L} and }{LA . It is straightforward to check that for any leaf r  of the full tree, 

with l≤)level(r , the value ( rU )ˆ }{l  is the same for all values of L≤l . We just carry the 

lower-level leaves along in the vectors }{ˆ lU  for convenience. 

Now letting  

,)( 1}{}{ BABP −= Tll  

after some algebra, we get the following alternative expression for lÛ :  
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where )()( 1}{}{ µ−= − YABw Tll . Note that the two 1 ’s in this formula have different 

dimension. This shows that once we have }{ˆ LU , we can get any }{ˆ lU  without much extra 

work. We can save even more work by noting that }{lw  is simply an aggregation of 

)()( 1}{ µ−= − YABw L T : that is, the entry of }{lw  corresponding to level- l  cluster i  is the 

sum of the entries of w  corresponding to leaves that descend from i . 

The matrix }{lΓ  that expresses the aggregation has rows corresponding to l -leaves 

and columns corresponding to level- L  leaves. Each row of }{lΓ  corresponding to a level-

l  cluster i  has a 1 in each column corresponding to a level- L  leaf descending from 

cluster i ; and each row of }{lΓ  corresponding to a leaf  r  of level l<  has a 1 in the 

column corresponding to r . To put it another way, each row i  is just T)( iζ . We have the 

properties  
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Note that everything past the factor }{lΓ  is the same as for the leaf-level Û . This 

means that the lower-level random effects can be obtained for little extra work, once the 

leaf-level computations are done. 

Finally, we use the same short notation as before:  

)(ˆ }{}{ µ−+= YHU ll 1  

where  

])([)( 1111}{}{}{ −−−− +−= ADBDQIBAABDH TTlll  

It follows that  

T))((var)ˆ(var }{}{}{ lll HYHU =  

After some algebra, this becomes  
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As already pointed out, }{}{ˆ ll UU −  is orthogonal to any linear transformation of Y . 

We also have 

.say,
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−− T  (23) 

Estimating the 2
lσ   

It is easy to produce schemes for estimating the dispersion parameters, but we need to 

ensure that the estimates are positive. We start with the following observation: let i  be a 

cluster of level )(ill =  and let )(iππ =  be its parent. Then  
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or  

2
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)( )(var i
ii UU σπ =−  

Letting )(ii UUd π−=  and )(ˆˆˆ ii UUd π−= , we have: 0),ˆcov( =− GYdd , G  any linear 

transformation of Y . So  

)ˆ,ˆ(cov0)ˆ,ˆ(cov πUddUdd i −==−  

and  
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We also have  
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or  
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It follows that  
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so finally, using (23) 
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So the second part is positive, and it follows that this estimating equation for 2
lσ  gives 

positive estimates. Averaging over all the clusters i  of level l  ( }{lN  of them, say), and 

estimating )ˆvar(d  by the sample variance, we estimate 2ˆ
lσ  by solving  
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The right side is also a function of 2ˆ
lσ  and 2

1ˆ −lσ ; so this is an equation which 

represents the vector of }ˆ{ 2
lσ  as a function of the same vector. We will normally use it 

for Picard iteration, i.e. with new values on the left, and old ones on the right. 

 

Two-Level Distance Decay 

Assume there are two levels of clusters: “clusters” and “subclusters” (e.g. SMA's and 

zip-codes). Clusters are indexed by 

i = 1,2, …,m
 

and the subclusters of cluster i  are indexed by  

j = 1,2, …, Ji
 

Some clusters may have no subclusters, i.e. 0=iJ . Let U  denote the vector of 

cluster-level random effects {Ui : i = 1,2, …,m}, and let U denote the vector of 

subcluster-level random effects, {uij : j = 1,2, …, Ji, i = 1,2, …,m}. This has 

dimension iJJ ∑= . 

The assumptions we make are: 

1.  iiij UUu =)|(ε   

2.  0)|,cov( =iikij Uuu  unless subclusters j  and k  are neighbors (by some definition) 



3.  iiiij UUu 2
2)|var( σ= , where 2

2 iσ  is a parameter. We will make more explicit 

covariance assumptions below. 

