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A B O U T  H E I

 vii

The Health Effects Institute is a nonprofit corporation chartered in 1980 as an independent 
research organization to provide high-quality, impartial, and relevant science on the effects of air 
pollution on health. To accomplish its mission, the institute

• Identifies the highest-priority areas for health effects research;

• Competitively funds and oversees research projects;

• Provides intensive independent review of HEI-supported studies and related 
research;

• Integrates HEI’s research results with those of other institutions into broader 
evaluations; and

• Communicates the results of HEI research and analyses to public and private 
decision makers.

HEI receives half of its core funds from the U.S. Environmental Protection Agency and half 
from the worldwide motor vehicle industry. Frequently, other public and private organizations in 
the United States and around the world also support major projects or certain research 
programs. HEI has funded more than 280 research projects in North America, Europe, Asia, and 
Latin America, the results of which have informed decisions regarding carbon monoxide, air 
toxics, nitrogen oxides, diesel exhaust, ozone, particulate matter, and other pollutants. These 
results have appeared in the peer-reviewed literature and in more than 200 comprehensive 
reports published by HEI.

HEI’s independent Board of Directors consists of leaders in science and policy who are 
committed to fostering the public–private partnership that is central to the organization. The 
Health Research Committee solicits input from HEI sponsors and other stakeholders and works 
with scientific staff to develop a Five-Year Strategic Plan, select research projects for funding, and 
oversee their conduct. The Health Review Committee, which has no role in selecting or 
overseeing studies, works with staff to evaluate and interpret the results of funded studies and 
related research.

All project results and accompanying comments by the Health Review Committee are widely 
disseminated through HEI’s Web site (www.healtheffects.org), printed reports, newsletters, and 
other publications, annual conferences, and presentations to legislative bodies and public agencies.
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Research Report 140, Extended Follow-Up and Spatial Analysis of the American Cancer Society 
Study Linking Particulate Air Pollution and Mortality, presents a research project funded by the 
Health Effects Institute and conducted by Dr. Daniel Krewski of the McLaughlin Centre for 
Population Health Risk Assessment, University of Ottawa, in Ottawa, Ontario, Canada, and his 
colleagues. This report contains three main sections.

The HEI Statement, prepared by staff at HEI, is a brief, nontechnical summary of the 
study and its findings; it also briefly describes the Health Review Committee’s 
comments on the study.

The Investigators’ Report, prepared by Krewski et al., describes the scientific 
background, aims, methods, results, and conclusions of the study.

The Commentary is prepared by members of the Health Review Committee with 
the assistance of HEI staff; it places the study in a broader scientific context, points out 
its strengths and limitations, and discusses remaining uncertainties and implications of 
the study’s findings for public health and future research.

This report has gone through HEI’s rigorous review process. When an HEI-funded study is 
completed, the investigators submit a draft final report presenting the background and results of 
the study. This draft report is first examined by outside technical reviewers and a biostatistician. 
The report and the reviewers’ comments are then evaluated by members of the Health Review 
Committee, an independent panel of distinguished scientists who have no involvement in 
selecting or overseeing HEI studies. During the review process, the investigators have an 
opportunity to exchange comments with the Review Committee and, as necessary, to revise 
their report. The Commentary reflects the information provided in the final version of the 
report.
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H E I  S T A T E M E N T

This Statement, prepared by the Health Effects Institute, summarizes a research project funded by HEI and conducted by Dr. Daniel Krewski
at the McLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, ON, Canada, and colleagues. Research Report
140 contains both the detailed Investigators’ Report and a Commentary on the study prepared by the Institute’s Health Review Committee.
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Extended Analysis of the American Cancer Society 
Study of Particulate Air Pollution and Mortality

INTRODUCTION

The American Cancer Society (ACS) Cancer Pre-
vention Study II (CPS-II), a large ongoing prospec-
tive study of mortality in adults initiated in 1982,
was one of two U.S. cohort studies central to the
1997 debate on the National Ambient Air Quality
Standard (NAAQS) for fine particulate air pollution
in the United States. Because of the high impor-
tance of the original ACS study in formulating reg-
ulations and the controversy generated by the
limitations of that study, the U.S. Environmental
Protection Agency (U.S. EPA), the Congress, and
industry requested that the Health Effects Institute
conduct the Particle Epidemiology Reanalysis
Project with the objective of independently and rig-
orously assessing the original data and findings.
The results of the Reanalysis Project validated the
quality of the original data (which included 7 years
of follow-up), replicated the original results, and
tested those results against alternative risk models
and analytic approaches.

After the Reanalysis Project, Dr. Arden Pope and
colleagues undertook an Updated Analysis of the
ACS cohort using an additional 10 years of follow-
up and exposure data. Recent advances in statistical
modeling were incorporated into these analyses.

As described in Research Report 140, Dr. Daniel
Krewski and colleagues, with HEI’s support, con-
ducted an Extended Analysis of the same cohort.
This research increases the follow-up period for the
ACS cohort to 18 years (1982 to 2000) — 11 years
more than the original study. The investigators have
produced national estimates of the risks of death
from various causes and have extended the range of
analyses to include refinements of statistical
methods and incorporate sophisticated control of
bias and confounding.

SUMMARY

The cohort for the current study consists of
approximately 360,000 participants residing in
areas of the country that have adequate monitoring
information on levels of particulate matter with an
aerodynamic diameter of 2.5 µm or smaller (PM2.5)
for 1980 and about 500,000 participants in areas
with adequate information for 2000. The causes of
death obtained from death certificates during
follow-up that were analyzed included all causes,
cardiopulmonary disease (CPD), ischemic heart dis-
ease (IHD, reduction of blood supply to the heart,
potentially leading to heart attack), lung cancer, and
all remaining causes. Data for 44 personal, indi-
vidual-level covariates, based on participants’
answers to a 1982 enrollment questionnaire, were
also used for the analyses. Dr. Krewski’s research
team also collected data for seven ecologic (neigh-
borhood-level) covariates, each of which represents
local factors known or suspected to influence mor-
tality, such as poverty level, level of education, and
unemployment (at both Zip Code and city levels).

Long-term average exposure variables were con-
structed for PM2.5 from monitoring data for two
periods: 1979–1983 and 1999–2000. Similar vari-
ables were constructed for long-term exposure to
other pollutants of interest from single-year (1980)
averages, including total suspended particles,
ozone (O3), nitrogen dioxide, and sulfur dioxide
(SO2). Exposure was averaged for all monitors
within a metropolitan statistical area (MSA) and
assigned to participants according to their Zip Code
area (ZCA) of residence.

Dr. Krewski’s team chose the standard Cox pro-
portional-hazards model (and a variation to allow
for random effects) to calculate hazard ratios for
various cause-of-death categories associated with
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the levels of air pollution exposure in the cohort.
They extended the random effects Cox model to
accommodate two levels of information for clus-
tering and for ecologic covariates. Three main anal-
yses were conducted: a Nationwide Analysis, Intra-
Urban Analyses in the New York City (NYC) and
Los Angeles (LA) regions, and an analysis designed
to investigate whether critical time windows of
exposure to pollutants might have affected mor-
tality in the cohort.

Nationwide Analysis

For the Nationwide Analysis using the standard
Cox model, the associations between average PM2.5
concentrations in both 1979–1983 and 1999–2000
and mortality from all causes (except the category of
“all other causes”) were statistically significant. The
hazard ratio (HR) for death was elevated by 3% to
15%, depending on the cause of death, for each
increase of 10 µg/m3 in PM2.5. When the random
effects Cox model was used with added control for
ecologic covariates, the effect estimates increased
slightly and remained significant; the strongest esti-
mate was for IHD (HR = 1.24; 95% confidence
interval [CI], 1.19–1.29). These effect estimates
were, in general, higher than those found in some
previous analyses of this cohort. The association of
mortality with summer O3 levels (calculated from
concentrations measured from April to September
1980) was small, but significant, for deaths from all
causes (HR = 1.02; 95% CI, 1.01–1.03) and from
CPD (HR = 1.03; 95% CI, 1.02–1.04).

In earlier analyses of this cohort, investigators
found that increasing education levels appeared to
reduce the effect of PM2.5 exposure on mortality.
Results from the current study show a similar pat-
tern, although with somewhat less certainty, for all
causes of death except IHD, for which the pattern
was reversed.

Intra-Urban Analyses

 For the NYC Analysis, land-use regression (LUR)
models were created to estimate exposure to PM2.5
using concentrations averaged over 3 years or over
the winter months only for 1 year. Annual average
concentrations were calculated for each of 62 mon-
itors from 3 years of daily monitoring data for 1999
through 2001. Those data were combined with
land-use data collected from traffic-counting sys-
tems, roadway network maps, satellite photos of
the study area, and local government planning and

tax-assessment maps to assign estimated exposures
to the ACS participants. As with the Nationwide
Analysis, the team used the random effects Cox
model to calculate HRs and incorporated the 44
individual-level covariates as well as the 7 ecologic
covariates at the ZCA and MSA scales.

In the LA Analysis, the investigators used both
LUR and kriging (a method of interpolating missing
values) to estimate exposure concentrations for
cohort members. The Cox models used to calculate
associations between exposure and mortality
included the same individual-level and ecologic
covariates as in the NYC Analysis. The LA Analysis
reported results separately for analyses that used
exposure based on LUR and those based on kriging
of monitored concentrations. The investigators
assembled data from several sources for the LUR
models, including the California EPA’s 23 PM2.5
monitors and the California Air Resources Board’s
database for 42 sites monitoring O3.

Despite the common methodologic basis for the
NYC and LA Analyses, the resulting LUR exposure
models and associations between exposure and mor-
tality were strikingly dissimilar. The LA results show
much larger HRs than the NYC results, except for
mortality due to IHD (LA: HR = 1.33; 95% CI, 1.08–
1.63; NYC: HR = 1.47; 95% CI, 1.00–2.00; both per 10-
µg/m3 increase in PM2.5). These differences may arise
from the range of exposures derived for cohort mem-
bers residing in each area, the relative uniformity of
PM2.5 exposure in the NYC region, and the differ-
ences between the land-use variables selected as the
most appropriate for inclusion in the LUR models
that were constructed for the two metropolitan areas.

Critical Periods of Exposure Analysis

 Dr. Krewski’s team performed an analysis
designed to explore whether more recent exposures
to air pollution are more or less strongly associated
with mortality than exposures further in the past.
Exposure profiles for this analysis were constructed
from average PM2.5 and SO2 concentrations for
periods 1 to 5 years, 6 to 10 years, and 11 to 15 years
before death. As with other analyses, the investiga-
tors used the standard Cox model including indi-
vidual-level covariates.

The investigators considered the time window
with the best-fitting model (judged by the lowest
Akaike information criterion [AIC] statistic, which
is a measure of how well a model fits the available
data) to be the period during which pollution had the
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strongest influence on mortality. Overall, differences
in model fit, HRs, and CIs among the three 5-year
exposure periods were small and demonstrated no
definitive patterns. High correlations between expo-
sure levels in the three periods may have reduced the
ability of this analysis to detect any differences in the
relative importance of the time windows.

DISCUSSION

The basic Cox proportional-hazards model used
for the mortality analyses has two major limitations
that the investigators addressed in innovative ways
developed specifically for this study: confounding
by ecologic factors and spatial autocorrelation. Eco-
logic confounders are risk factors for mortality that
are observed at the neighborhood level, rather than
the individual level. In the current study, in con-
trast to the Reanalysis Project, ecologic information
was collected at the ZCA level as well as the MSA
level, although not all ecologic covariates consid-
ered previously were included in this analysis. Spa-
tial autocorrelation arises from the way values for
certain variables tend to be similar for people (or
areas) that are geographically close. For example,
people who live in the same household or neighbor-
hood — or even in similar neighborhoods in the
same city — tend to have similar health risks (diet,
smoking habits, access to health care), as well as
similar proximity to sources of exposure (e.g., free-
ways and industrial areas). The spatial models in
this analysis differed from those used in the Reanal-
ysis by including random effects at the ZCA, city,
and state levels and by adjusting for correlation
between adjacent ZCAs, cities, and states.

In its evaluation of the study by Krewski and col-
leagues, the Review Committee agreed with the
investigators that key results were robust when
adjusted for ecologic covariates and spatial autocor-
relation in the statistical models. In a recently pub-
lished follow-on study of O3 and respiratory
outcomes in the ACS data, including the same indi-
vidual and ecologic covariates as the current study,
Dr. Michael Jerrett and associates found no indica-
tion of important residual spatial autocorrelation in
the association between O3 and mortality.

Because the Reanalysis Project tested extensively
for confounding by gaseous pollutants of the rela-
tionship between fine particles and mortality, the
Krewski team instead focused the current study on
an extensive exploration of spatial autocorrelation

in a series of one-pollutant models. The Committee
thought that the inclusion of some two-pollutant
analyses would have strengthened the study. The
authors note, however, that the available data for
most gaseous pollutants were not sufficient for such
analyses, since they came from only a few locations
in each city and could not adequately represent the
high degree of spatial variability of pollutant levels
in a given metropolitan area.

The present report combines deaths from cardio-
vascular and respiratory causes—a decision that is
important for continuity with earlier studies but
one that makes the results more difficult to interpret
biomedically. The report singled out the associa-
tions between PM2.5 and IHD, consistent with pre-
vious investigations with this cohort, but the
Committee felt it would be useful in the future to
see the results for other categories of cardiovascular
disease, such as stroke and heart failure, presented
alongside those for IHD.

The fundamental difference in exposure between
the two Intra-Urban Analyses lies in the different
relative influence of regional background concentra-
tions of PM2.5. The intra-urban studies primarily
investigated variability in local exposure within the
regions that was driven by local sources such as
traffic, industry, and residential or commercial emis-
sions. Despite the substantial differences in how the
LUR models were constructed and the likely quality
of the data used, the LUR models for LA and NYC
were both successful in explaining a moderate per-
centage of variability (60 to 65%) in PM2.5 concen-
trations measured at the monitoring sites. The range
of average annual monitored PM2.5 concentrations
considered in developing the models was not very
different between LA (9.5 to 28 µg/m3) and NYC (10
to 20 µg/m3). However, the resulting ranges of expo-
sure assigned by the LUR models in LA ( < 10 to
> 125 µg/m3) and NYC (8 to 20 µg/m3), by compar-
ison, suggest that levels of PM2.5 are regionally deter-
mined in NYC and highly locally variable in LA.

The intra-urban results for the two regions were
very different, with a strong positive and significant
association between PM2.5 exposure and mortality
from CPD in LA and no significant association in
NYC. Both the LA and NYC results showed signifi-
cant associations between PM2.5 and mortality from
IHD, consistent with the results of the Nationwide
Analysis. The authors note that differences in the
estimated HRs for LA and NYC were partially attrib-
utable to the different — and opposite — ways that
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mortality that was not explained by the individual
and ecologic variables in the Cox models was dis-
tributed relative to the varying PM2.5 exposure
levels in the two cities. The higher exposures in LA
tended to occur in areas characterized by low socio-
economic status (and relatively high expected mor-
tality), whereas the higher exposures in NYC were
generally found in areas of high socioeconomic
status (and relatively low expected mortality).

The Committee noted that the inconclusive results
from the NYC Analysis (aside from that for IHD) were
probably due to too little variation in PM2.5 exposure
across the NYC area, owing to the regional nature of
PM2.5 exposure in the Northeastern United States.
Relatively uniform exposures would reduce the
ability of the statistical models to detect patterns of
mortality relative to exposure and to estimate HRs
with precision. As for the LA results, the authors
believe that the higher estimates are due to reduced
error in the assignment of exposures. However, the
Committee saw no persuasive argument that expo-
sure measurement error would be expected to be less
in the LA or NYC studies than in the Nationwide
Analysis. Therefore, the Committee believes that the
most likely explanation for the largely null results for
the NYC Analysis and their divergence from the LA
and Nationwide results was the low variability in
PM2.5 exposure levels across the NYC region.

The epidemiologic design used in the analysis of
Critical Periods of Exposure was more complex than
that of the full Nationwide Analysis because it used
two distinct subcohorts of subjects from the main
ACS cohort, rather than the whole cohort as in the
Nationwide Analysis. For each deceased ACS partic-
ipant in each subcohort, time windows of exposure
were calculated as average exposures during succes-
sive five-year periods preceding the date of death.

The use of AIC to compare models including dif-
ferent five-year windows of past exposure is broadly
reasonable, since the number of variables in each
model being compared was the same. The Committee
was somewhat disappointed that the investigators
did not present results for “multi-window” models,
in which the effects of exposure in one time window
are controlled for the effects of exposure in another
time window. Although it is important to know

whether more recent exposure has a greater effect on
risk than earlier exposure, the Committee considered
that the evidence presented was not substantial enough
to draw conclusions based on the extremely small dif-
ferences in AIC values resulting from exchanging
exposure in one time window with another.

CONCLUSIONS

The Extended Analysis represents a broadly
sound and thorough analysis of an already impor-
tant cohort study, with several innovative features.
The results consolidate earlier findings by showing
that the application of state-of-the-art statistical
approaches to controlling confounders and spatial
autocorrelation does not materially change risk esti-
mates; important residual confounding (by climate
and possibly other unmeasured determinants of
large-scale spatial variation) cannot be excluded,
however, particularly in the Nationwide Analysis.
In analyzing the extended follow-up data from the
ACS cohort for mortality, the report also provides
new risk estimates, including — for the first time —
an estimate for O3 and premature mortality.

The Intra-Urban Analysis for LA suggests that
mortality risks associated with PM2.5 exposure may
be elevated when there is a strong local component
of exposure. When the NYC and LA Analyses are
taken together, however, they underscore the impor-
tant point that cities differ markedly in their local
exposure conditions and emphasize the variable
importance of the contributions of local sources to
the overall risk of mortality associated with PM2.5
exposure. These divergent results argue for caution
in extrapolating from such studies in any one met-
ropolitan area to other areas. 

No single study can be the basis for accepting the
existence of a causal relationship between air pollu-
tion and mortality. With this in mind, the Review
Committee thought that — with the emergence of
new cohort evidence from the United States and
Europe — the similarities and differences among the
results of the various studies need to be examined
closely. Nevertheless, the size and character of the
ACS cohort makes it likely that it will remain pre-
eminent. 
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INVESTIGATORS’ REPORT

Extended Follow-Up and Spatial Analysis of the American Cancer 
Society Study Linking Particulate Air Pollution and Mortality

Daniel Krewski, Michael Jerrett, Richard T. Burnett, Renjun Ma, Edward Hughes, 
Yuanli Shi, Michelle C. Turner, C. Arden Pope III, George Thurston, Eugenia E. Calle, 
and Michael J. Thun

with Bernie Beckerman, Pat DeLuca, Norm Finkelstein, Kaz Ito, D.K. Moore, 
K. Bruce Newbold, Tim Ramsay, Zev Ross, Hwashin Shin, and Barbara Tempalski

McLaughlin Centre for Population Health Risk Assessment, Institute of Population Health, University of Ottawa (D.K., R.T.B., Y.S.,
M.C.T.); Department of Epidemiology and Community Medicine, Faculty of Medicine, University of Ottawa (D.K., R.T.B); Division
of Environmental Health Sciences, School of Public Health, University of California–Berkeley (M.J.); Healthy Environments and
Consumer Safety Branch, Health Canada (R.T.B); Department of Mathematics and Statistics, University of New Brunswick, Fre-
dericton (R.M.); Edward Hughes Consulting (E.H.); Department of Economics, Brigham Young University (C.A.P.); Nelson Institute
of Environmental Medicine, New York University School of Medicine (G.T.); Department of Epidemiology and Surveillance
Research, American Cancer Society (E.E.C., M.J.T.)

ABSTRACT

We conducted an extended follow-up and spatial anal-
ysis of the American Cancer Society (ACS)* Cancer Pre-
vention Study II (CPS-II) cohort in order to further
examine associations between long-term exposure to par-
ticulate air pollution and mortality in large U.S. cities. The
current study sought to clarify outstanding scientific
issues that arose from our earlier HEI-sponsored Reanal-
ysis of the original ACS study data (the Particle Epidemi-
ology Reanalysis Project). Specifically, we examined
(1) how ecologic covariates at the community and neigh-
borhood levels might confound and modify the air pollu-
tion–mortality association; (2) how spatial autocorrelation
and multiple levels of data (e.g., individual and neighbor-
hood) can be taken into account within the random effects
Cox model; (3) how using land-use regression to refine

measurements of air pollution exposure to the within-city
(or intra-urban) scale might affect the size and significance
of health effects in the Los Angeles and New York City
regions; and (4) what exposure time windows may be most
critical to the air pollution–mortality association.

The 18 years of follow-up (extended from 7 years in the
original study [Pope et al. 1995]) included vital status data
for the CPS-II cohort (approximately 1.2 million partici-
pants) with multiple cause-of-death codes through
December 31, 2000 and more recent exposure data from air
pollution monitoring sites for the metropolitan areas.

In the Nationwide Analysis, the influence of ecologic
covariate data (such as education attainment, housing
characteristics, and level of income; data obtained from
the 1980 U.S. Census; see Ecologic Covariates sidebar on
page 14) on the air pollution–mortality association were
examined at the Zip Code area (ZCA) scale, the metropol-
itan statistical area (MSA) scale, and by the difference
between each ZCA value and the MSA value (DIFF). In con-
trast to previous analyses that did not directly include eco-
logic covariates at the ZCA scale, risk estimates increased
when ecologic covariates were included at all scales. The
ecologic covariates exerted their greatest effect on mortality
from ischemic heart disease (IHD), which was also the
health outcome most strongly related with exposure to
PM2.5 (particles 2.5 µm or smaller in aerodynamic diam-
eter), sulfate (SO4

2�), and sulfur dioxide (SO2), and the only
outcome significantly associated with exposure to nitrogen
dioxide (NO2). When ecologic covariates were simulta-
neously included at both the MSA and DIFF levels, the

This Investigators’ Report is one part of Health Effects Institute Research
Report 140, which also includes a Commentary by the Health Review Com-
mittee and an HEI Statement about the research project. Correspondence
concerning the Investigators’ Report may be addressed to Dr. Daniel
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320, University of Ottawa, One Stewart Street, Ottawa, ON K1N 6N5, Can-
ada. E-mail: cphra@uottawa.ca.

Although this document was produced with partial funding by the United
States Environmental Protection Agency under Assistance Award CR–
83234701 to the Health Effects Institute, it has not been subjected to the
Agency’s peer and administrative review and therefore may not necessarily
reflect the views of the Agency, and no official endorsement by it should be
inferred. The contents of this document also have not been reviewed by pri-
vate party institutions, including those that support the Health Effects Insti-
tute; therefore, it may not reflect the views or policies of these parties, and
no endorsement by them should be inferred.

* A list of abbreviations and other terms appears at the end of the Investiga-
tors’ Report.
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hazard ratio (HR) for mortality from IHD associated with
PM2.5 exposure (average concentration for 1999–2000)
increased by 7.5% and that associated with SO4

2� exposure
(average concentration for 1990) increased by 12.8%. The
two covariates found to exert the greatest confounding
influence on the PM2.5–mortality association were the per-
centage of the population with a grade 12 education and the
median household income.

Also in the Nationwide Analysis, complex spatial pat-
terns in the CPS-II data were explored with an extended
random effects Cox model (see Glossary of Statistical
Terms at end of report) that is capable of clustering up to
two geographic levels of data. Using this model tended to
increase the HR estimate for exposure to air pollution and
also to inflate the uncertainty in the estimates. Including
ecologic covariates decreased the variance of the results at
both the MSA and ZCA scales; the largest decrease was in
residual variation based on models in which the MSA and
DIFF levels of data were included together, which suggests
that partitioning the ecologic covariates into between-
MSA and within-MSA values more completely captures
the sources of variation in the relationship between air
pollution, ecologic covariates, and mortality.

Intra-Urban Analyses were conducted for the New York
City and Los Angeles regions. The results of the Los Angeles
spatial analysis, where we found high exposure contrasts
within the Los Angeles region, showed that air pollution–
mortality risks were nearly 3 times greater than those
reported from earlier analyses. This suggests that chronic
health effects associated with intra-urban gradients in
exposure to PM2.5 may be even larger between ZCAs
within an MSA than the associations between MSAs that
have been previously reported. However, in the New York
City spatial analysis, where we found very little exposure
contrast between ZCAs within the New York region, mor-
tality from all causes, cardiopulmonary disease (CPD), and
lung cancer was not elevated. A positive association was
seen for PM2.5 exposure and IHD, which provides evi-
dence of a specific association with a cause of death that
has high biologic plausibility. These results were robust
when analyses controlled (1) the 44 individual-level cova-
riates (from the ACS enrollment questionnaire in 1982; see
44 Individual-Level Covariates sidebar on page 22) and (2)
spatial clustering using the random effects Cox model.
Effects were mildly lower when unemployment at the ZCA
scale was included.

To examine whether there is a critical exposure time
window that is primarily responsible for the increased
mortality associated with ambient air pollution, we con-
structed individual time-dependent exposure profiles for

particulate and gaseous air pollutants (PM2.5 and SO2) for a
subset of the ACS CPS-II participants for whom residence
histories were available. The relevance of the three expo-
sure time windows we considered was gauged using the
magnitude of the relative risk (HR) of mortality as well as
the Akaike information criterion (AIC), which measures
the goodness of fit of the model to the data. For PM2.5, no
one exposure time window stood out as demonstrating the
greatest HR; nor was there any clear pattern of a trend in
HR going from recent to more distant windows or vice
versa. Differences in AIC values among the three exposure
time windows were also small. The HRs for mortality asso-
ciated with exposure to SO2 were highest in the most
recent time window (1 to 5 years), although none of these
HRs were significantly elevated. Identifying critical expo-
sure time windows remains a challenge that warrants fur-
ther work with other relevant data sets.

This study provides additional support toward devel-
oping cost-effective air quality management policies and
strategies. The epidemiologic results reported here are
consistent with those from other population-based studies,
which collectively have strongly supported the hypothesis
that long-term exposure to PM2.5 increases mortality in the
general population. Future research using the extended
Cox–Poisson random effects methods, advanced geostatis-
tical modeling techniques, and newer exposure assess-
ment techniques will provide additional insight.

INTRODUCTION

THE HARVARD SIX CITIES STUDY AND THE 
AMERICAN CANCER SOCIETY STUDY OF 
PARTICULATE AIR POLLUTION AND MORTALITY

Epidemiologic studies conducted over several decades
have provided evidence to suggest that long-term exposure
to elevated ambient levels of particulate air pollution is
associated with increased mortality. Two U.S. cohort
studies, the Harvard Six Cities Study (Dockery et al. 1993),
a 20-year prospective cohort study, and the ACS Study
(Pope et al. 1995), a larger retrospective cohort study,
reported that mortality from all causes increased in associ-
ation with an increase in the concentration of PM2.5.

Both studies came under intense scrutiny in 1997 when
the results were used by the U.S. Environmental Pro-
tection Agency (U.S. EPA) to support new National Ambient
Air Quality Standards for PM2.5 and to maintain the
standards for PM10 that were already in effect. The findings
of these two studies were the subject of debate regarding
the following factors: possible residual confounding by
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individual risk factors (e.g., sedentary lifestyle, active or
passive cigarette smoke exposure) or ecologic risk factors
(e.g., education, unemployment, poverty); inadequate
characterization of the long-term exposure of study
subjects; different kinds of bias in allocating exposure to
separate cities; and robustness of the results to changes in
the specification of statistical models (Gamble 1998;
Lipfert and Wyzga 1995). To address growing public con-
troversy concerning the studies’ methods and their results,
Harvard University and the ACS requested that the Health
Effects Institute organize an independent Reanalysis of
these studies.

Through a competitive process, a Reanalysis Team led
by Dr. Daniel Krewski of the McLaughlin Centre for Popu-
lation Health Risk Assessment at the University of Ottawa
was selected by an independent Expert Panel appointed by
the HEI Board of Directors, with support from the U.S.
EPA, industry, Congress, and other stakeholders. The
Reanalysis Project was overseen by the Expert Panel,
which was chaired by Dr. Arthur Upton from the Univer-
sity of Medicine and Dentistry of New Jersey and former
Director of the National Cancer Institute, with assistance
by a broad-based Advisory Board of stakeholders and sci-
entists. The findings of the Reanalysis (Phase I and Phase
II) were published in an HEI Special Report in 2000
(Krewski et al. 2000a,b). The final results were extensively
peer reviewed by an independent Special Panel of the HEI
Review Committee, which was chaired by Dr. Millicent
Higgins of the University of Michigan.

THE PARTICLE EPIDEMIOLOGY REANALYSIS 
PROJECT: OBJECTIVES AND FINDINGS

The overall objective of the Reanalysis Project was to con-
duct a rigorous and independent assessment of the findings
of the Harvard Six Cities and ACS Studies of air pollution
and mortality. Phase I: Replication and Validation involved
a quality assurance (QA) audit of a sample of the original
data and validation of the original numeric results. Phase II:
Sensitivity Analyses tested the robustness of the original
analyses to alternate risk models and analytic methods.

In Phase I, the Reanalysis assured the quality of the orig-
inal data, replicated the original results, and tested those
results against alternative risk models of the Cox propor-
tional-hazards family and other analytic approaches
without substantively altering the original findings of an
association between indicators of PM air pollution and
mortality (Krewski et al. 2000a, 2003a).

Phase II of the Reanalysis made innovative contribu-
tions to understanding the air pollution–mortality associa-
tion by developing new methods of spatial analysis for

cohort studies that involve both individual-level and eco-
logic covariates. Most of the Phase II analysis used the
standard Cox model, which assumes that the probability of
death is independent among subjects. We challenged this
assumption in a number of ways by introducing largely ad
hoc statistical approaches that were developed for this
specific dataset. (In the current Extended Analysis, we
have formalized these statistical models that include
extensions of the standard Cox model to include random
effects at multiple levels of clustering, such as MSA and
ZCA. In addition, we have developed models and estima-
tion methods to allow the random effects to have spatial
structure such that clusters of data that are geographically
close are assumed to be more correlated than those more
spatially distant.)

Key findings from the Reanalysis indicated that (1) edu-
cational status significantly modifies the risk of mortality
associated with exposure to PM2.5 in that the risk declines
as education attainment rises; (2) SO2 may exert a more
robust effect on mortality than SO4

2�; (3) other possible
ecologic confounders have no significant effect in models
that control for spatial autocorrelation; and (4) spatial risk
models attenuate the air pollution effect, both in terms of
size and certainty.

The implications of the findings for air quality risk man-
agement were significant and pointed to the vital need for
further study of the role that ecologic covariates have in
the association between air pollution and mortality.
Although the methods developed in the Reanalysis were
useful for exploring the spatial structure of the data and
the impact of spatial autocorrelation on estimates of risk
associated with exposure to PM2.5, further work was
required to determine how robust the results would be to
more sophisticated spatial models.

GEOGRAPHIC SCALE OF ANALYSIS

As an initial step toward understanding the effects of
ecologic covariates in confounding or modifying the rela-
tionship between particulate air pollution and mortality,
the Reanalysis Team first used data at the MSA (city) scale
in order to match the work by the original investigators
(Pope et al. 1995). The Reanalysis demonstrated that sev-
eral ecologic covariates significantly influenced health
outcomes when incorporated into the standard Cox model
(Krewski et al. 2000a,b). One of the more surprising results
was the lack of confounding effect that ecologic covariates
exerted on the air pollution–mortality relationship in
models that controlled for spatial autocorrelation. For
example, when SO4

2� and SO2 were included as ecologic
variables in spatial regression models with PM2.5 as the
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main exposure variable, they were the only ecologic cova-
riates that showed a significant impact at the MSA scale.

The Reanalysis Team next relied on multi-level data
(individual-level and MSA-level covariates) in a two-stage
analysis with a random effects Cox model. The extensive
battery of individual-level variables included in the first
stage may have removed most of the possible confounding
effects before the ecologic covariates were tested in the
second stage. This seems unlikely, however, because of
other compelling studies that point to the importance of
contextual or community-level variables in assessing mor-
tality (Duncan et al. 1996; Curtis and Taket 1996; Macin-
tyre and Ellaway 2000).

Other methodologic limitations in the Reanalysis
Project probably also contributed to the unexpected lack of
statistical effect when the ecologic covariates were incor-
porated in the models. At the MSA scale of aggregation, for
example, many ecologic covariates may be too dissimilar
across the city for a mean value to represent the socioeco-
nomic or environmental phenomenon of interest (e.g.,
income level) without large measurement error. A growing
number of studies implicate neighborhood-scale ecologic
covariates as confounders of health outcomes (Macintyre
et al. 1993; Macintyre and Ellaway 1998, 2000; Eyles
1999). In many analyses, data gathered on county and
census-tract scales vary within a large MSA more widely
than they do between MSAs (Jerrett et al. 1997, 2001).

Another aggregation issue, referred to as the modifiable
areal unit problem (MAUP), emphasizes the need for
choosing the correct scale because the size and boundaries
of the zones influence the reported values. For example, if
the boundary of an ecologic unit—such as a census block
or a ZCA—includes a neighborhood with a high poverty
level, changing the boundary to exclude that neighbor-
hood would substantially lower the mean poverty level for
the ecologic unit. (This is referred to as the zoning effect.)
An observed spatial pattern might reflect the zone bound-
aries chosen for analysis rather than a true underlying spa-
tial pattern. Spatially aggregated data are more uncertain
than the individual data on which the aggregations are
based; and an observed pattern may result from artifacts of
aggregation (Fotheringham et al. 2000). Even variables
measured at the same scale may display different spatial
patterns because of the zones chosen for analysis.

Aggregation of data can also produce changes in the
statistical values computed on the variables because
information is lost when individual data are aggregated
into ecologic zones and fewer data are in the model
(Amrhein and Reynolds 1997). (This is referred to as the
scale effect.) The scale effect also suggests that some
changes in statistical results occur because the aggregated

data refer to different levels in the geographic hierarchy
(e.g, states, metropolitan areas, cities, ZCAs) and each
level contains different information about the geographic
variable of interest (Steel and Holt 1996). Each scale can
have a different spatial pattern for mortality as well as for
the ecologic covariates that influence mortality.

To minimize these aggregation problems, some
researchers suggest that the smallest available unit of anal-
ysis should be used unless earlier evidence indicates that
larger units will reveal more about the effect in question
(Bailey and Gatrell 1995). In related studies of environ-
mental justice that have investigated whether disadvan-
taged and minority groups suffer greater pollution
exposure than wealthier and majority groups, empirical
evidence and compelling conceptual arguments suggest
that geographic scale affects the outcome of the analysis
(Greenberg 1993; Cutter et al. 1996; Jerrett et al. 1997;
McMaster et al. 1997). Likewise, some of the observed rela-
tionships between air pollution and health may be
reduced or modified by the context of ecologic covariates
measured at scales finer than metropolitan areas or mea-
sured at many scales. Further analyses of ecologic covari-
ates in the ACS study at multiple scales would answer
lingering questions about whether these variables exert a
significant influence and would provide important guid-
ance for location-specific air quality management policies.

REFINEMENT OF EXPOSURE ESTIMATES

Previous studies using the ACS database have relied on
comparing between communities the central monitor esti-
mates that assign the same level of exposure to an entire
MSA. Recent studies have recognized that exposure to air
pollution may vary spatially within a city (Briggs et al.
2000a; Jerrett et al. 2001; Brunekreef and Holgate 2002;
Zhu et al. 2002; Brauer et al. 2003), and these variations
may follow social gradients that influence susceptibility to
environmental exposures (Jerrett et al. 2003). For example,
residents of poorer neighborhoods may live closer to point
sources of industrial pollutants or roadways with higher
traffic density (O’Neil et al. 2003). Health effects may be
higher around such sources, and these effects are dimin-
ished when using average pollutant concentrations for the
entire community.

Recent studies of PM2.5 have shown that intra-urban
exposure gradients can be associated with atherosclerosis
(Künzli et al. 2005) and a high risk of reduced life expect-
ancy (Jerrett et al. 2005a). Those studies have used geostatis-
tical interpolation models that capture regional patterns of
pollution well, but often fail to account for the near-source
impact from local traffic and industry. Given the large
health effects reported in these and in European studies
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(Hoek et al. 2002; Nafstad et al. 2003), estimates of intra-
urban exposure need to be refined to reduce uncertainties
associated with the modeling processes.

Several recent studies have demonstrated that land-use
regression (LUR) has the potential to supply accurate,
small-area estimates of air pollutant concentrations
without the data entry and monetary expense of dispersion
or exposure modeling (Brauer et al. 2003; Briggs et al.
2000b). The goal of LUR is to explain, to the extent pos-
sible, the variation in existing air quality data for a given
pollutant using data on nearby traffic, land use, and popu-
lation variables. In most cases, multiple linear regression
is used to develop a model with data from existing moni-
tors that can be applied to unmonitored locations if the
appropriate geographic data are available.

Ross and colleagues (2006) developed LUR models
using traffic data, distance to the coast, and road length
measurements to predict NO2 levels in San Diego, Cali-
fornia. When the predicted concentrations were compared
with measured concentrations at validation locations—
data from sites that were not included in creating the
model—the values matched to within, on average, 2.1 ppb.
The model explained nearly 80% of the variation in NO2
levels in San Diego. LUR models used to predict NO2
levels using traffic and other variables in Montréal and in
several European cities also produced accurate predictions
(Jerrett et al. 2005b).