4.  ),( pqij uu  are conditionally independent, given ),( pi UU , if pi ≠   

5. The matrix ),cov(}1{
pi UUD =  is dense, in general 

Let W  denote the expected conditional covariance matrix  
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Then the assumptions above imply that W  is block-diagonal, with blocks 

corresponding to the clusters, and block i  is ii JJ × . Now  

),(cov

)),|(),,|((cov)),|,(cov(),(cov

, pipqij

pipqpiijpipqijpqij

UUW
UUuUUuUUuuuu

+=

+= εεε
 

From this it follows that the full covariance matrix of u  is given by  

,),(cov }1{}2{ Θ+=ΓΓ+== WDWD Tuu  (24) 

say, where Γ  is a Jm×  block-diagonal matrix, the thi  block of which is a row of 1's of 

length iJ . 

The numbers mentioned so far are 156=m  and J  about 3000, so each SMA (cluster) 

has, on average, about 20 zip codes (i.e. iJ  averages about 20). The matrix W  can be 

inverted directly by a Cholesky factorization of each block, and also we can Cholesky-

factor }1{D  as TLL , so we have  

TTT )(}2{ LLWD ΓΓ+=  

which is in a form suitable for Sherman-Morrison-Woodbury: 



(A + UVT )−1 = A−1 − A−1U(I + VT A−1U)−1VT A−1

if V = U,

(A + UUT )−1 = A−1 − A−1U(I + UT A−1U)−1UT A−1

 

So, letting D = D{2} , 
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)(
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WQG

GLLGLILGGDQ TTTTTT

 

However, we may find it simpler to use conjugate gradient directly on the original 

form (24). In that case, we can relax some of the assumptions above: 

1. We don't need much (perhaps not any) sparseness in the blocks of W , so unless an 

SMA is huge there is no need to restrict the interactions of zip codes to neighbors: 

nearly any covariance pattern at the subcluster level will do. 

2. We can partially relax the assumption (4) of conditional independence, to allow a few 

direct interactions between zip codes in different SMA's, so long as they are sparse. 

This model, for ),cov( uu  is very feasible for computations, with m = 156 and J = 

3000. In fact, we could probably triple these numbers without much trouble, although the 

volume of linear-algebra calculations slows the program considerably. 

 

Distance-Decay 

If the clusters and subclusters each have a distance-decay covariance form, then  
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ipD /
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and 
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We may impose a condition that all 2
2iσ  and i2ρ  be equal, but we don't do so here. 

The distance functions 1d  and 2d  need not be the same, i.e. the distance functions at 

different levels are completely independent. 

 

Nested Independence 

Here we assume that the clusters at each level are conditionally independent, given the 

U -values at the parent level. It follows that  

ID 2
1

}1{ σ=  

and W  is diagonal, with ii I
2
2σ  on the thi  block. We have again  

ΓΓ+=

ΓΓ+=
T

TTT

2
1
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LLWD
 

and ΓΓT  is block-diagonal with each block consisting of all 1's. 

Now letting }2{DD =  and 11 )( −− += DQH ,  
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2
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which is very easy to apply because WQ +−1  and TΓ+Γ −− 11 )( WQ  are diagonal. 

 

Clusters Without Subclusters 

If there is a cluster p  not subdivided into subclusters, then all subcluster values }{ iju  

are conditionally independent of Up, given all }|{ piUi ≠ . This means that the matrix W  



has a diagonal block corresponding to p , which is 11× . Also p  is a leaf cluster, so 

should appear in the list of leaves. The simplest way to do this is to give p  a fictional 

subcluster 1p , consisting of the whole cluster p . From the definition of W  it follows 

that the diagonal entry 01,1 =ppW . From the formulas for û  and Û  given below in (26) 

and (25), a simple algebraic argument shows that pp Uu ˆˆ 1 = , and so for convenience we 

can carry 1pu  along in the computations without fear of inconsistency. 

 

Parameter Estimation 

General Approach 

Let }2{DD =  be the covariance matrix at level 2. Letting 
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=
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YABw
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 Q  is a diagonal matrix depending on )exp( γµ X= .  

DQQwQ
QDQQw

+=

+=
−−− 111 )(var

)(var
 

The BLUP formulas give 

 

û = 1 + Q−1(Q−1 + D)−1Dw
= 1 + D(Q−1 + D)−1Q−1w

var(û) = D(Q−1 + D)−1Q−1 var(w)Q−1(Q−1 + D)−1D
= D(Q−1 + D)−1D

D = var(u) = var(û) + var(u − û)

= D(Q−1 + D)−1D + var(u − û)

 

 (25) 
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Also: 
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We have  
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so finally 

W=Γ−= )(var)(var Uud T  

where we let iijij Uud −= , or Uud TΓ−= . We note that  
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and we need a formula for )ˆvar( dd − :  
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So now we need a formula for ),ˆcov( iijij Uuu − . We have  
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So, we obtain 
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where  
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Now: we have  
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where pppp G 11T=γ , the sum of all entries of pG . This gives  
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and GΓ  can be constructed from the vector 1G . 
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for any matrix A ; so  
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Now: 
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Since W  is block-diagonal, the off-block-diagonal entries of )ˆvar(d  and 

][ VP +Ψ−Ψ− T  cancel. Now let  

][)ˆ)(ˆ( VPK +Ψ−Ψ−+Γ−Γ−= TTUuUu  

We consider only the block-diagonal entries of K , i.e. block i  is  

i
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where iû  is the iJ -vector of entries }{ iju , and iVP ][ +Ψ−Ψ− T  is the ii JJ ×  block 

corresponding to cluster .i  Then we want to choose the parameters so that K  and W  are 

similar, say in the Frobenius norm. Now we are postulating that  
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So we let iW  be the block i  of W , and considering first the diagonal, minimize  
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This can be minimized in various ways, and the result is i2ρ̂ . Note, of course, that K  

is a function of the dispersion parameters, so these formulas for 2
2iσ  and i2ρ  define 

estimating equations that must be solved by iteration. 

To estimate the first-level parameters 2
1σ  and 1ρ , we use  
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So let  

}1{}1{}1{)ˆ)(ˆ( DHDDL TT ΓΓ−+−−= 1U1U  

The second term is formed from the current estimates of all dispersion parameters. We 

now proceed as in the one-level case, to choose the parameters 2
1σ̂  and 1ρ̂  to minimize 

the Frobenius norm of ),( 2}1{ ρσDL − . 

 

 



Appendix: Algorithms 

The Problem  

On each iteration, we must compute the approximate Schur complement matrix K̂ , 

the right side vector βLq = , the diagonal matrix Q , and several other quantities. At the 

end of the iterations, we must compute the exact Schur complement matrix K , to obtain 

standard errors of the regression coefficients. The formulas of section “Derivatives of 

log(ℓ)” suggest the difficulty in computing these quantities: they involve a summation 

over the risk-set index vector Z, which can be very large. To illustrate the problem and 

the algorithms that solve it, we will take as an example the right side vector q ; the 

algorithms for computing the other quantities (the terms of K̂ ) are variants of the ones 

given here for q . 

There are several ways to write the vector q : as we have seen,  
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This last comes from section “Derivatives of log(ℓ)”. The first term of q  is easy, since 

0=kχ  unless there is an event at k
endt . So we can simply step through the data matrix M , 

adding covariate rows kR  for the records with an event. The total time for this is 

proportional to the numbers MN  of rows of M , which is optimal. The second term is 

more difficult, since as pointed out in section “Z -Vectors”, a summation of the form 

∑∑∑ ∈== shRk
q
h

a
s 11  is the same as a summation over Z, something we want to avoid, as we 



can have 90/Z ≥MNN . Let us rewrite the expression above as (letting 2q  denote the 

second term of q )  
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We will first focus on sums of the form 
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where a  and b  can be scalar, vector, or matrix-valued, so long as the product is 

conformable. The vector 2q  is a sum over leaf-clusters of terms of this form. We want to 

be able to compute such expressions rS  for all leaf-clusters r , in time proportional to 

,MN  or as close as we can come to this bound. 

Now we assumed the rows of M  are ordered by startτ  within endτ  within stratum s . 

We assume that, for each record (i.e. row) k  of M , the corresponding individual is at 

risk of an event in the interval ],( k
end

k
start ττ , and the event occurs at k

endτ  if at all in this 

interval. Whether the event occurs at k
endτ  or not is indicated by the value of kχ . Recall 

the list },,,,{ 321 ssqssss ττττ K=F  of sorted distinct event-times in each stratum. Note the 

difference: the values }{ k
endτ  are all the endτ  times, whether event or censoring; the values 

}{ shτ  are just the event-times. 