In contrast to localized gases such as NO2, PM mass has
a significant regional component that includes smaller
contributions from local sources (Bari et al. 2003). This
complicates the estimation of intra-urban exposure with
LUR. LUR models have been used with some success to
predict PM2.5 concentrations in Europe as part of the
Traffic Related Air Pollution and Childhood Asthma Study
(TRAPCA) (Brauer et al. 2003). However, North American
cities have vastly different transportation and land-use
patterns and the applicability of LUR to predict PM2.5 con-
centrations is unknown (Gilbert et al. 2005).

LIMITATIONS OF THE RANDOM EFFECTS 
COX MODEL

Although the Reanalysis made progress toward under-
standing the influence of spatial autocorrelation on the
health effects of SO4

2� exposure, the methods used were
criticized on a number of grounds (HEI Health Review
Committee 2000). In particular, all methods assumed that
the relationship between exposure and health outcome
was fixed over space. For example, our spatial filtering
method used a 600-km buffer to remove significant spatial
autocorrelation before we used weighted-least-squares
methods to estimate effects. Even after applying this filter,

though, the relationship between air pollution and mor-
tality may still differ depending on the location within the
United States (known as nonstationarity behavior over
space). A more flexible modeling strategy was needed to
address such nonstationarity.

Furthermore, reliance on one autocorrelation parameter
may have effectively removed variables that operate at the
broad regional scale, such as SO4

2� concentrations, but it
may not have controlled autocorrelation from pollutants
that have a more spatially concentrated or local distribu-
tion, such as SO2 (HEI Health Review Committee 2000;
Krewski et al. 2000a,b). The inability of the spatial regres-
sion methods to deal simultaneously with variables that
exhibit different spatial patterns may have contributed to
the second key finding of the Reanalysis: The effect of SO2
exposure changed less than the effect of SO4

2� exposure
when spatial autocorrelation and the ecologic covariates
were accounted for in the model (HEI Health Review Com-
mittee 2000). Models capable of adapting to the available
data and accounting for spatial autocorrelation may alter
these results and show that the effects of SO2 and of SO4

2�

exposure are equally robust to adjustment; or such models
may further confirm the results from the Reanalysis.

In either case, the implications for policy formulation
and regulatory intervention are considerable. In the Phase
II Reanalysis we developed an approach for Cox models
with two levels of nested random effects (referred to as the
random effects Cox model; Ma et al. 2003). This method
allowed us to characterize the clustering of spatial effects
at two geographic levels. In the Extended Analysis
described in this report, our random effects Cox model
needed to be expanded to fully describe complex spatial
patterns in the ACS data in order to accommodate more
than two levels of geographic nesting (e.g., neighborhood
within county, county within MSA, MSA within state).

POST-REANALYSIS STUDIES OF THE ACS COHORT

After the Reanalysis, Pope and associates (2002) under-
took a subsequent analysis using an additional 10 years of
data, which doubled the follow-up time to more than 16
years and tripled the number of deaths (referred to as the
Updated Analysis). Exposure data were expanded to
include gaseous copollutants and new PM2.5 data that had
been collected since 1999 as a result of the NAAQS for
PM2.5 enacted in 1997. Recent advances in statistical mod-
eling were incorporated in the analyses, especially the use
of random effects (relaxation of the assumption of inde-
pendent observations) and control for spatial autocorrela-
tion.

Results from that Updated Analysis provided the stron-
gest evidence to date that long-term exposure to PM2.5 air
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pollution common to many metropolitan areas is an
important risk factor for death from lung cancer and CPD.
For each 10-µg/m3 increase in long-term average PM2.5
ambient concentrations, the associated risk of death from
all causes, CPD, and lung cancer increased by approxi-
mately 4%, 6%, or 8%, respectively. No evidence of statis-
tically significant spatial autocorrelation was found in the
survival data after PM2.5 air pollution and the various indi-
vidual risk factors were controlled. Graphical examination
of the correlations of the residual mortality with distance
between metropolitan areas also revealed no significant
spatial autocorrelation after controlling residual spatial
patterns in mortality using a smoothed function of latitude
and longitude.

Pope and colleagues (2004) examined pathways by
which inhaled particles may increase CPD deaths in the
ACS cohort, although it is difficult to make empirical
observations from epidemiologic data about possible
mechanistic pathways of disease. The results of that anal-
ysis are largely consistent with others: Pathways that link
long-term PM exposure with risk of death from CPD
include pulmonary and systemic inflammation, acceler-
ated atherosclerosis, and altered cardiac autonomic func-
tion. Künzli and associates (2005) have published the first
epidemiologic evidence to support the suggestion that the
systemic effects of PM exposure result in a chronic vas-
cular response.

EXPOSURE TIME WINDOWS

Although the Harvard Six Cities Study and the ACS
Study have demonstrated an association between long-
term exposure to PM air pollution and mortality (Dockery
et al. 1993, Pope et al. 1995, 2002), none of those studies
provided an indication of whether there may be a critical
time period of exposure responsible for the observed asso-
ciation (Goddard et al. 1995). Investigations by Zeger and
associates (1999) and by Schwartz (2000) have shown that
mortality cannot be attributed entirely to the effects of
short-term peak exposures, which may affect sensitive
individuals with preexisting conditions (Brunekreef 1997;
Goldberg et al. 2000, 2001a, b). During the Reanalysis, we
developed individual temporal exposure profiles for some
subjects in the Harvard Six Cities Study by coding their
residence histories; however, limited data about popula-
tion mobility and limited variation in individual time-
dependent exposure profiles precluded identifying critical
exposure time windows (Villeneuve et al. 2002).

Identifying these time windows has important implica-
tions for establishing time lines for policy interventions
that will maximize public health benefits. Doing so
requires information on temporal patterns of exposure at

the individual level. Given the regulatory importance of the
results, further work to develop individual time-dependent
exposure profiles for ACS cohort participants is needed.

SPECIFIC AIMS OF THE CURRENT
EXTENDED ANALYSIS

A Phase III study was launched by the Reanalysis Team
in 2002 to conduct an Extended Analysis of the association
between particulate air pollution and mortality in large
U.S. cities using alternative spatial models and extended
follow-up data from the ACS CPS-II database. For the orig-
inal study (Pope et al. 1995) and the Reanalysis (Krewski et
al. 2000a,b), vital status data were only available for
approximately 7 years of follow-up (through December 31,
1989). The Extended Analysis included vital status data
with multiple cause-of-death codes for approximately 18
years (through December 31, 2000). In addition, more
recent exposure data were compiled based on mean con-
centrations of air pollutants from various monitoring sites
for the metropolitan areas (Krewski et al. 2000a,b).

The Phase III Extended Analysis program addressed the
following four key questions (the fourth aim was added in
year 2 with supplementary funding):

1. Do social, economic, and demographic ecologic cova-
riates confound or modify the relationship between
particulate air pollution and mortality?

The analysis of ecologic covariates at multiple scales
would provide greater understanding of the potential con-
founding and modifying effects of these variables.
Although the Reanalysis suggested that these variables are
unlikely to exert a significant confounding influence when
the analysis is also controlled for spatial autocorrelation,
we planned to directly address several unresolved issues:
(a) the scale and spatial boundaries for ecologic covariate
data; (b) nested spatial effects (neighborhood effects
within MSA effects) and (c) operational variables that rep-
resent the separate and combined effects of many ecologic
confounders at once. (This aim was pursued in the Nation-
wide Analysis.)

2. How can spatial autocorrelation and multiple levels
of data be taken into account within the random
effects Cox model?

The standard Cox regression model commonly used to
analyze cohort mortality data is based on the assumption
that individual data are independent. However, in Phase II
of the Reanalysis, spatial autocorrelation (data for neigh-
boring ACS cohort participants are not independent due to
complex spatial patterns) showed that this assumption
was not true. Ignoring such spatial autocorrelation —
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applying statistical models that assume all data are inde-
pendently measured and are not correlated — has impor-
tant implications about bias and the precision of model-
based estimates of risk. In Phase II, a random effects Cox
model was developed to take into account spatial patterns
in the data that could be described at either one (e.g., city)
or two (e.g., city and county) levels of clustering. Com-
puter software capable of efficiently fitting the random
effects Cox model was also developed. In Phase III, the
random effects model would be extended to include spa-
tial autocorrelation of the random effects at two levels of
clustering. This extended random effects Cox model
would permit us to explore much more complex spatial
patterns in the ACS data and may lead to improved esti-
mates of risk. (This aim was pursued in the Nationwide
Analysis.)

3. What critical exposure time windows affect the asso-
ciation between air pollution and mortality?

The overall objective was to develop individual time-
dependent exposure profiles for a subset of the ACS cohort
in order to determine which exposure time windows may
be most critical to the association between air pollution
and mortality from all causes, CPD, and lung cancer.
Whereas almost no information on population mobility
was available for Phase II of the Reanalysis, the additional
follow-up data available for this Extended Analysis
included information on residence changes within the
CPS-II Nutrition Cohort (n = 184,194), which was estab-
lished in 1992 as a subgroup of the larger CPS-II cohort. As
in the Harvard Six Cities Study (Dockery et al. 1993), resi-
dence histories would be used to develop time-dependent
exposure profiles by matching residences to particulate air
pollution monitors at the MSA level. The construction of
the time-dependent exposure profiles would make use of
national exposure data (Lall et al. 2004). (This aim was
pursued in the Critical Exposure Time Windows Analysis.)

4. How would refining the exposure gradient to the
intra-urban level affect the size and significance of
health effects?

A growing body of evidence suggests that refining the
scale of exposure estimates and assigning them to cohort
members, especially at the intra-urban scale (within cities),
will elevate estimates of pollutant-related health effects.
For example, Hoek and associates (2002) demonstrated
that CPD mortality risk was nearly twice as high for sub-
jects living near major roads than for those living farther
away; and Nafstad and colleagues (2004) reported an esti-
mated increase in male mortality risk of over 18% across
the gradient of plausible modeled exposures to NO2. These
and similar findings summarized elsewhere (Jerrett et al.
2005b) have demonstrated a need to investigate exposures

at the intra-urban scale within the ACS cohort. (This aim
was pursued in Intra-Urban Analyses for the New York
City and Los Angeles regions.)

NATIONWIDE ANALYSIS

In the Reanalysis (Krewski et al. 2000a,b), we deter-
mined values of the ecologic covariates only at the MSA
level and did not consider the spatial distribution of ACS
cohort members within each MSA. In the current analyses,
we determined ecologic covariate values at the ZCA level,
which is much smaller geographically than the MSA and
thus may be more representative of the economic and
social environment of the cohort members. 

The cohort follow-up is from 1982 to 2000, thus adding
11 additional years of follow-up to our previous analyses
of these data for which we examined follow-up from 1982
to 1989 (Krewski et al. 2000a,b).

Finally, we extended our random effects Cox model,
which we had introduced in the Reanalysis (Krewski et al.
2000a,b), to include spatial autocorrelation on the random
effects themselves. This more realistic stochastic model
specification allowed us to examine the spatial correlation
structure of mortality within the cohort and to assess the
sensitivity of the association between air pollution and
mortality to the spatial structure of the data.

MATERIALS AND METHODS

Study Population

The original ACS study (Pope et al. 1995), the HEI-spon-
sored Reanalysis (Krewski et al. 2000a,b), and the
Extended Analysis reported here all have relied on data
from the ACS CPS-II database, an ongoing prospective
mortality study of approximately 1.2 million adults. 

Cohort participants were enrolled by ACS volunteers
beginning in the fall of 1982; most were friends, neighbors,
or acquaintances of the volunteers. Enrollment was
restricted to persons who were at least 30 years of age and
who were members of households with at least one indi-
vidual 45 years of age or older. Participants completed a
confidential questionnaire that included questions about
several demographic characteristics, including lifestyle
factors such as smoking history and alcohol use, occupa-
tional exposures, and level of education.

Participants resided in all 50 states, the District of
Columbia, and Puerto Rico. For all analyses, however, the
cohort has been restricted to include only those who
resided in U.S. metropolitan areas within the 48 contig-
uous states (including the District of Columbia) for which
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air pollution data were available. The number of metropol-
itan areas to be analyzed differs depending on the pol-
lutant of interest, available data, time period, and the
quality control criteria used to compile the data.

Mortality of the participants was ascertained by volun-
teers in 1984, 1986, 1988, and biannually thereafter using
the National Death Index (Calle and Terrell 1993). At each
time point, death certificates or multiple cause-of-death
codes were obtained for participants known to have died.
This Extended Analysis, with an additional 11 years of
follow-up, contributes substantially more data on deaths
and thereby enhance the statistical power of the analyses.

Air Pollution Exposure Data

For Phase II of the Reanalysis and this Extended Anal-
ysis in Phase III, several air pollution variables were exam-
ined; data were obtained from these sources (Krewski et al.
2000a,b).

• PM2.5 (1979–1983) average concentrations from the 
Inhalable Particle Monitoring Network (IPMN) 
between 1979 and 1983;

• PM2.5 (1999–2000) average concentrations from the 
Aerometric Information Retrieval System (AIRS) net-
work from 1999 to 2000;

• PM15 (1979–1983) average concentrations from the 
IPMN between 1979 and 1983;

• TSP (1980) (total suspended particulate) mass from 
the National Aerometric Database (NAD) for 1980;

• SO4
2� (1980–1981) concentrations from the IPMN and 

NAD (adjusted for a sampling artifact) for 1980 and 
1981;

• SO4
2� (1990) concentrations computed by part of our 

team at NYU for 1990;

• SO2 (1980) concentrations from AIRS for 1980;

• NO2 (1980) concentrations from AIRS for 1980;

• CO (1980) concentrations from AIRS for 1980;

• O3 (1980) concentrations from AIRS for 1980; and

• O3 (1980 summer) concentrations from AIRS for 
April–September, 1980.

Having estimates of PM2.5 concentrations for both 1979–
1983 and 1999–2000 allowed us to compare exposure at
the start and end of the follow-up years. Both annual and
summertime O3 (ozone) levels were estimated because O3
is generally higher in warm months when people spend
more time outdoors or with windows open and thus have
higher exposure. Furthermore, in many cities O3 is moni-
tored only from April to September.

For any pollutant, the average concentration calculated
from all available monitoring data within each MSA was

used as a summary measure of exposure and assigned to
each subject within the MSA. Thus all subjects residing in
an MSA were assigned the same exposure value.

Ecologic Covariates

Data Collection and Assembly A major component of
this research dealt with improving analytic control of con-
founding variables over time and across space, particularly
at the intra-urban scale. We obtained information about
ecologic covariates at the neighborhood scale for approxi-
mately 12,000 ZCAs listed in the 1980 U.S. Census data-
base to amass one of the largest sets of ecologic covariates
data ever assembled for an air pollution or population
health study. These ZCAs covered our MSAs of interest —
the 156 cities used for the Reanalysis Project (Krewski et
al. 2000a,b) and in the Updated Analysis by Pope and asso-
ciates (2002).

Compilation of these data for ecologic covariates
required that we completely recheck the coverages used
for the Updated Analysis by Pope and colleagues in 2002
using the ArcView 9 (2004) Geographic Information
System (GIS) software because some census definitions
have changed during intervening years.

Identifying ZCAs To collect intra-urban ecologic cova-
riate data, we purchased the complete 1980 census data-
base from the U.S. Census Bureau (USCB), which includes
Zip Code tabulation. This census contains data that have
not been colleced in subsequent census years. Of partic-
ular interest were variables such as the proportion of
housing units with air conditioning. These two variables
may influence indoor exposures (especially particle pene-
tration) and may confound the air pollution–mortality
association if left uncontrolled. Moreover, because the
lowest level of geographic identity available for ACS
respondents was the Zip Code of residence, we had to rely
on aggregating data at the ZCA level for neighborhood
analyses. None of the commercial vendors who process
historic census data could provide data by Zip Code.

To facilitate finding and extracting data from the USCB
database, we developed a relational database management
system format and a program that would convert the flat-
text USCB file into a relational database. The program was
developed using Microsoft Visual Basic to load the USCB
file, store it in a logical format analogous to the schema of
the database, and output the data of each logical table to
the appropriate table in a Microsoft Access database. From
this convertedUSCB.file, we extracted data for most of the
ecologic covariates for approximately 12,000 ZCAs that
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cover the 156 MSAs for which we had both pollution and
ACS data.

Extracting the ecologic data presented considerable
challenges. The most significant obstacle was the incon-
gruity of spatial designations between the United States
Postal Service (USPS) and Census Bureau. Zip Codes are
defined by the USPS for delivering mail, not for collecting
and analyzing the socioeconomic data the census requires.
Zip Codes lack definitive boundaries and change fre-
quently at the discretion of postal officials. They do not
conform to boundaries of standard geographies such as
counties, cities, or census units. Likewise, the Census
Bureau does not have maps or digital files that show the
boundaries of Zip Codes and they have no file that relates
MSAs to Zip Codes for any time period.

We needed to find maps to integrate both sets of bound-
aries so we could compare the positions of each Zip Code’s
exact geographic center; we preferred to use maps from
1980, close to the inception of the ACS study (in 1982)
when participants’ residences were registered with Zip
Codes. We contacted, without success, at least six organi-
zations to obtain digital maps of the 1980 Zip Code bound-
aries: the U.S. Postmaster General, the USCB, Quick Data,
Environmental Systems Research Institute (ESRI), the U.S.
Geological Survey (USGS) time-series database for
watersheds, and the University of Michigan census Web
site. We also contacted colleagues at George Washington
University who have direct access to the USCB.

Various companies have created maps by interpolating
boundaries between Zip Codes. However, the companies
we contacted could not provide what we needed: GDT
(Lebanon, NH) did not have data available for 1980 (per-
sonal communication with Norm Finkelstein, March,
2003); and GeoLytics Inc. (East Brunswick, NJ) produced a
1980 Census CD but without the data we needed (personal
communication with Pat Deluca, June, 2003). Neither the
USPS Web site nor the ESRI Web site had maps; and the
map librarians at McMaster University and the University
of Waterloo (both in Ontario, Canada) had nothing we
could use. (McMaster University does have a 1980 U.S.
Gazetteer book, but the resolution is not very good.)

Despite so many obstacles, out of about 12,000 Zip
Codes in which CPS-II participants lived, we were ulti-
mately successful in matching about 10,000 with spatial
boundaries consistent with USCB data.

We used a similar process for the Los Angeles area; the
ACS data showed that participants resided in 373 ZCAs.
When we compared the ACS ZCAs with the USCB Zip
Code data, we found that only 275 of them appeared in our
USCB file for California (convertedUSCBforCA.file). To
identify the discrepancies between the ACS and USCB

lists, and to consider any impact on the validity of the
data, we created a computer query to match the 373 ZCAs
in the ACS table with the Zip Codes in census records con-
tained in convertedUSCBforCA.file. This query produced a
data set that lists the 373 ACS ZCAs along with the corre-
sponding Zip Codes from convertedUSCBforCA.file.

This analysis showed that 98 of the 373 ACS ZCAs do
not appear in the convertedUSCBforCA.file. To assess how
excluding participants in these 98 Zip Codes would affect
the validity of further analyses based on converted USCB
.file, we used the USPS “Zip Code Lookup” tool online. By
checking the status of each of the missing 98 Zip Codes, we
found the following:

• 50 could not be found in the USPS database.

• 36 were described as Post Office [PO] Boxes.

• 3 were described as UNIQUE (serving a discrete build-
ing or installation).

• 9 were described as STANDARD (serving a collection 
of buildings or homes found in the network of streets 
the Zip Code represents).

We excluded most of these missing ZCAs because we
surmised they probably did not contain residential
addresses. If the missing ZCAs are randomly distributed,
excluding any or all of the cohort members who live in the
98 missing Zip Codes should not adversely affect our
results because we are already using a non-random sample
that has been arbitrarily cut down to half its original size
due to the availability of pollution data. Using the ACS
participants residing in 80% or more of the original ACS
Zip Codes, we still had ample data to detect effects and, as
shown in our subsequent analyses, we did not lose many
ACS subjects.

A further complication in reconciling ZCAs with census
data was the imperfect correspondence between where
people live and where they get their mail. Some people
live in rural areas where there is no mail delivery and they
collect mail at a post office in a nearby town. The bound-
aries of such PO Box Zip Codes (about 5,000 of them) are
not formally defined. Some urban residents pick up mail at
a PO Box, perhaps near their work place, and reside in one
Zip Code but receive mail in another.

Extracting Ecologic Covariate Data by ZCA Next  we
focused on compiling data for the ecologic covariates for
analysis. For this study we limited the ecologic covariates
to those that had been found to be important as predictors
in the Reanalysis (Krewski et al. 2000a,b; also see Ecologic
Covariates sidebar):
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ECOLOGIC COVARIATES

Ecologic covariates are variables or factors known or sus-
pected to influence mortality that represent the social, eco-
nomic, and environmental settings (contextual conditions) at 
community and neighborhood levels where individuals live, 
work, or spend time.

These data are typically collected for the United States Census 
and were extracted from the U.S. Census Bureau 1980 data-
base for the Zip Code areas in which participants lived.

Air Conditioning
Percentage of homes with air conditioning 

Availability of air conditioning is a good proxy for type of home 
construction; buildings with air conditioning typically have a rel-
atively low level of infiltration of outdoor air into the structure.

Grade 12 Education
Percentage of adults with less than a grade 12 education 

Nationwide Analysis — three stages: less than high school, fin-
ished high school, high school plus more

New York and Los Angeles Analyses — two stages: grade 12 
completed or not

Ethnic/Racial Identification
Self-reported identification of ethnic/racial group  

Nationwide Analysis — percentage not white

New York Analysis — percentage white

Los Angeles Analysis — percentages for white, black, 
and Hispanic

Unemployment
Percentage of persons over the age of 16 years who are 
unemployed

Household Income  
Median household income

Reported as $000s (U.S. dollars)

Income Disparity
A measure of the inequality of income or wealth distribution 
within neighborhoods and cities 

Reported as the Gini coefficient

Poverty
Percentage of people with income < 125% of the poverty level
(The Los Angeles Analysis included total population instead of 
poverty.)

• median household income;

• poverty: percentage of people with < 125% of poverty-
level income;

• unemployment: percentage of persons over the age of 
16 years who are unemployed;

• education: percentage of adults with less than a grade 
12 education;

• percentage of homes with air conditioning;

• income disparity as evaluated by the Gini coefficient; 
and

• percentage of the population who are not white 
(according to self-reported information).

Because we were concerned that comparing ZCA char-
acteristics between cities does not fully control for eco-
logic confounding, we also created two other variables to
include in the Cox models. The first was to aggregate,
within an MSA, all the ZCAs in which ACS subjects lived
to obtain an average estimate of the ecologic covariates of
interest as the MSA value. The second was to differentiate

the MSA value from the respective ZCA-specific values.
The difference value (DIFF) for a ZCA is the specific value
in each ZCA minus the MSA value. This DIFF value
ensured that comparisons could be made for local commu-
nities, where the ecologic covariates were most likely to be
interpretable because local factors that affect the compari-
sons (such as cost of living, housing conditions, economic
opportunities) may be similar.

STATISTICAL METHODS AND DATA ANALYSIS

To examine the association between ambient concentra-
tions of air pollutants and mortality on a national scale, we
initially used the standard Cox model to link pollution
levels to survival, and adjusted for potentially confound-
ing risk factors. We included data from the CPS-II cohort
questionnaires for 44 individual-level covariates:

• eight variables to represent active smoking habits 
including nonlinear terms for cigarettes per day and 
number of years smoked;
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• seven variables to characterize former smoking habits;

• one variable for exposure to passive smoke;

• two variables to represent marital status;

• two variables to represent linear and squared terms for 
body mass index;

• six variables to characterize consumption of beer, 
wine, and other alcohol;

• seven variables to characterize the subject’s main life-
time occupation and his or her possible exposure to 
PM in the workplace;

• one variable to represent self-reported exposure to 
dust and fumes in the workplace;

• eight variables to represent diet; and

• two variables to characterize level of education.

The baseline HR was stratified by 1-year age groups,
gender, and race. This standard Cox model assumes that
all observations are statistically independent, an assump-
tion that was relaxed in subsequent analyses.

However, it is possible that survival may cluster by com-
munity or neighborhood. That is, longevity among subjects
within the same community or neighborhood may be more
similar than longevity between these subjects and those in
different geographic locales; this would remain true even
after controlling for all known and available personal risk
factor information, such as smoking habits, diet, educa-
tion, and occupation. Furthermore, subjects who live close
together typically share similar longevity patterns. Lack of
statistical control for these factors can bias both the esti-
mate of air pollution’s effect on health and the associated
standard errors.

To characterize the statistical error structure of survival
data, statistical methods and computer software that incor-
porate two levels of spatial clustering (e.g., MSA, and ZCA
within MSA) have been developed. At each of the two
clustering levels we incorporated a spatial autocorrelation
structure such that the correlation in survival after
adjusting for known risk factors is dependent on the dis-
tance between clusters. This distance can be defined in
ordinary units (kilometers or miles) or as adjacency, or it
can be based on other notions of distance in economic or
social terms. The association between concentrations of
ambient air pollutants and survival can be examined at the
spatial scales both between MSAs and between ZCAs
within an MSA, thus permitting a simultaneous exposure
assessment of health effects at the macro and micro level.

The Random Effects Cox Model

The standard Cox model, proposed by Sir David Cox
(1972), assumes that the survival times for individuals are
statistically independent. In our earlier Reanalysis of the
ACS cohort, we found evidence of spatial autocorrelation
in the data (Krewski et al. 2000a,b) that needed to be con-
sidered in the current Extended Analysis. Ma and
coworkers (2003) developed a modification of the standard
Cox model that incorporates random effects to represent
spatial patterns in the data (the random effects Cox model),
and established large-sample properties of the maximum
likelihood estimates of the model parameters.

Here, we consider a Cox model with two levels of spatially
correlated random effects (e.g., MSA, and ZCA within
MSA). Suppose that the cohort of interest is composed of
m spatially correlated clusters indexed by i. Within the ith
cluster, there are Ji spatially correlated subclusters indexed
by (i,j). Specifically, we assume that the cluster-level
random effects U1, ..., Um are positive random effects with
expectation and covariance

(1)

where �2 is the MSA-level variance of the random effects,
0 < �1 < 1, and d(s,i) indicates the distance between clus-
ters indexed by s and i. This distance between two inde-
pendent clusters is defined as d(s,i) = �. Negative ρ1 can be
estimated if the distances are integers.

We further assume that, given the cluster-level random
effects U* = u* = (u1, …, um), the subcluster-level random
effects U11, ..., UmJm are positive and spatially dependent
with

 ,
(2)

where �2 is the ZCA-level variance of the random effects,
0 < �2 < 1, and r[(s,t),(i,j)] indicates the distance between
subclusters indexed by (s,t) and (i,j). The Kronecker nota-
tion �(s,i) is 1 if s = i, and 0 otherwise. In addition, the con-
ditional distribution of Uij, given is assumed to
depend on ui only.

Furthermore, within each subcluster (i,j) there are nij
individuals. Suppose that the cohort is stratified on the
basis of one or more relevant covariates and these strata are
indexed by s = 1, 2, ..., a. The (i,j,k) denotes the kth subject
within the jth subcluster within the ith cluster. The (i,j,k)
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and s notations do not imply any fixed relationship
between strata and clusters; for example, males and females
could correspond to different strata, whereas clusters and
subclusters could be communities and families that
include both males and females. Let the hazard function
for individual (i,j,k) from stratum s at time t be denoted by
�ijk

(s)(t). Given the random effects, we assume that the indi-
vidual hazard functions are conditionally independent,
with

�ijk
(s)(t) = �0

(s)(t)uij exp(	Txijk
(s)). (3)

The survival times, either observed or censored, are spa-
tially correlated. The distribution of random effects is
assumed to not depend on the regression parameter 	.
Without loss of generality, we assume that the design
matrix X = (x111

(1), …, x(a)
mJmnmJm

)T is of full rank. A
random effects Cox model with a single level of spatially
correlated random effects is obtained as a special case of
the Cox model with two levels of random effects by setting
�2 = 0 and Ji = 1 for all i.

Our assumptions (1) and (2) on random effects concern
the spatial dependence and the first two moments only.
This is desirable since the mechanism by which the unob-
served random effects were generated is usually not com-
pletely known (Ma et al. 2003).

Auxiliary Random Effects Poisson Models

As in Ma and associates (2003), we make inferences on
the random effects Cox models by fitting random effects
Poisson models. Let denote the distinct failure
times in the sth stratum, with msh (s = 1, ..., a; h = 1, ..., qs)
indicating the multiplicity of failures occurring at time

sh(s = 1, ..., �; h = 1, ..., qs). The risk set at time 
sh is a
subset of stratum s:  = [(i,j,k) : tijk � 
sh], where tijk is
the observed survival time for individual (i,j,k) from the
sth stratum. In addition, let Yijk,h

(s) be 1 if a failure occurs
for individual (i,j,k) from the sth stratum at time 
sh and 0
otherwise. Let Y and U denote the vectors of the Yijk,h

(s)

and the random effects Ui and Uij, respectively. Given the
random effects U = u, Peto’s version of the conditional par-
tial likelihood (Cox and Oakes 1984) is 

(4)

We now define an auxiliary random effects Poisson
model. Assume that the components of Y are conditionally
independent, given random effects U = u, with Po (the
Poisson likelihood)

(5)

Given the random effects, the conditional likelihood for
the random effects Poisson model is

(6)

Since the random effects vector does not depend on the
regression parameter vector, as in Ma and colleagues
(2003), we can show that

regardless of the covariance structures assumed for
random effects. The term in braces on the right-hand side
does not depend on the parameters of interest. This dem-
onstrates that the maximum joint Poisson likelihood esti-
mators for the regression parameter vector 	 from equation
(6) are the maximum joint partial likelihood estimators for
the regression parameter vector 	 from equation (4). In
addition, the nonparametric estimator of the cumulative
baseline hazard function remains the same as given in Ma
and associates (2003).

Orthodox, Best-Linear, Unbiased Predictor Approach

Prediction of Random Effects As in Ma and colleagues
(2003), we can predict the random effects by the following
orthodox, best-linear, unbiased predictor of U given Y.

Û = E(U) + Cov(U,Y) Cov�1(Y,Y) (Y � E[Y]),       (7)

where Cov(Y,Y) denotes the marginal covariance of Y
instead of the conditional covariance of Y given U. This is
the linear unbiased predictor of U given Y, which mini-
mizes the mean squared distance between the random
effects U and their predictor within the class of linear
functions of Y.
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Unlike the case of nested random effects in Ma and asso-
ciates (2003), the explicit expression for the inverse of
Var(Y) is no longer available with spatially correlated
random effects. We therefore compute the random effects
predictor of U given Y shown in equation (7) through
numerically inverted Var(Y). However, because the order
of covariance matrix Var(Y) includes all ACS data of air
pollution and mortality between 1982 and 2000, the size
and amount of data in this matrix is exceptionally large (on
the order of over 47 million). Since the matrices Cov(Y,Y)
and Cov(U,Y) are dense, even the computer memory
required to process these matrices may create a serious
problem when analyzing the ACS study data.

To facilitate the computation, we have derived the fol-
lowing sparse representations for Cov(U,Y) and Cov(Y,Y)
after some algebra:

Cov(U,Y) = Cov(U,U)BT   and 
Cov(Y,Y) = diag(E[Y]) + B Cov(U,U)BT,         

(8)

where diag(E[Y]) denotes the diagonal matrix with E[Y] on
its diagonal. The matrix B is a sparse matrix of the same
order as that of Cov(Y,U) = Cov(U,Y)T in which column i of
B corresponds to cluster i. The elements of column i of B
are zeros except being µijk,h

(s) = exp(�sh + 	Txijk
(s)) at the

positions corresponding to those of Cov(Yijk,h
(s),Ui) in the

matrix Cov(Y,U).

These sparse representations not only make the amount
of computer memory feasible, but also make inverting
Cov(Y,Y) possible as follows. Let matrices diag(E[Y]) and
Cov(U,U) be denoted by A and D; we have

Cov�1(Y,Y) = (A + BDBT)�1

= A�1 � A�1B(BTA�1B + D�1) �1BTA�1,

where A�1 = diag(E[Y])�1 and D = Cov(U,U) is generally
small enough to be inverted numerically. In fact, there is a
similar sparse representation of Cov(U,U); therefore the
inverse of Cov(U,U) can be obtained through inverting
numerically the much smaller covariance matrix of
cluster-level random effects. (See Appendix B for the algo-
rithm description and Appendix C for the computer pro-
gram; both are available on the HEI Web site).

The mean squared distances between the random effects
U and its predictor can now be evaluated through the fol-
lowing equation:

Cov(Û � U,Û � U) = 
Cov(U,U) � Cov(U,Y) Cov�1(Y) Cov(Y,U).

In addition, we have the following two desirable orthogo-
nality properties concerning the orthodox best linear unbi-
ased predictor:

Cov(Û � U,Û) = 0    and    Cov(Û � U,Y) = 0.

Estimation of Regression Parameters Consider the first
estimation of the regression parameters in the case of
known dispersion parameters.

As in Ma and colleagues (2003), we can estimate the
regression parameters through an optimal estimating func-
tion. Differentiating the joint log-likelihood of the auxil-
iary model for the data and random effects yields the joint
score function. By replacing the random effects with their
predictors, we have an unbiased estimating function for
the regression parameters � = (�T,	T)T:

(9)

The sensitivity matrix S(�) and the variability matrix
V(�) are defined by

According to Ma and associates (2003), we have the fol-
lowing global matrix expression for estimating function
�(�) because their proof holds regardless of the covariance
structure assumed for random effects:

�(�) = XT diag(E[Y]) Cov�1 (Y,Y) (Y � Y). (10)

Similarly, we have

S(�) = �V(�)
= 0 � XT diag(E[Y]) Cov�1(Y,Y) diag(E[Y])X.

(11)

With an appropriate partition of matrix

C = XT diag(E[Y]) Cov�1(Y,Y) = (C1, ..., Cm),

it follows from (10) that

� � � � �



( ) = − ( ) ( ){ }( ) ( )

( ) ∈ ℜ( )=
∑  
  

Y Uijk h
s

ij ijk h
s

i j kh
sh

, ,
, ,

ˆ
1

qq

s

a s

∑∑
=1

.

S E

V E

T

T

�
� �

�

� � � � �

�

�

( ) = ∂ ( )
∂

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

( ) = ( ) ( ){ }
,

.

� � � �( ) = − [ ]( ) = ( )
= =
∑ ∑C Y Yi i i
i

m

i
i

m
E ,

1 1



18

Extended Analysis of ACS Study of Particulate Air Pollution and Mortality

where the unbiased estimating function �i(�) = Ci(Yi �
E[Yi]) corresponds to the ith cluster. The estimating func-
tion can easily be shown to be optimal in the
sense that it attains the minimum asymptotic covariance
for the estimator among a certain class of linear func-
tions of Y (Crowder 1986, 1987).

The solutions of the estimating equation 
provide estimators of the regression parameters; however,
the unbiased estimating functions �i(�), ..., �m(�) are no
longer independent because of spatial dependence. Under
mild regularity conditions, the component-wise asymp-
totic normality of parameter estimator can be shown (He
and Shao 2000; Chen and Shao 2004). Specifically, for any
constant vector of appropriate dimension b, bT  is asymp-
totically normal with asymptotic mean bT� and asymptotic
variance given by �bTS�1(�)b as m .

A modification of the Newton scoring algorithm intro-
duced by Jørgensen and colleagues (1996) can be used to
solve this estimating equation: In the modi-
fied algorithm, the derivative of  is replaced
by its expectation S(γ) and produces the following updated
value for γ:

γ* = γ � S�1(γ)�(γ).

The computation of S(γ) can be realized through equation
(11).

Estimation of Dispersion Parameters When dispersion
parameters are unknown, we use moment estimates for the
dispersion parameter with bias correction to give an unbi-
ased estimating function for dispersion parameters. (The
detailed process of estimating dispersion parameters is
given in Appendix B, which is available on the HEI Web
site.) Unlike other reported approaches, the asymptotic
variance of our regression parameter estimator is not
affected by variability in the dispersion parameter estima-
tors because our estimation function is insensitive to dis-
persion parameters (Jørgensen and Knudsen, 2004).

The computational procedures regarding initial values
and iteration steps are exactly as outlined in Ma and asso-
ciates (2003).

RESULTS

Distributive statistics for the pollutants are given in
Table 1. Of special note is the decline in PM2.5 concentrations
over 20 years. The mean PM2.5 measured in 58 MSAs
between 1979 and 1983 was 21.2 µg/m3; when measured in
116 MSAs between 1999 and 2000, it had declined to
14.0 µg/m3.

Descriptive statistics for the seven ecologic covariates are
given in Table 2. Ecologic covariate data were missing for a
small percentage (< 5%) of ZCAs due to small population
sizes, for which the USCB randomly assigned values.

We initially conducted a screening analysis using the
standard Cox model that assumes observations are indepen-
dent. We then selected only those relationships between a
pollutant and a cause of death that were statistically signifi-
cant (P < 0.05; 95% CIs) and conducted further analyses
using our random effects Cox model. We chose this two-step
approach because the standard Cox model can be performed
in a few minutes, whereas our random effects Cox model
with two cluster levels requires approximately one day to
calculate each pollutant–outcome relationship.

The HRs associated with specific changes in air pol-
lutant concentrations or with the scale (MSA) of the eco-
logic covariates are presented in Table 3 for all, CPD, IHD,
lung cancer, and all other causes of death. The number of
subjects and MSAs are included.

Positive and statistically significant associations be-
tween both measures of PM2.5 mass and both measures of
SO4

2� were observed for all, CPD, and IHD causes of death
(Table 3). Significant but weaker associations were observed
with these same causes of death for the particle mass mea-
surements of larger sizes of particles (PM15 and TSP) and for
the concentration of SO2.

Lung cancer deaths were more strongly associated with
both measures of PM2.5 mass than with other pollutants.
All other causes of death tended to be negatively corre-
lated with air pollutants except for both measures of SO4

2�

and SO2, which all displayed a positive association.

Annual average O3 concentrations were not clearly
linked with mortality; but a positive and statistically sig-
nificant association was observed between O3 measured in
the April-to-September period and both all and CPD
causes of death; no association was observed between O3
and IHD deaths. Neither NO2 nor CO was strongly associ-
ated with any cause-of-death category.

Overall, most ecologic covariates were individually asso-
ciated with mortality. Increases in the percentage of homes
with air conditioning within the ZCA were negatively asso-
ciated with mortality for all causes of death examined
except lung cancer. Unemployment and poverty levels
were positively associated with all five causes of death;
household income was negatively associated with all five;
and income disparity was not associated with any cause.

The correlations between the seven ecologic covariates
and air pollutants, except for CO and annual O3 (which
were not related to mortality), are given in Table 4. These
correlations were determined at the ZCA and MSA scales.
Pollutant levels were determined at the MSA scale and
assigned to each participant in the MSA. Ecologic covariate
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Table 1. Distribution of Air Pollutants at the Individual Levela

Pollutant Monitoring 
Periodb

MSAs /
Participants

(n) Mean Variance

Percentiles

0 5 10 25 50 75 90 95 100

PM2.5 (1979–1983)
(µg/m3)

58
351,338

21.20 21.40 10.77 13.73 14.91 17.85 21.69 24.12 26.75 27.89 30.01

PM2.5 (1999–2000) 
(µg/m3)

116
499,968

14.02 9.12 5.80 8.80 10.20 11.80 14.40 16.00 17.90 20.00 22.20

SO4
2� (1980–1981)

(µg/m3)
147

572,312
6.54 7.86 1.40 2.69 2.86 4.36 6.45 8.26 10.71 11.03 15.64

SO4
2�

 (1990) (µg/m3) 52
268,336

6.17 3.85 1.96 2.38 2.86 4.87 6.82 7.37 8.39 8.79 10.65

SO2 (1980) (ppb) 115
513,450

9.71 23.65 0.02 1.62 3.24 6.61 9.60 12.33 15.13 18.78 29.32

PM15 (1979–1983)
(µg/m3)

57
345,824

59.70 110.9 34.23 43.77 46.79 51.56 61.65 66.95 73.38 73.88 100.8

TSP (1980) (µg/m3) 152
578,704

68.37 287.0 41.93 49.14 50.66 56.75 64.81 72.39 90.55 106.9 126.5

O3 (1980) (ppb) 118
531,826

22.91 21.46 10.40 15.06 18.30 20.61 22.46 25.27 27.96 31.24 41.14

O3 (Summer 1980) (ppb) 118
531,185

30.15 40.91 11.73 17.05 22.75 26.75 30.67 32.71 37.30 40.66 56.36

NO2 (1980) (ppb) 76
406,917

27.90 85.25 7.75 14.59 15.88 23.12 26.06 33.71 37.14 51.06 51.06

CO (1980) (ppm) 108
508,538

1.68 0.43 0.19 0.75 0.94 1.17 1.72 2.13 2.58 3.05 3.95

a The mean MSA concentration of a pollutant was determined by averaging data from all monitors within the MSA. The mean was then assigned as the 
exposure level to each participant in the MSA. The subject-specific distribution of PM2.5 concentrations is shown.

b Dates are the monitoring years from which data averages were derived. Both annual and summer data for O3 are given because O3 concentrations are higher 
in warm seasons; people tend to be more exposed because they spend more time outdoors or with windows open.  Also, many cities monitor O3 only in the 
warm months.

Table 2. Distribution of Ecologic Covariates Based on 1980 U.S. Census Data and Determined at the ZCA Scale

Ecologic
Covariate

Participants
(n) Mean Variance

Percentiles

0 5 10 25 50 75 90 95 100

Air conditioning (%) 571,643 61.0 26.8 0 9.8 20.7 42.1 65.8 85.5 90.1 97.5 100
Grade 12 education (%) 571,351 51.9 8.2 0 36.5 40.5 47.2 53.2 57.7 61.4 63.2 100
Not white (%) 571,485 10.7 16.1 0 0.5 0.8 1.8 4.7 11.8 28.0 45.0 100

Unemployment (%) 571,361 11.6 3.1 0 7.1 8.0 9.7 11.4 13.3 15.5 17.0 60.0
Median household 
income ($000s)

571,206 20.4 6.4 2.5 11.8 13.2 15.9 19.6 23.7 28.5 32.1 75.0

Income disparity (Gini) 571,197 0.4 0.04 0 0.3 0.3 0.3 0.4 0.4 0.4 0.4 0.6
Poverty (%) 571,494 11.6 8.1 0 2.2 3.3 5.9 9.6 15.2 22.1 27.3 41.4
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values were determined at the ZCA scale and assigned to
each participant in the ZCA. Ecologic covariate values for
all subjects in ZCAs were averaged to arrive at the MSA
value.

The correlations between pollutants and ecologic cova-
riates vary considerably. For example, for grade 12 educa-
tion, the correlation with both measures of PM2.5 mass and

with both measures of SO4
2� is negative at both the ZCA

and MSA levels, whereas the correlation is positive with
PM15 and TSP. Although the correlations tended to have
the same sign at both the ZCA and MSA scales, the MSA-
based correlations tended to be more extreme than the
ZCA-based correlations because the same pollutant con-
centration had been assigned to all ZCAs within an MSA.

Table 3. HRs of Pollutants and Ecologic Risk Factors for Selected Causes of Death from the Standard Cox Modela

Covariate

MSA / 
Participants

(n)
Incremental 

Changeb
All

Causes
Cardio-

pulmonary IHD
Lung

Cancer
All Other 

Causes

PM2.5 (1979–1983) 58
351,338

10 µg/m3   1.03
(1.01–1.04)

1.06
(1.04–1.08)

1.12
(1.09–1.16)

1.08
(1.03–1.14)

0.98
(0.96–1.00)

PM2.5 (1999–2000) 116
499,968

10 µg/m3 1.03
(1.01–1.05)

1.09
(1.06–1.12)

1.15
(1.11–1.20)

1.11
(1.04–1.18)

0.97
(0.94–1.00)

SO4
2�

 (1980) 147
572,312

5 µg/m3 1.04
(1.03–1.05)

1.04
(1.02–1.05 )

1.06
(1.04–1.08)

1.05
(1.02–1.09)

1.03
(1.02–1.05)

SO4
2�

 (1990) 52
268,336

5 µg/m3 1.07
(1.05–1.09)

1.06
(1.03–1.09)

1.14
(1.10–1.19)

1.04
(0.97–1.11)

1.08
(1.05–1.11)

SO2 (1980) 115
513,450

5 ppb 1.02
(1.02–1.03)

1.02
(1.01–1.03)

1.04
(1.02–1.05)

1.00
(0.98–1.02)

1.02
(1.02–1.03)

PM15 (1979–1983) 57
345,824

15 µg/m3 1.01
(1.00–1.02)

1.03
(1.02–1.05)

1.06
(1.04–1.08)

1.00
(0.97–1.04)

0.99
(0.97–1.00)

TSP (1980) 152
578,704

15 µg/m3 1.00
(1.00–1.01)

1.01
(1.01–1.02)

1.01
(1.00–1.01)

0.98
(0.97–1.00)

0.99
(0.99–1.00)

O3 (1980) 118
531,826

10 ppb 1.00
(0.99–1.01)

1.01
(1.00–1.03) 

1.01
(0.98–1.03)

1.00
(0.96–1.04)

0.99
(0.97–1.00)

O3 (Summer 1980) 118
531,185

10 ppb 1.02
(1.01–1.02)

1.03
(1.02–1.04)

1.01
(0.99–1.02)

0.99
(0.96–1.02)

1.01
(1.00–1.02)

NO2 (1980) 76
406,917

10 ppb 0.99
(0.99–1.00)

1.01
(1.00–1.02)

1.02
(1.00–1.03)

0.99
(0.97–1.01)

0.98
(0.97–0.99)

CO (1980) 108
508,538

1 ppm 1.00
(0.99–1.01)

1.00
(0.99–1.01)

1.01
(0.99–1.03)

0.99
(0.97–1.03)

0.99
(0.98–1.01)

Air conditioning (%) 133
574,725

40% 0.98
(0.97–0.99)

0.98
(0.96–0.98)

0.97
(0.95–0.98)

1.00
(0.97–1.02)

0.98
(0.97–0.99)

Grade 12 education 
(%) 

130
571,352

10% 1.01
(1.00–1.02)

1.01
(1.01–1.02)

1.02
(1.00–1.03)

1.00
(0.98–1.02)

1.01
(1.00–1.01)

Not white (%) 131
572,745

10% 1.01
(1.01–1.01)

1.01
(1.01–1.02)

1.00
(0.99–1.01)

1.01
(1.00–1.02)

1.01
(1.00–1.01)

Unemployment (%) 130
571,362

5% 1.04
(1.03–1.05)

1.05
(1.04–1.06)

1.05
(1.03–1.06)

1.04
(1.01–1.07)

1.03
(1.02–1.04)

Median household 
income ($000s)

130
571,217

$10,000 0.95
(0.94–0.96)

0.95
(0.93–0.96)

0.93
(0.91–0.94)

0.94
(0.91–0.97)

0.96
(0.95–0.97)

Income disparity 
(Gini)

130
571,208

0.05 0.99
(0.99–1.00)

1.00
(0.99–1.00)

1.00
(0.99–1.02)

1.00
(0.98–1.02)

0.99
(0.98–1.00)

Poverty (%) 133
574,664

0.1 1.03
(1.02–1.03)

1.03
(1.02–1.04)

1.03
(1.02–1.05)

1.04
(1.02–1.06)

1.02
(1.01–1.03)

a Model adjusted for 44 individual-level covariates. The baseline hazard function was stratified by age (1-year groupings), gender, and race. HRs are followed 
by 95% confidence intervals. Bolded values refer to text. Some upper confidence limits have been rounded down and no longer appear larger than the HR. 
HRs are lower than the upper confidence limit. 

b Incremental change on which the HR is based: pollutant level or covariate level in a ZCA.
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The correlations between pairs of the seven ecologic
covariates are given in Table 5 by ZCA, MSA, and DIFF
(the ZCA values after being adjusted for the MSA value).
Large differences in correlations between ecologic covari-
ates were observed for the three levels. For example, the
correlation between grade 12 education and unemploy-
ment is near zero at the ZCA (4%) and DIFF (�4%) levels
but clearly positive at the spatially broader MSA level
(31%). Air conditioning is negatively correlated with
grade 12 education at the MSA level (�30%) but positively
correlated at the DIFF level (26%). Unemployment has an
unexpected positive correlation (42%) with household
income at the ZCA level, but the expected negative corre-
lation was observed after the broader MSA association was
removed (a �53% correlation at the DIFF level).

We note that the correlation between an ecologic cova-
riate at the DIFF level and an air pollutant is zero because
for analyses at the MSA level, all ZCAs within an MSA
were assigned the same pollutant concentration. However,
variation in survival between subjects can be explained, in
part, by ecologic covariates that vary both between and
within MSAs. Thus, incorporating the ecologic covariates
at both the MSA and DIFF levels together in a model (noted

as “MSA & DIFF”) may more fully account for the risks
associated with social determinants of health and thus
yield less biased risk estimates of exposure to air pollution.

All combinations of a pollutant and a cause of death that
were statistically significant at the 5% level based on the
results given in Table 3 are presented in Table 6. HRs were
calculated in four ways: without adjustment for the eco-
logic covariates, and with adjustment for all seven covari-
ates simultaneously at the ZCA, the MSA, or the MSA &
DIFF levels together. The air pollution risks tended to be
equally sensitive to inclusion of the seven ecologic covari-
ates regardless of their level (ZCA, MSA, or MSA & DIFF).

Adjustment for the seven ecologic covariates tended to
either inflate the HR for an air pollutant exposure or have
little impact, except for six cases in which adjustment
reduced the air pollutant HR: PM15 and TSP with CPD
deaths; SO4

2� (both 1980 and 1990) with other causes of
death; and summertime O3 with all and CPD causes of death.

In Table 7, the HRs for PM2.5 (1999–2000) are used to
examine in more detail the sensitivity of the association
between air pollution and mortality. HRs related to PM2.5
exposure are given for all causes of death and for IHD
deaths either not adjusted or adjusted for each of the seven

Table 4. Pearson Correlations Between Pollutants Determined at the MSA Scale and Ecologic Covariates Enumerated at 
the ZCA Scale and Averaged for Each MSAa

Ecologic 
Covariate

Geographic 
Level

PM2.5
(1979–
1983)

PM2.5
(1999–
2000)

SO4
2�

(1980)
SO4

2�

(1990)
SO2

(1980)

PM15
(1979–
1983)

TSP
(1980)

O3
(Summer 

1980)
NO2

(1980)

Air conditioning (%) ZCA
MSA

7
8

13
16

4
6

15
20

�16
�19

6
7

1
2

18
22

�24
�31

Grade 12 education (%) ZCA
MSA

�12
�22

�18
�32

�20
�34

�20
�42

�1
�1

19
35

21
38

�3
�6

3
6

Not white (%) ZCA
MSA

10
28

15
36

1
2

�1
�2

�8
�19

2
6

2
5

5
13

5
13

Unemployment (%) ZCA 
MSA

�6
�17

�2
�4

�4
�11

�14
�33

�5
�12

12
31

11
25

�2
�5

7
17

Median household income 
($000s)

ZCA
MSA

12
25

10
18

6
9

�1
�2

6
10

1
2

0
1

�6
�11

19
35

Income disparity (Gini) ZCA
MSA

�5
�13

0
1

�8
�18

�10
�29

�15
�36

3
9

2
6

�2
�4

�5
�12

Poverty (%) ZCA
MSA

�5
�13

�2
�4

�2
�4

�2
�4

�9
�18

2
7

�1
�3

7
14

�13
�28

a Correlations (� 100) were based on pollutant and ecologic covariate data assigned to each subject. Pollutant concentrations were calculated at the MSA 
scale and assigned to all participants within the MSA. Ecologic covariate data were determined at the ZCA scale and averaged for the MSA value. Bolded 
values refer to text. 
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44 INDIVIDUAL-LEVEL COVARIATES
From the 1982 ACS Enrollment Questionnaire

The 1982 enrollment questionnaire for the ACS CPS-II study 
collected data for variables that measure lifestyle, diet, demo-
graphic, occupational, and educational factors that may con-
found the air pollution–mortality association.

****************

Eight variables represent active smoking habits including 
nonlinear terms for cigarettes per day and number of years 
smoked, and seven variables characterize former smoking 
habits (percentage who are current or former smokers; ciga-
rettes per day; years of smoking; started smoking at younger 
or older than 18 yrs; pipe/cigar smoker).

One variable assesses exposure to passive smoke 
(hours/day exposed to smoking).

****************

Seven variables characterize the subject’s main lifetime 
occupation and his or her possible exposure to PM in the 
workplace.

One variable represents self-reported exposure to dust and 
fumes in the workplace.

****************

Two variables represent marital status  (sepa-
rated/divorced/widowed; single versus married).

Two variables characterize level of education  (high school; 
more than high school versus less than high school).

****************

Two variables represent linear and squared terms for body 
mass index. 

Six variables characterize consumption of beer, wine, and 
other alcohol  (beer, missing beer, wine, missing wine, liquor, 
missing liquor).

Eight variables represent diet (dietary fat and dietary fiber 
indices).

****************

Table 5. Pearson Correlations Between Ecologic Covariates Enumerated at the ZCA, MSA, or DIFF Levelsa

Ecologic
Covariate

Geographic 
Levelb

Air Condi-
tioning

Grade 12 
Education

Not
white

Unemploy-
ment

Household 
Income

Income 
Disparity Poverty

Air conditioning (%) ZCA
MSA
DIFF

1.0 �1
�30

26

�3
38

�34

�30
�37
�32

24
2

50

�9
14

�29

�21
12

�55

Grade 12 education (%) ZCA
MSA
DIFF

1.0 �33
�51
�28

4
31

�4

12
8

14

�49
�26
�57

�4
�37
�48

Not white (%) ZCA
MSA
DIFF

1.0 36
1

44

�33
0

�45

37
35
38

60
43
65

Unemployment (%) ZCA 
MSA
DIFF

1.0 42
11

�53

18
12
20

42
17
49

Median household income 
($000s)

ZCA
MSA
DIFF

1.0 �56
�70
�53

�75
�81
�72

Income disparity (Gini) ZCA
MSA
DIFF

1.0 64
80
60

Poverty (%) ZCA
MSA
DIFF

1.0

a Correlations (� 100) were based on ecologic covariate data estimated at the ZCA scale and assigned to each subject. Bolded values refer to text.
b The MSA value is the average of all ZCA values within the MSA.  The DIFF value for a ZCA is the ZCA value minus the MSA value. 
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Table 6. HRs for Pollutant and Cause-of-Death Relationships With and Without Adjustment for All Seven Ecologic 
Covariates

Cause of 
Death

Ecologic Covariate Adjustmenta

 None  ZCA  MSA MSA & DIFF

PM2.5 (1979–1983)
All causes 1.028 (1.013–1.042) 1.043 (1.027–1.058) 1.040 (1.024–1.056) 1.043 (1.027–1.060)
CPD 1.066 (1.044–1.089) 1.085 (1.062–1.109) 1.086 (1.062–1.112) 1.089 (1.064–1.114)
IHD 1.132 (1.099–1.166) 1.168 (1.132–1.204) 1.176 (1.139–1.215) 1.183 (1.145–1.221)
Lung cancer 1.073 (1.019–1.130) 1.090 (1.034–1.150) 1.084 (1.025–1.145) 1.090 (1.031–1.153)

PM2.5 (1999–2000)
All causes 1.034 (1.016–1.053) 1.054 (1.035–1.075) 1.053 (1.031–1.074) 1.056 (1.035–1.078)
CPD 1.094 (1.065–1.124) 1.126 (1.095–1.158) 1.126 (1.093–1.161) 1.129 (1.095–1.164)
IHD 1.153 (1.111–1.197) 1.210 (1.163–1.258) 1.231 (1.181–1.284) 1.240 (1.189–1.293)
Lung cancer 1.108 (1.037–1.183) 1.135 (1.059–1.216) 1.130 (1.050–1.216) 1.137 (1.056–1.225)
All other causes 0.969 (0.944–0.995) 0.978 (0.952–1.006) 0.975 (0.946–1.004) 0.979 (0.950–1.008)

SO4
2� (1980)

All 1.037 (1.027–1.046) 1.044 (1.034–1.054) 1.043 (1.032–1.054) 1.045 (1.034–1.056)
CPD 1.037 (1.023–1.051) 1.049 (1.034–1.064) 1.052 (1.036–1.069) 1.054 (1.038–1.071)
IHD 1.064 (1.044–1.085) 1.085 (1.063–1.107) 1.100 (1.077–1.124) 1.104 (1.081–1.128)
Lung cancer 1.055 (1.020–1.090) 1.060 (1.024–1.097) 1.074 (1.035–1.115) 1.077 (1.037–1.118)
All other causes 1.034 (10.21–1.048) 1.038 (1.024–1.053) 1.031 (1.015–1.046) 1.032 (1.017–1.048)

SO4
2� (1990)

All causes 1.069 (1.049–1.090) 1.089 (1.066–1.112) 1.082 (1.056–1.109) 1.086 (1.060–1.113)
CPD 1.057 (1.027–1.088) 1.095 (1.061–1.130) 1.110 (1.070–1.152) 1.114 (1.074–1.156)
IHD 1.142 (1.097–1.189) 1.196 (1.145–1.248) 1.282 (1.219–1.349) 1.288 (1.225–1.355)
All other causes 1.086 (1.056–1.117) 1.090 (1.057–1.124) 1.065 (1.027–1.104) 1.068 (1.030–1.107)

SO2 (1980) 
All causes 1.021 (1.016–1.027) 1.022 (1.016–1.028) 1.019 (1.013–1.025) 1.020 (1.014–1.026)
CPD 1.020 (1.012–1.028) 1.021 (1.012–1.029) 1.021 (1.012–1.031) 1.022 (1.013–1.032)
IHD 1.037 (1.026–1.049) 1.043 (1.031–1.055) 1.057 (1.044–1.071) 1.059 (1.046–1.072)
All other causes 1.025 (1.017–1.033) 1.025 (1.017–1.034) 1.019 (1.009–1.028) 1.019 (1.010–1.029)

PM15 (1979–1983)
CPD 1.034 (1.019–1.048) 1.034 (1.018–1.049) 1.037 (1.019–1.054) 1.025 (1.013–1.037)
IHD 1.061 (1.040–1.082) 1.074 (1.052–1.097) 1.095 (1.069–1.122) 1.064 (1.048–1.082)

TSP (1980)
CPD 1.013 (1.007–1.020) 1.012 (1.005–1.019) 1.010 (1.002–1.018) 1.007 (1.002–1.012)
All other causes 0.992 (0.986–0.999) 0.993 (0.986–1.000) 0.996 (0.988–1.003) 0.998 (0.993–1.003)

O3 (Summer 1980)
All causes 1.016 (1.008–1.024) 1.014 (1.006–1.023) 1.006 (0.998–1.015) 1.008 (0.999–1.017)
CPD 1.028 (1.016–1.041) 1.027 (1.014–1.040) 1.015 (1.002–1.028) 1.016 (1.002–1.029)

NO2 (1980)
IHD 1.018 (1.004–1.031) 1.030 (1.015–1.045) 1.033 (1.016–1.051) 1.035 (1.017–1.053)
All other causes 0.982 (0.972–0.991) 0.986 (0.976–0.997) 0.990 (0.978–1.002) 0.991 (0.979–1.003)

a Determined with the standard Cox model, which included the 44 individual-level covariates. The models with no adjustment for ecologic covariates 
included only those participants who resided in ZCAs for which ecologic covariate data were available.  Ecologic covariate data were derived for each 
ZCA and averaged for the MSA value. The DIFF value for a ZCA is the ZCA value minus the MSA value. MSA & DIFF indicates both levels of data were 
included in the model together. HRs are followed by 95% confidence intervals. Bolded values refer to text. 
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ecologic covariates separately. The all-cause mortality HR
increased after adjustment for six of the seven covariates;
only percentage of population who are not white reduced
the risk from 1.034 (95% CI, 1.016–1.053) to 1.028 (95%
CI, 1.010–1.047). The IHD risk increased after adjustment
for any of the seven ecologic covariates.

The Reanalysis and Updated Analysis (Krewski et al.
2000a,b; Pope et al. 2004) had shown that the subjects’
level of education modified the effect of PM2.5 exposure on
mortality. To explore this further, we stratified educational
status based on the individual-level data gathered at ACS
enrollment: low education (less than grade 12), medium
education (grade 12 completed), and high education (some
education beyond grade 12 completed). Models included
42 of the individual-level covariates used in other analyses
(two variables that represented education attainment were
removed) with and without the seven ecologic covariates.
Results are presented in Table 8.

For all-cause and CPD mortality, we observed a slight
effect modification by level of education, although in the
case of CPD, the effect modification was confounded by
including the ecologic covariates.

For lung cancer deaths, the analyses with high educa-
tion showed the lowest effects of PM2.5 exposure on mor-
tality, but there appeared to be little difference between
risks in the two lowest strata of education attainment.
These findings follow a pattern similar to what was
reported in the earlier studies, but the patterns are less

clear with the longer follow-up period used here (all P
values for effect modification were > 0.10).

For IHD mortality, in contrast to previous findings, level
of education produced a positive modification effect; the
largest effects were observed in the high education
stratum. This pattern was consistent between results from
models both with and without controlling all seven eco-
logic covariates, but was more pronounced when the eco-
logic covariates were included, which had the effect of
increasing the HR in all strata. Yet, the ratio between the
high and low educational strata is roughly the same in
results from models with and without the ecologic control.

SENSITIVITY OF AIR POLLUTION RISK TO THE 
ERROR STRUCTURE OF THE RANDOM EFFECTS 
COX MODEL

We illustrate the sensitivity of the risk estimates and
their standard errors to model specification using the ACS
data with follow-up from 1982 to 2000. We selected PM2.5
(1999–2000) as the pollutant measure and all causes of
death and IHD deaths as the outcomes to illustrate the
random effects Cox model and the sensitivity of an air pol-
lution–mortality association to the model specification.

The spatial structure of the random effects Cox model
was specified by a nearest-neighbor approach at both the
MSA and ZCA levels. Here, two ZCAs are assumed to be
neighbors if any part of their boundaries are connected.
For each ZCA, we constructed a Thiessen polygon, which
has the property that any point inside the polygon is closer

Table 7. HRs for All and IHD Causes of Death Associated with a 10-µg/m3 Change in PM2.5 (1999–2000) from the 
Standard Cox Model Unadjusted or Adjusted for a Single Ecologic Covariatea 

Ecologic Covariate 
Adjustment

 All Causes IHD

PM2.5 (1999–2000) Ecologic Covariateb PM2.5 (1999–2000) Ecologic Covariateb 

No adjustment 1.034 (1.016–1.053) — 1.153 (1.111–1.197) —

Air conditioning (%) 1.040 (1.021–1.059) 0.976 (0.968–0.984) 1.160 (1.118–1.204) 0.972 (0.955–0.989)
Grade 12 education (%) 1.043 (1.025–1.063) 1.016 (1.009–1.023) 1.171 (1.127–1.216) 1.031 (1.016–1.046)

Not white (%) 1.028 (1.010–1.047) 1.009 (1.006–1.013) 1.158 (1.115–1.203) 0.997 (0.989–1.005)
Unemployment (%) 1.036 (1.018–1.055) 1.040 (1.032–1.049) 1.155 (1.113–1.199) 1.046 (1.027–1.064)

Median household income 
($000s)

1.048 (1.030–1.068) 0.950 (0.942–0.959) 1.177 (1.134–1.222) 0.924 (0.906–0.942)

Income disparity (Gini) 1.036 (1.017–1.055) 0.993 (0.987–1.000) 1.156 (1.113–1.200) 1.001 (0.988–1.014)
Poverty (%) 1.036 (1.018–1.055) 1.027 (1.020–1.035) 1.156 (1.113–1.199) 1.029 (1.015–1.045)

a Model included 44 individual-level covariates and adjusted for a single ecologic covariate at the ZCA scale.  The baseline hazard function was stratified by 
age (1-year groupings), gender, and race. HRs are followed by 95% confidence intervals. Bolded values refer to text.

b HRs for the ecologic covariate itself when in the model with PM2.5.
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to the geographic center (centroid) of the ZCA than to the
centroid of any other ZCA. ZCA polygons were joined to
create each MSA polygon; following this pattern, the 48
contiguous United States were covered by polygons. The
random effects associated with two MSAs (or ZCAs) are
assumed to have a common correlation if they are neigh-
bors and to be uncorrelated if they are not neighbors. Two
ZCAs in different MSAs are assumed to be uncorrelated.

The HRs for a 10-µg/m3 change in PM2.5 (1999–2000) are
given in Table 9 under selected error specifications for the
random effects Cox model with: (a) no adjustment for the
seven ecologic covariates, (b) adjustment for the ecologic
covariates defined at only the ZCA level, and (c) adjust-
ment for the covariates defined at both the MSA & DIFF
levels. All and IHD causes of death were examined.

Inclusion of clustering at both the MSA & DIFF levels
and at the ZCA level increased the estimate of the PM2.5
(1999–2000) HR, with or without adjustment for the eco-
logic covariates. This is likely due to the manner in which
the random effects Cox model weights the importance of
the observations. The standard Cox model gives equal
weight to all subjects’ information whereas the random
effects Cox model used here weights the information dif-
ferently for each cluster. The variation in weight among
clusters is positively associated with the cluster variance.
Thus the larger MSAs are given less weight in the random
effects model than in the standard Cox model in which
responses are assumed to be statistically independent. An
increase in the HR using the random effects model implies
that the larger MSAs did not clearly follow our model spec-
ification, particularly the assumptions about there being a

log-linear relationship between mortality and the associ-
ated exposure to PM2.5 (1999–2000). Thus they are given
less weight even though their sample size may be larger.

The inclusion of additional variance due to clustering of
survival experience at the MSA level also inflates the
uncertainty in the PM2.5 (1999–2000) HR estimate, as evi-
denced by wider confidence intervals (CIs) compared with
the case in which the MSA and ZCA variances are set to 0
(equivalent to the standard Cox model assumption). There
was more unexplained variation in survival between ZCAs
than between MSAs for all causes of death, but this pattern
is not replicated for IHD deaths.

Inclusion of the seven ecologic covariates defined at the
ZCA level reduced both the MSA and ZCA random effects
variances. However, a further reduction was observed
when these covariates were defined by their MSA & DIFF
levels together.

The inclusion of spatial autocorrelation at both the MSA
and ZCA levels lowered the PM2.5 (1999–2000) HR and wid-
ened the CIs, which suggests that there may be some evi-
dence of spatial clustering of residual mortality coinciding
with the spatial pattern of PM2.5 (1999–2000). However, our
estimate of spatial autocorrelation at the MSA level (0.36)
was at the boundary of allowable values. This implies that
the model is ill-specified, likely due to the very large
number of nearest neighbors for each MSA, particularly in
the Eastern U.S. Although we need to interpret these results
with caution, we can view them as a situation with the max-
imum spatial autocorrelation permissible, and thus we
included them in our sensitivity analysis as an extreme case.

Table 8. Modification of HRs by Education at Individual Level for a 10-µg/m3 Change in PM2.5 (1999–2000) from the 
Standard Cox Model by Cause of Deatha

Level of 
Education / 
Participants 
(n)

Ecologic 
Covariates 
in Model All Causes CPD IHD Lung Cancer All Other Causes

< Grade 12 
education
(59,168)

No 1.064 (1.004–1.126) 1.127 (1.044–1.216) 1.111 (0.979–1.260) 1.187 (1.020–1.381) 0.955 (0.883–1.034)
Yes 1.082 (1.024–1.144) 1.157 (1.077–1.245)  1.173 (1.022–1.347) 1.217 (1.025–1.446) 0.960 (0.886–1.040)

Grade 12 
education 
(152,024)

No 1.060 (1.013–1.110) 1.086 (1.016–1.160) 1.195 (1.072–1.333) 1.192 (1.057–1.344) 0.999 (0.942–1.061)
Yes 1.072 (1.020–1.127) 1.112 (1.040–1.189) 1.248 (1.109–1.404) 1.236 (1.081–1.413) 0.995 (0.931–1.062)

> Grade 12 
education 
(274,941)

No 1.041 (1.001–1.083) 1.083 (1.023–1.146) 1.225 (1.121–1.339) 1.024 (0.912–1.150) 1.005 (0.956–1.058)
Yes  1.055 (1.018–1.094) 1.115 (1.060–1.173) 1.331 (1.215–1.458) 1.043 (0.934–1.164) 1.006 (0.956–1.060) 

a Model included 42 individual-level covariates (the two covariates for education attainment were omitted for this analysis) and with or without adjustment 
for the seven ecologic covariates at the MSA & DIFF levels together. The baseline hazard function was stratified by age (1-year groupings), gender, and race. 
HRs are followed by 95% confidence intervals. Bolded values refer to text. All P values > 0.10 for effect modification.



26

Extended Analysis of ACS Study of Particulate Air Pollution and Mortality

We also considered the sensitivity of our results to the
spatial definition of clusters. Here, we used “state” and
“MSAs within state” to define the cluster levels. There are
far fewer nearest neighbors for the state specification than
for the MSA specification. We postulate that state is a nat-
ural cluster definition because many health care programs
and resources that influence health, and thus longevity, are
administered at the state level.

PM2.5 data for 1999–2000 were available for 44 states and
116 MSAs. We included the 44 individual-level covariates
in random effects Cox models with adjustment for the
seven ecologic covariates defined at the MSA & DIFF
levels together. Including both state and MSA-within-state
clusters increased the PM2.5 (1999–2000) HRs compared
with results from the standard Cox model (Table 10, top
row under each cause of death) and also increased the

uncertainty in the estimates, as evidenced by the much
wider CIs. Including spatial autocorrelation at both cluster
levels reduced the HRs compared with a model that
included both state and MSA random effects but no spatial
autocorrelation. Similar patterns were observed with and
without adjustment for the ecologic covariates and for both
all causes of death and IHD deaths (results not shown).

ALTERNATIVE FORMULATION OF THE 
CONCENTRATION–RESPONSE FUNCTION

We investigated the form of the concentration–response
function between PM2.5 (1999–2000) and selected causes
of death. Our alternative formulation of the function is the
natural logarithm of concentration. We selected this for
two reasons. First, the logarithm of concentration yields a

Table 9. Sensitivity Analysis of the Deterministic and Stochastic Parameters of the Random Effects Cox Model for All 
and IHD Causes of Deatha

Ecologic Covariate 
Adjustment

HR for a 10-µg/m3 Change 
in PM2.5 (1999–2000)

MSA Variance
(�10�3)

MSA
Autocorrelation

ZCA Variance
(�10�3)

ZCA
Autocorrelation

All Causes
Standard Cox model
None 1.034 (1.016–1.053) 0 0 0 0
ZCA 1.054 (1.035–1.075) 0 0 0 0
MSA & DIFF 1.056 (1.035–1.078) 0 0 0 0

No autocorrelation at MSA or ZCA level
None 1.057 (1.014–1.101) 1.62 0 4.35 0
ZCA 1.080 (1.047–1.114) 1.21 0 3.06 0
MSA & DIFF 1.075 (1.041–1.110) 0.95 0 3.01 0

Autocorrelation at MSA and ZCA levels
None 1.048 (0.989–1.110) 1.66 0.36 5.65 0.29
ZCA 1.074 (1.036–1.112) 1.25 0.36 3.61 0.23
MSA & DIFF 1.071 (1.032–1.111) 1.06 0.36 3.45 0.22

IHD
Standard Cox model
None 1.153 (1.111–1.197) 0 0 0 0
ZCA 1.210 (1.163–1.258) 0 0 0 0
MSA & DIFF 1.240 (1.189–1.293) 0 0 0 0

No autocorrelation at MSA or ZCA level
None 1.181 (1.092–1.278) 10.51 0 10.36 0
ZCA 1.243 (1.147–1.346) 10.24 0 8.40 0
MSA & DIFF 1.287 (1.179–1.404) 9.47 0 8.05 0

Autocorrelation at MSA and ZCA levels
None 1.168 (1.065–1.280) 10.49 0.36 15.61 0.30
ZCA 1.229 (1.120–1.347) 10.15 0.36 10.64 0.28
MSA & DIFF 1.276 (1.156–1.409) 9.79 0.36 10.06 0.27

a Model included 44 individual-level covariates. The baseline hazard function was stratified by age (1-year groupings), gender, and race. A 0 indicates the 
parameter was not included in the model. HRs are followed by 95% confidence intervals.
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flexible mathematical form to relate exposure to survival
within the proportional-hazards family of models. Here
we have

where the unknown parameter γ is a scalar. If � < 1, the
relationship between PM2.5 and mortality concaves down-
ward, which yields larger HRs at lower concentrations;
and if � > 1, the association concaves upward, which
yields smaller HRs at lower concentrations. This formula-
tion predicts HRs that are a function of concentration and
thus a single risk value will not represent the association
between exposure and response throughout the concentra-
tion range. The second reason is that the Updated Analysis
(Pope et al. 2002) suggested that the logarithm of PM may
be a slightly better predictor of risk than the linear form.

The HRs associated with a 10-µg/m3 change in PM2.5

(1999–2000) concentrations based on linear and log-linear
functions of PM are given in Table 11 for selected causes
of death with and without adjustment for the seven eco-
logic covariates defined at both the MSA & DIFF levels
together. Two separate spans of a 10-µg/m3 change in
PM2.5 are examined for the logarithmic formulation: from
5 to 15 µg/m3 and from 10 to 20 µg/m3 since the HR based
on the logarithmic function varies with concentration. A
concentration of 5 µg/m3 represents the minimum of the
distribution of PM2.5 (1999–2000) and a concentration of
20 µg/m3 represents the 95th percentile of the concentra-
tion distribution.

Our random effects Cox model was used to estimate the
HRs with only one level of clustering at the MSA scale. For
PM2.5, the logarithmic function was a slightly better pre-
dictor of the variation in survival among MSAs than the
linear function because the MSA random effect variance is
somewhat smaller (than that for the linear function) for
each cause-of-death category except all other causes. As

� � � 	
e r e e

t t U X( ) ( ) exp{log( ) }( )
.