Definition: For each event-time shτ  define the “delete list” shd  as (for 1,,1 −= sqh L ) 
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For each s  and h , the delete-list shd  consists of those rows k  in stratum s that leave 

the risk-set at shτ , as we step backward in time through the event-time list. The sets Fs 

and shd  can all be formed with a single backward pass through M . 

The idea of the algorithms to follow is simple: in each stratum, we step backward 

through the stratum's rows in M , keeping a running tally of the risk set, adding rows as 

they enter the risk set, and deleting them as they leave. The sum of kb  over the risk set is 

updated, rather than fully summed anew for each event-time. This is the source of the 

saving. 

 

No Secondary Table 

We first assume there is no secondary data table, so either there are no time-dependent 

covariates, or the time-dependence is represented by repeating rows of M . 

The following algorithm computes sums of the form 
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for all leaf clusters r , for any values sha  defined on the list },,,,{ 321 ssqsss ττττ K  of event 

times, and for any values kb  computable from the rows of M . Since strata do not really 

enter into the algorithm, we state it for one stratum and drop the index s . Accomodating 

stratification is just a matter of summing over s  afterward. 



Algorithm 1: To form the sums rS  as defined above, for all leaf clusters r . 

  Input: the matrix M , the list },,,,{ 321 qττττ K  of event times, the lists }{ hd  of delete-

lists, and the values }{ ha , for all qh ,,1K= , and }{ kb  for all rows k  of M  (or a way 

of computing ha  and kb  on the fly) 

  Initialize 0=rS , 0=rP , for all leaf clusters r ; =k  last row of M  in ordering given 

above. 

  Step 1,,Kqh =   

  While k
endh ττ ≤   

  If ( h
k
start ττ <  ) // if k  is in the risk set of hτ   

   Prk = Prk + bk  // Add new values that enter the pool in ],( 1+hh ττ   

  EndIf 

  1−= kk   

  EndWhile (on k  ) 

  Step ν  through hd   

  ννν

bPP rr −=  // Subtract old values that leave the pool in ],( 1+hh ττ   

  EndLoop (on ν ) 

  Step r  through the set of leaf clusters 

   rh
rr PaSS +=   

EndLoop (on r ) 

EndLoop (on h ) 



In this algorithm, the value of k  is stepped from MN  down to 1, and the value of ν  is 

stepped through all the delete-lists, which are disjoint. It follows that the time required for 

Algorithm 1 is proportional to leafNNN τ+M , where τN  is the total number of distinct 

event-times per stratum, totalled over all strata. The term leafNNτ  is often much smaller 

than MN , although it can be much larger; it comes from the final loop on r . 

There are several variants of Algorithm 1 that are used: for example, sometimes we 

want to sum on r , but not on h , producing expressions of the form  
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It is easy to modify the above algorithm to produce these terms: we just don't split out 

the clusters r , and don't sum on h ; the algorithm requires time proportional to MN . We 

can also sum on both h  and r : the vector 2q  is actually of that form. We showed the 

algorithm that splits out r  for illustration. It is necessary only for computing the diagonal 

matrix Q . 

It is also possible, at the cost of additional complexity, to modify Algorithm 1 so that 

its run-time is proportional to leafNNN ++ τM . This can be a considerable improvement 

if the number of strata and the number of leaf clusters are large; for the ACS data, for 

which MN  is about half a million, values of τN  can be on the order of 18,000 and leafN  

on the order of 10,000 for the most ambitious models. Clearly we prefer the run-time to 

depend on their sum rather than their product! The modified algorithm is based on the 

principle that on one pass through the h -loop, not too many leaf-clusters ( r ) will be 

encountered, but in Algorithm 1, all leaf-clusters are updated on every h -value. Instead, 



we can keep track, for each leaf r , of the h -value on which it was last updated; each 

time r  is encountered, we do a batch update for all h -values since the last update. The 

algorithm is as follows, again for sums 
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Algorithm 2: To form the sums rS  as defined above, for all leaf clusters r . (Modified 

version, faster for large problems) 

  Input: the matrix M , the list },,,,{ 321 qττττ K  of event times, the lists }{ hd  of delete-

lists, and the values }{ ha , for all qh ,,1K= , and }{ kb  for all rows k  of M  (or a way 

of computing ha  and kb  on the fly), and the cumulative sums jq
hjh aC ∑= = ; we define 

01 =+qC . 