= +0 2 5
PM

� � 	
�e r e et t U X( ) ( ) exp( ) ( )( )

.
= ∗0 2 5

PM

Table 10. Sensitivity Analysis of the Deterministic and Stochastic Parameters of the Random Effects Cox Model Due to 
Geographic Cluster Definition for All and IHD Causes of Deatha

Without or 
With Spatial 
Autocorrelation

HR for a 10-µg/m3 
Change in PM2.5 

(1999–2000)
State Variance

(�10�3)
State

Autocorrelation
MSA Variance

(�10�3)
MSA

Autocorrelation

All Causes
Standard Cox model 1.056 (1.035–1.078) 0 0 0 0

Clustering by state only
Without 1.055 (1.019–1.092) 1.61 0 0 0
With 1.045 (1.009–1.083) 1.90 0.23 0 0

Clustering by state and MSA
Without 1.072 (1.031–1.116) 1.22 0 0.32 0
With 1.066 (1.021–1.112) 1.26 0.20 0.43 0.29

IHD
Standard Cox model 1.240 (1.189–1.293) 0 0 0 0

Clustering by state only
Without 1.284 (1.189–1.387) 13.14 0 0 0
With 1.232 (1.141–1.330) 14.04 0.39b 0 0

Clustering by state and MSA
Without 1.320 (1.192–1.460) 9.74 0 3.05 0
With 1.241 (1.112–1.382) 8.83 0.39b 4.07 0.15

a Analysis based on 44 states and 116 MSAs. The model included 44 individual-level covariates and adjusted for seven ecologic covariates simultaneously. 
defined at the MSA and DIFF levels. The baseline hazard function was stratified by age (1-year groupings), gender, and race. A 0 indicates the parameter 
was not included in the model. HRs are followed by 95% confidence intervals.

b The estimation algorithm yielded a value of autocorrelation at the boundary of acceptable values, which indicates that the model was not properly 
specified and the results should be interpreted with caution.
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expected, the HR based on the logarithm formulation
yielded higher values for the difference between 5 and
15 µg/m3 compared with the linear formulation; and lower
values were observed for the difference between 10 and
20 µg/m3 except for other causes of death in which the log-
arithmic formulation yielded larger HRs compared with
the linear formulation.

The choice of functional relationship between PM expo-
sure and mortality can make a considerable difference in
the predicted risk at lower concentrations. For example,
the HR for lung cancer adjusted for the ecologic covariates
based on the linear formulation is 1.142 (95% CI, 1.057–
1.234), whereas the HR based on the logarithmic formula-
tion is 1.236 (95% CI, 1.114–1.372), a 66% increase in risk.

DISCUSSION AND CONCLUSIONS

Our overall objective was to further analyze the associa-
tion between particulate air pollution and all-cause and
cause-specific mortality in large U.S. cities using alternative

spatial models and extended follow-up data from the ACS
CPS-II cohort. Specifically, we examined whether social,
economic, and demographic ecologic covariates confound
the relationship between particulate air pollution and
mortality, and we explored complex spatial patterns in the
CPS-II data with an extended random effects Cox model.

Results of the Reanalysis Project showed that ecologic
covariates estimated on the MSA level were unlikely to
exert a significant confounding influence on the associa-
tion between particulate air pollution and mortality
(Krewski et al. 2000a,b). Nevertheless, unresolved ques-
tions remained about the scale and the construct validity
of the variables used. Therefore, in the current study we
examined the influence of ecologic covariates at several
scales: the ZCA scale (data obtained from the 1980 U.S.
Census), the MSA scale (by averaging information on all
ZCAs within an MSA), and by the value of the difference
obtained between the ZCA-specific value and the MSA
value (DIFF).

Table 11. Comparison of HRs for Selected Causes of Death Associated with a 10-µg/m3 Change in PM2.5 (1999–2000) 
Concentrations Based on Inclusion of Linear PM2.5 or log(PM2.5) in the Random Effects Cox Model with Clustering at the 
MSA Levela

Ecologic 
Covariate 
Adjustment

Linear PM2.5 (1999–2000) Log (PM2.5 [1999–2000])

HR for
10-µg/m3 
Change

MSA
Variance
(�10�3)

HR for
Change from 
5 to 15 µg/m3

HR for
Change from 

10 to 20 µg/m3 

MSA
Variance
(�10�3)

All Causes
None 1.060 (1.024–1.097) 1.86 1.095 (1.044–1.148) 1.059 (1.028–1.091) 1.81
MSA & DIFF 1.078 (1.043–1.115) 1.07 1.128 (1.077–1.183) 1.079 (1.048–1.112) 1.00

CPD
None 1.094 (1.040–1.150) 3.96 1.145 (1.068–1.228) 1.089 (1.042–1.138) 3.87
MSA & DIFF 1.128 (1.077–1.182) 1.86 1.208 (1.132–1.290) 1.127 (1.081–1.174) 1.66

IHD
None 1.196 (1.103–1.298) 12.13 1.315 (1.175–1.470) 1.188 (1.107–1.275) 11.73
MSA & DIFF 1.287 (1.177–1.407) 10.56 1.484 (1.311–1.680) 1.283 (1.186–1.387) 9.80

Lung Cancer
None 1.122 (1.040–1.210) 2.03 1.193 (1.071–1.330) 1.118 (1.044–1.197) 1.90
MSA & DIFF 1.142 (1.057–1.234) 0.56 1.236 (1.114–1.372) 1.143 (1.071–1.221) 0.45

All Other Causes
None 1.008 (0.968–1.051) 1.95 1.023 (0.965–1.083) 1.014 (0.978–1.052) 1.97
MSA & DIFF 1.010 (0.968–1.055) 1.37 1.026 (0.970–1.085) 1.016 (0.981–1.053) 1.39

a Model included 44 individual-level covariates with and without adjustment for seven ecologic covariates simultaneously.  MSA & DIFF indicates both 
levels of data were included in the model together. The baseline hazard function was stratified by age (1-year groupings), gender, and race. HRs are 
followed by 95% confidence intervals. Bolded values refer to text.
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Results from the CPS-II cohort with an additional eleven
years of follow-up in this Extended Analysis revealed pos-
itive and significant associations between a 10-µg/m3

change in PM2.5 mass or a 5-µg/m3 in SO4
2� mass (with the

exception of SO4
2� [1990]) and all-cause, CPD, IHD, and

lung cancer deaths. Particles of larger size (PM15 and TSP)
were associated with positive, although smaller, increases
in risk of all-cause, IHD, and CPD deaths. Mortality from
IHD compared with other causes of death was consistently
associated with the largest HR estimates. Indeed, other
recent investigations have supported an association
between particles and adverse cardiovascular effects
(Krewski et al. 2000a,b; Pope et al. 2004; Künzli et al.
2005). Further investigations to examine the cardiovas-
cular health effects of particulate air pollution are critical
to understanding the nature of the association.

Fewer significant associations were observed with the
gaseous pollutants. SO2, which is likely to be an indicator
of other pollutants related to mortality, was significantly
associated with higher mortality from all causes, CPD, and
IHD, although the strength of the associations tended to be
weaker than the associations observed with particles.
Summertime O3 was related with all-cause and CPD mor-
tality in this study; this relationship was statistically sig-
nificant in the Reanalysis (relative risk = 1.08, 95% CI,
1.01–1.16; Krewski et al. 2000a,b).

Due to differences in modeling methods and use of
multi-level variables, HR estimates presented here are not
directly comparable with the Updated Analysis using
alternate modeling strategies (Pope et al. 2002) or with the
Reanalysis (Krewski et al. 2000a,b), in which different
scales or levels of pollutant increases were used to calcu-
late relative risks. This Expanded Analysis evaluated the
level of risk associated with a 10-µg/m3 increase in PM2.5
and a 5-µg/m3 increase in SO4

2�. The Reanalysis evaluated
a 24.5-µg/m3 increase in PM2.5 and a 19.9-µg/m3 increase
in SO4

2� (those values were equal to the difference in
mean concentrations between the most- and least-polluted
cities from the Harvard Six Cities Study [Krewski et al.
2000a]).

We wanted to directly compare the HRs between the
three follow-up periods that have been examined: 1982–
1989 (the Reanalysis, Krewski et al. 2000a,b); 1982–1998
(the Updated Analysis, Pope et al. 2002); and 1982–2000
(the current Extended Analysis) (see also the section
Implications of the Findings / Comparison of Data Sets and
Analytic Methods for the Three Follow-Up Time Periods).
To do so, we estimated the HR for a 10-µg/m3 increase in
the average PM2.5 concentration for 1979–1983 in 58
MSAs, and for 1999–2000 in 116 MSAs, and controlled for
the 44 individual-level covariates using the standard Cox

model (both with and without control for the ecologic
covariates) for  mortality from all causes, CPD, IHD, lung
cancer, and all other causes. Over the three follow-up time
periods, deaths from all causes increased to 90,783 in the
58 MSAs and 128,954 in the 116 MSAs; and deaths from
IHD increased to 20,651 in the 58 MSAs and 29,989 in the
116 MSAs (see Table 32).  For the PM2.5 (1979–1983) sam-
pling period (58 MSAs), we observed a small decrease in
the HR estimate for deaths from all causes between the ini-
tial follow-up period (1.048, 95% CI, 1.022–1.076) and the
later two periods (1.031, 95% CI, 1.015–1.047; and 1.028,
95% CI, 1.014–1.043) (see Table 33). We found no temporal
pattern in risk for IHD deaths (1.122, 95% CI, 1.066–1.181;
1.130, 95% CI, 1.094–1.166; and 1.133, 95% CI, 1.100–
1.167). Declining risk could be due to exposure misclassi-
fication increasing over time. We assigned exposure based
on residence location in 1982; and the percentage of cohort
members who have moved has to have increased over
time. Also, PM2.5 concentrations have clearly declined
over the follow-up period, so assigning a single exposure
measure would not have fully captured this temporal pat-
tern. Finally, as the cohort ages, air pollution effects may
decline due to the healthy survivor effect.

The ecologic covariates evaluated were associated with
overall and cause-specific mortality and correlated with
specific air pollutants, which is consistent with the defini-
tion of a possibly confounding variable. Poverty and
unemployment were positively associated and household
income was negatively associated with all cause-of-death
categories. Historically, indicators of community-level
socioeconomic status such as these have been associated
with overall and cause-specific mortality (Kaplan et al.
1996; Boyd et al. 1999; Winkleby and Cubbin 2003). They
likely reflect a complex interaction of environmental,
social, and behavioral factors and of available health ser-
vices that all influence health status and longevity. How-
ever, income disparity (a related measure of economic
status) was not associated with mortality in the ACS CPS-
II cohort. This is surprising; we would have expected
income disparity to be positively associated with mor-
tality, as in some previous studies (Cooper et al. 2001; Ram
2005; Singh and Siahpush 2006), although in the Reanal-
ysis (Krewski et al. 2000a,b), income disparity was also not
strongly related with mortality. It may be that controlling
the 44 individual-level covariates (including such factors
as marital status, smoking, and diet) removed any poten-
tial effect of income disparity on mortality in that study; or
it may be that an inadequate variable was used.

All ecologic covariates were based on data from the
1980 U.S. Census. Spatial patterns of mortality and ecolog-
ically defined sociodemographic factors could change
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independently of each other over follow-up time and thus
lead to misclassification of their values and relationships.
Discussion of the impact of population mobility in the
ACS cohort is presented elsewhere (Jerrett et al. 2007).
Both the positive and negative influences of different eco-
logic covariates on mortality require careful interpretation
as to their potential confounding effects on the air pollu-
tion–mortality association.

Spatial patterns of ecologically defined sociodemo-
graphic factors and air pollution for the CPS-II cohort are
complex. Ecologic covariates were both positively and
negatively correlated with concentrations of certain spe-
cific air pollutants (see Table 4). Having less than a grade
12 education was most frequently strongly correlated with
air pollutant indices — negatively correlated with concen-
trations of PM2.5 and SO4

2�, but positively correlated with
particles of larger size. Conversely, percentage of the pop-
ulation that is not white and median household income
was positively correlated with PM2.5 mass.

Correlations between ecologic covariates varied accord-
ing to the unit of aggregation (ZCA or MSA), which indi-
cates that spatial patterns in the data differ according to
scale. Interestingly, the largest correlations were not neces-
sarily found in the smallest unit of observation (ZCA) as
might be expected; this could indicate that complex spa-
tial patterns of sociodemographic factors are also involved.
Strong correlations were observed between some of the
ecologic covariates; therefore, caution is required in inter-
preting models that include all of the ecologic covariates
simultaneously due to the possible resulting statistical
instability.

Since variation in survival between subjects can be
explained, in part, by ecologic covariates that vary both
between and within MSAs, we conducted analyses that
adjusted for the ecologic covariates at both the MSA & DIFF
levels together. We hoped to account for sociodemographic
risks more completely and thus yield less biased risk esti-
mates of exposure to air pollution. In nearly all models that
adjusted for the seven ecologic covariates simultaneously,
the HR tended to increase in comparison to models with no
adjustment, although many of the differences were small.
The largest increases were observed for mortality from IHD
associated with PM2.5 (1999–2000) and SO4

2� (1990); the
magnitude of the inflation of HR was 7.5% and 12.8%,
respectively; this model included ecologic covariates at
both the MSA & DIFF levels simultaneously.

When we evaluated the independent effect of each eco-
logic covariate at the ZCA scale on the HR for the association
between PM2.5 and mortality from all causes and from IHD,
we found that each covariate independently increased the
strength of the association (except for percentage who are

not white with all-cause mortality). We found the largest
increases when household income was the only ecologic
covariate included — from 1.034 (1.016–1.053) to 1.048
(1.030–1.068) for all causes of death, and from 1.153
(1.111–1.197) to 1.177 (1.134–1.222) for deaths from IHD
(Table 7). Household income was positively associated
with exposure to PM2.5 (1999–2000) and negatively associ-
ated with all-cause mortality. (No individual-level infor-
mation on income was available for CPS-II participants;
therefore, we relied on the ecologic-level indicator of
income status.)

Percentage of the population with a grade 12 education
exerted the next largest influence on HR estimates. The
random effects Cox model was adjusted for education
attainment at the individual level. This analysis, therefore,
suggests that neighborhood education attainment mea-
sured at the ZCA level exerts additional influence on the
air pollution–mortality association beyond that of indi-
vidual-level education attainment.

ZCA-level median household income and grade 12 edu-
cation, therefore, represent the most important sociodemo-
graphic ecologic factors that may confound the PM2.5–
mortality association, although their effects individually
are slight.

One of the more remarkable findings in this set of anal-
yses was that when ecologic covariates were included, the
HRs increased. This finding likely represents a case of vari-
ance suppression (Tabachnick and Fidell 2001), which is
documented as one way in which confounding variables
may increase the size of their effects on the primary risk
variable in the model. Ecologic confounders and the pollut-
ants share some of the model variance, and their common
variability also partially overlaps with the variability of the
mortality outcome. The part of the variance shared by the
ecologic and pollutant variables is the component of vari-
ance with mortality that has a relatively less-defined asso-
ciation with pollution. When the ecologic covariates are
included in the model, the component of the variance
overlap between pollution and mortality is removed, and
the remaining relationship becomes more pronounced.
These results imply that simultaneous consideration of
ecologic covariates and air pollution may be important in
models of chronic health effects.

Results from the Reanalysis (Krewski et al. 2000a,b) sug-
gested that SO2 may exert a more robust effect on mortality
than SO4

2�. In the current Extended Analysis, including
ecologic covariates at multiple scales exerted little influ-
ence on HR estimates for the association between SO2 and
all-cause and cause-specific mortality. An exception was
for IHD mortality, in which including ecologic covariates
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at the MSA & DIFF levels together increased the HR value
slightly (by 2.1%).

The ecologic covariates exerted their greatest effect on
mortality from IHD, which was also the outcome most
strongly related with PM2.5 (1979–1983 and 1999–2000),
SO4

2� (1980–1981 and 1990), and SO2 exposure, and was
the only outcome significantly associated with NO2 expo-
sure. IHD, a significant contributor to mortality in the
United States, is associated with a multitude of behavioral
risk factors such as smoking, lack of exercise, obesity, and
diet, which are likely related to spatial patterns in sociode-
mographics such as income, education level, and unem-
ployment. Spatial patterns in health services available to
diagnose and treat IHD are possibly another important
factor not explicitly evaluated here. The HR of IHD mor-
tality associated with air pollution exposure remained ele-
vated even after adjustment for a variety of individual-
level and ecologic covariates. The fact that IHD mortality
was the outcome most influenced by the ecologic covari-
ates suggests the importance of controlling for these influ-
ences in future studies.

Another interesting finding was the fact that, in general,
the geographic unit of analysis (ZCA or MSA) of ecologic
covariates tended to not make an appreciable difference in
their influence on HR estimates. In many cases, though,
HR estimates tended to be highest from models with the
ecologic covariate considered at the MSA & DIFF levels
simultaneously. The sociodemographic ecologic covariates
at simply the ZCA or MSA levels, compared with the MSA
& DIFF levels, did not substantially alter results of the air
pollution–mortality association found in the current study.

The association between air pollution and lung-cancer
mortality was found to vary somewhat by level of educa-
tion attainment recorded at the inception of the cohort.
The risk of lung-cancer mortality associated with each 10-
µg/m3 change in PM2.5 (as measured in 1999–2000) was
approximately 20% higher for participants who completed
only grade 12 education compared with no association
observed among those who completed more than high
school. Including ecologic covariates increased the point
estimates and width of CIs slightly. Similar results were
reported in the Reanalysis (Krewski et al. 2000a,b): relative
risks of 1.41 (95% CI, 0.87–2.29) and 1.39 (95% CI, 0.90–
2.15) were reported for lung-cancer mortality associated
with each 24.5-µg/m3 change in PM2.5 among those who
completed less than high school and those who completed
high school, respectively, whereas a relative risk of 0.66
(95% CI, 0.46–0.95) was found among those who com-
pleted more than high school. Indeed, this finding of
increasing mortality from PM2.5 exposure associated with
declining education attainment represented a key finding

of the Reanalysis. In the Updated Analysis, Pope and
coworkers (2002) also reported a similar trend. Although
the reasons for this finding are unknown, it was suggested
that level of education attainment may likely indicate the
effects of complex and multifactorial socioeconomic pro-
cesses on mortality or may reflect disproportionate pollu-
tion exposures.

Although the direction of the trend for all-cause and
CPD mortality in the current study was similar to that of
lung-cancer mortality, a significantly elevated HR was
found for these outcomes in each educational stratum and
the magnitude of the difference was small. This suggests
that education attainment may exert less of a modifying
force on these mortality categories. A surprising finding in
the current study was increasing IHD mortality associated
with PM2.5 (1999–2000) and increasing education attain-
ment (Table 8). HR estimates for IHD mortality also
increased up to 11% among those with more than high
school education with the inclusion of ecologic covariates
in the model. Large socioeconomic differences in coronary
mortality have been observed in the United States, where
individuals of lower socioeconomic status exhibit greater
coronary mortality compared with individuals of higher
socioeconomic status (Kunst et al. 1999; Mackenbach et al.
2001; Armstrong et al. 2003). The finding of a greater effect
of PM2.5 exposure on IHD mortality among those with
greater education attainment in the current study may sug-
gest that there are a number of individual- or community-
level influences on mortality among those with lower edu-
cation that are more powerful than that of PM2.5.

We also explored complex spatial patterns in the CPS-II
data. The 2000 Reanalysis, using a random effects Cox
model that could handle up to two levels of clustering,
showed that spatial risk models attenuate the air pollution
effect, both in terms of size and certainty. The presence of
spatial autocorrelation has important implications with
respect to bias and precision of model-based estimates of
risk. In this project we extended the random effects Cox
model used in the Reanalysis to be capable of handling
more than two levels of clustering in order to evaluate how
robust the results from the Reanalysis would be to more
sophisticated spatial models.

The spatial random effects Cox model captures addi-
tional variation beyond that explained by the standard Cox
model. We included random effects at both the MSA and
ZCA levels in order to capture variation in survival due to
unexplained variation between MSAs and between ZCAs
within MSAs. We note that including these random effects
tends to increase the estimated HR of death associated with
air pollution exposure and to inflate uncertainty in these
estimates, as evidenced by wider confidence intervals.



32

Extended Analysis of ACS Study of Particulate Air Pollution and Mortality

We further note that including the ecologic covariates
decreases the variance of the random effects at both the
MSA and ZCA level; the largest decrease in residual varia-
tion is based on models with the MSA & DIFF specification,
which suggests that partitioning the ecologic covariates into
between-MSA and within-MSA values more completely
captures these sources of variation.

INTRA-URBAN ANALYSIS FOR THE NEW YORK 
CITY REGION

A LAND-USE REGRESSION MODEL FOR PREDICTING 
PM2.5 CONCENTRATIONS

Background

Exposure to PM2.5 has been linked to a wide array of
health outcomes such as aggravation of existing heart and
lung disease and premature death (Pope et al. 2002). Such
health studies, though, often rely on pollutant exposure
estimates that are based on a city’s central monitors; that
same level of exposure is then assigned to the entire popu-
lation in a metropolitan area and exposure estimates are
compared between cities. Recent studies of PM2.5 have
shown, however, that intra-urban exposure gradients can
also be associated with atherosclerosis (Künzli et al. 2005)
and with high risk of premature death (Jerrett et al. 2005a).
These studies have used geostatistical interpolation models
that capture regional patterns of pollution well, but often
fail to account for the near-source impact from local traffic
and industry. Given the high risks of health effects reported
in these studies and others conducted in Europe (Hoek et
al. 2002; Nafstad et al. 2003), we need to refine the esti-
mates of pollutant exposures and reduce uncertainties that
could be associated with measurement error.

Several recent studies have demonstrated the potential
of LUR to supply accurate, small-area estimates of air pol-
lutant concentrations without the financial expense of dis-
persion or exposure modeling (Brauer et al. 2003; Briggs et
al. 2000a). The goal of LUR is to explain, to the extent pos-
sible, the variation in existing air quality data for a given
pollutant using data on nearby traffic, land use, emissions
from local sources, and population variables. In most cases,
multiple linear regression is used to develop and validate a
model using data from existing monitors and land-use data
that can then be applied to unmonitored locations pro-
vided the appropriate geographic data are available.

Ross and associates (2006) developed LUR models using
traffic data, distance to the coast, and road length measure-
ments to predict NO2 levels in San Diego, California, that

explained nearly 80%of the variation in measured expo-
sure levels. When the predicted levels were compared
with measured levels at validation locations — locations
that were not included in developing the model — they
were accurate to within, on average, 2.1 ppb. LUR models
to predict NO2 levels using traffic and other variables in
Montréal and several European cities also produced accu-
rate predictions (Jerrett et al. 2005b).

In contrast to a more localized pollutant such as NO2,
however, PM mass has a significant regional component
that includes smaller contributions from local sources
(Bari et al. 2003). This complicates estimating intra-urban
exposure with LUR. Models of PM2.5 in three European
cities produced mixed results. One of the only studies to
attempt prediction of fine particle concentrations with the
LUR methods to date was undertaken in Europe as part of
the TRAPCA (Brauer et al. 2003). Researchers measured
PM2.5 for representative temporal periods over one year in
the Netherlands; Munich, Germany; and Stockholm
County, Sweden. They found significant differences in the
ability of the model to predict monitoring data from region
to region: values from LUR models could predict from
73% of the variation of monitored values (the Netherlands)
down to 56% and 50% (Munich and Stockholm, respec-
tively). The limited variability of the monitoring sites in
Stockholm County was suggested as an explanation for the
difference in the Stockholm data (Brauer et al. 2003).
When combined with health data, an LUR model was able
to predict some childhood respiratory outcomes (Brauer et
al. 2002). More recently, in Germany, Hochadel and
coworkers (2006) found that LUR predicted PM2.5 absor-
bance (R2 = 65%–82%), but failed to predict PM2.5 mass
very well (R2 = 9%–17%).

North American cities have vastly different transporta-
tion and land-use patterns than those in Europe, and the
applicability of LUR to predict PM2.5 is unknown (Gilbert
et al. 2005). To our knowledge this study was the first
attempt to apply LUR to analyze PM2.5 in North America.

Materials and Methods

LUR uses concentrations of ambient pollutants at moni-
toring locations as the dependent variable. Surrounding
land-use, transportation, emissions from local sources,
and population data were obtained using GIS and
included in a regression equation as predictor variables. In
this study we assembled a database of information on land
use and transportation around the PM2.5 monitors in the
New York City region.

We constructed three models: one covering a 9-county
urban area using 3-year averages; another covering all
28 counties using 3-year averages; and a third covering the
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28 counties using data for only the winter months of 2000.
After describing the data we collected, we present our sta-
tistical modeling strategy.

Dependent Variable: Ambient PM2.5 Data For the 28-
county models, counties were chosen to match those
included in the Best Practice Model (BPM; a tool for fore-
casting regional travel demand) used by the New York Met-
ropolitan Transportation Council (NYMTC), the regional
council of governments established to help make transpor-
tation-related decisions in the region. Of those, 9 counties
were selected to represent the more urbanized area of New
York City’s five boroughs and adjacent New Jersey and
Connecticut counties.

In general, the 28 counties ranged from very urban to
relatively rural; 12 counties had fewer than 500,000 people
(with a minimum population of 96,000 in Putnam County)
and 6 counties had more than 1,000,000 people (maximum
population of 2,470,000 in Kings County). Most counties
had heavily urban populations (based on population per
square mile) — the populations were greater than 90%
urban in 22 counties and greater than 99% in 12 of those.
The 6 least-urban counties (Hunterdon, Warren, Sussex,
Orange, Dutchess, and Putnam), all of which are more than
50 km west or north of downtown Manhattan, range from
40%–76% urban. For comparison, the average county pop-
ulation for the three states is 340,000 and the average
urban percentage is 64%.

We calculated 3-year averages (from data in 1999–2001)
of PM2.5 for monitors in the 28-county region around New
York City (Figure 1) using data from the U.S. EPA Air
Quality Subsystem (AQS; a repository for ambient air
quality data made available for analysis). For each monitor
that had at least eight observations in a quarter (i.e., at least
half of the scheduled monitoring days), we first computed
quarterly means. When we could calculate a complete set
of four quarterly means for three years running, we com-
puted 3-year averages from the 12 quarterly means. (We lost
only about 5% of the monitors due to incomplete data.)

We were also interested in assessing seasonal variations
in exposure, especially for SO4

2�. New York City experi-
ences long-range transport of secondary aerosols with a
high proportion of SO4

2� in the warmer months. Because
SO4

2� is also formed regionally, the exposure gradient
within cities is more spatially homogenous during the
warmer months when secondary aerosols are transported.
By contrast, in the winter months, SO4

2� concentrations are
strongly influenced by local emissions from automobile and
truck traffic, shipping, heating, and industry. The exposure
gradient within the city is therefore generally steeper
during the winter months when the dominant regional

exposure is absent. The steeper gradients increase the sta-
tistical power of our health effects models to detect associ-
ations between air pollution and mortality.

Thus, for winter of 2000 in 28 counties, we computed
pollutant averages using data from January, February, and
March. We limited the winter-2000 analysis to those sites
that could provide both 3-year and winter-2000 averages.
Data from 62 monitors in the 28-county region were
included in the 3-year analysis of the 28-county area (1999–
2001), data from 36 in the 3-year analysis of the 9-county
area (1999–2001), and data from 45 for the 28-county area in
winter (2000).

At nine monitoring locations, two types of monitors
were used concurrently: the Federal Reference Method
(FRM) and the tapered-element oscillating microbalance
(TEOM) continuous monitoring method. When both TEOM
and FRM data were collected at the same site, we used the
FRM data.

For most monitors, the AQS included latitudes and lon-
gitudes for the monitors, but some were inaccurate. We
therefore used locations provided directly by the appro-
priate state agencies (the Department of Environmental
Conservation in New York and the Departments of Envi-
ronmental Protection in New Jersey and Connecticut). In
most instances, the locations were identified by the agen-
cies with either a global positioning system (GPS) or ortho-
photos in a GIS. For a limited number of older sites, the
more accurate methods had not been used by the agencies,
so we manually verified their locations in a GIS using a
combination of road layers, orthophotos, New York State
Department of Transportation Raster Quadrangles, and
USGS Digital Raster Graphics.

Independent Variables: Traffic, Land-Use, Population, 
and Local Emissions Data For each air monitoring loca-
tion in the AQS for which we had adequate data on PM2.5,
using our GIS software we generated circular buffers
around the monitor location with different radii (50 m, 100
m, 300 m, 500 m, and 1000 m). All of the mapped data in
our GIS layers (as described below) were then linked with
the circular buffers, and the traffic and land-use data for all
buffers around each air monitoring location were calcu-
lated. Calculations were performed with a vector data
structure using ArcGIS 9.1 (ESRI 2004).

Traffic and Road Data The NYMTC provided traffic
estimates for 2002 for New York City and surrounding
counties that covered approximately 40,000 road links in
28 counties using the BPM, a tool used for forecasting
regional travel demand in the metropolitan area. The
BPM makes use of traffic data from more than a dozen
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municipal and other sources. The road network used in
the BPM was developed to include all minor arterial roads
or larger from five separate network databases. The five
had been conflated to match the LION street centerline file
for New York’s five boroughs (from the City of New York
Department of City Planning 2009) and the USCB Topolog-
ically Integrated Geographic Encoding and Referencing
Database. A complete description of the BPM model and
development of mapped roadways can be found in Parsons
Brinckerhoff Quade & Douglas, Inc. (2005). The traffic esti-
mates, divided by vehicle type (heavy- and light-duty
trucks, buses, vans, cars), are available for the four time
periods of morning, midday, afternoon, and night. We used
estimates for afternoon rush-hour traffic flow because a
complete set of estimates (for all 40,000 links) for the
other time periods was not yet available. We calculated
totals for truck traffic and total traffic for each buffer zone
around each monitor. Traffic data were scaled to 1000s of
vehicle-kilometers per hour. We also used this data source

to calculate road density (total length of roadway in kilo-
meters) in each buffer area.

Land-Use Data Layers of land-use data were assembled
from several sources: extremely detailed (1 inch = ~250
feet) tax-lot data from the New York City Department of
City Planning for all tax lots in the five boroughs (2003);
medium-scaled (1 inch = ~40,000 feet) land-use data for
New Jersey from the New Jersey Department of Environ-
mental Conservation (1995/1997); and coarse scale (1 inch
= ~100,000 feet) land-use data from the USGS National
Land Cover Data 1997 (based on Landsat satellite images
from 1992 and confirmed using aerial photos). For each
land-use layer we calculated the total area of an individual
land-use category (e.g., industrial, forest, residence) in
each buffer. Although the tax-lot and New Jersey land-use
data layers were more detailed, only the data from the
USGS covered the entire area of interest.

Figure 1. Locations of PM2.5 monitors in the New York City region.
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Similar uses within each land-use layer were grouped to
create aggregate variables. The land-use categories within
the three layers were not identical but comparable group-
ings were tabulated. We generated industrial and residen-
tial categories from all three land-use layers. In addition,
for the New Jersey Department of Environmental Conser-
vation data and the National Land Cover Data, we created
water, vegetation, and barren land-use variables.

The “Industrial” category, discussed throughout most of
this section, comprises the “Industrial / Commercial /
Transportation” category from USGS data and the New
Jersey land-use data. We created a comparable grouping
using the New York City tax-lot data by combining the cate-
gories denoted “Industrial and Manufacturing”, “Transpor-
tation and Utility” and “Commercial and Office Buildings.”
The New York City tax-lot data and the New Jersey land-use
data were used only for sensitivity analysis because they
did not cover the entire region. Land-use areas were con-
verted to acres (1 acre = 4047 m2).

Population Data Census data for the New York City
study area were acquired at the block-group level from
the USCB 2000 Summary File 1 (for population and
housing data) and Summary File 3 (for income data). All
population and housing data are in 1000s or percentages;
income data were not scaled (U.S. Census Bureau 2000).
These data were used as possible predictor variables in
the LUR model.

Local Emissions Data We calculated primary emissions
of PM2.5 (area, point, off-road mobile, and on-road mobile)
for each county and assigned to each monitor the value
associated with its county as a possible predictor variable.
In addition, for each buffer area, we calculated the number
of point sources and the amount of PM2.5 emissions using

data for 1999 from the U.S. EPA National Emissions Inven-
tory (1999).

Statistical Data Analysis We developed three separate
models: two that included data from all 28 counties, one of
which used the 3-year-average PM2.5 data and one that
used the winter-2000 PM2.5 data; and a third that used 3-
year-average PM2.5 but was geographically limited to the
nine more urbanized counties.

We started with 62 monitors in the 28 counties. First,
based on each monitor’s land-use code in the AQS, we
divided them into agricultural/forest, commercial, indus-
trial/mobile, and residential categories. Next, to validate
our predictions later, we randomly removed 20% of the
monitors to use for validating the predictions that would
be generated. Samples (monitors) were removed from each
of the 28-county and 9-county models separately using the
same criteria. The remaining monitors were used to
develop the models.

The 28-county 3-year model included 49 monitors for
developing the model (plus 13 removed for validation; 62
total), the 28-county winter-2000 model included 36 moni-
tors for modeling (plus 9 removed for validation; 45 total),
and the 3-year 9-county model included 29 monitors for
modeling (plus 7 removed for validation; 36 total) (Table 12).

We then considered more than 25 separate variables
within five different buffer distances around each monitor
for possible inclusion in the final three models. These
included total traffic, total truck traffic, industrial land
use, residential land use, total county-wide emissions,
point emissions, total number of point sources of PM2.5,
total population, number of housing units, median income
of population, and the percentage of the population who
are not white.

Table 12. Modeling and Validation Monitors by Land-Use Category

Land-Use 
Categorya

3-Year 
Models

Winter-2000 
Average

28-County
Total

28-County
Validation

9-County
Total

9-County
Validation

28-County
Total

28-County
Validation

Industrial / mobile 8 2 6 1 5 1
Residential 32 6 19 4 24 5
Commercial 18 4 11 2 12 2
Agricultural / forest 4 1 0 0 4 1

Total 62 13 36 7 45 9

a Based on codes in the U.S. EPA’s AQS.
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All of the predictor variables discussed above were
included in a combination of forward, stepwise, and all-
subsets selection procedures. We included variables in the
model based on the explained sums of squares, the Mal-
lows Cp statistic, the variance inflation factor (VIF)
method, and other diagnostic tools. In the forward selec-
tion process, as the strongest variables are added to the
model the remaining variables are reevaluated for inclu-
sion. As such, the same variable at a different buffer dis-
tance may be included if it outperformed other related
variables. (For example, in a model that included total
traffic in the 300-m buffer, total traffic in the 500-m buffer
might also be used if it outperformed residential land use.)
The sensitivity of model parameters to the sample selec-
tion procedure was evaluated with a bootstrap method in
which five random samples were excluded, the model was
run, the coefficients were recorded, the five samples were
returned to the pool, and another random sample of five
was removed. This process was repeated 10,000 times.

To evaluate the validity of the assumption that all data
points are independent, we tested the spatial autocorrela-
tion in the 3-year-average and winter-2000 PM2.5 monitor
values themselves and then in the residuals from our final
28-county models using the Moran I statistic (Bailey and
Gatrell 1995) and two neighborhood constructions — a
Queen contiguity matrix based on Thiessen polygons, and
a nearest-neighbor approach in which we limited the anal-
ysis to the three nearest monitors. Statistical significance
was tested using a permutation test with 999 iterations. We
also qualitatively assessed the extent of spatial autocorre-
lation in the PM2.5 concentrations using variograms of the
residuals from our final models.

For visualization purposes, we created a smooth inter-
polated surface by predicting PM2.5 concentrations at 5600
random point locations (200 per county) with the LUR for-
mula and kriged these predictions. To compare our LUR
estimates to the exposure interpolation method that is
commonly used in health studies, we also kriged the PM2.5
values from the monitors. All the statistical analysis was
conducted using R statistical software and the GSTAT

library (Pebesma 2004; R Development Core Team 2005).

We evaluated the quality of the predictions at validation
locations by calculating the root-mean-squared error
(RMSE) at each location. We assessed the quality of the
final models (those generated after returning the validation
locations to the pool of samples) by calculating the RMSE
based on fitted values in a leave-one-out cross validation.

Results

Descriptive Statistics for PM2.5 PM2.5 3-year-average
values for both the 28- and 9-county regions were approx-
imately normally distributed (Figure 2) with a mean for the
28-county region of 14.3 µg/m3 (median = 14.3, SD = 1.78)
and a mean for the 9-county region of 15.3 µg/m3 (median
= 15.1, SD = 1.42). The highest concentrations were
located in 4 counties including Manhattan, New York;
Bergen and Hudson, New Jersey; and New Haven, Con-
necticut. Most of these locations are situated in close prox-
imity to major highways.  Locations with higher
concentrations tended to be located closer to Manhattan.

Winter-2000 averages were also approximately normally
distributed with a mean of 14.0 µg/m3 (median = 14.3, SD
= 2.55); three of the four highest concentrations were

Figure 2. Distributions of mean PM2.5 concentrations. Mean for the 28-county 3-year average was 14.3 µg/m3 (median = 14.3; SD ± 1.78), for the 9-county
3-year average was 15.3 µg/m3 (median = 15.1; SD ± 1.42), and for the 28-county winter-2000 average was 14.0 µg/m3 (median = 14.3; SD ± 2.55). Anal-
yses were based on the full set of samples with no validation samples removed.



D. Krewski et al.

37

located in Manhattan and one in New Haven. These statis-
tics are based on the full set of samples with no validation
samples removed.

LUR Model Building and Results

28-County and 9-County Models Based on 3-Year-Average
Concentrations     For both regions, the total traffic variable
was the strongest predictor of PM2.5 concentrations (see
Table 13 for distributional statistics on final predictors).
Total traffic in the 500-m buffer and total traffic in the 300-
m buffer, in particular, led all other variables in explana-
tory power. Urbanization-related variables, primarily in
the 500- and 1000-m buffers, were also strong predictors of
PM2.5 concentrations both with and without total traffic in
the 500-m buffer included in the model. These included
total population in both the 500- and 1000-m buffers and
numbers of both households and housing units in the
1000-m buffer.

With total traffic in the 500-m buffer and total popula-
tion in the 500-m and 1000-m buffers in the model, the
next strongest predictor was industrial land use in the 300-
m buffer for both the 28-county and 9-county regions.

The final models for both of these regions therefore
included total traffic in the 500-meter buffer, total popula-
tion in the 1000-meter buffer, and industrial land use in
the 300-meter buffer (Table 14).

The 28-county 3-year model predicted PM2.5 at valida-
tion locations to within, on average, 0.93 µg/m3 (6.5%) of
actual concentrations with a RMSE of 1.10. The 9-county
model predicted PM2.5 at validation locations to within,
on average, 0.77 µg/m3 (5.0%) of actual concentrations
with a RMSE of 0.87. The predictions for validation sites
showed some bias, particularly in the 28-county 3-year
model, which was likely to over-predict PM2.5 values,

though no bias was apparent in the models after including
the validation samples (Figure 3).

Within the 28-county 3-year model, the predictions
were better for those validation sites located in the more
urbanized 9-county area. The nine validation sites located
within the 9 counties had a RMSE of 0.90, whereas the four
sites located in the other 19 counties had a RMSE of 1.45.
This distinction, however, is due primarily to a single large
residual in Waterbury, Connecticut, at a site with the
second highest industrial land use among all the 62 loca-
tions in the 28-county area and relatively high traffic.

When the validation samples were returned to the pool
of modeling samples and the models were run again, the
regression parameters remained similar; the parameter for
the industrial land-use variable changed most between
runs. The average absolute value residuals based on the
fitted values (for observations included in the modeling
rather than the prediction of validation locations) from the
full models (no excluded samples) were 0.85 µg/m3 or
6.0% of actual concentrations for the 28-county 3-year
model (with an RMSE based on a leave-one-out cross vali-
dation of 1.15), and 0.69 µg/m3 or 4.5% of actual concen-
trations for the 9-county 3-year model (RMSE of 1.00). The
final 28-county 3-year model explained 64% of the varia-
tion in the PM2.5 measured values from the validation
locations, and the 9-county 3-year model explained 62%
of the variation. Plots of the fitted and observed values are
pictured in Figure 4.

Models included data from a mix of FRM and TEOM
monitors: for the 28-county 3-year model, 50 FRM and 12
TEOM; for the winter-2000 model, 42 FRM and 3 TEOM;
for the 9-county 3-year model, 25 FRM and 11 TEOM.
Although plots of the nine sampling locations with both
FRM and TEOM monitors showed little or no bias (four

Table 13. Distribution Statistics for Final Predictor Variablesa

28-County 3 Years 9-County 3 Years 28-County Winter-2000

Total
Traffic 
(500 m)

Total
Population 
(1000 m)

Industrial 
Land Use 
(300 m)

Total
Traffic 
(500 m)

Total
Population 
(1000 m)

Industrial 
Land Use 
(300 m)

Total
Traffic 
(300 m)

Total
Population 
(1000 m)

Vegetation 
Land Use 
(1000 m)

Minimum 0.00 0.21 0.00 0.00 0.21 0.00 0.00 0.21 4.92
1st quartile 1.46 6.31 1.17 2.41 16.75 3.40 0.33 6.09 31.36
Median 4.55 14.53 9.23 5.38 36.47 7.87 1.07 11.19 96.66

Mean 6.41 27.52 14.26 8.03 42.60 12.85 2.21 22.97 125.90
3rd quartile 9.80 42.28 20.34 13.48 55.01 16.59 3.83 27.22 122.10
Maximum 24.06 119.40 52.70 24.06 119.40 45.77 8.35 119.40 697.10

a Traffic units: 1000s of vehicle-km/hour; total population units: 1000s of people; land-use units: acres.
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Table 14. Statistics for Final LUR Models

Parameter
Value SE t Statistic P Value VIF

28-County 3-Year

Intercept 12.273 0.261 46.965 0.000 —

Total traffic (500 m) 0.121 0.027 4.530 0.000 1.344
Total population (1000 m) 0.031 0.006 5.704 0.000 1.378
Industrial land use (300 m) 0.028 0.010 2.721 0.009 1.253

Multiple R2 0.642
Model P value 0.000

9-County 3-Year
Intercept 13.171 0.364 36.232 0.000 —
Total traffic (500 m) 0.098 0.025 3.967 0.000 1.196
Total population (1000 m) 0.020 0.006 3.547 0.001 1.359
Industrial land use (300 m) 0.040 0.013 3.005 0.005 1.321

Multiple R2 0.617
Model P value 0.000

28-County Winter-2000
Intercept 12.841 0.509 25.214 0.000 —
Total traffic (300 m) 0.463 0.106 4.370 0.000 1.106
Total population (1000 m) 0.033 0.010 3.355 0.002 1.181
Vegetation land use (1000 m) �0.005 0.002 �2.453 0.019 1.200

Multiple R2 0.607
Model P value 0.000

Figure 3. Predicted versus actual values for the validation samples.  13 samples for the 28-county 3-year model; 7 for the 9-county 3-year model; and 9 for
the 28-county winter-2000 model.
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locations had higher TEOM values and five had higher FRM
values), we tested the inclusion of an indicator variable in
the models discussed above to control for a possible effect.
This indicator was not significant in any of the models and
was excluded.

The 9-county 3-year model was not used for the spatial
analysis of mortality and pollution. It was a means of
testing whether less detailed land-use data would affect
model predictions and whether the same variables would
be strong in a more urbanized context (if the more rural
counties were eliminated).

28-County Model Based on Winter-2000 Concentrations
Developing the model of winter-2000 concentrations led to
a very similar model as those based on 3-year-average
PM2.5 concentrations. Length of road in the 1000-m buffer,
total area of high-density residential land use in the 1000-
m buffer, and total traffic within the 1000- and 500-m
buffers were, singly, the top predictors of winter PM2.5
concentrations after validation samples were removed.
Although these variables appeared to individually predict
well, their collinearity with other strong candidate predic-
tors and highly influential observations pointed us to more
robust variables with slightly less predictive power.

The final 28-county winter-2000 model included total
traffic in the 300-m buffer, total population in the 1000-m
buffer, and vegetative land use in the 1000-m buffer (Table
14). The inclusion of the vegetative land-use variable was
strongly influenced by two rural monitors in New Jersey.
Removing these two points reduced the level of statistical
significance of the variable to P < 0.15. The value of the
parameter for vegetative land use remained very similar

(�0.00457 vs. �0.00460) with and without these points
and we opted to retain the vegetative land use variable
because it helped to account for rural–urban differences.
The average absolute value residual from the predictions
at validation locations was 1.37 µg/m3 (within an average
of 11% of actual concentrations) with a RMSE of 1.72.
These numbers were inflated by one large residual at a
Brooklyn location with an unusually high population den-
sity. Without this one location, the average absolute value
residual is 1.08 µg/m3 (9% of actual) with a RMSE of 1.27.

For the 28-county winter-2000 model, the predictions
were, on average, better at the five sites outside of the 9
urbanized counties than at the four validation sites inside
(RMSE of 1.30 outside vs. 2.14 inside). The distinction
between highly urbanized and less urbanized areas, again,
is primarily a product of the single large residual at the
Brooklyn location. Among the 36 modeling samples used
for the winter-2000 model in the 28-county area, 19 were
inside the 9 more-urbanized counties and 17 outside.

When the validation samples were returned to the pool
of modeling samples and the models were run again, the
parameters remained similar in that the greatest change
(approximately 15%) occurred in the parameter for vegeta-
tive land use. The average absolute value of the residuals
based on the fitted data from the full models (no excluded
samples) was 1.19 µg/m3, which represents an average of
9% of actual concentrations with a RMSE of 1.69 µg/m3

based on a leave-one-out cross validation. This final 28-
county winter-2000 model explained 61% of the variation
in PM2.5 concentrations. Interpolated surfaces of LUR pre-
dictions are shown in Figure 5.

Figure 4. Fitted versus actual values for final models.
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Figure 5. Interpolated LUR predictions for the 28-county and 9-county 3-year models and the 28-county winter-2000 model. (Figure continues next
page.)
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Figure 5 (Continued).



42

Extended Analysis of ACS Study of Particulate Air Pollution and Mortality

Figure 5 (Continued).
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Bootstrap Analysis The bootstrap results for all three
models showed that they were relatively stable to the
choice of samples (Figure 6). We observed a slight bimodal
shape in the industrial variable in the 9-county model. In
all cases, alterations from normality were caused by a
single sample (monitor) (AIRS ID 340030004) located near

Fort Lee, New Jersey, just 1.5 miles from Manhattan and
extremely close to Interstate 95 and the George Wash-
ington Bridge. This one point had the highest PM2.5 con-
centration of all samples. We had no reason to believe that
the underlying data for this station were inaccurate and
the monitor was not excluded.

Figure 6. Results of bootstrap analyses for final parameters in the 28-county and 9-county 3-year models and the 28-county winter-2000 model.  Example:
For total traffic in the 500-m buffer (upper right panel), 0.121 was the parameter from the 28-county 3-year model; the histogram shows how that parameter
changed when sites were randomly removed. (Figure continues next page.)
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Figure 6 (Continued).
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Figure 6 (Continued).
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Spatial Autocorrelation As expected, we found that the
PM2.5 values were highly autocorrelated as shown by the
Moran I values of 0.52 (P = 0.001), 0.27 (P = 0.003), and
0.43 (P = 0.001) for the 28-county 3-year, 9-county 3-year,
and 28-county winter-2000 models, respectively, when we
used the Queen’s contiguity matrix, and 0.49 (P = 0.001),
0.38 (P = 0.002), and 0.37 (P = 0.002) for the same models
when we used a three-nearest-neighbor approach. The spa-
tial autocorrelation in our residuals from the full models
was considerably diminished and generally nonsignifi-
cant, which suggests that the models did not violate the
independence assumption and that the included covari-
ates accounted for the autocorrelation. The residuals pro-
duced Moran I values of 0.21 (P = 0.003), 0.09 (P = 0.108),
and 0.08 (P = 0.105) for the 28-county 3-year, 9-county 3-
year, and 28-county winter-2000 models, respectively,
when we used the Queen’s contiguity matrix, and 0.10 (P =
0.101), 0.01 (P = 0.324), and �0.03 (P = 0.496) when we
used the three-nearest-neighbor approach. Variograms of
the raw PM2.5 values showed considerable spatial autocor-
relation but the pattern was significantly diminished and
barely visible in variograms of the residuals from the full
models (variograms not shown).

Kriging PM2.5 Values from Monitors Despite the limited
number of samples (49, 29, and 36 for the 28-county 3-
year, 9-county 3-year, and 28-county winter-2000 models,
respectively), kriging based on exponential models per-
formed surprisingly well, and even outperformed LUR at
many locations. For the 28-county 3-year model we calcu-
lated an average absolute value residual of 0.68 and a
RMSE on these predictions of 0.90 (compared with 1.10 for
LUR). For the 9-county model, the average absolute value
residual was 0.48, with a RMSE of 0.61 (compared with
0.87 for LUR). For the 28-county winter-2000 model, we
calculated an average absolute value residual of 1.39 and a
RMSE of 1.55 (compared with 1.72 for LUR).

Although kriging performed well when predicting mea-
sured PM2.5 concentrations at validation locations using
only the modeling samples, the LUR model outperformed
kriging based on the results of cross validation analyses
using the full set of samples. The RMSEs of cross valida-
tion predictions, for example, are 1.15, 1.00, and 1.69 for
the LUR compared with 1.30, 1.47, and 2.04 for the kriging
(28-county 3-year, 9-county 3-year, and 28-county winter-
2000 models, respectively).

Discussion

We developed three LUR models for predicting PM2.5
concentrations in New York City and surrounding counties
using a combination of traffic, land-use, population, and

local emissions variables. These models explained more
than 60% of the variability in measured PM2.5 concentra-
tions and they predicted concentrations at validation loca-
tions that were generally within 10% of actual values.

All models included total traffic in the 500-m or 300-m
buffer and total population in the 1000-m buffer. The 28-
county and 9-county 3-year models also included the
industrial land-use in the 300-m buffer variable, whereas
the 28-county winter-2000 model included a variable rep-
resenting vegetative land use in the 1000-m buffer. There
was little difference between the 28-county models based
on winter-2000 concentrations and on the 3-year averages.
The relative strength of a smaller (300-m vs. 500-m) buffer
for total traffic in the 28-county winter-2000 model does
suggest a stronger local influence; but otherwise, the dif-
ference in regional and local contributions did not appear
to strongly influence the model.

Given the presumed impact of local traffic, we would
have expected variables in smaller buffers to be the stron-
gest predictors of PM2.5 concentrations. Although they
were indeed good predictors (traffic in the 100-m buffer,
for example, explained approximately 25% of variation in
the 28-county 3-year concentrations), they did not per-
form as well as variables in larger buffers. This is attribut-
able to a number of factors. Since PM2.5 is a pollutant with
both regional and local contributors, it is possible that
strong predictor variables are able to explain some varia-
tion for both sources. Predictors based on relatively small
buffers may also perform better when modeling highly
concentrated samples (which was not the case in this
analysis). Finally, as demonstrated through European
studies (Hochadel et al. 2006), PM2.5 varies more gradu-
ally over space than elemental carbon and therefore the
strength of the larger buffers may reflect this large-area
variation in the pollutant.

In general, these variables (total traffic 500 m and 300 m,
total population 1000 m, industrial 1000 m, and vegetation
1000 m) were robust regardless of which specific mon-
itoring locations were omitted from the model to use for
validation, although we found that the industrial land-use
variable was affected by the inclusion or exclusion of a
New Jersey site that had the highest PM2.5 concentration.
Nevertheless, the fact that the variable for industrial land
use in the 300-m buffer in the five New York City boroughs
was also significant when modeled without the influence
of the New Jersey sample lends support to the important
role played by industrial land use. Furthermore, we found
that an industrial land-use variable derived from New York
City's tax-lot data — which are limited to the five boroughs,
have a very different resolution, and have slightly differ-
ent land-use characterizations — was also a statistically
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significant predictor of PM2.5 levels. This supports the
assertion that industrial land use is indeed explaining
variation in PM2.5 and that the result we found was not due
to the idiosyncratic nature of the data we included.

The 28-county 3-year model without validation samples
exhibited some bias in that it over-predicted ten values
and under-predicted three. The bias was less evident, but
still existed, in the full model that included the validation
samples (34 were over-predicted and 28 were under-pre-
dicted). The under-prediction appears to have occurred in
the more urbanized New Jersey counties and over-predic-
tion appears to have occurred in areas distant from New
York City and, to a lesser extent, in eastern New York City
and Long Island. The bias did not exist in the 9-county
model. Although slight bias was present, the models per-
formed well overall on cross-validation.

Although the RMSEs for the 28-county 3-year and
winter-2000 models suggest that predictions at validation
locations were more precise for the 3-year values than for
the winter values, they also disguise differences in vari-
ance and spread. The winter-2000 PM2.5 values had
approximately twice the variance and a 24% greater inter-
quartile range than the 3-year values. The mean absolute
percentage error (MAPE) may allow more appropriate
comparison; it reveals that the predictions are more sim-
ilar in percentage terms: The MAPE for the predictions at
validation locations was 6.5% for the 28-county 3-year
model and 6.2% for the 28-county winter-2000 model (and
5.0% for the 3-year 9-county 3-year model).

We found that when the validation samples (about 20%
of the total) were omitted, kriging models more accurately
predicted the monitored values at the validation sites
than the LUR models; but when the validation samples
were returned to the pool of modeling samples, LUR per-
formed better. Since ordinary kriging employs only data
on the variable of interest, it is not vulnerable to unusual
values in potential predictor variables. The extreme
values for traffic in some areas of New York City, for
example, could inflate (or deflate) LUR parameters, par-
ticularly in models based on a limited number of observa-
tions. At the same time, kriging the raw monitoring data
limits the potential for kriging to capture small-area vari-
ation such as an intersection of major highways. Kriging,
as a result, may “over-smooth” and is likely to miss areas
with unusually high PM2.5 concentrations. It is also pos-
sible that kriging in this context violates the fundamental
assumption of stationarity — that relationships between
exposure levels and pollutant sources are constant over
time and space. Points close to high-traffic freeways, for
example, may exhibit a different relationship between

PM2.5 and distance than would points in rural areas far
from any major source of PM2.5.

PM2.5 exhibits strong seasonal and diurnal patterns in
New York City; concentrations are higher in the summer
months and during the morning (6 AM to 9 AM) and late
evening (5 PM to 10 PM) hours (DeGaetano and Doherty
2004). Although this set of analyses makes use of PM2.5
concentrations averaged over time, future analyses may
wish to consider these patterns and develop, for instance,
daily or seasonal maps that could highlight short-term
variability (Christakos and Serre 2003).

As mentioned in the Materials and Methods section,
incomplete data provided by the NYMTC precluded our
use of traffic data for all time periods. For example, it is
likely that models based on average daily traffic, rather
than average daily afternoon rush-hour traffic, would lead
to different parameters. It is also possible that an analysis
that relies on rush-hour traffic alone (such as this one)
could lead to a wider spread of PM2.5 predictions because
areas of high traffic in off-peak times may also have a sig-
nificantly larger increase in traffic during rush hour. Nev-
ertheless, we would expect relative rates of traffic for
different areas to remain similar. We found, for example,
the Spearman rank correlation coefficient for evening
(4 PM to 8 PM) rush-hour traffic compared with night-time
(8 PM to 6 AM) traffic for the same road segments is 0.93;
this suggests that the results would likely have been sim-
ilar had we used total average daily traffic.

These models demonstrate that PM2.5 can be predicted
using LUR in North America. Using a combination of
traffic, population, land-use, and local point-source emis-
sions variables we were able to predict PM2.5 concentra-
tions well at validation locations and predict more than
60% of the variation in PM2.5 measurements over a wide
area. Although the three models are not identical in vari-
ables or parameters, their similarity reinforces the relation-
ship between PM2.5 concentrations and land use near
monitors. Given the strong predictive power of both LUR
and kriging, we also applied kriging with external drift (a
technique that combines aspects of LUR with kriging) to
the data. The limited residual autocorrelation from the
LUR, however, precluded adequately fitting variograms
and predictions were not improved using this technique.

These models, and LUR models in general, hold partic-
ular promise in epidemiologic settings in which small-area
variations can be associated with significant health effects.
Whereas these models seem to predict well, data limita-
tions hampered our ability to investigate all potentially
useful predictors. In particular, further research is needed
on the possible effects of street canyons and of seasonal
variations in PM2.5.



48

Extended Analysis of ACS Study of Particulate Air Pollution and Mortality

SPATIAL ANALYSIS OF AIR POLLUTION AND 
MORTALITY IN NEW YORK

Materials and Methods

Study Population Mortality data were extracted from the
ACS CPS-II database for subjects in 746 ZCAs in the New
York City region (28 counties) (Figure 7). In total, 43,930
subjects lived in these ZCAs and 10,525 deaths were
recorded during the follow-up from 1982 to 2000.

Assessment of Exposure to PM2.5 Regression equations
were developed to predict PM2.5 concentrations around air

monitoring locations in the New York City region using
proximate traffic, population, and land-use data (see the
section A Land-Use Regression Model for Predicting PM2.5
Concentrations for details). The dependent variable in our
LUR was PM2.5; 3-year averages for 1999 through 2001
were calculated using daily data from the EPA AQS.

In total we assembled complete data for 62 sites in 28
counties. Models were fitted for the 3-year averages and
the winter-2000 averages (January through March). The
winter average was used to reduce the impact of regional
transport of secondary SO4

2� aerosols; this allowed us to
assess particles that may be more toxic and are likely to
result from local traffic and industry.

Figure 7. New York City study region.  
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Land-use data were assembled from several sources at
several resolutions. These included detailed (1 inch =
~250 feet) tax-lot data from the New York City Department
of City Planning (2003), medium scale (1 inch = ~40,000
feet) land-use data for New Jersey from the New Jersey
Department of Environmental Conservation (1995/1997),
and coarse scale (1 inch = ~100,000 feet) land-use data
(National Land Cover Data) from the USGS (1997, based on
Landsat images from 1992 and confirmed using aerial
photos). Data on traffic and road conditions were supplied
by the NYMTC. (We also conducted sensitivity analyses to
compare the results of the LUR models of exposure with
results from ordinary kriging models. See details of the
model derivation and validation in the section A Land-Use
Regression Model for Predicting PM2.5 Concentrations;
also published in Ross et al. 2007).

Ecologic Covariates Contextual conditions for the ZCAs
where subjects lived at enrollment were controlled with
the ecologic covariates (from USCB 1980; see sidebar),
which included poverty, income disparity, unemploy-
ment, median household income, education attainment,
and three descriptors of ethnic origin: percentage who are
white, Hispanic-American, and African-American (we
used only “percentage white” in the statistical models due
to its high inverse correlations with the other ethnic cate-
gories). Finally, percentage of homes with air conditioning
was used to assess possible infiltration of particles; a
greater proportion of air conditioning use could lead to
lower indoor exposure levels.

Statistical Methods and Data Analysis

Detailed methods are reported in an earlier kriging-
based exposure study (Jerrett et al. 2005a) and in the
Nationwide Analysis section of this report. Briefly, we
used the random effects Cox model with random effects
defined at the ZCA scale and assuming positive correlation
between random effects in neighboring areas. Sensitivity
analyses were also conducted using two levels of clus-
tering (e.g., ZCA and MSA) as well as with controls for the
likely correlation of observed values for the cohort (non-
independence) in the random effects model, similar to the
approach used for the Nationwide Analysis.

Exactly the same 44 individual-level covariates identified
in earlier ACS studies of the health effects of air pollution
were included. These variables (see sidebar) measure life-
style, diet, demographics, occupational, and educational

factors that may confound the air pollution–mortality
association (Pope et al. 2002). There were 12 different
smoking variables included in every model. Controls for
various ecologic covariates were also included.

Results

LUR Exposure Models The final 28-county 3-year LUR
model included the three predictors of total traffic within
500 m, total population within 1000 m, and industrial land
use within 300 m of the monitors. This model predicted
66% of the variation in PM2.5 and estimated PM2.5 concen-
trations at the 13 validation locations to within 0.93 µg/m3

(6.5%) of actual concentrations. Concentrations were gen-
erally highest in the central parts of New York City, espe-
cially in Manhattan. The 28-county winter-2000 model
used similar independent variables, but explained slightly
less of the variation, with a correlation coefficient of ~ 0.60.

Mortality Models Table 15 summarizes the health effects
estimates for all-cause and cause-specific deaths in the 28-
county 3-year model. Only IHD had a significant positive
association with PM2.5. The IHD results were insensitive to
control for the 44 individual-level variables and for most
of the ecologic covariates. HR estimates were lower, but
positive (with confidence intervals including unity) for
models that contained percentage of unemployment,
median household income, or all seven ecologic covariates
together in the model with the 3-year average PM2.5 con-
centration For the 28-county winter-2000 model, effects
were significant and relatively stable for IHD with all vari-
able specifications, including those that controlled for all
seven ecologic covariates and for copollutant exposure to
O3 (see Table 16).

We compared the 28-county 3-year average PM2.5 con-
centration at the 90% decile and at the 10% decile in the
exposure distribution and found a difference of 1.5 µg/m3.
For this exposure contrast with the fully adjusted model,
the HR for PM2.5 and IHD was 1.06 (95% CI, 1.00–1.12). For
the 28-county winter-2000 average PM2.5 exposure, the dif-
ference between the 10% and 90% deciles was 3.9 µg/m3

PM2.5, and the HR for IHD was 1.21 (95% CI, 1.07–1.34;
Table 16). Diabetes and endocrine deaths also had large HR
estimates (in the range of 1.2 to 1.4; Table 16), although
these were confounded by the ecologic covariates.
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Extended Analysis of ACS Study of Particulate Air Pollution and Mortality

Results for all models in which the 44 individual-level
variables were controlled are shown in Figure 8 for all
cause-of-death categories. Figure 9 summarizes the results
for causes of death that appeared to be associated with
PM2.5 exposures. Neither all-cause nor any cause-specific
deaths had a positive, significant association with PM2.5.
All-cause and CPD deaths did have positive HRs, but these
were attenuated by some ecologic covariates.

We investigated the sensitivity of the results to alterna-
tive model specifications using the random effects models
with clustering at the ZCA scale and at the ZCA and MSA
scales together, and with the latter model including a spa-
tial autocorrelation parameter based on nearest-neighbor
adjacency. These results for IHD are shown in Figure 10.
The 3-year average exposure effect was slightly reduced by
the clustering on the random effects, but the HRs for IHD
were largely unaffected by alternative model specification.

Effect modification by education was investigated based
on earlier findings (Krewski et al. 2000a,b) and the results
are presented in Tables 17–20. There was a mild sugges-
tion of effect modification; the less-educated group had
slightly higher effects, but the differences were not large.
The differences between educational groups seemed more
pronounced for the 3-year-average PM2.5 exposure than for
the winter-2000 exposure; the group with grade 12 com-
pleted or not (Table 17) had point estimates nearly twice
the size of the group with more than a grade 12 education
(Table 19). For the winter models effects were similar for
both groups.

Discussion

In the New York City region, we did not observe ele-
vated PM2.5-associated risk of mortality for all-cause, CPD,
or lung cancer deaths, but IHD did show a significant pos-
itive association with PM2.5 exposure. The large and sig-
nificant effects for IHD provide additional evidence of a
specific association with a cause of death that has high bio-
logic plausibility (Brook et al. 2004). The random effects
from the model with one level of clustering (ZCA scale)
displayed a spatial pattern of lower residual variance in
the central parts of the city and higher residual variance in
the suburban and outlying areas. This pattern visually
appeared to be the opposite of the pattern for PM2.5 con-
centrations, which had higher levels in the city center and
lower levels in the suburbs (see Figure 11).

Despite this visual contrast between residual mortality
(mortality that was not explained or predicted by the
model) and the pattern of PM2.5 concentrations, IHD did
have a significant positive association with exposure to
PM2.5. The IHD results were insensitive to control for the
44 individual-level covariates and control for clustering

(nonindependence) in the random effects model (see
Figure 11 for a map of the random effects from a model
with only individual-level covariates). Effects were mildly
reduced when we included unemployment at the ZCA
scale (Tables 15–20). There was a suggestion of effect mod-
ification that showed larger risks in the lower-education
groups in the 28-county 3-year model.

Although the HRs for IHD and PM2.5 appeared to be
smaller than those reported for Los Angeles, this resulted
from the limited range of exposures in New York City. If
the coefficient is reported for the same 10-µg/m3 exposure
contrast used in Los Angeles, the significant HR increases
to 1.56 for the 3-year average, which is somewhat higher
than the HR of 1.39 for the Los Angeles region. This is a
key point about the difference between the two regions: In
Los Angeles we found a strong positive association
between areas of high pollution and areas of high residual
mortality that was not explained by the 44 individual-level
covariates. In New York City, the pattern was reversed —
pollution appeared worst in areas where people seemed to
be healthier and wealthier. Therefore pollution is less
likely to have a major effect on health because it must com-
pete with many positive health attributes in the individ-
uals such as good nutrition, clean employment, and access
to medical care.

The pattern of high urban and low rural PM2.5 exposure
and the opposite pattern for mortality that was not
accounted for by individual factors complicates the associ-
ation between air pollution and mortality in New York
City. Nevertheless, the association between PM2.5 expo-
sure and IHD mortality is biologically plausible and is still
evident in this analysis despite these competing gradients
of mortality and exposure. Other recent studies have sug-
gested specific links between cardiovascular disease and
traffic-related pollution (Hoek et al. 2002) and between
PM2.5 concentrations and preclinical indicators of athero-
sclerosis (Künzli et al. 2005), which underlies many of the
IHD deaths. Consequently, the results from New York City
lend corroborative evidence of an association between
PM2.5 exposure and mortality for a cause of death likely
associated with air pollution exposure.

We also investigated an alternative exposure model in
New York City based on spatially kriging the data from the
62 fixed-site air pollution monitors (Ross et al. 2006), as
had been done by Jerrett and coworkers (2005a) for Los
Angeles. The kriging and LUR models performed similarly
in cross-validation studies, although the LUR model was
slightly superior for predicting PM2.5 concentrations at the
validation locations that had not been included in the
model formulation. In the health effects assessment, we
also tested the kriging exposure model based on the 3-year
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Figure 8. HRs by cause of death associated with an interdecile comparison value of 1.5 µg/m3 PM2.5 from the 28-county 3-year model and 3.9 µg/m3 PM2.5
from the winter-2000 model. Analysis was based on 746 ZCAs with ACS CPS-II residents and stratified by age (in 1-year groupings), gender, and race. N =
44,056 participants living in the 28 counties; number of deaths for each cause is given beneath the ICD-9 codes. (See also Tables 15 and 16.)

Figure 9.  HRs by selected causes of death associated with an interdecile
comparison value of 1.5 µg/m3 PM2.5 from the 28-county 3-year model
and 3.9 µg/m3 PM2.5 from the winter-2000 model. Analysis was based on
746 ZCAs with ACS CPS-II residents and stratified by age (in 1-year
groupings), gender, and race. N = 44,056 participants living in the 28
counties; number of deaths for each cause is given beneath the ICD-9
codes. (See also Tables 15 and 16.)

Figure 10.  HR results for IHD deaths from analyses with one (ZCA) or two
(ZCA and MSA) levels of clustering and with or without � (a statistical
estimate of the homogeneity of PM2.5 exposure within a cluster). Deaths
were associated with an interdecile comparison value of 1.5 µg/m3 PM2.5
from the 28-county 3-year model and 3.9 µg/m3 PM2.5 from the winter-2000
model.  Analysis was based on 746 ZCAs with ACS CPS-II residents and
was stratified by age (in 1-year groupings), gender, and race. 

average PM2.5 concentrations. Risk estimates were similar to
but slightly smaller than those obtained with the LUR model.
Because of concerns about attenuation of risk estimates due
to exposure measurement error with spatial kriging, we

based our risk estimates on LUR. This suggests that differ-
ences in results between the New York City and Los Angeles
Analyses (see the next section) are likely not due to different
methods used to ascertain levels of exposures.



54

Extended Analysis of ACS Study of Particulate Air Pollution and Mortality

Ta
bl

e 
17

.
H

R
s 

by
 C

au
se

 o
f D

ea
th

 A
ss

oc
ia

te
d

 w
it

h
 a

n
 In

te
rd

ec
il

e 
C

om
p

ar
is

on
 V

al
u

e 
of

 1
.5

 µ
g/

m
3  P

M
2.

5 
fr

om
 t

h
e 

28
-C

ou
n

ty
 3

-Y
ea

r 
M

od
el

 a
s 

M
od

if
ie

d
 b

y 
G

ra
d

e 
12

 E
d

u
ca

ti
on

 C
om

p
le

te
d

 o
r 

N
ot

a

C
ov

ar
ia

te
s

A
ll

 C
au

se
s

IH
D

IC
D

-9
: 4

10
–4

14

C
P

D
IC

D
-9

: 4
00

–4
40

, 
46

0–
51

9
L

u
n

g 
C

an
ce

r
IC

D
-9

: 1
62

D
ia

be
te

s
IC

D
-9

: 2
50

E
n

d
oc

ri
n

e 
D

is
or

d
er

s
IC

D
-9

: 2
40

–2
79

D
ea

th
s 

(n
)

5,
60

2
1,

53
7

2,
58

0
46

9
66

11
7

P
M

2.
5 

on
ly

b
0.

99
3 

(0
.9

40
–1

.0
49

)
1.

13
0 

(1
.0

26
–1

.2
43

)
0.

98
2 

(0
.9

07
–1

.0
62

)
0.

89
2 

(0
.7

25
–1

.0
97

)
1.

07
8 

(0
.6

60
–1

.7
62

)
1.

06
4 

(0
.7

34
–1

.5
41

)
+

 4
4 

In
d

iv
id

u
al

-l
ev

el
 

co
va

ri
at

es
0.

97
6 

(0
.9

24
–1

.0
31

)
1.

10
5 

(1
.0

03
–1

.2
18

)
0.

96
8 

(0
.8

94
–1

.0
48

)
0.

82
6 

(0
.6

69
–1

.0
20

)
1.

09
1 

(0
.6

63
–1

.7
97

)
1.

05
1 

(0
.7

21
–1

.5
33

)

E
co

lo
gi

c 
co

va
ri

at
es

c

A
ir

 c
on

d
it

io
n

in
g 

(%
)

0.
98

2 
(0

.9
29

–1
.0

38
)

1.
10

4 
(1

.0
00

–1
.2

20
)

0.
96

9 
(0

.8
94

–1
.0

50
)

0.
81

4 
(0

.6
54

–1
.0

12
)

1.
11

6 
(0

.6
79

–1
.8

37
)

1.
10

4 
(0

.7
60

–1
.6

05
)

W
h

it
e 

(%
)

0.
98

7 
(0

.9
30

–1
.0

47
)

1.
13

1 
(1

.0
17

–1
.2

56
)

0.
95

6 
(0

.8
77

–1
.0

43
)

0.
86

4 
(0

.6
91

–1
.0

80
)

1.
01

5 
(0

.5
95

–1
.7

32
)

1.
06

1 
(0

.7
11

–1
.5

84
)

U
n

em
p

lo
ye

d
 (

%
)

0.
97

2 
(0

.9
16

–1
.0

30
)

1.
09

4 
(0

.9
85

–1
.2

14
)

0.
94

1 
(0

.8
64

–1
.0

25
)

0.
85

1 
(0

.6
83

–1
.0

62
)

0.
99

1 
(0

.5
82

–1
.6

90
)

1.
03

7 
(0

.6
95

–1
.5

45
)

M
ed

ia
n

 h
ou

se
h

ol
d

 i
n

co
m

e 
($

00
0’

s)
0.

96
2 

(0
.9

06
–1

.0
22

)
1.

10
4 

(0
.9

90
–1

.2
30

)
0.

93
5 

(0
.8

56
–1

.0
22

)
0.

83
6 

(0
.6

65
–1

.0
50

)
1.

02
8 

(0
.5

89
–1

.7
95

)
1.

02
2 

(0
.6

74
–1

.5
49

)

G
ra

d
e 

12
 e

d
u

ca
ti

on
 (

%
)

1.
00

3 
(0

.9
46

–1
.0

63
)

1.
17

3 
(1

.0
56

–1
.3

03
)

0.
99

8 
(0

.9
17

–1
.0

87
)

0.
88

0 
(0

.7
05

–1
.1

00
)

1.
01

5 
(0

.6
02

–1
.7

12
)

1.
04

5 
(0

.7
06

–1
.5

49
)

In
co

m
e 

d
is

p
ar

it
y 

(G
in

i)
1.

00
0 

(0
.9

42
–1

.0
61

)
1.

14
6 

(1
.0

29
–1

.2
76

)
0.

98
7 

(0
.9

05
–1

.0
77

)
0.

85
8 

(0
.6

84
–1

.0
76

)
1.

06
6 

(0
.6

19
–1

.8
34

)
1.

05
3 

(0
.7

01
–1

.5
80

)
P

ov
er

ty
 (

%
)

0.
98

1 
(0

.9
21

–1
.0

45
)

1.
13

6 
(1

.0
15

–1
.2

72
)

0.
94

1 
(0

.8
58

–1
.0

33
)

0.
90

6 
(0

.7
16

–1
.1

46
)

0.
94

2 
(0

.5
27

–1
.6

83
)

1.
00

5 
(0

.6
54

–1
.5

44
)

A
ll

 7
 e

co
lo

gi
c 

co
va

ri
at

es
0.

96
7 

(0
.9

00
–1

.0
39

)
1.

09
6 

(0
.9

63
–1

.2
47

)
0.

93
3 

(0
.8

40
–1

.0
37

)
0.

86
3 

(0
.6

57
–1

.1
33

)
0.

80
4 

(0
.4

16
–1

.5
54

)
0.

96
0 

(0
.5

94
–1

.5
54

)
O

zo
n

ed
1.

00
0 

(0
.9

38
–1

.0
66

)
1.

11
0 

(0
.9

79
–1

.2
35

)
0.

99
4 

(0
.9

05
–1

.0
92

)
0.

83
1 

(0
.6

54
–1

.0
56

)
1.

13
5 

(0
.6

38
–2

.0
18

)
1.

12
3 

(0
.7

25
–1

.7
41

)
O

zo
n

e 
+

 a
ll

 7
 e

co
lo

gi
c 

co
va

ri
at

es
0.

98
2 

(0
.9

10
–1

.0
59

)
1.

09
0 

(0
.9

50
–1

.2
52

)
0.

94
8 

(0
.8

47
–1

.0
60

)
0.

87
2 

(0
.6

56
–1

.1
59

)
0.

85
1 

(0
.4

20
–1

.7
24

)
1.

02
6 

(0
.6

14
–1

.7
16

)

a  T
h

e 
P

M
2.

5 
co

n
ce

n
tr

at
io

n
 o

f 
1.

5 
µ

g/
m

3  f
or

 N
ew

 Y
or

k 
C

it
y 

re
p

re
se

n
ts

 t
h

e 
d

if
fe

re
n

ce
 b

et
w

ee
n

 t
h

e 
co

n
ce

n
tr

at
io

n
s 

at
 t

h
e 

90
%

 d
ec

il
e 

an
d

 a
t 

th
e 

10
%

 d
ec

il
e 

in
 t

h
e 

ex
p

os
u

re
 d

is
tr

ib
u

ti
on

 f
ro

m
 t

h
e 

28
-

co
u

n
ty

 3
-y

ea
r 

m
od

el
. A

n
al

ys
is

 w
as

 b
as

ed
 o

n
 7

46
 Z

C
A

s 
w

it
h

 A
C

S
 C

P
S

-I
I 

re
si

d
en

ts
 a

n
d

 s
tr

at
if

ie
d

 b
y 

ag
e 

(i
n

 1
-y

ea
r 

gr
ou

p
in

gs
),

 g
en

d
er

, a
n

d
 r

ac
e.