  Initialize 0=rS , 0=rP , 1][ += qrV , for all leaf clusters r ; and =k  last row of M  

in ordering given above. 

  Step 1,,Kqh =   

  While k
endh ττ ≤   

  If ( h
k
start ττ < ) // if k  is in the risk set of hτ   

   ][ krVh CCd −=   

   Srk = Srk + dPrk + ah bk   

   krr bPP
kk

+=  // Add new values that enter the pool in ],( 1+hh ττ   

   hrV k =][         // Last h  on which kr  is updated 

  EndIf 



   1−= kk   

  EndWhile (on k ) 

  Step ν  through hd   

 ][ νrVh CCd −=    

   
ν

νν
r

rr PdSS +=   

   ννν

bPP rr −=    // Subtract old values that leave the pool in ],( 1+hh ττ   

   hrV =][ ν   

  EndLoop (on ν ) 

EndLoop (on h ) 

  Step r  through the set of leaf clusters     // Cleanup loop 

   ][1 rVCCd −=   

   r
rr PdSS +=   

EndLoop (on r ) 

Algorithm 1 or 2, and their variants, are sufficient for computing all the terms of the 

equation qK =∆βˆ , for the vector µ1−ABT  (the diagonal of the matrix Q ), and for the 

vector α , all in time proportional to leafNNN τ+M  or leafNNN ++ τM . Naive algorithms 

would require time proportional to ZN . 

 

With Secondary Table 

The defining feature of a secondary table is that the conceptual covariate matrix R~  

has a set of non-time-dependent columns, and a set of time-dependent ones. Let the key-



variable be denoted by ξ ; we assume that each individual has a ξ -value )(eξ  associated. 

For example, if ξ  represents cities, then )(eξ  is the city of residence of the individual e . 

We can of course have ee =)(ξ , i.e. that the table is keyed by individual. Under the 

assumptions, each row ],[~
he τR  of R~  has two parts: the first part depends on individual, 

but not on time, and the second part depends on time, but on individual only through the 

key-variable )(eξ . If, for example, the second part is an air-pollution reading from a 

single monitor located in each city, then the values depend on individuals only through 

their city of residence.  

[ ]]),([~][~],[~
21 hh eee τξτ RRR =  

We suppose that the covariates ],[~
2 hτξR  are stored separately, in a secondary table 

indexed by {ξ -values ×  time-breakpoints}. If the key variable is a much coarser 

breakdown than individual (e.g. city), then preparing the secondary table is 

correspondingly easier. The secondary table properties (e.g. filename, key-variable, etc.) 

are given to the program in the control file, as described in the manual. 

The algorithms for using a secondary table are essentially the same as Algorithm 2 

above; as already mentioned, the conceptual data matrix M  is the same in either case. To 

handle a secondary table, we construct indexing structures that allow stepping through 

the primary and secondary rows in the same order as the rows of M . In effect we apply 

Algorithm 2, building the rows of M  on the fly. 



 

Indexing Algorithms 

There are many other algorithms required for handling the data structures used by the 

program: we must compile lists of event times, compile delete-lists for each event-time, 

construct the cluster-tree, and other similar tasks. These indexing algorithms are 

sometimes complicated, but they raise no conceptual issues, so we will not give them 

here. 

 

Standard Errors 

Preliminaries  

As already described, the regression coefficients α  and β  can be found by an 

iteration of the form  

)())(( oldoldnewold γψγγγ −=−S  

Since the α -vector can be large, the equation is impractical in this form, and we 

instead use  

qK =β  

where K  is the Schur complement of S  with respect to α . The standard errors of the γ -

coefficients (composite of α  and β ) are the diagonal entries of the inverse of the final 

converged value of S , and it is easy to show that the standard errors of β  alone are the 

diagonal entries of the inverse of K . For the iterations, we approximate K  by K̂  as 

already described, but K̂  is not accurate enough to use for standard errors. So once, after 

convergence, we have to compute the exact K  itself. This is a somewhat difficult 



computation, because with the size of problems we are trying to handle, the matrices may 

be too big to hold in memory. 