 N
 =

 1
8,

96
3 

C
P

S
-I

I 
w

it
h

 g
ra

d
e 

12
 e

d
u

ca
ti

on
 o

r 
le

ss
. 

H
R

s 
ar

e 
fo

ll
ow

ed
 b

y 
95

%
 c

on
fi

d
en

ce
 i

n
te

rv
al

s.
b  P

re
d

ic
te

d
 u

si
n

g 
th

e 
28

-c
ou

n
ty

 3
-y

ea
r 

m
od

el
.

c  
E

co
lo

gi
c 

co
va

ri
at

es
 w

er
e 

in
cl

u
d

ed
 o

n
e 

at
 a

 t
im

e 
to

 a
 b

as
e 

m
od

el
 w

it
h

 P
M

2.
5 

+
 4

4 
in

d
iv

id
u

al
-l

ev
el

 c
ov

ar
ia

te
s.

d
 S

u
m

m
er

 O
3 

va
lu

es
 f

or
 1

99
9–

20
01

.



D. Krewski et al.

55

Ta
bl

e 
18

.
H

R
s 

by
 C

au
se

 o
f 

D
ea

th
 A

ss
oc

ia
te

d
 w

it
h

 a
n

 I
n

te
rd

ec
il

e 
C

om
p

ar
is

on
 V

al
u

e 
of

 3
.9

 µ
g/

m
3  P

M
2.

5 
fr

om
 t

h
e 

28
-C

ou
n

ty
 W

in
te

r-
20

00
 M

od
el

 a
s 

M
od

if
ie

d
 b

y 
G

ra
d

e 
12

 E
d

u
ca

ti
on

 C
om

p
le

te
d

 o
r 

N
ot

a

C
ov

ar
ia

te
s

A
ll

 C
au

se
s

IH
D

IC
D

-9
: 4

10
–4

14

C
P

D
IC

D
-9

: 4
00

–4
40

, 
46

0–
51

9
L

u
n

g 
C

an
ce

r
IC

D
-9

: 1
62

D
ia

be
te

s
IC

D
-9

: 2
50

E
n

d
oc

ri
n

e
D

is
or

d
er

s
IC

D
-9

: 2
40

–2
79

D
ea

th
s 

(n
)

5,
60

2
1,

53
7

2,
58

0
46

9
66

11
7

P
M

2.
5 

on
ly

b
1.

00
3 

(0
.9

38
–1

.0
73

)
1.

24
8 

(1
.1

00
–1

.4
16

)
1.

04
2 

(0
.9

45
–1

.1
49

)
0.

86
7 

(0
.6

83
–1

.1
00

)
1.

43
5 

(0
.7

65
–2

.6
92

)
1.

23
4 

(0
.7

73
–1

.9
70

)
+

 4
4 

In
d

iv
id

u
al

-l
ev

el
 

co
va

ri
at

es
0.

98
4 

(0
.9

20
–1

.0
53

)
1.

22
0 

(1
.0

75
–1

.3
85

)
1.

02
7 

(0
.9

31
–1

.1
33

)
0.

80
3 

(0
.6

32
–1

.0
20

)
1.

42
3 

(0
.7

41
–2

.7
32

)
1.

20
3 

(0
.7

46
–1

.9
38

)

E
co

lo
gi

c 
co

va
ri

at
es

c

A
ir

 c
on

d
it

io
n

in
g 

(%
)

0.
97

8 
(0

.9
11

–1
.0

50
)

1.
18

9 
(1

.0
41

–1
.3

57
)

1.
02

1 
(0

.9
22

–1
.1

32
)

0.
76

2 
(0

.5
87

–0
.9

88
)

1.
43

5 
(0

.7
30

–2
.8

23
)

1.
30

2 
(0

.7
95

–2
.1

31
)

W
h

it
e 

(%
)

0.
98

8 
(0

.9
19

–1
.0

62
)

1.
24

1 
(1

.0
83

–1
.4

22
)

1.
00

8 
(0

.9
06

–1
.1

21
)

0.
85

3 
(0

.6
62

–1
.1

00
)

1.
28

7 
(0

.6
37

–2
.6

03
)

1.
21

6 
(0

.7
29

–2
.0

29
)

U
n

em
p

lo
ye

d
 (

%
)

0.
97

0 
(0

.9
02

–1
.0

42
)

1.
19

4 
(1

.0
43

–1
.3

68
)

0.
98

6 
(0

.8
87

–1
.0

96
)

0.
84

3 
(0

.6
54

–1
.0

88
)

1.
24

9 
(0

.6
17

–2
.5

29
)

1.
18

1 
(0

.7
07

–1
.9

73
)

M
ed

ia
n

 h
ou

se
h

ol
d

 in
co

m
e 

($
00

0’
s)

0.
96

9 
(0

.9
02

–1
.0

40
)

1.
20

3 
(1

.0
51

–1
.3

76
)

0.
99

3 
(0

.8
95

–1
.1

02
)

0.
82

7 
(0

.6
44

–1
.0

61
)

1.
34

2 
(0

.6
67

–2
.7

01
)

1.
18

9 
(0

.7
17

–1
.9

71
)

G
ra

d
e 

12
 e

d
u

ca
ti

on
 (

%
)

0.
99

8 
(0

.9
30

–1
.0

70
)

1.
25

8 
(1

.1
02

–1
.4

36
)

1.
04

0 
(0

.9
39

–1
.1

53
)

0.
85

0 
(0

.6
63

–1
.0

88
)

1.
32

0 
(0

.6
71

–2
.5

99
)

1.
20

9 
(0

.7
37

–1
.9

83
)

In
co

m
e 

d
is

p
ar

it
y 

(G
in

i)
0.

99
6 

(0
.9

28
–1

.0
69

)
1.

23
9 

(1
.0

83
–1

.4
18

)
1.

03
4 

(0
.9

32
–1

.1
47

)
0.

84
0 

(0
.6

54
–1

.0
78

)
1.

37
8 

(0
.6

91
–2

.7
50

)
1.

21
7 

(0
.7

37
–2

.0
09

)
P

ov
er

ty
 (

%
)

0.
98

3 
(0

.9
14

–1
.0

58
)

1.
23

5 
(1

.0
75

–1
.4

19
)

1.
00

1 
(0

.8
99

–1
.1

15
)

0.
88

0 
(0

.6
80

–1
.1

39
)

1.
24

7 
(0

.6
08

–2
.5

55
)

1.
17

3 
(0

.6
98

–1
.9

70
)

A
ll

 7
 e

co
lo

gi
c 

co
va

ri
at

es
0.

95
4 

(0
.8

72
–1

.0
44

)
1.

16
8 

(0
.9

88
–1

.3
81

)
0.

99
3 

(0
.8

71
–1

.1
32

)
0.

80
3 

(0
.5

83
–1

.1
06

)
1.

04
1 

(0
.4

33
–2

.5
05

)
1.

19
4 

(0
.6

42
–2

.2
21

)
O

zo
n

ed
1.

01
7 

(0
.9

41
–1

.0
99

)
1.

24
0 

(1
.0

70
–1

.4
37

)
1.

08
4 

(0
.9

67
–1

.2
15

)
0.

81
2 

(0
.6

21
–1

.0
63

)
1.

58
4 

(0
.7

60
–3

.3
01

)
1.

34
5 

(0
.7

80
–2

.3
19

)
O

zo
n

e 
+

 a
ll

 7
 e

co
lo

gi
c 

co
va

ri
at

es
0.

97
1 

(0
.8

83
–1

.0
67

)
1.

16
6 

(0
.9

76
–1

.3
92

)
1.

02
1 

(0
.8

89
–1

.1
72

)
0.

81
0 

(0
.5

79
–1

.1
32

)
1.

16
0 

(0
.4

61
–2

.9
21

)
1.

32
6 

(0
.6

89
–2

.5
54

)

a  T
h

e 
P

M
2.

5 
co

n
ce

n
tr

at
io

n
 o

f 
3.

9 
µ

g/
m

3  f
or

 N
ew

 Y
or

k 
C

it
y 

re
p

re
se

n
ts

 t
h

e 
d

if
fe

re
n

ce
 b

et
w

ee
n

 t
h

e 
co

n
ce

n
tr

at
io

n
s 

at
 t

h
e 

90
%

 d
ec

il
e 

an
d

 a
t 

th
e 

10
%

 d
ec

il
e 

in
 t

h
e 

ex
p

os
u

re
 d

is
tr

ib
u

ti
on

 f
ro

m
 t

h
e 

28
-

co
u

n
ty

 w
in

te
r-

20
00

 m
od

el
. A

n
al

ys
is

 w
as

 b
as

ed
 o

n
 7

46
 Z

C
A

s 
w

it
h

 A
C

S
 C

P
S

-I
I r

es
id

en
ts

 a
n

d
 s

tr
at

if
ie

d
 b

y 
ag

e 
(i

n
 1

-y
ea

r 
gr

ou
p

in
gs

),
 g

en
d

er
, a

n
d

 r
ac

e.
   

N
 =

 1
8,

96
3 

C
P

S
-I

I p
ar

ti
ci

p
an

ts
 w

it
h

 g
ra

d
e 

12
 

ed
u

ca
ti

on
 o

r 
le

ss
. H

R
s 

ar
e 

fo
ll

ow
ed

 b
y 

95
%

 c
on

fi
d

en
ce

 i
n

te
rv

al
s.

b  P
re

d
ic

te
d

 u
si

n
g 

th
e 

28
-c

ou
n

ty
 w

in
te

r-
20

00
 m

od
el

.
c  

E
co

lo
gi

c 
co

va
ri

at
es

 w
er

e 
in

cl
u

d
ed

 o
n

e 
at

 a
 t

im
e 

to
 a

 b
as

e 
m

od
el

 w
it

h
 P

M
2.

5 
+

 4
4 

in
d

iv
id

u
al

-l
ev

el
 c

ov
ar

ia
te

s.
 

d
 S

u
m

m
er

 O
3 

va
lu

es
 f

or
 1

99
9–

20
01

.



56

Extended Analysis of ACS Study of Particulate Air Pollution and Mortality

Ta
bl

e 
19

.
H

R
s 

by
 C

au
se

 o
f 

D
ea

th
 A

ss
oc

ia
te

d
 w

it
h

 a
n

 I
n

te
rd

ec
il

e 
C

om
p

ar
is

on
 V

al
u

e 
of

 1
.5

 µ
g/

m
3  P

M
2.

5 
fr

om
 t

h
e 

28
-C

ou
n

ty
 3

-Y
ea

r 
M

od
el

 a
s 

M
od

if
ie

d
 b

y 
M

or
e 

T
h

an
 G

ra
d

e 
12

 E
d

u
ca

ti
on

a

C
ov

ar
ia

te
s

A
ll

 C
au

se
s

IH
D

IC
D

-9
: 4

10
–4

14

C
P

D
IC

D
-9

: 4
00

–4
40

, 
46

0–
51

9
L

u
n

g 
C

an
ce

r
IC

D
-9

: 1
62

D
ia

be
te

s
IC

D
-9

: 2
50

E
n

d
oc

ri
n

e
D

is
or

d
er

s
IC

D
-9

: 2
40

–2
79

D
ea

th
s 

(n
)

4,
95

7
1,

19
8

2,
04

5
38

4
52

89
P

M
2.

5 
on

ly
b

1.
02

2 
(0

.9
74

–1
.0

72
)

1.
08

9 
(0

.9
93

–1
.1

95
)

0.
96

4 
(0

.8
92

–1
.0

41
)

1.
12

1 
(0

.9
49

–1
.3

24
)

1.
60

8 
(1

.1
34

–2
.2

82
)

1.
49

0 
(1

.1
21

–1
.9

79
)

+
 4

4 
In

d
iv

id
u

al
-l

ev
el

 
co

va
ri

at
es

0.
98

6 
(0

.9
38

–1
.0

36
)

1.
03

2 
(0

.9
37

–1
.1

36
)

0.
92

4 
(0

.8
54

–1
.0

00
)

1.
05

5 
(0

.8
91

–1
.2

50
)

1.
41

1 
(0

.9
59

–2
.0

77
)

1.
39

3 
(1

.0
26

–1
.8

93
)

E
co

lo
gi

c 
co

va
ri

at
es

c

A
ir

 c
on

d
it

io
n

in
g 

(%
)

0.
98

8 
(0

.9
40

–1
.0

39
)

1.
03

8 
(0

.9
43

–1
.1

44
)

0.
93

0 
(0

.8
59

–1
.0

08
)

1.
08

0 
(0

.9
10

–1
.2

82
)

1.
32

6 
(0

.8
84

–1
.9

89
)

1.
36

3 
(0

.9
97

–1
.8

63
)

W
h

it
e 

(%
)

0.
98

5 
(0

.9
35

–1
.0

38
)

1.
04

4 
(0

.9
43

–1
.1

55
)

0.
93

1 
(0

.8
57

–1
.0

13
)

1.
09

5 
(0

.9
17

–1
.3

06
)

1.
22

5 
(0

.7
91

–1
.8

98
)

1.
27

1 
(0

.9
05

–1
.7

85
)

U
n

em
p

lo
ye

d
 (

%
)

0.
96

4 
(0

.9
13

–1
.0

17
)

1.
03

4 
(0

.9
32

–1
.1

47
)

0.
90

1 
(0

.8
27

–0
.9

81
)

1.
03

7 
(0

.8
62

–1
.2

47
)

1.
18

3 
(0

.7
46

–1
.8

73
)

1.
27

5 
(0

.8
98

–1
.8

10
)

M
ed

ia
n

 h
ou

se
h

ol
d

 in
co

m
e 

($
00

0’
s)

0.
96

8 
(0

.9
19

–1
.0

21
)

1.
00

4 
(0

.9
06

–1
.1

12
)

0.
89

8 
(0

.8
25

–0
.9

77
)

1.
04

4 
(0

.8
71

–1
.2

51
)

1.
22

7 
(0

.7
91

–1
.9

04
)

1.
25

5 
(0

.8
88

–1
.7

74
)

G
ra

d
e 

12
 e

d
u

ca
ti

on
 (

%
)

1.
00

0 
(0

.9
50

–1
.0

54
)

1.
09

4 
(0

.9
87

–1
.2

12
)

0.
94

9 
(0

.8
73

–1
.0

31
)

1.
05

4 
(0

.8
83

–1
.2

59
)

1.
22

9 
(0

.7
91

–1
.9

10
)

1.
30

2 
(0

.9
29

–1
.8

24
)

In
co

m
e 

d
is

p
ar

it
y 

(G
in

i)
0.

98
9 

(0
.9

37
–1

.0
45

)
1.

05
2 

(0
.9

45
–1

.1
71

)
0.

93
5 

(0
.8

56
–1

.0
20

)
1.

01
4 

(0
.8

41
–1

.2
23

)
1.

28
8 

(0
.8

03
–2

.0
67

)
1.

30
7 

(0
.9

08
–1

.8
82

)
P

ov
er

ty
 (

%
)

0.
96

6 
(0

.9
13

–1
.0

21
)

1.
01

3 
(0

.9
09

–1
.1

28
)

0.
90

0 
(0

.8
23

–0
.9

84
)

1.
05

5 
(0

.8
73

–1
.2

75
)

1.
20

0 
(0

.7
48

–1
.9

27
)

1.
23

3 
(0

.8
52

–1
.7

84
)

A
ll

 7
 e

co
lo

gi
c 

co
va

ri
at

es
0.

96
8 

(0
.9

07
–1

.0
34

)
1.

03
6 

(0
.9

09
–1

.1
81

)
0.

92
3 

(0
.8

31
–1

.0
24

)
0.

99
8 

(0
.7

99
–1

.2
47

)
1.

04
0 

(0
.5

77
–1

.8
75

)
1.

24
3 

(0
.8

04
–1

.9
21

)
O

zo
n

ed
0.

98
2 

(0
.9

25
–1

.0
43

)
1.

00
1 

(0
.8

89
–1

.1
27

)
0.

91
0 

(0
.8

27
–1

.0
02

)
1.

06
0 

(0
.8

62
–1

.3
04

)
1.

26
8 

(0
.7

63
–2

.1
08

)
1.

41
4 

(0
.9

58
–2

.0
87

)
O

zo
n

e 
+

 a
ll

 7
 e

co
lo

gi
c 

co
va

ri
at

es
0.

95
9 

(0
.8

93
–1

.0
29

)
0.

99
8 

(0
.8

66
–1

.1
51

)
0.

89
5 

(0
.7

99
–1

.0
03

)
1.

02
0 

(0
.8

02
–1

.2
98

)
0.

94
0 

(0
.4

84
–1

.8
27

)
1.

25
7 

(0
.7

80
–2

.0
24

)

a  T
h

e 
P

M
2.

5 
co

n
ce

n
tr

at
io

n
 o

f 
1.

5 
µ

g/
m

3  f
or

 N
ew

 Y
or

k 
C

it
y 

re
p

re
se

n
ts

 t
h

e 
d

if
fe

re
n

ce
 b

et
w

ee
n

 t
h

e 
co

n
ce

n
tr

at
io

n
s 

at
 t

h
e 

90
%

 d
ec

il
e 

an
d

 a
t 

th
e 

10
%

 d
ec

il
e 

in
 t

h
e 

ex
p

os
u

re
 d

is
tr

ib
u

ti
on

 f
ro

m
 t

h
e 

28
-

co
u

n
ty

 3
-y

ea
r 

m
od

el
. A

n
al

ys
is

 w
as

 b
as

ed
 o

n
 7

46
 Z

C
A

s 
w

it
h

 A
C

S
 C

P
S

-I
I 

re
si

d
en

ts
 a

n
d

 s
tr

at
if

ie
d

 b
y 

ag
e 

(i
n

 1
-y

ea
r 

gr
ou

p
in

gs
),

 g
en

d
er

, a
n

d
 r

ac
e.

 N
 =

 2
5,

09
3 

C
P

S
-I

I 
p

ar
ti

ci
p

an
ts

 w
it

h
 m

or
e 

th
an

 
gr

ad
e 

12
 e

d
u

ca
ti

on
. H

R
s 

ar
e 

fo
ll

ow
ed

 b
y 

95
%

 c
on

fi
d

en
ce

 i
n

te
rv

al
s.

b  P
re

d
ic

te
d

 u
si

n
g 

th
e 

28
-c

ou
n

ty
 3

-y
ea

r 
m

od
el

.
c  

E
co

lo
gi

c 
co

va
ri

at
es

 w
er

e 
in

cl
u

d
ed

 o
n

e 
at

 a
 t

im
e 

to
 a

 b
as

e 
m

od
el

 w
it

h
 P

M
2.

5 
+

 4
4 

in
d

iv
id

u
al

-l
ev

el
 c

ov
ar

ia
te

s.
 

d
 S

u
m

m
er

 O
3 

va
lu

es
 f

or
 1

99
9–

20
01

.



D. Krewski et al.

57

Ta
bl

e 
20

.
H

R
s 

by
 C

au
se

 o
f 

D
ea

th
 A

ss
oc

ia
te

d
 w

it
h

 a
n

 I
n

te
rd

ec
il

e 
C

om
p

ar
is

on
 V

al
u

e 
of

 3
.9

 µ
g/

m
3  P

M
2.

5 
fr

om
 t

h
e 

28
-C

ou
n

ty
 W

in
te

r-
20

00
 M

od
el

 a
s 

M
od

if
ie

d
 b

y 
M

or
e 

T
h

an
 G

ra
d

e 
12

 E
d

u
ca

ti
on

a

C
ov

ar
ia

te
s

A
ll

 C
au

se
s

IH
D

IC
D

-9
: 4

10
–4

14

C
P

D
IC

D
-9

: 4
00

–4
40

, 
46

0–
51

9
L

u
n

g 
C

an
ce

r
IC

D
-9

: 1
62

D
ia

be
te

s
IC

D
-9

: 2
50

E
n

d
oc

ri
n

e
D

is
or

d
er

s
IC

D
-9

: 2
40

–2
79

D
ea

th
s 

(n
)

4,
95

7
1,

19
8

2,
04

5
38

4
52

89
P

M
2.

5 
on

ly
b

1.
05

3 
(0

.9
87

–1
.1

24
)

1.
26

1 
(1

.1
10

–1
.4

32
)

1.
03

5 
(0

.9
37

–1
.1

44
)

1.
05

6 
(0

.8
31

–1
.3

40
)

1.
57

6 
(0

.8
45

–2
.9

41
)

1.
09

6 
(0

.6
55

–1
.8

34
)

+
 4

4 
In

d
iv

id
u

al
-l

ev
el

 
co

va
ri

at
es

1.
01

3 
(0

.9
48

–1
.0

82
)

1.
17

7 
(1

.0
33

–1
.3

41
)

0.
98

7 
(0

.8
91

–1
.0

92
)

0.
99

8 
(0

.7
85

–1
.2

68
)

1.
34

7 
(0

.7
21

–2
.5

19
)

1.
04

7 
(0

.6
10

–1
.8

00
)

E
co

lo
gi

c 
co

va
ri

at
es

c

A
ir

 c
on

d
it

io
n

in
g 

(%
)

1.
02

5 
(0

.9
57

–1
.0

99
)

1.
20

6 
(1

.0
52

–1
.3

81
)

1.
01

2 
(0

.9
10

–1
.1

26
)

1.
03

7 
(0

.8
02

–1
.3

40
)

1.
21

8 
(0

.6
28

–2
.3

60
)

0.
96

6 
(0

.5
56

–1
.6

79
)

W
h

it
e 

(%
)

1.
01

5 
(0

.9
46

–1
.0

89
)

1.
21

6 
(1

.0
59

–1
.3

96
)

1.
00

7 
(0

.9
04

–1
.1

22
)

1.
03

2 
(0

.7
98

–1
.3

33
)

1.
03

5 
(0

.5
16

–2
.0

76
)

0.
91

6 
(0

.4
62

–1
.8

14
)

U
n

em
p

lo
ye

d
 (

%
)

0.
99

0 
(0

.9
22

–1
.0

63
)

1.
20

3 
(1

.0
46

–1
.3

85
)

0.
97

0 
(0

.8
69

–1
.0

81
)

0.
95

4 
(0

.7
35

–1
.2

38
)

0.
98

4 
(0

.4
88

–1
.9

83
)

1.
09

9 
(0

.6
11

–1
.9

77
)

M
ed

ia
n

 h
ou

se
h

ol
d

 i
n

co
m

e 
($

00
0’

s)
1.

00
0 

(0
.9

34
–1

.0
71

)
1.

16
2 

(1
.0

14
–1

.3
30

)
0.

97
1 

(0
.8

74
–1

.0
78

)
0.

97
7 

(0
.7

61
–1

.2
55

)
1.

06
8 

(0
.5

47
–2

.0
85

)
0.

87
1 

(0
.4

21
–1

.8
04

)

G
ra

d
e 

12
 e

d
u

ca
ti

on
 (

%
)

1.
02

8 
(0

.9
60

–1
.1

01
)

1.
25

5 
(1

.0
94

–1
.4

39
)

1.
01

7 
(0

.9
15

–1
.1

30
)

0.
98

9 
(0

.7
71

–1
.2

68
)

1.
08

6 
(0

.5
59

–2
.1

08
)

1.
38

5 
(0

.8
49

–2
.2

60
)

In
co

m
e 

d
is

p
ar

it
y 

(G
in

i)
1.

02
1 

(0
.9

51
–1

.0
95

)
1.

22
3 

(1
.0

62
–1

.4
09

)
1.

01
2 

(0
.9

07
–1

.1
28

)
0.

94
5 

(0
.7

33
–1

.2
19

)
1.

09
4 

(0
.5

44
–2

.2
02

)
1.

23
3 

(0
.7

48
–2

.0
34

)
P

ov
er

ty
 (

%
)

0.
99

8 
(0

.9
29

–1
.0

72
)

1.
18

1 
(1

.0
25

–1
.3

61
)

0.
97

8 
(0

.8
76

–1
.0

92
)

0.
97

6 
(0

.7
52

–1
.2

67
)

1.
00

3 
(0

.4
95

–2
.0

34
)

1.
23

3 
(0

.7
39

–2
.0

59
)

A
ll

 7
 e

co
lo

gi
c 

co
va

ri
at

es
1.

01
4 

(0
.9

27
–1

.1
10

)
1.

27
4 

(1
.0

66
–1

.5
24

)
1.

06
8 

(0
.9

30
–1

.2
26

)
0.

92
1 

(0
.6

63
–1

.2
80

)
0.

74
6 

(0
.3

02
–1

.8
42

)
1.

01
3 

(0
.5

86
–1

.7
51

)
O

zo
n

ed
1.

02
2 

(0
.9

45
–1

.1
04

)
1.

19
4 

(1
.0

20
–1

.3
98

)
1.

00
8 

(0
.8

93
–1

.1
38

)
0.

97
2 

(0
.7

33
–1

.2
88

)
1.

03
5 

(0
.4

85
–2

.2
09

)
1.

01
6 

(0
.5

90
–1

.7
52

)
O

zo
n

e 
+

 a
ll

 7
 e

co
lo

gi
c 

co
va

ri
at

es
1.

01
1 

(0
.9

19
–1

.1
12

)
1.

25
1 

(1
.0

34
–1

.5
15

)
1.

05
7 

(0
.9

12
–1

.2
24

)
0.

93
7 

(0
.6

62
–1

.3
26

)
0.

61
4 

(0
.2

29
–1

.6
50

)
1.

02
9 

(0
.6

09
–1

.7
38

)

a  
T

h
e 

P
M

2.
5 

co
n

ce
n

tr
at

io
n

 o
f 

3.
9 

µ
g/

m
3  

fo
r 

N
ew

 Y
or

k 
C

it
y 

re
p

re
se

n
ts

 t
h

e 
d

if
fe

re
n

ce
 b

et
w

ee
n

 t
h

e 
co

n
ce

n
tr

at
io

n
s 

at
 t

h
e 

90
%

 d
ec

il
e 

an
d

 a
t 

th
e 

10
%

 d
ec

il
e 

in
 t

h
e 

ex
p

os
u

re
 d

is
tr

ib
u

ti
on

 f
ro

m
 t

h
e 

28
-

co
u

n
ty

 w
in

te
r-

20
00

 m
od

el
. A

n
al

ys
is

 w
as

 b
as

ed
 o

n
 7

46
 Z

C
A

s 
w

it
h

 A
C

S
 C

P
S

-I
I 

re
si

d
en

ts
 a

n
d

 s
tr

at
if

ie
d

 b
y 

ag
e 

(i
n

 1
-y

ea
r 

gr
ou

p
in

gs
),

 g
en

d
er

, a
n

d
 r

ac
e.

 N
 =

 2
5,

09
3 

C
P

S
-I

I 
p

ar
ti

ci
p

an
ts

 w
it

h
 m

or
e 

th
an

 g
ra

d
e 

12
 e

d
u

ca
ti

on
. H

R
s 

ar
e 

fo
ll

ow
ed

 b
y 

95
%

 c
on

fi
d

en
ce

 i
n

te
rv

al
s.

b  P
re

d
ic

te
d

 u
si

n
g 

th
e 

28
-c

ou
n

ty
 w

in
te

r-
20

00
 m

od
el

.
c  E

co
lo

gi
c 

co
va

ri
at

es
 w

er
e 

in
cl

u
d

ed
 o

n
e 

at
 a

 t
im

e 
to

 a
 b

as
e 

m
od

el
 w

it
h

 P
M

2.
5 

+
 4

4 
in

d
iv

id
u

al
-l

ev
el

 c
ov

ar
ia

te
s.

d
 S

u
m

m
er

 O
3 

va
lu

es
 f

or
 1

99
9–

20
01

.



58

Extended Analysis of ACS Study of Particulate Air Pollution and Mortality

INTRA-URBAN ANALYSIS FOR THE 
LOS ANGELES REGION

A LAND-USE REGRESSION MODEL FOR PREDICTING 
PM2.5 CONCENTRATIONS

Background

Developing exposure models that would predict the spa-
tial variation of air pollution within cities has been identi-
fied as a research priority (Brunekreef and Holgate 2002).
The LUR method is a promising approach that uses moni-
tored pollutant concentrations as the dependent variable
and a comprehensive set of land-use, traffic, population,

and physical geography variables as predictors of PM2.5

concentrations (Briggs et al. 2000a). Most LUR models
have been calibrated with NO2 as a marker for traffic expo-
sure (Briggs et al. 2000a; Gilbert et al. 2005; Sahsuvaroglu
et al. 2006). Two European studies that have estimated
ambient particles with an LUR model used a reflectance
method to measure the presence of ambient particles. This
method is more likely to show local variation due to traffic
than would PM2.5 mass measurements (Brauer et al. 2003;
Hochadel et al. 2006). To date, no North American studies
have attempted to use the LUR method for deriving PM2.5

estimates. In this project, we developed an LUR model for
predicting PM2.5 mass over the 5-county MSA of Los
Angeles (see also Moore et al. 2007).

Figure 11. Residual variance in mortality from IHD for 28 counties in the NYC region (shown by ZCA).  Mortality levels were predicted by the random
effects model with PM2.5 exposure and the 44 individual-level covariates. The predicted values are compared with actual measured mortality. Values > 1
indicate higher-than-expected and < 1 indicate lower-than-expected residual mortality.
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Materials and Methods

Study Area At the 2000 U.S. census, the Los Angeles MSA
had a population of about 16.7 million people (Southern Cal-
ifornia Association of Governments [SCAG] 2004). This
MSA encompasses Los Angeles, San Bernardino, Ventura,
Riverside, and Orange counties and covers a total area of
98,500 km2. The Los Angeles MSA is the most congested
area in the United States and has some of the highest levels
of air pollution (Southern California Compass 2005). As
illustrated in Figure 12, the region also has wide variation in
PM2.5 concentrations, which makes it a suitable site to
explore the use of LUR models in North America. Once cal-
ibrated, an LUR model can be used to derive a spatially con-
tinuous surface map of PM2.5 concentrations.

Methods for Handling Spatial Data We used the
ArcGIS 9.1 (ESRI 2004) GIS to integrate data about PM2.5
concentrations, land use, traffic, population, and physical
geography.

Dependent Variable: Ambient PM2.5 In 1998, a PM2.5 mon-
itoring network was implemented throughout California;
we used data from 2000 because it was the first complete
year of data collected. The placement of each site was
determined by specific criteria: (1) to provide measure-
ments of pollutant concentrations in the air basins to be
used for regulatory purposes; (2) to represent populated
areas with high pollutant concentrations; and (3) to char-
acterize emission sources in areas of high concentrations.
Most (14) of the 23 monitors that we used to estimate

Figure 12. Map including the most densely populated areas in Los Angeles MSA showing PM2.5 concentrations at air quality monitoring sites used to 
support the analysis. 
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exposure were placed to determine concentrations in pop-
ulated areas; five were set up close to mountain passes
(e.g., Fontana, San Bernardino) to determine the regional
transport of pollutants; and four monitors were dedicated
to chemical speciation of pollutants (Los Angeles, Fon-
tana, Anaheim, and Rubidoux) (California Environmental
Protection Agency and Air Resources Board 2003).

In the Los Angeles MSA, 23 sites measure PM2.5 (Figure
12). All of these sites use FRM monitors and collect 24-hour
mass data on 1-, 3-, and 6-day cycles. Since the network was
established in 1998, annual average PM2.5 concentrations
have ranged from 9.49 µg/m3 in Lancaster (an arid flat agri-
cultural area with generally clear air) to 28.22 µg/m3 in River-
side (a large inland city with high pollutant levels). The mean
and median for the Los Angeles MSA were 18.42 µg/m3 (SD =
6.01) and 19.31 µg/m3, respectively. In much of the MSA,
PM2.5 levels exceed the annual average limits for both federal
(15 µg/m3) and state (12 µg/m3) standards.

Land-Use Data Land use is a significant factor in pre-
dicting air pollution levels (Briggs et al. 2000a; Jerrett et al.
2003) because different uses involve certain transportation
and other activities and produce different levels of emis-
sions. For example, industrial and heating sources may
expel gaseous precursor air pollutants and primary PM,
resulting in a relatively high PM2.5 concentration sur-
rounding the source; whereas parks and open spaces have
fewer sources of pollution and therefore low concentra-
tions of PM2.5.

We followed methods from a study completed in
Hamilton, Ontario, Canada by Sahsuvaroglu and
coworkers (2006) to delineate the land-use categories that
would have a reasonable probability of covering an ade-
quate number of pollution monitors: commercial, indus-
trial, residential, agricultural, airports, water, parks, open
space, and roads.

We obtained digital land-use data from the SCAG
(2004). (These data were first collected in 1993 and were
updated in 2000.) We cleaned and aggregated the data into
land-use and transportation categories that have been used
in other studies and found to be associated with ambient
pollutant concentrations (Briggs et al. 2000a; Brunekreef
and Holgate 2002; Jerrett et al. 2005b; Ross et al. 2006).

Each of the land-use categories was analyzed as a pos-
sible predictor of PM2.5 concentrations. We created buffers
at 50 to 5000 m in radius around each of the 23 PM2.5 mon-
itors. The larger buffer areas were selected based on an
analysis of the semivariance of a kriging model, which sug-
gested that monitoring sites within 5 to 10 km would have
correlated pollutant levels. In keeping with the focus of

deriving local estimates, we used the lower bound of the
range (5 km) as the maximum distance to test. The area (in
hectares [Ha]; 1 Ha = 2.471 acres or 0.01 km2) of each sep-
arate land-use category was measured within each buffer
zone surrounding a monitor.

Traffic Data Personal and commercial vehicles emit pri-
mary particulates and precursors such as nitrogen oxides
that react with the ambient environment to produce sec-
ondary particulate air pollution (Brauer et al. 2003). To
improve estimates of traffic-generated particles, we obtained
a geographically coded digital road network file from
TeleAtlas (Reitscheweg, The Netherlands). This file covered
major highways, minor highways, major roads, arterial
roads, collector roads, and local roads. We used the same
buffering technique used for the land-use data to measure
the total length (in kilometers) of specific road types around
a given monitor.

Through ESRI, we obtained average annual daily traffic
(AADT) counts (of all vehicles) from Business Analyst (Arc-
View 9.1, ESRI, San Diego, CA 2004) for major traffic corri-
dors in Southern California from 1990 to 2002. The traffic
corridors were defined in six categories: (1) major freeways,
(2) minor freeways, (3) highways, (4) connector roads, (5)
major local roads, and (6) minor local roads. We used a total
of 34,310 measurement locations (traffic points) for analyses
in the metropolitan area (Los Angeles, Ventura, Orange, San
Bernardino, and Riverside). The AADT traffic-point data
were spatially assigned to the closest individual road seg-
ments in the ESRI Streetmap data set. Each road class
included many speed limit categories. The road classes and
speed limits were used to calculate an accurate traffic den-
sity. We calculated an average traffic count at each road seg-
ment for each class of road and speed limit. For those
segments that had no traffic count available, we assigned the
average traffic count for road segments with the corre-
sponding road class and speed limits. For example, a major
road would have a class of 3 and a variation of speed limits;
for a class-3 road with a speed limit of 35 mph but no traffic-
count data, we assigned the average traffic count of all class-
3 roads with a speed limit of 35 mph. The average traffic
count for all road segments within each buffer was calcu-
lated and assigned to each monitor. Using this method we
were able to impute an accurate measurement of AADT
throughout the MSA.

Population Data Population density — the number of
people, volume of traffic, number of businesses, and area
of green space — is an important factor in determining
how much and what type of pollution is produced in a
given area. Densely populated areas contribute more
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traffic-related pollution than sparsely populated areas, and
within a city density may also influence the content of
emissions (Ross et al. 2006). Higher population density
generates more pollution from heating buildings by com-
bustion and from traffic for commuting and traveling to
commercial areas.

To determine the population density across the SCAG
area (the Los Angeles MSA plus Imperial County), we cal-
culated a kernel estimate by assigning the U.S. Census
population data for 2000 for each census tract to the
census tract centroid. The radius of the kernel was deter-
mined through analyses with a semivariogram. This pro-
cess revealed that analyzing spatial autocorrelation in the
range of 5 to 10 km would be optimal.

Physical Geography Proximity to a large body of water,
such as an ocean, reduces the concentrations of pollutants,
and the onshore marine breeze helps maintain pollution at
lower levels near the coast (Bay Area Air Quality Manage-
ment District [BAAQMD] 2005). The distance to the
Pacific ocean was calculated for each monitor location and
was analyzed for its possible relationship to measured pol-
lutant levels in the LUR model. Elevation data were
acquired from the USGS at 30-m resolution and each mon-
itoring area was assigned an elevation for analysis in the
LUR model.

Modeling Methods Regression and spatial analysis were
used to create an interpolated PM2.5 pollutant surface. Arc-
View v3.3, ArcMap v9.0, ArcInfo v9.0 (Redlands, CA), S-
PLUS 2000 (Boston, MA) and Stata v8 (College Station, TX)
were used for these analyses. We used an inverse distance
weighting (IDW) method to create an accurate surface.

Linear regression was conducted using the natural loga-
rithm transformation of the PM2.5 measurements. Bivariate
linear regressions were first used to determine which vari-
ables were most strongly related to PM2.5. This first step
tested over 140 independent variables because land-use
and road variables covered a large number of categories
and several sizes of buffers around 23 monitors. A mul-
tiple linear regression model was developed using the sig-
nificant parameters from the bivariate linear regressions
with a manual forward selection process based on the
highest t test score for each variable. The VIF was then
examined to identify variables that were collinear and
could be eliminated. Variables with the highest VIF and
variables with the lowest t scores were removed until a
parsimonious model with the highest R2 value and
acceptable levels of collinearity between included vari-
ables was derived.

Using the bootstrap method, we completed a sensitivity
analysis to test the stability of the estimates from the mul-
tiple regression model (Burrough and McDonnell 1998).
From the 23 monitor data points, a random sample of 15
data points was selected with replacement, for 1000 repe-
titions. This enabled us to determine bias in the estimates
and how accurately the model would predict PM2.5 con-
centrations when multiple locations (or monitors) were
excluded from the regression analysis. Additional model
diagnostics included the Cook-Weisberg test for heteroske-
dasticity and the degrees of freedom Betas and Cook dis-
tance to examine outliers.

Visualizing the Surface Visualization is an important
diagnostic tool for assessing the face validity of a predicted
LUR model. We used GIS software to identify approxi-
mately 18,000 lattice points for the SCAG area with 2.3 km
between lattice points. We created lattice points that were
relatively close together in distance to more finely estimate
the PM2.5 surface, but we were partly constrained by com-
putational capacity. Buffers for the land-use variables in
the final LUR model were created around each lattice
point, where the areas of each variable were once again
calculated in hectares. Using the fitted regression equa-
tion, we calculated a predicted PM2.5 value for each of the
18,000 lattice points. This method allowed us to visualize
the PM surface; for subsequent health analysis, geo-
graphic points corresponding to study subjects could
serve as the lattice assignment points to minimize expo-
sure assignment error.

We then used the IDW method to interpolate the pol-
lutant surface. The IDW interpolator assumes that at each
PM2.5 sample point the local influence lessens with dis-
tance (ESRI 2004). A specified number of predicted PM2.5
points, or all points within a specified radius, can be used
to determine the output value for each location, creating a
surface. The power in the IDW interpolation determines
how influential surrounding points are to the point being
interpolated (Burrough and McDonnell 1998). A higher
power results in less influence from distant points (Bur-
rough and McDonnell 1998). For this analysis we used the
default power of 2, which is a common power used in
inverse distance squared weighting.

Results

The land-use variables most correlated with PM2.5 con-
centrations from monitors were used to develop the mul-
tivariate model; correlation coefficients are shown in
Table 21. The final LUR model included three indepen-
dent variables (Table 22): (1) traffic count within 300 m
(as a direct proxy for particulate emissions and gaseous
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precursors), (2) industrial areas within 5000 m (to represent
primary and precursor emissions), and (3) government areas
within 5000 m (as a proxy for traffic intensity around major
destinations such as schools, government service offices,
and hospitals). The R2 value for the LUR was 0.69 (F =
14.07, P < 0.00001), with a few geographic areas near the

intersections of freeways displaying over-prediction (see
Figure 13).

Regression diagnostics were used to assess the validity
of the LUR model. Table 22 shows little collinearity
among the independent variables; the average VIF was
1.06. The visualization surface in Figure 14 shows a 63%
R2 between the measured and predicted values of PM2.5
from the LUR model. Although the residuals showed a
slightly greater variance with higher PM2.5 concentrations
(Figure 15), the Cook-Weisberg test for heteroskedasticity
indicated a nonsignificant difference in the variance
around the residuals (P = 0.81), and the degrees-of-
freedom Betas-and-Cook distance indicated few outliers in
the data. An additional sensitivity analysis used the boot-
strap method, in which we resampled 15 locations with
1000 repetitions and jackknife residual statistics. For the
bootstrap, the bias values and standard errors were
extremely close to 0, and the statistics for the jackknife
residuals were less than 0.01, indicating that no single
PM2.5 monitor’s data drove the values predicted.

Discussion

Accuracy of Predictions Using the LUR Model We derived
a multiple linear regression model that explained 69% of
the variance in PM2.5 concentrations, with the main pre-
dictors being traffic count within 300 m, industrial areas
within 5000 m, and government areas within 5000 m
(Table 22). In some areas, the LUR predicted PM2.5 concen-
trations slightly higher than those measured — within the
Los Angeles Basin near the intersection of high-traffic free-
ways (605 and 210, 110 and 405, and 405 and 55) and in
Long Beach near the two ports (Los Angeles and Long
Beach) and the 710 freeway (Figures 13 and 14).

All of the observed over-predictions were located near
intersections of major freeways (Figure 13) and some were
upward of 126 µg/m3. Due to unregulated fuel combustion,
ships are one of the leading sources of particulate air pol-
lution in the Los Angeles Basin (Hricko 2004). Sur-
rounding the ports is a network of freeways and railroad

Table 21. Land Use Variables with R � 0.4 That Were 
Significantly Associated with PM2.5 Concentrationsa

Description
Buffer Size

(m) R Value

Commercial areas 5000 0.67
Industrial areas* 5000 0.58
Parks and recreation 5000 0.55
Population density 20 km 0.54

Collector roads 5000 0.53
Arterial roads 3000 0.52
Government areas* 5000 0.51
Population density 10 km 0.48

Arterial roads 2000 0.48
Traffic* 300 0.48
Arterial roads 5000 0.47

Collector roads 2000 0.46
Arterial roads 1000 0.45
Collector roads 3000 0.45

Industrial areas 3000 0.42
Arterial roads 750 0.4
Minor roads 750 0.39

Commercial areas 750 0.35
Industrial areas 50 0.32
Open areas 2000 �0.43

Open areas 3000 �0.48
Secondary roads 2000 �0.51
Secondary roads 1000 �0.54
Open areas 5000 �0.55

a Arranged from highest to lowest correlation. An * indicates the three 
variables used in the final model. 

Table 22. Land-Use Regression Model Statistics Along with Collinearity Diagnostics

Variables
Buffer

(m) 	 t Value SE P Value VIF

Constant 2.28621 22.81 0.1002109 0.000
Traffic 300 0.00001 2.99 0.0000034 0.007 1.09
Industrial area 5000 0.00032 3.33 0.0000958 0.004 1.05
Government area 5000 0.00072 3.35 0.0002139  0.003 1.04
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tracks used to disperse cargo to distribution and storage
centers in inland areas. More transport trucks, which com-
bust diesel fuel, travel the 710 freeway than any other
freeway in Los Angeles (Meyer 2003). Westerdahl and col-
leagues (2005) found that measured freeway concentra-
tions of PM2.5 had a range of 60 to 820 µg/m3 on the 10 East
freeway and that concentrations along major roadways
with high-traffic density were up to 20 times higher than
residential concentrations. Those measurements were
taken over a 5-day period in April of 2003, whereas our
LUR model estimates were based on data from 2000. More-
over, in the Westerdahl study, increased concentrations of
PM2.5 were associated with high diesel traffic along free-
ways. Thus, the over-predicted values in our analysis are
at plausible levels, although further field validation work
is needed to assess whether annual average levels on or
near freeway intersections are indeed this high.

Brauer and associates (2003) and Hochadel and col-
leagues (2006) have also used LUR to predict PM2.5 con-
centrations in Europe. Brauer’s team modeled air pollution

in communities throughout the Netherlands, in Munich,
Germany, and in Stockholm, Sweden. Although they used
only traffic indicators and did not use land-use classifica-
tions in their multivariate regression model, they were
able to derive significant prediction models for each of the
three locations, for both PM2.5 mass and PM2.5 filter absor-
bance, which is used as a marker for diesel exhaust (Brauer
et al. 2003). For the Netherlands, Munich, and Stockholm,
the R2 values for the PM2.5 mass prediction model were
0.78, 0.76, and 0.63, respectively; and 0.9, 0.83, and 0.76,
respectively, for the PM2.5 absorbance prediction model.
Since absorbance models are typically used to assess
traffic-related pollutants, the absorbance model results are
a better predictor of measured PM2.5 than the PM2.5 mass
model because the variables used in the absorbance model
were chosen specifically to measure traffic. Hochadel and
coworkers (2006) conducted a study in Wesel, Germany,
using primarily traffic-based indicators as the geographic
factors. The regression models predicted strongly for PM2.5

absorbance (R2 = 0.65), but not for PM2.5 mass (R2 = 0.094).

Figure 13. Map of over-predicted values from the LUR model, shown as > 50, 75, or 100 µg/m3 higher than the measured value. Most over-predictions
occurred at freeway intersections. PM2.5 monitor positions are marked with a +. 
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Effects of Buffer Size Selection The buffers we used to
measure areas of land-use categories were quite large com-
pared with other studies (generally 100 to 300 meters;
Brauer et al. 2003; Hochadel et al. 2006; Ross et al. 2006;
Sahsuvaroglu et al. 2006). The Los Angeles MSA is a mas-
sive and sprawling urban area and has one of the highest
levels of employment and population dispersion in the
United States (Gordon and Richardson 1996). This dis-
persed urban structure, transected by major highways and
commercial areas, leads to a broader regional scale of
influence for processes that generate PM pollution, and the
2000- to 5000-m buffers surrounding the PM2.5 monitors
probably reflect this dispersed form of urban development.

The study that is most closely related geographically to
this Los Angeles Analysis was done by Ross and associates
(2006) in San Diego County, California, in which they pre-
dicted ambient NO2 concentrations. The study area in San

Figure 14. PM2.5 surface created by IDW using predicted PM2.5 concentrations from an LUR model with the variables of traffic within a 300-m radius,
industrial areas within a 5000-m radius, and government areas within a 5000-m radius. PM2.5 monitor positions are marked with a +.  Notice the high
PM2.5 concentrations near intersections of major highways.

Figure 15. Graph showing predicted PM2.5 versus measured PM2.5 con-
centrations from the LUR model. The measured and predicted values for
each monitor are plotted on the x and y axes.
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Diego County was much smaller than the Los Angeles
MSA — 11,721 km2 versus 98,500 km2 for the SCAG
region. The traffic-count variable and the industrial land-
use variable were common to both models, but the Ross
study found that smaller-radius buffers were more effec-
tive predictors than those we used in Los Angeles. This
makes sense because NO2 arises from local sources and is
known to vary over smaller areas in proximity to traffic
(Gilliland et al. 2005), whereas PM2.5 is a mixture gener-
ated by primary and secondary sources that we would
expect to be more regionally dispersed. Data from the larger
buffer sizes in this study may reflect either an inherent spa-
tial scale of variation in the pollutants or the more dispersed
urban structure of Los Angeles.

Modeling Spatial Variability in Exposure A kriging
model was previously developed for the Los Angeles Basin
based on PM2.5 values from the same 23 monitors (Jerrett et
al. 2005). That model did not show as much of the local-area
variations in exposure as did the LUR model developed for
this study (see Figures 14 and 16). The success of this LUR
model demonstrates that traffic and land uses are strong
predictors of PM2.5 concentrations. Although the scale of
variation of PM2.5 values around an emissions source
appears to be larger than what we might expect from purely
local processes, the covariance of PM2.5 concentrations

with land-use predictors suggests that local land uses and
traffic have a significant role in distributions of PM2.5

across this large urban area. The kriging model may not be
generalizable, because the monitors were established by
government agencies in certain locations for the purpose
of regulatory compliance and therefore may not reflect the
true variability in PM2.5 levels represented by the mixture
of land uses in the LUR model.

If the monitoring network is not representative of the
spatial variability in actual pollutant exposures, we would
expect to see bias in the pollutant levels predicted from
models based on those monitoring locations. Our use of
the bootstrap method demonstrated that it is unlikely that
single influential points drove the results of the LUR
model. For example, none of the monitors were specifi-
cally located to measure traffic impact, and the closest
proxy we have is monitors located in densely populated
urban areas. Although there is some overlap between
dense population and areas of heavy traffic, we would be
able to create kriging models to reflect greater local varia-
tion if we could include data from monitors located near
heavy-traffic sites.

Although the spatially modeled exposures depend
intrinsically on land use and local emissions sources such
as traffic, the fact that some covariates are related to factors

Figure 16. Universal kriging map of PM2.5 in the Los Angeles area. PM2.5 monitor positions are marked with a circled dot (�). (Adapted from Kuenzli et
al. [2005].)
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that affect health and mortality (such as socio-economic
position) means that the LUR model may include some
hidden confounders. Consequently, to use LUR for pollu-
tion and health analyses, researchers must adjust for other
contextual confounders that may be related to the land-use
and traffic input to ensure unbiased estimates of the health
effects of air pollution.

We found that LUR predicted 69% of the variance in
PM2.5 mass in the Los Angeles MSA. With sensitivity anal-
ysis, we observed that few monitors influenced the results.
Traffic, industrial, and government areas were of most sig-
nificance because of their associated particulate emissions
from increased traffic and industrial point sources. Further
investigation is needed into the extraordinarily high levels
of PM2.5 predicted around the intersections of freeways;
these levels may constitute a significant threat to public
health if they are validated by monitoring.

SPATIAL ANALYSIS OF AIR POLLUTION AND 
MORTALITY IN LOS ANGELES

Materials and Methods

Study Population Mortality data were extracted from the
ACS CPS-II cohort database for metropolitan Los Angeles at
the ZCA scale (average population per ZCA in Los Angeles
is approximately 35,000; average area is approximately
22.5 km2). ZCA centroids were weighted by population
distribution using spatial boundary files based on 1980
and 1990 USBC data. The centroids were used to assign
PM2.5 and O3 exposure levels to the 22,905 ACS subjects
living in the 267 ZCAs (this cohort included 5,856 deaths
based on follow-up from 1982 through 2000). Some sub-
jects reported only PO Box addresses and were therefore
excluded. As in earlier ACS analyses (Pope et al. 2000; Jer-
rett et al. 2005), availability of air pollution data and other
relevant information (e.g., ZCA-level data about ecologic
covariates) led to the subset of study subjects to be used in
the health effects assessment. Although the ACS cohort is
not representative of the general population, the cohort
allows for internally valid comparisons within large sam-
ples of the American population.

Assessment of PM2.5 Exposure An LUR prediction model
was developed to predict PM2.5 from 23 monitoring loca-
tions in the Los Angeles MSA using GIS to integrate data
from land use, transportation, and physical geography (see
A Land-Use Regression Model for Predicting PM2.5 in the
Los Angeles Region). The LUR method explained 69% of
the variance in PM2.5 with three predictors around each
monitoring site: (1) traffic count within 300 m, (2) indus-
trial land area within 5000 m, and (3) government land

area within 5000 m. Model validation suggested that only
a few areas were over-predicted in the downtown section
and near freeway interchanges. (See above for details of
the LUR model’s derivation and validation [also described
in Moore et al. 2007]).

Assessment of O3 Exposure In earlier ACS studies that
used between-city comparisons, few associations have
been found between O3 exposure and mortality (Pope et al.
1995, 2002; Krewski et al. 2000a,b). Nevertheless, expo-
sure to this pollutant is considered a health threat in the
Los Angeles region, which has some of the highest levels
in the United States (Künzli et al. 2003). For O3, we
obtained data at 42 sites in and around the Los Angeles
Basin from the California Air Resources Board (ARB) data-
base. We interpolated two surfaces using a universal
kriging algorithm: one surface based on the average of the
four highest 8-hour concentrations during 2000 at each
monitoring site, and another based on the expected peak
daily concentrations (EPDC). Expected daily peaks have
been used as a statistical measure to assess the likelihood
of exceeding the 8-hour average California standard at
each site; expected peaks are based on data recorded at
each site on a specific date in the previous 3 years (1999–
2001). Both 8-hour concentrations and daily peaks are
used for federal and state designations of nonattainment
areas. They both capture extreme events, but the expected
daily peak concentration provides more stability for esti-
mating spatial patterns than the one-year measures based
on the four highest days. Few studies of long-term health
effects have found significant association with O3 expo-
sure, although acute effects of a small magnitude have
been observed (Bell et al. 2004). Thus, it seems plausible
that an O3 effect would be manifest in those areas most
likely to experience exceedances.

Traffic Data To assess the impact of traffic, we defined
buffers at both 500 and 1000 meters of a freeway. Each
ZCA centroid within those buffers was assigned a value of
1 and others were assigned 0. The resulting variables were
used as indictors of proximity to freeways in the health
effects models. For each ZCA centroid within those buffers
we collected land-use and PM2.5 data from monitors. The
U.S. Census Feature Class Codes define freeways as having
limited access, a numbered assignment (e.g., a major state
or U.S. route), and a speed limit higher than 50 miles per
hour (USCB 2004). The distance from the ZCA centroid to
the freeway was used as a proxy for exposure to traffic-
related pollution, which may exert effects independent of
and in addition to specific pollutants such as PM2.5 and O3

that vary over larger areas (Hoek et al. 2002). 
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Ecologic Covariates We assembled data from the 1980
USCB for seven ecologic covariates for the ZCAs to control
for contextual neighborhood covariates (see sidebar). Con-
textual effects occur when individual differences in a
health outcome are associated with the group of variables
that represent the social, economic, and environmental
settings where the individuals live, work, or spend time
(e.g., poverty or unemployment in a neighborhood) (Curtis
and Taket 1996; Macintyre and Ellaway 2000; Pickett and
Pearl 2001; Diez Roux 2002). These contextual effects
often operate independently from (or interactively with)
the individual-level covariates, such as smoking and diet,
from the ACS enrollment questionnaire. We used the eco-
logic covariates that have been identified as important in
the population health literature and have been previously
tested as potential confounders with the ACS dataset at the
metropolitan scale (Evans and Kantrowitz 2002; Willis et
al. 2003). These included income, income disparity, grade
12 education, total population, racial composition (black,
white, Hispanic in percentages), and unemployment (Jer-
rett et al. 2003).

We used the proportion of homes that have air condi-
tioning to measure possible exposure misclassification on
the premise that air-conditioned houses are more tightly
sealed and have lower penetration of particles from out-
doors. Similar housing variables have been used in a meta-
analysis of acute effects (Levy et al. 2000); and a recent
study of personal exposures in Los Angeles reported that
particle penetration is largely reduced in air-conditioned
homes (Meng et al. 2005). This variable added partial con-
trol for the impact of air conditioning, which may relate
both to health outcomes (through prevention of heat stress)
and to air pollutant concentrations (because high concen-
trations and low proportions of air conditioning are related
in our study area). We thus expected the proportion of air
conditioning in the ZCA to correlate with lower PM expo-
sures and effects.

We also computed principal components from the seven
ecologic covariates (excluding AC) to provide maximal
control for confounding while avoiding multicollinearity
among the ecologic covariates (Luginaah et al. 2001;
Krieger et al. 2002).

Statistical Methods and Data Analysis

The statistical methods are similar to those employed by
Jerrett and colleagues (2005a) in a previous intra-urban
analysis of data from Los Angeles using spatial kriging to
estimate air pollutant concentrations at the ZCA scale.
(The underlying statistical model is the random effects
Cox model described in the section Nationwide Analysis /

Statistical Methods and Data Analysis / The Random
Effects Cox Model.)

In brief, we used the 44 individual-level covariates (see
sidebar) identified as possible confounders of the air pol-
lution–mortality association in the Updated Analysis
(Pope et al. 2002). These variables included lifestyle, diet,
demographics, occupational, and educational factors
along with 12 variables that measure aspects of smoking.
Sensitivity analyses revealed that removing individual
variables had little influence on the estimated risk of pol-
lution exposure; therefore, to promote comparability with
results from earlier studies, we report the results for our
analyses that included this standard set of 44 individual-
level variables. Eight ecologic covariates (discussed above)
were also included.

We used the standard Cox model for our main analyses
of association between air pollution and mortality
(Hosmer and Lemeshow 1999). Because the units of anal-
yses were small ZCAs and previous analyses had indi-
cated spatial autocorrelation in the residual variation of
some health effects analyses, we also used the spatial
random effects Cox model as a cross-validation of the stan-
dard Cox model. We have previously shown that survival
experience is clustered by community and the clusters are
spatially autocorrelated between communities (Krewski et
al. 2000a,b; Jerrett et al. 2003). Lack of statistical control
for these factors can bias the estimates of the effects of air
pollution and underestimate associated standard errors
(Jerrett et al. 2003; Ma et al. 2003). We specified a model in
which the random effects were assumed to be positively
correlated for neighboring ZCAs. Thiessen polygons,
which ensure that all points within the polygon are closer
to the centroid of that polygon than to any other centroid,
were used to assign first-order nearest-neighbor contiguity
between the ZCAs. The polygons were derived using Arc-
View 3.2 (ESRI Corp., Redlands, CA).

Results

Using the new LUR model documented in the last sec-
tion, we assigned exposure concentrations based on the
traffic, government, and industrial land use for the 267
ZCAs (see also Jerrett et al. 2005a). These exposure assign-
ments were then compared with the earlier analysis, with
exactly the same causes of death, individual and ecologic
covariates, and copollutants. The results are shown in
Table 23 (six causes of death are shown in each section of
the table).

The results show the effects of LUR-predicted PM2.5
exposure with different levels of control for confounding
variables. HRs are expressed for a 10-µg/m3 change in
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Extended Analysis of ACS Study of Particulate Air Pollution and Mortality

PM2.5 exposure (followed by the 95% CI). For example, we
follow the successive analyses for all-cause mortality:

• with PM2.5 alone (stratified for age, sex, and race), the 
HR was 1.197 (95% CI, 1.082–1.325);

• whereas with the 44 individual-level covariates the 
HR was 1.143 (95% CI, 1.033–1.266).

• All subsequent results include the 44 individual-level 
covariates and one or more ecologic covariates.

• With the 44 individual-level covariates and the eco-
logic covariate of unemployment, the HR of PM2.5 was 
1.127 (95% CI, 1.015–1.252).

• When we added four social factors extracted from the 
principal component analysis (which account for 81% 
of the total variance in the social variables), the HR 
was 1.142 (95% CI, 1.026–1.272).

• Including all ecologic covariates that were individu-
ally associated with mortality in bivariate models 
with PM2.5 exposure (air conditioning, median 
income, and education attainment) reduced the HR to 
1.115 (95% CI, 1.003–1.239).

• For the parsimonious model that included ecologic 
confounder variables that both reduced the pollution 
coefficient and had associations with mortality, the 
HR was 1.126 (95% CI, 1.014–1.251).

• When controlled for the expected peak daily O3 levels 
the HR was 1.191 (95% CI, 1.069–1.327). (Thus, simi-
lar to earlier results [Jerrett et al. 2005], O3 had no pri-
mary effect in these models for all-cause mortality.)

Discussion and Conclusions

In general, the associations for PM2.5 and mortality in
this set of analyses are similar in magnitude with those
reported earlier from geostatistical kriging estimates (Jer-
rett et al. 2005a) with three minor differences. First, the HR
for PM2.5 alone is somewhat smaller than the risks from
the kriging model. Second, although the risk estimates
were smaller in this study, the CIs were tighter. Third, the
results from this study appear to be less sensitive to eco-
logic confounding. For example, in the earlier study, the
parsimonious model for all-cause mortality that included
all the individual-level variables and the significant eco-
logic confounders resulted in the lower confidence bound
below 1. In this analysis, the same model had a lower confi-
dence bound higher than 1 (1.126, 95% CI, 1.014–1.251;
only the income disparity variable confounded the estimate
to below 1, but that estimate was still extremely close to 1;
see Table 23). We consider the model containing the social
factors from the principal components analysis to be the
most reasonable on the grounds that it maximally controls
for confounding without inducing as much collinearity.

The estimates from the model that contains only the 44
individual-level covariates (1.143, 95% CI, 1.033–1.266)
and the model with all social factors (1.142, 95% CI,
1.026–1.272) produce nearly identical point estimates.
The CIs are only slightly wider for the model with social
factors from the principal component analysis incorpo-
rated in the model in the same manner as the ecologic fac-
tors. Thus, results from this LUR exposure model appear to
be more robust to adjustment for confounders than the ear-
lier results using the kriging surface.

The Los Angeles Analysis was extended using the
random effects Cox model with and without allowance for
spatial autocorrelation. The earlier study (Jerrett et al.
2005a) using the kriging estimates demonstrated signifi-
cant autocorrelation in the risks, which was diminished to
acceptable levels when the ecologic covariates were
included in the model. That analysis did not explicitly
incorporate a spatial autocorrelation parameter in the
model, but in the current analysis we used the full random
effects formulation.

Table 24 displays results from the random effects
models, organized to compare results between models
with and without allowance for spatial autocorrelation. It
also compares models with various levels of control for
confounding, beginning with a model that contains only
the 44 individual-level covariates and no pollutant vari-
able (all models were stratified for age, sex, and race). The
initial model (with only the 44 individual-level covariates)
thus demonstrates the residual random effects variance
attributable to variability in mortality patterns between
ZCAs. For all-cause mortality, when PM2.5 was included in
the model, random effects variance declined about 37%
for the model with no autocorrelation (7.008 vs. 4.386) and
about 24% for the model including autocorrelation (10.02
vs. 7.591). This large decline suggests that approximately
one-third to one-quarter of the residual variation is
accounted for by the PM2.5 variable. The drop in the
random effects variance for models including ecologic
covariates was much larger, which indicates that these
variables account for much of the residual variation in
mortality across Los Angeles. Including the freeway inter-
section variable (distance from a ZCA centroid to a
freeway) yielded only a minimal change in the random
effects variance. Substantial autocorrelation was still
found in the data after inclusion of all the variables, as evi-
denced by the fact that our estimate of ZCA autocorrela-
tion reached the maximum value allowable in the model
formulation.

This high level of residual autocorrelation, even with a
very small random effects variance, may have resulted
from a number of phenomena. First, the nearest-neighbor
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formulation of the random effects Cox model may not cap-
ture what is likely to be a more complex residual spatial
structure. Second, the autocorrelation may not be sta-
tionary over the entire study area, and more flexible
models based on spatial moving averages may be needed
to capture this nonstationarity. Third, the presence of spa-
tial autocorrelation may also suggest that one or more
important covariates have been excluded from the model.
We have visually examined the residuals, and there seems
to be a clustering of autocorrelation in residual mortality
on the downwind side of roadways with high volumes of
truck traffic. The assignment of residence locations to the
ZCA centroid prevented us from precisely assigning expo-
sures, but this autocorrelation suggests that possible effects
from truck traffic merit attention in future studies. Although
these theoretical possibilities are present, the point esti-
mates and CIs are insensitive to model specification.

In analyses of IHD mortality, including PM2.5 had a
marked effect on the residual random effects variance,
with a drop of more than 86% (4.357 vs. 0.582). The subse-
quent decline in the random effects variance due to inclu-
sion of the ecologic covariates was also large, but much
less pronounced than with all-cause mortality. For IHD,

the residual autocorrelation was negligible. We expected
this in a model in which the individual, ecologic, and air
pollution variables predicted the mortality data more com-
pletely than they did for the analysis of all-cause mortality.
With IHD we did observe some confounding effect of the
point estimates when we included the ecologic and
freeway variables. Models with and without the autocorre-
lation parameter produced nearly identical results, as
would be expected with such a small amount of residual
autocorrelation.

Results from the more refined exposure surface from the
LUR model largely confirm the earlier findings from the
kriging models. This is somewhat surprising given the dif-
ferent visual appearance of each surface, with the LUR
detecting smaller variations in areas around highways and
industry. The effect sizes were slightly diminished com-
pared with the earlier study, but the effects shown in this
study tended to be less sensitive to control for con-
founding and to alternative model specification. The larger
decline in the random effects variance for IHD mortality
supports a growing body of research on the mechanisms of
systemic pulmonary inflammation and atherogenesis
(Brook et al. 2004; Künzli et al. 2005).

Table 24. Sensitivity Analysis Using the Random Effects Cox Model for a 10-µg/m3 Change in PM2.5 Exposure with 
Allowance for Spatial Autocorrelationa

Covariatesb

No Spatial 
Autocorrelation 

Spatial 
Autocorrelation 

HR

ZCA
Variance 
(� 10�3) HR

ZCA 
Variance 
(� 10�3)

ZCA
Auto-

correlation

All Causes
44 Individual-level covariates — 7.008 — 10.02 0.3307c

+ PM2.5 1.158 (1.035–1.295) 4.386 1.160 (1.021–1.317) 7.591 0.3307c

+ Parsimonious ecologic covariatesd 1.152 (1.034–1.283) 0.229 1.152 (1.032–1.286) 0.623 0.3307c

+ Freeway intersectione 1.156 (1.036–1.289) 0.233 1.156 (1.034–1.293) 0.847 0.3307c

IHD
44 Individual-level covariates — 4.357 — 4.357 0.000f

+ PM2.5 1.402 (1.137–1.728) 0.582 1.402 (1.137–1.728) 0.582 0.000f

+ Parsimonious ecologic covariatesd 1.347 (1.083–1.675) 0.189 1.347 (1.083–1.675) 0.189 0.000f

+ Freeway intersectione 1.339 (1.074–1.669) 0.189 1.339 (1.074–1.669) 0.189 0.000f

a Bolded data refer to text.
b Covariates accumulate in the model with each addition.
c Estimate of ZCA autocorrelation reached its maximum value.
d Parsimonious individual-level (23) and ecologic (4) covariates were considered. The ecologic covariates were air conditioning, household income, grade 

12 education, and the predicted values of the third principal component analysis based on all social variables (except air conditioning). 
e Intersection with a freeway within 500 or 1000 m of a ZCA centroid.
f Estimate of ZCA autocorrelation was < 0.
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CRITICAL EXPOSURE TIME WINDOWS

We constructed individual time-dependent exposure
profiles for particulate and gaseous air pollution for a sub-
cohort of the ACS CPS-II in order to examine if there is a
critical exposure time window that is primarily respon-
sible for the increased mortality associated with ambient
air pollution. We examined air pollution exposures in
three separate time windows: 1 to 5, 6 to 10, and 11 to 15
years in the past.

MATERIALS AND METHODS

Study Population

The ACS CPS-II cohort consists of nearly 1.2 million
Americans enrolled in 1982. In 1992 and 1993, the Nutri-
tion Cohort was established within the larger ACS CPS-II
cohort (Calle et al. 2002). The purposes of selecting the
Nutrition Cohort were to update a variety of behavioral,
medical, and demographic information that had first been
collected in 1982, and to collect more detailed data
regarding diet, physical activity, and other lifestyle factors
that had not been obtained at the time of enrollment. The
ACS cohorts and survey questionnaires are detailed else-
where (Pope et al. 1995; Calle et al. 2002). Briefly, CPS-II
participants who were alive and between the ages of 50
and 74 years and who resided in one of the following 21
states that have population-based cancer registries were
included in the Nutrition Cohort: California, Connecticut,
Florida, Georgia, Illinois, Iowa, Louisiana, Maryland, Mas-
sachusetts, Michigan, Minnesota, Missouri, New Jersey,
New Mexico, New York, North Carolina, Pennsylvania,
Utah, Virginia, Washington, and Wisconsin. A total of
184,194 participants from the CPS-II cohort who lived in
these states completed the self-administered questionnaire
mailed in 1992–1993, and were contacted again in 1997–
1998, 1999–2000, and every 2 years thereafter for follow-
up information. Mortality of the study participants was
ascertained by volunteers in 1984, 1986, and 1988, and
subsequently by ACS staff using the National Death Index
(Calle and Terrell 1993). The Emory University School of
Medicine Human Investigations Committee approved all
aspects of the CPS II study.

Individual Exposure Profiles

Previous analyses of the ACS cohort have assumed that
each individual’s exposure was determined by the average
level of ambient air pollution in that person’s city of resi-
dence at one point in time, either the beginning or the end
of the study (Pope et al. 1995, 2002; Jerrett et al. 2005a;
Krewski et al. 2000a,b). In this project, we sought to estab-

lish time-dependent exposure profiles for each individual
in the study and to investigate the association between
mortality and ambient air pollutant concentrations in spe-
cific time windows that could reflect past exposures. We
hypothesized that a critical exposure time window may be
primarily responsible for the increased mortality associ-
ated with ambient air pollution.

Individual time-dependent exposure profiles for PM2.5
and SO2 were constructed for each participant by
matching the reported addresses at different times with the
air pollutant exposure for the MSA where they lived. Indi-
vidual exposures were determined using mean annual
PM2.5 and SO2 levels that may have been experienced by
the individual during specific time windows. For
example, to test the possibility that current excess mor-
tality is primarily due to pollution exposure 5 to 10 years
ago, a person’s exposure would be modeled as the average
of his or her annual exposures during the interval
extending from 5 to 10 years before the current time.

Residential Histories Residential histories for the Nutri-
tion Cohort participants were constructed based on the
place of residence when enrolled in the CPS-II study
(1982), again when enrolled in the Nutrition Cohort (1992–
1993), and at subsequent follow-up times in 1997–1998
and 1999–2000. Zip Code information was used to assign
participants to an MSA. Since no information was col-
lected on the number of moves between follow-up stages,
we assumed that if a new Zip Code was reported at the
time of follow-up, the participant had moved only once
directly from the previous Zip Code to the new one
(Hansen 1998). Since no information on the time of a move
was collected between questionnaires, we randomly
assigned a year of move to each participant (Schachter
2000) and assumed they had moved mid-calendar year
(Hansen 1998). We constructed residential histories before
enrollment in 1982 under the assumption that participants
had lived in the same residence they reported in 1982.

PM2.5 A total of 60,941 Nutrition Cohort participants
resided in one of 83 MSAs for which average annual PM2.5
exposure data had been estimated based on measured
values of TSP and PM10 for the period of 1972–2000 (cal-
culated by Lall and colleagues [2004]). For each MSA,
either annual TSP or PM10 data were used in addition to
the specific PM2.5/TSP or PM2.5/PM10 ratio. This subco-
hort was designated as the PM2.5-A group and PM2.5 expo-
sure levels were assigned to each participant (Figure 17). A
total of 8181 (13.4%) participants in the PM2.5-A group
moved at least once during the study period. A small pro-
portion of these participants (8.1%) did not reside in one
of the 83 MSAs for some portion of the follow-up period.
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Figure 17. Profile of time trends (1972–2000) in average annual PM2.5 concentrations based on measured values of TSP and PM10 in 83 MSAs and on
linear interpolation of  measured PM2.5 data for the years 1979–1983 and 1999–2000 for an additional 23 MSAs.  (Figure continues next page.)
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Figure 17 (Continued).
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Figure 17 (Continued).
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Figure 17 (Continued).
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For those individuals, average annual PM2.5 concentra-
tions were estimated using linear interpolation of data
from an additional 23 MSAs for which measured PM2.5
data were available for the periods 1979–1983 and 1999–
2000 (Pope et al. 2002). The first participant in this group
died in 1992; therefore, the entire exposure period we
examined for this group started in 1977 (15 years before
the first death) and ended in 2000 (the end of follow-up).

A second analytic cohort was formed to include 81,466
deceased participants from the full CPS-II cohort who (1)
were not in the PM2.5-A group, and (2) died in the same
MSA where they had resided at enrollment in 1982. They
were designated as the PM2.5-B group. We assumed that
these participants had not moved between enrollment and
death. PM2.5 values were assigned using average annual
data from Lall and colleagues (2004) for 50,915 participants
in 30 MSAs, and by linear interpolation of data for 23
MSAs from Pope and colleagues (2002) for the remaining
30,551 participants (Figure 18). The first participant in this
group died in 1982; therefore the exposure period ranged
from 1967 (15 years before the first death) to 2000 (end of
follow-up). The 1972 PM2.5 concentrations were used to
represent exposures before 1972. Participants in the PM2.5-
A and PM2.5-B groups were mutually exclusive.

SO2 A third analytic group was formed with 80,711
Nutrition Cohort participants who resided in one of 120
MSAs for which at least 20 years of annual average SO2
measurements were available. For most of the period from
1972 to 2000, measured average annual SO2 data were
available from the EPA AIRS (Pope et al. 2002). Linear
interpolation between adjacent time points was used for
years in which average annual measurements were
missing (Figures 19 and 20). As with the PM2.5-A group,
the entire exposure period examined was 1977 to 2000. A
total of 5762 (7.1%) participants moved at least once
during the exposure period.

STATISTICAL METHODS AND DATA ANALYSIS

Standard Cox models with time-dependent PM2.5 and
SO2 exposure data were used to obtain adjusted HRs and
95% CIs (SAS version 9.1; SAS Institute, Cary, NC) for
all-cause, lung-cancer (ICD9: 162), and CPD (ICD9: 400–
440, 460–519) mortality. For the PM2.5-A group and the
SO2 group, HRs were calculated from enrollment in the
Nutrition Cohort in 1992–1993 through 2000. For the
PM2.5-B group, the HRs covered the period from enroll-
ment in the CPS-II full cohort in 1982 through end of
follow-up in 2000.

The baseline hazard function was stratified by age (in 1-
year groupings), sex, and race (white/other; from CPS-II

enrollment questionnaire). Models were adjusted for the
standard suite of 44 lifestyle and demographic variables
collected at enrollment in 1982 (see sidebar) including:
smoking, education, marital status, body mass index,
alcohol consumption, occupational exposure, and diet
(Jerrett et al. 2005a; Pope et al. 2002).

When fitting the standard Cox model, the partial likeli-
hood is updated each time a death occurred in a group. For
each of the three groups (PM2.5-A, PM2.5-B, and SO2), the
risk set for the partial likelihood consisted of all subjects in
the group who were alive at the time a member died. The
exposure for each subject in the risk set was based on their
time-dependent exposure profile up to the death of a
cohort member and was updated at each subsequent death
time. Estimates of the parameters of the standard Cox
model with time-dependent covariates were then obtained
by maximizing the product of the partial likelihoods that
corresponded to each death time.