With the notation introduced in the first few sections, in particular the matrices X , E , 

R , S , A , B , Q , D , etc., we note from section “Estimation of β” that  
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It follows, then, that  
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Our goal, then, is to compute the Schur complement 

α
β

α
α

β
α

β
β SSSS 1)( −−=K  (27) 

Since the coefficient vector β  can be expected to be of relatively relatively low 

dimension ( 100≤ , say) it is generally feasible to store the matrices T)( β
α

α
β SS = , β

βS  and 

K , and to invert K , but in large problems storing and inverting α
αS  is out of the question 

on most machines. We must find a relatively efficient way of computing α
β

α
α

β
α SSS 1)( −  

“out of core”. 



 

The Basic Algorithm 

We note that  
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and EE ~~ AH T=  is a diagonal matrix, since A  is. We concentrate, then, on 

EE ~)(~ 11 TT BQDBZ −− += . 

Now suppose that we can factor the BLUP matrix 11 )( −− +QD  in some way: 

TFGQD =+ −− 11 )(  

for some suitable choice of matrices F  and G . One possibility is the Cholesky 

factorization, in which case GF = , but we leave open for now the particular 

factorization chosen: it may depend on the random effects covariance model used. With 

this factorization, the matrix Z  can be written 

,say,~~ TTTT NMBBFGZ == EE  

and if GF = , then MN = . By the Sherman-Morrison-Woodbury formula,  
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The matrices N  and M  are of dimension “α  by leaves”, i.e. the rows are indexed by 

pairs sh  of strata s  and stratum event-times hτ , and columns are indexed by leaf-

clusters. The rows of N  and M  corresponding to stratum-time pair sh  are: 



k

sh

sh

k

sh

sh

rk

Rk

shsh

rk

Rk

shsh

GeBGM

FeBFN

)exp()~(

)exp()~(

β

β

α

α

RE

RE

∑

∑

∈

∈

==

==

T

T

 

where rF  and rG  are the rows of F  and G  corresponding to leaf-cluster r . Assuming 

that rows of F  and G  are available as needed, these forms can be computed by a variant 

of Algorithm 2 above: for a given stratum s , that algorithm steps through the event-times 

hτ  belonging to s, and on pass h, the rows shN  and shM  are produced, and immediately 

written to a binary file. On the same execution of Algorithm 2, we produce the other 

quantities needed, in particular RR ~~ AT , H , R~TB , and RE ~~T . The factorization 

TFGQD =+ −− 11 )(  and the other computations involving the BLUP matrix are carried out 

by the modules of the covariance models, in whatever way is most efficient for the 

particular model. Having these, we can form the matrices β
βS , α

βS  and NHM 1−T . Most 

of these require matrix products with N  or M , or both. We do this by reading the rows 

of N  and M  back in sequence, and forming and accumulating rank-1 matrices with the 

individual rows, to produce the full matrix product. Reading and writing binary files are 

fast operations, but the overall process is nevertheless slow. Still, it is fast enough to be 

just feasible with large problems. 

 

The matrix 11 )( −−− NHMI T   

As mentioned, the matrix NHM 1−T  can be formed sequentially by reading the rows of 

N  and M. It is leafleaf NN × , which is not a problem if leafN  is moderate. In some 

problems leafN  can be large, however, and storing and inverting NHMI 1−− T  becomes 



difficult or impossible. Instead we approximate the product α
βSTT MNHMI 11 )( −−−  by 

solving the matrix equation 

TT MXNHMI =− − )( 1  

for X , using the GMRES method of Saad and Schultz (1986) or Saad (2003). This 

method requires only that we be able to form vNHMI )( 1−− T , for given vectors v , and 

this can be done as outlined above, by successively reading in the rows of N  and M , 

and forming dot products. The result of the process is the matrix 

α
β

β
α SS TT MNHMI 11 )( −−− , formed without ever storing NHM 1−T . However, GMRES is 

an iterative algorithm, and the issue arises of convergence and accuracy. It can be shown 

that TT MNHMIN 11 )( −−−  is symmetric positive definite, and so we should expect 

NHMI 1−− T  to be reasonably well-conditioned. We have found in tests that only a few 

GMRES iterations are required to give accurate standard errors. 
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