Differences in HRs and AIC values between separate 5-
year time-window models allowed us to investigate which
time window would be most relevant to the association
between air pollution and mortality. AIC values provide a
measure of goodness of fit, or show how well the model
that relates exposure to outcome fits the available data,
taking into account the complexity of the model. Models
with lower AIC values imply that the model has a better fit
(Burnham and Anderson 2002). In this investigation, the
number of parameters did not change between the separate
time-window models. Models were fitted for an overall 15-
year time window, and separately for 1- to 5-year, 6- to 10-
year, and 11- to 15-year time windows. Since education
attainment had been found to be a powerful modifier of the
air pollution–mortality association in the Reanalysis
(Krewski et al. 2000a,b), results were also examined by
level of education recorded at enrollment in 1982 (less
than high school compared with high school or more).

A multiple exposure-time-window model was also
tested as a type of weighted model to consider the three 5-
year time windows simultaneously. In this model, the log-
HR was modeled as a linear combination of average annual
exposures that had occurred during each of the three time
windows. If each of the three fitted effects (the three 5-year
periods) were positive, we could interpret them as a single
overall pollutant effect calculated as a weighted average of
the exposures in the three time windows. The weights, rep-
resented by the coefficients in the linear combination,
would represent the “relative effectiveness” of exposure
during that time window (Goddard et al. 1995). To be inter-
pretable, this model would require the additional constraint
that all of the weights be nonnegative, or, equivalently, that
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Figure 18. Profile of time trends (1972–2000) in average annual PM2.5 concentrations for 53 MSAs in which PM2.5-B participants (from the full CPS-II
cohort) lived. PM2.5 exposure concentrations assigned to the participants were based on (1) average annual data for 50,915 participants in 30 MSAs and
(2) linear interpolation of data for the remaining 30,551 participants in 23 MSAs. The 1972 PM2.5 concentrations were used to represent exposures before
1972. (Figure continues next page.)
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Figure 18 (Continued).
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Figure 19. Profile of time trends (1972–2000) in SO2 concentrations for 120 MSAs. Measured average annual SO2 data for most of the period were available.
Linear interpolation between adjacent time points was used for years in which average annual measurements were missing.  (Figure continues next page.)
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Figure 19 (Continued).
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Figure 19 (Continued).
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Figure 19 (Continued).
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Figure 19 (Continued).

Figure 20. Distribution of measured average annual SO2 data for 1972–2000. Note that only 5 MSAs had 29 years of SO2 measurements for which no
imputations were needed.

the direction of the effect be the same for each of the three
time windows.

Because SAS does not provide a means of fitting the
constrained model, we fit the unconstrained model to see
if all three fitted effects had the same sign. Unfortunately,
this produced a combination of both positive and nega-
tive weights making interpretation problematic. For
example, two positive effects in the more distant time
windows and a negative effect for the most recent time
window would imply that current exposure is deleterious

only until 5 years have passed, at which time it becomes
beneficial. In the absence of established software to fit the
correct, constrained model, we were obliged to abandon
this line of inquiry.

RESULTS

Tables 25 (15-year time window) and 26 (three separate
5-year time windows) present adjusted HRs (with 95%
CIs) and AIC values for all-cause, lung-cancer, and CPD
mortality associated with PM2.5 or SO2 exposure. HRs
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associated with PM2.5 exposure in several of the 15-year
windows were elevated, and significantly so for the PM2.5-
B cohort group for lung-cancer and CPD mortality. Results
for analyses stratified by level of education attainment are
presented in Tables 27–29.

An examination of HRs revealed no clear pattern. For
PM2.5, no one exposure time window stood out as demon-
strating the greatest HR; nor was there any clear pattern of
a trend in HRs going from most recent to most distant win-
dows or vice versa. For SO2, the HRs were highest in the
most recent time window (1 to 5 years), although none of
the HRs was significantly elevated.

Differences in AIC values among the three 5-year expo-
sure time windows were small. For both PM2.5 groups the
AIC value tended to be lowest (the model with the best fit
to the data) in either the most recent time window (1 to 5
years) or the middle time window (6 to 10 years). This was
apparent for all three cause-of-death categories in analyses
with all subjects (Table 26) and in analyses stratified by
education attainment (Tables 28 and 29). The exception
was lung cancer in the PM2.5-A group (Table 26). For the
SO2 group, AIC values were lowest in the most recent time
window for nearly all cause-of-death categories, although
differences in AIC values were again small. The exceptions
were all-cause and lung-cancer mortality among those
with a lower level of education attainment (Table 28).

DISCUSSION AND CONCLUSIONS

Overall, no clear pattern emerged as to which of the time
windows of exposure may be most responsible for the
PM2.5–mortality association. Although for SO2 exposure,
models that used exposure data from the most recent 5

years provided a slightly better fit to available data on mor-
tality from all causes, lung cancer, and CPD, as evidenced by
lower AIC values; these differences were small. The HRs for
mortality associated with exposure to SO2 were highest in
the most recent time window; however, none of them were
significantly elevated.

To be able to identify which exposure time windows are
associated with mortality attributable to air pollution, the
patterns of exposure among individuals in the cohort need
to be sufficiently varied. Variation can be spatial (different
exposure profiles experienced by individuals living in dif-
ferent MSAs) and temporal (exposure profiles for a given
MSA changing over time). In this data set, both spatial and
temporal variations in exposure patterns were limited by
the ecologic nature of the exposure measure used. Greater
variability in temporal exposure patterns may be expected
for individuals who move from one MSA to another during
the study period; however, relatively few participants
moved during the time span of this analysis.

On average, the spatial (between MSAs) and temporal
(within MSAs) variations in exposure patterns were sim-
ilar for the PM2.5-A group (some of whom moved during
the study period) and the PM2.5-B group (who were
assumed to not have moved between enrollment and
death). For spatial variation in both groups, the SD around
the annual average PM2.5 concentrations was 5.0; and for
temporal variation it was 3.5 for group A and 3.4 for group
B. Spatial variation of within-MSA temporal variation,
however, was somewhat higher in the PM2.5-B group than
in the PM2.5-A group as shown by SDs of 1.9 for group B
and 1.7 for group A. For the SO2 group, SDs were 3.7 for
spatial variation, 2.6 for temporal variation, and 1.9 for
spatial–temporal variation.

Table 25. HRs by Cause of Death Associated with a 10-µg/m3 Change in PM2.5 Concentrations or a 5-ppb Change in SO2 
Concentrations Over the 15-Year Time Windowa

Cause of Death
PM2.5-A Group

(n = 60,941)
PM2.5-B Group

(n = 81,466)
SO2 Group
(n = 80,711)

All causes
Deaths (n) 6,117 81,466 7,702
HR 0.98 (0.92–1.06) 1.01 (0.99–1.02) 0.99 (0.96–1.01)

Lung cancer
Deaths (n) 599 6,038 763
HR 1.08 (0.87–1.35) 1.07 (1.02–1.13) 0.96 (0.88–1.05)

CPD
Deaths (n) 2,478 40,496 3,145
HR 1.00 (0.90–1.11) 1.05 (1.03–1.07) 1.01 (0.97–1.05)

a Model included the 44 individual-level covariates. Baseline hazard function was stratified by age (1-year groupings), sex, and race and was adjusted for 
smoking, marital status, body mass index, alcohol, occupational exposures, and diet. Bolded values refer to text. HRs are followed by 95% confidence 
intervals.
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Correlations between exposures assigned to the same
subject in different time windows also tended to be high (r
ranged from 0.75 to 0.98 for PM2.5 and 0.11 to 0.92 for
SO2). These correlations indicate that the amount of inde-
pendent information available for each time window was
somewhat limited.

Two recent studies by Jerrett and colleagues (2007) and
Laden and associates (2006) have attempted to examine
temporal variation of mortality risk associated with longer-
term air pollution exposure in cohort studies. In both
studies, relative risk estimates for mortality were found to
vary with follow-up time. For the ACS CPS-II cohort, Jerrett

and coworkers (2007) reported that the relative risk of mor-
tality from all causes and from CPD associated with SO4

2�

exposure declined from the 1980s to the 1990s, possibly
due to air quality improvements. In contrast, PM2.5 HRs
were largest for exposures in more recent time windows,
possibly due to changing patterns of PM2.5 emissions. Com-
plex patterns of population mobility, individual suscepti-
bility, and exposure measurement error have also been
suggested as possible explanations for the observed tem-
poral variation in risk. In contrast, HRs for lung-cancer
mortality exhibited an inverted U-shaped pattern over
time, possibly reflecting a prolonged multifactorial etiology

Table 26. HRs and AIC Values by Cause of Death Associated with a 10-µg/m3 Change in PM2.5 Concentrations or a 5-ppb 
Change in SO2 Concentrations for Three 5-Year Time Windowsa

Exposure 
Time Windowb

PM2.5-A Group
(n = 60,941)

PM2.5-B Group
(n = 81,466)

SO2 Group
(n = 80,711)

All Causes
Years 1–5

HR 1.01 (0.94–1.08) 1.01 (0.99–1.03) 1.03 (0.97–1.09)
(Rank) AIC (3) 81,144.310 (1) 933,094.00 (1) 102,074.03

Years 6–10
HR 0.98 (0.91–1.04) 1.01 (0.99–1.02) 0.99 (0.95–1.03)
(Rank) AIC (1) 81,143.776 (2) 933,094.94 (3) 102,074.37

Years 11–15
HR 0.98 (0.92–1.04) 1.01 (0.99–1.02) 0.99 (0.95–1.02)
(Rank) AIC (2) 81,143.970 (3) 933,095.03 (2) 102,074.19

Lung Cancer
Years 1–5

HR 1.12 (0.89–1.40) 1.10 (1.04–1.17) 1.12 (0.94–1.35)
(Rank) AIC (2) 7,541.342 (1) 67,541.515 (1) 9,661.684

Years 6–10
HR 1.02 (0.83–1.25) 1.06 (1.01–1.12) 1.03 (0.91–1.16)
(Rank) AIC (3) 7,542.180 (2) 67,545.732 (2) 9,662.963

Years 11–15
HR 1.10 (0.91–1.33) 1.05 (1.01–1.10) 0.98 (0.87–1.09)
(Rank) AIC (1) 7,541.275 (3) 67,546.285 (3) 9,662.990

CPD
Years 1–5

HR 1.02 (0.91–1.14) 1.06 (1.03–1.08) 1.06 (0.96–1.17)
(Rank) AIC (2) 32,234.695 (3) 462,773.21 (1) 40,854.733

Years 6–10
HR 0.98 (0.89–1.09) 1.05 (1.03–1.07) 0.99 (0.93–1.05)
(Rank) AIC (1) 32,234.694 (1) 462,771.08 (2) 40,856.150

Years 11–15
HR 0.99 (0.90–1.09) 1.04 (1.02–1.06) 1.00 (0.94–1.05)
(Rank) AIC (3) 32,234.791 (2) 462,772.56 (3) 40,856.224

a Model included the 44 individual-level covariates. Baseline hazard function was stratified by age (1-year groupings), sex, and race and was adjusted for 
smoking, marital status, body mass index, alcohol, occupational exposures, and diet. HRs are followed by 95% confidence intervals.

b The AIC value is a measure of how well the model fits the available data; the time window with the lowest AIC value (number 1 in rank) best represents 
the patterns of mortality.
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for lung cancer. In a Swedish case–control study, Nyberg
and colleagues (2000) reported that NO2 exposure more
than 20 years in the past was most important for lung
cancer development compared with more recent exposure.

In an analysis of the Harvard Six Cities Study partici-
pants over a follow-up period similar to the one used in
the current study, Laden and colleagues (2006) reported
that relative risk estimates of mortality associated with
PM2.5 exposure declined in accordance with a decline in
exposure; this was true for overall, cardiovascular, and res-
piratory mortality but not for lung-cancer mortality.
Whether PM2.5 exposure was modeled as the annual
average in the year of death or as the average over the
entire follow-up period, it had similar effects on mortality.
The results from the study suggest that since PM2.5 expo-
sure may affect sensitive individuals with preexisting con-
ditions and play a role in the development of chronic
disease, as exposure declines so may the excess mortality
related to it. The importance of the effect of recent air pol-
lution exposure on mortality has also been emphasized in
other studies using different modeling approaches
(Schwartz and Laden 2004; Roosli et al. 2005). Most
recently, Schwartz and associates (2008), in a further anal-
ysis of data from the Harvard Six Cities Study, reported

that mortality associated with exposure to fine particles
was observed largely within 1 to 2 years of exposure.

The purpose of the present analysis was not to provide
estimates of the relative risk of mortality associated with
air pollution, but rather to examine the relative effective-
ness of exposures at different times in the past to affect
mortality associated with air pollution in the present.
Therefore, these HR estimates for the Nutrition Cohort are
not directly comparable with those from previous analyses
based on the full ACS CPS-II cohort. 

The results of the present study are subject to certain
limitations. Whereas the SO2 concentrations were all mea-
sured data, the PM2.5 concentrations were predicted from
PM10 and TSP measurements and are therefore subject to a
certain degree of exposure measurement error. For some
subjects, PM2.5 data were interpolated based on two time
points, at baseline (1982) and the end of follow-up (2000);
and for the larger PM2.5-B group, we extrapolated back
from 1972 exposures for models that considered exposures
up to 15 years in the past, which sometimes extended to
1967. It is possible that increasingly older air pollution
measurements may have been subject to a greater degree of
measurement error than more recent measurements; if so,

Table 27. HRs by Cause of Death Associated with a 10-µg/m3 Change in PM2.5 Concentrations or a 5-ppb Change in SO2 
Concentrations Over the 15-Year Time Window as Modified by Education Attainmenta

Cause of Death PM2.5-A Group PM2.5-B Group SO2 Group

Less than High School n = 2,902 n = 16,479 n = 4,026
All Causes

Deaths (n) 533 16,479 699
HR 1.13 (0.90–1.42) 1.02 (0.99–1.06) 1.02 (0.94–1.12)

Lung Cancer
Deaths (n) 66 1,199 82
HR 1.30 (0.67–2.52) 1.08 (0.97–1.21) 1.03 (0.78–1.36)

CPD
Deaths (n) 231 9,281 307
HR 1.00 (0.70–1.42) 1.08 (1.04–1.13) 1.03 (0.90–1.18)

High School or More n = 58,039 n = 64,987 n = 76,685
All Causes

Deaths (n) 5,584 64,987 7,003
HR 0.97 (0.90–1.05) 1.00 (0.99–1.02) 0.98 (0.96–1.01)

Lung Cancer
Deaths (n) 533 4,839 681
HR 1.06 (0.84–1.35) 1.07 (1.01–1.13) 0.95 (0.87–1.04)

CPD
Deaths (n) 2,247 31,215 2,838
HR 0.99 (0.89–1.11) 1.04 (1.02–1.07) 1.01 (0.97–1.06)

a Model included 42 individual-level covariates (the two covariates for education attainment were omitted for this analysis). Baseline hazard function was 
stratified by age (1-year groupings), sex, and race and was adjusted for smoking, marital status, body mass index, alcohol, occupational exposures, and 
diet. HRs are followed by 95% confidence intervals.
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Table 28. HRs and AIC Values by Cause of Death Associated with a 10-µg/m3 change in PM2.5 Concentrations or a 5-ppb 
Change in SO2 Concentrations for Three 5-Year Time Windows for Those with an Education of Less than High Schoola

Exposure 
Time Windowb

PM2.5-A Group
(n = 2,902)

PM2.5-B Group
(n = 16,479)

SO2 Group
(n = 4,026)

All Causes
Years 1–5

HR 1.11 (0.87–1.41) 1.03 (0.99–1.07) 1.00 (0.80–1.24)
(Rank) AIC (3) 3,930.551 (3) 134,703.47 (3) 5,319.918

Years 6–10
HR 1.15 (0.93–1.42) 1.03 (0.996–1.06) 1.04 (0.90–1.19)
(Rank) AIC (1) 3,929.531 (1) 134,702.42 (2) 5,319.643

Years 11–15
HR 1.10 (0.90–1.33) 1.02 (0.99–1.05) 1.04 (0.92–1.17)
(Rank) AIC (2) 3,930.464 (2) 134,703.30 (1) 5,319.545

Lung Cancer
Years 1–5

HR 1.15 (0.56–2.34) 1.10 (0.97–1.26) 1.12 (0.61–2.04)
(Rank) AIC (3) 486.585 (1) 9,346.718 (3) 601.746

Years 6–10
HR 1.33 (0.72–2.46) 1.07 (0.96–1.20) 1.12 (0.74–1.69)
(Rank) AIC (1) 485.900 (3) 9,347.238 (2) 601.602

Years 11–15
HR 1.29 (0.72–2.31) 1.07 (0.98–1.17) 1.18 (0.82–1.71)
(Rank) AIC (2) 486.021 (2) 9,346.887 (1) 601.098

CPD
Years 1–5

HR 1.10 (0.76–1.60) 1.09 (1.04–1.14) 1.08 (0.77–1.50)
(Rank) AIC (1) 1,689.729 (3) 76,074.461 (1) 2,354.605

Years 6–10
HR 0.99 (0.71–1.38) 1.08 (1.04–1.13) 1.01 (0.82–1.25)
(Rank) AIC (3) 1,690.004 (1) 76,071.375 (3) 2,354.778

Years 11–15
HR 0.94 (0.69–1.28) 1.07 (1.03–1.10) 0.97 (0.80–1.17)
(Rank) AIC (2) 1,689.836 (2) 76,072.491 (2) 2,354.686

a Model included 42 individual-level covariates (the two covariates for education attainment were omitted for this analysis). Baseline hazard function was 
stratified by age (1-year groupings), sex, and race and was adjusted for smoking, marital status, body mass index, alcohol, occupational exposures, and 
diet. HRs are followed by 95% confidence intervals.

b The AIC value is a measure of how well the model fits the available data; the time window with the lowest AIC value (number 1 in rank) best represents 
the patterns of mortality.

that could result in higher AIC values and a bias of HRs
toward the null in more distant exposure time windows.

We may have also misclassified exposure with certain
assumptions about individuals’ residential histories, such
as that the place of residence remained unchanged before
1982. The PM2.5-B group was composed entirely of partic-
ipants who had died and were assumed to have never
moved, whereas the PM2.5-A and SO2 groups were com-
posed of self-selected CPS-II participants who had sur-

vived until 1992. Although this may introduce some type
of a selection bias, we think it does not influence the iden-
tification of critical exposure time windows, which are
determined by the pathophysiological disease processes.

Updated information for certain demographic and life-
style covariates have been collected in follow-up surveys
for Nutrition Cohort participants. Although data on these
covariates were not available for all study participants
included in this analysis, most of the covariates do not
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Table 29. HRs and AIC Values by Cause of Death Associated with a 10-µg/m3 Change in PM2.5 Concentrations or a 5-ppb 
Change in SO2 Concentrations for Three 5-Year Time Windows for Those with an Education of High School or Morea

Exposure 
Time Windowb

PM2.5-A Group
(n = 58,039)

PM2.5-B Group
(n = 64,987)

SO2 Group
(n = 76,685)

All Causes
Years 1–5

HR 1.00 (0.93–1.08) 1.01 (0.99–1.03) 1.03 (0.96–1.10)
(Rank) AIC (3) 73,721.769 (1) 722,351.83 (1) 92,415.750

Years 6–10
HR 0.96 (0.90–1.03) 1.00 (0.98–1.02) 0.99 (0.95–1.03)
(Rank) AIC (1) 73,720.383 (3) 722,352.50 (3) 92,416.128

Years 11–15
HR 0.97 (0.91–1.03) 1.00 (0.99–1.02) 0.99 (0.95–1.02)
(Rank) AIC (2) 73,720.888 (2) 722,352.49 (2) 92,416.016

Lung Cancer
Years 1–5

HR 1.12 (0.87–1.42) 1.10 (1.03–1.18) 1.13 (0.93–1.37)
(Rank) AIC (1) 6,702.496 (1) 52,588.969 (1) 8,620.221

Years 6–10
HR 0.99 (0.79–1.23) 1.06 (1.00–1.12) 1.04 (0.91–1.18)
(Rank) AIC (3) 6,703.257 (2) 52,592.574 (3) 8,621.479

Years 11–15
HR 1.08 (0.88–1.33) 1.05 (0.998–1.10) 0.96 (0.86–1.08)
(Rank) AIC (2) 6,702.698 (3) 52,593.565 (2) 8,621.350

CPD
Years 1–5

HR 1.01 (0.90–1.14) 1.05 (1.02–1.08) 1.06 (0.96–1.18)
(Rank) AIC (2) 29,075.089 (1) 346,041.73 (1) 36,658.773

Years 6–10
HR 0.98 (0.88–1.09) 1.04 (1.02–1.07) 0.99 (0.93–1.06)
(Rank) AIC (1) 29,074.988 (2) 346,042.27 (2) 36,660.093

Years 11–15
HR 0.99 (0.90–1.10) 1.04 (1.01–1.06) 1.00 (0.95–1.06)
(Rank) AIC (3) 29,075.102 (3) 346,043.24 (3) 36,660.141

a Model included 42 individual-level covariates (the two covariates for education attainment were omitted for this analysis). Baseline hazard function was 
stratified by age (1-year groupings), sex, and race and was adjusted for smoking, marital status, body mass index, alcohol, occupational exposures, and 
diet. HRs are followed by 95% confidence intervals.

b The AIC value is a measure of how well the model fits the available data; the time window with the lowest AIC value (number 1 in rank) best represents 
the patterns of mortality.

appreciably affect the air pollution–mortality relationship
(education attainment is the major exception) and were
not expected to complicate the identification of critical
time windows of exposure (Krewski et al. 2000a,b). In the
present study, stratification of the analysis by level of edu-
cation attainment (less than high school versus high
school or greater) did not shed light on the question of
which time windows might be most important. However,
consistent with previous studies that did not account for
residential mobility information, we also observed larger

mortality HRs among those with a lower level of education
attainment. Levels of smoking cessation may have also dif-
fered between analytic groups.

Overall, identification of critical exposure time win-
dows, even among large national cohorts, remains a chal-
lenge and further research to identify them with other
relevant data sets is needed. Such work would improve
our understanding of the time frame surrounding the
human health benefits from reduced exposure to long-term
air pollution.
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IMPLICATIONS OF THE FINDINGS

PHASE I

This report provides the results of Phase III of the Par-
ticle Epidemiology Reanalysis Project, which began in
1998. Phases I and II together are referred to as the Reanal-
ysis. In Phase I, we validated the data used in the Harvard
Six Cities Study (follow-up 1974–1991; Dockery et al.
1993) and the American Cancer Society Study (follow-up
1982–1989; Pope et al. 1995) of long-term exposure to par-
ticulate air pollution and mortality and, using the same
analytic methods, replicated the numerical results
reported by the original investigators. Our findings in
Phase I established the integrity of the original data and
confirmed, with trivial discrepancies, the original risk esti-
mates (Krewski et al. 2000a; 2003b; 2004; 2005a).

PHASE II

In Phase II, we conducted a detailed sensitivity analysis
to assess the robustness of the original findings to alterna-
tive analytic approaches (Krewski et al. 2000b). Specific
sensitivity analyses focused on the impact on risk estimates

of including additional individual-level covariates in the
risk models that relate particulate air pollution with mor-
tality; including new ecologic covariates related to demo-
graphic factors, socioeconomic indicators, availability of
health services, climate variables, characteristics of the
physical environment, and gaseous copollutants (Krewski
et al. 2000b; 2003a,b); possible confounding due to occu-
pational exposures (Siemiatycki et al. 2003); and popula-
tion mobility.

These sensitivity analyses produced four main results:
(1) Adjusting for most ecologic covariates did not substan-
tially alter mortality risk estimates related to exposure to
particulate and gaseous air pollutants. An exception was
population change (movement of people from one area of
the country to another), which notably reduced the risk esti-
mates for all-cause mortality related to SO4

2� exposure,
although the effects of population change were completely
attenuated by control for residual autocorrelation. (2) The
risk estimates did not vary with adjustment for most indi-
vidual-level covariates. However, education attainment was
found to modify the effect — risk estimates for all causes of
death studied decreased with increasing education attain-
ment for both PM2.5 and SO4

2� exposures. (3) Adjustment
for ambient SO2 concentrations at the MSA scale markedly

Figure 21. Spatial distribution (kriged) of PM2.5 concentrations based on data from 1982–1986. Analysis done in Phase II (Krewski et al. 2000b).
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Figure 22. Spatial distribution (kriged) of PM2.5 concentrations based on data from 1999–2000. Analysis done in the current project. 

reduced the mortality risk estimates for both PM2.5 and
SO4

2� exposures. (4) Adjusting for occupational exposures
based on an occupational “dirtiness” score and an index of
occupational exposure to known lung carcinogens did not
materially alter air pollution risk estimates, thereby all but
ruling out residual confounding by occupation.

New methods of analysis that take into account spatial
patterns in the ACS data were also developed and applied
in Phase II (Krewski et al. 2000b; Burnett et al. 2001;
Cakmak et al. 2003; Jerrett et al. 2003; Ma et al. 2003).
These methods, which consider different patterns of spa-
tial autocorrelation in both mortality rates and air pol-
lutant levels, resulted in slightly higher mortality risk
estimates with wider confidence limits compared with
those found using standard Cox regression methods based
on the assumption of no spatial autocorrelation. The
results of flexible exposure–response models indicated
that air pollution risk estimates were particularly sensitive
to the use of alternate risk projection models (Abraha-
mowicz et al. 2003). The effects of using ecologic (neigh-
borhood-level) rather than individual-level covariates
were also explored (Abrahamowicz et al. 2004); this anal-
ysis showed that although biases due to aggregation of
individual-level covariates can occur, those biases were

unlikely to account for the observed associations between
air pollution exposure and mortality.

In Phase II, we also explored the effect of the geographic
unit of scale for spatial analyses, and noted that mortality
risk estimates using PM2.5 concentrations at the county
scale were higher than estimates based on pollutant con-
centrations at the MSA scale (Willis et al. 2003). Therefore,
we explored the MAUP in more detail in Phase III using
Intra-Urban Analyses for the Los Angeles and New York
City regions.

PHASE III

The Phase III Extended Analysis was intended to further
explore the association between ambient air pollution and
mortality by using additional follow-up data on vital status
in the ACS cohort through 2000, thereby providing 11 more
years of follow-up beyond that considered in Phase II.

Additional data on exposure to ambient air pollution
was also available for use in Phase III. In Phase II, all air
pollution exposure data we considered were related to
baseline exposures at the time the ACS cohort was
enrolled in 1982 (Figure 21). Levels of air pollution have
since changed; Figure 22 presents the spatial distribution
of PM2.5 in 2000. Part of our team at NYU constructed
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annual average estimates of PM2.5 concentrations for
1972–2000, and we used them in the analysis of possible
critical exposure time windows. Measured annual average
SO2 concentrations were also available from the EPA AIRS
database for the same period.

The specific objectives of Phase III were threefold: (1)
Do social, economic, and demographic ecologic variables
confound or modify the relationship between particulate
air pollution and mortality? (2) How can spatial autocorre-
lation and multiple geographic levels be taken into
account within the random effects Cox models? (3) What
critical exposure time windows affect the association
between air pollution and mortality?

During the course of Phase III, a fourth objective of
focusing on Intra-Urban Analyses in the Los Angeles and
New York City regions was added. These Intra-Urban Anal-
yses were intended to explore the MAUP by using more
geographically refined indicators of air pollution exposure.
Specifically, the relatively dense grid of air pollution mon-
itors in both of these large cities permitted an assessment of
exposure to ambient air pollution at the ZCA scale.

The extensive series of analyses conducted during the
course of Phase III provided a number of important find-
ings concerning the association between exposure to
ambient air pollutants and mortality.

SUMMARY OF RESULTS FROM PHASE III

Nationwide Analysis

The first set of analyses focused on further character-
izing the relationship between air pollution and mortality
using the most recent follow-up data for the ACS cohort.

Nationwide Analysis of the full ACS cohort confirmed
that mortality increases with exposure to PM2.5; the HR for
death from all causes was 1.033 (95% CI, 1.015–1.052), for
death from CPD was 1.091 (95% CI, 1.063–1.120), for
death from IHD was 1.152 (95% CI, 1.111–1.196), and for
death from lung cancer was 1.110 (95% CI, 1.040–1.185)
(see Table 3). These risk estimates were based on annual
average air pollutant concentrations in 1999–2000 and were
calculated based on a 10-µg/m3 change in PM2.5. (Similar
although slightly lower risk estimates were obtained using
air pollutant concentrations for 1979–1983.)

The Reanalysis showed stronger and more robust
associations between SO2 exposure and all causes of mor-
tality compared with those observed for PM2.5 exposure
(Krewski et al. 2000b). A plausible mechanism by which
SO2 could increase mortality risk, however, has not yet been
identified. One possibility is that SO2 may serve as a marker
for particulate air pollution formed by the atmospheric

transformation of SO2 into SO4
2� particles. In contrast, the

present analysis showed stronger mortality associations
for PM2.5 than for SO2 exposure. We did not investigate
sources of particles or particle transformation; however,
source apportionment is an important avenue for future
research.

In analyses conducted at the national level, the largest
mortality risk estimates were consistently associated with
IHD; a similar result was noted in the Reanalysis Project.
Whereas lung-cancer mortality in Phase II was found not
to be significantly elevated in relation to PM2.5 exposure,
the additional number of lung-cancer deaths during the
further 11 years of follow-up used for Phase III resulted in
a significant association between PM2.5 exposure and lung
cancer. A significant increase in lung-cancer mortality was
also noted in the Updated Analysis of the ACS cohort with
follow-up through 1998 (Pope et al. 2002).

We adjusted models for ecologic covariates to account
for sociodemographic risks, which would yield less biased
mortality risk estimates of air pollution exposure. In nearly
all models that adjusted for the seven ecologic covariates
simultaneously, the HR tended to increase in comparison
to models with no adjustment, although many of the differ-
ences were small. The geographic unit of analysis of eco-
logic covariates (ZCA, MSA, or MSA & DIFF) tended not to
make an appreciable difference in influence on HR esti-
mates; however, in many cases HR estimates tended to be
highest in models with the ecologic covariates considered
at the MSA & DIFF levels simultaneously.

The air pollution–lung-cancer mortality association
was also found to vary somewhat by the level of education
attainment recorded when subjects were enrolled. Specif-
ically, participants who completed high school or less had
a significant increase in risk of lung-cancer mortality of
approximately 20% associated with each 10-µg/m3 change
in PM2.5 (as measured in 2000) compared with no associ-
ation observed for those who completed more than high
school.

Intra-Urban Analyses

The Intra-Urban Analyses for the Los Angeles region
using the LUR-based exposure assignments resulted in
notably larger mortality risk estimates than those found in
the Nationwide Analysis. Such differences were suggested
by an earlier simulation study of the effects of exposure
measurement error in studies of this type conducted by
Mallick and associates (2002). Mortality risk estimates
using the LUR-based exposure estimates were somewhat
smaller than those based on the exposure estimates from
the kriging model, but were generally comparable. The HR
of mortality due to exposure to PM2.5 in Los Angeles from
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all causes was 1.143 (95% CI, 1.033–1.266), from CPD was
1.114 (95% CI, 0.968–1.282), from IHD was 1.331 (95% CI,
1.084–1.634), and from lung cancer was 1.392 (95% CI,
0.964–2.010) (see Table 23). These risk estimates are based
on PM2.5 concentrations in Los Angeles in 1999–2000 and
correspond to a change of 10 µg/m3 PM2.5. Mortality was
not significantly higher in relation to exposure to O3 con-
centrations or with proximity to freeways within the Los
Angeles MSA.

The Intra-Urban Analysis for the New York City region
produced a somewhat different picture of the association
between air pollution and mortality than in Los Angeles.
In New York City, the HR of mortality due to exposure to
PM2.5 from all causes was 0.984 (95% CI, 0.948–1.020),
from CPD was 0.953 (95% CI, 0.902–1.007), from IHD was
1.072 (95% CI, 1.003–1.147), and from lung cancer was
0.955 (95% CI = 0.836–1.091) (see Table 15). Whereas in Los
Angeles PM2.5 exposure was related to all cause-of-death
categories, in New York IHD was the only cause of death
associated with PM2.5 exposure (which is consistent with
the mechanistic hypothesis put forward by Pope and associ-
ates [2004] in the Updated Analysis). These HR estimates
are based on 3-year average PM2.5 concentrations from the
28 counties of New York City in 1999–2001 and corre-
spond to a difference of 1.5 µg/m3 of PM2.5 between the
highest level of exposure and the lowest. The exposure
estimates were based on LUR models, taking into account
traffic density, population density, and industrial land use.

Previously, we have used kriging methods to estimate
levels of ambient PM2.5 concentrations (Jerrett et al.
2005a). Table 30 presents a comparison of HRs obtained
from analyses using LUR and kriging exposure assign-
ments in Los Angeles and LUR in New York City. The com-
parison suggests that the method used for exposure
assignment did not affect HR estimates appreciably and
was not responsible for differences between the two cities
that have been previously observed. The differences in
mortality risks may be attributable to fundamental differ-
ences in the topographical, geographical, and urban
attributes of these two metropolitan areas.

Comparing the mortality risk estimates obtained from the
Nationwide Analysis with those from the Intra-Urban Anal-
yses indicates that the Nationwide risk estimates cannot be
directly applied to all urban areas within the United States
and that mortality risk estimates can vary appreciably
among large urban areas with different characteristics.

In an effort to understand the variation in risk estimates
between the Los Angeles, New York, and Nationwide
Analyses, we compared the subjects' characteristics in the
three locations (see Table 31). As shown in the table, few
remarkable differences were apparent among the groups
of the ACS cohort used for each analysis. (1) The New
York City cohort had slightly fewer deaths, largely due to
a lower number of CPD deaths. (2) The Los Angeles cohort
had fewer subjects who are white. (3) Subjects in Los
Angeles had higher education levels, a slightly healthier

Table 30. A Comparison of HRs by Cause of Death Associated with a 10-µg/m3 Change of PM2.5 (Los Angeles) or with an 
Interdecile Comparison Value of 1.5 µg/m3 PM2.5 (New York City) with Exposure Estimated Using LUR or Kriginga

Covariates

Los Angeles New York City

LUR Kriging LUR

All Causes
PM2.5 only 1.20 (1.08–1.32) 1.24 (1.11–1.37) 1.01 (0.94–1.05)
+ 44 Individual-level 1.14 (1.03–1.27) 1.17 (1.05–1.30) 0.98 (0.95–1.02)

IHD
PM2.5 only 1.42 (1.15–1.74) 1.49 (1.20–1.85) 1.11 (1.04–1.18)
+ 44 Individual-level 1.33 (1.08–1.63) 1.39 (1.12–1.73) 1.07 (1.00–1.15)

CPD
PM2.5 only 1.18 (1.02–1.36) 1.20 (1.04–1.39) 0.98 (0.93–1.03)
+ 44 Individual-level 1.11 (0.97–1.28) 1.12 (0.97–1.30) 0.95 (0.90–1.01)

Lung Cancer
PM2.5 only 1.46 (1.01–2.10) 1.60 (1.09–2.33) 1.04 (0.91–1.18)
+ 44 Individual-level 1.39 (0.96–2.01) 1.44 (0.98–2.11) 0.96 (0.84–1.09)

a The PM2.5 concentration of 1.5 µg/m3 for New York City represents the difference between the concentrations at the 90% decile and at the 10% decile in 
the exposure distribution from the 28-county 3-year model. HRs are followed by 95% confidence intervals.
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diet, and higher levels of alcohol consumption. (4) Occu-
pational exposures were slightly lower in Los Angeles
and New York than in the national cohort. (5) With the
exception of a lower proportion of white subjects, the
slight differences of the characteristics in the Los Angeles
cohort compared with the New York cohort were likely to
increase survival, which would likely decrease suscepti-
bility to air pollution; yet the health effects observed in Los
Angeles were generally higher than those observed in
either of the other two groups. Based on these compari-
sons, it appears unlikely that the differences in results
observed between the Nationwide Analysis and the two
Intra-Urban Analyses are attributable to differences in the

underlying characteristics in each cohort group. The possi-
bility of confounding by non-PM effects of mobile sources,
such as noise, remains.

Critical Exposure Time Windows

A unique aspect of Phase III was the use of the ACS
Nutrition Cohort to examine the time window of exposure
that may be primarily responsible for the association
between air pollution and mortality. We constructed an
individual time-dependent exposure profile for each par-
ticipant in this large cohort for which population mobility
information was available. We evaluated air pollutant
exposure concentrations experienced by individuals

Table 31. Descriptive Statistics of Risk Factors for the Nationwide, New York City, and Los Angeles Data Sets

Variable Nationwidea New York City Los Angeles 

Participants (n) 488,370 44,056 22,905
Participants died from (%)

All causes 26.4 24.0 25.6
CPD 13.1 10.5 13.7
Lung cancer 2.0 1.9 1.9
All other causes 11.3 11.1 10.0

Ageb 56.6 (10.5) 55.3 (10.7) 57.0 (10.6)
Male (%) 56.5 56.3 57.0
White (%) 94.0 95.0 89.1

Education (%)
< High School 12.1 11.8 8.2
High School 31.2 31.2 22.9
> High School 56.7 57.0 68.9

Current Smoker (%) 21.9 23.5 19.3
Cigarettes per day 22.0 (12.4) 21.8 (12.6) 21.3 (12.6)
Years of smoking 33.6 (11.0) 32.8 (11.0) 34.0 (11.1)

Former smoker (%) 30.3 33.5 33.0
Cigarettes per day 21.6 (14.6) 22.1 (15.1) 20.9 (14.8)
Years of smoking 22.2 (4.1) 25.2 (4.0) 24.7 (4.0)

Age when started smoking (%)
< 18 yrs (current smoker) 9.3 11.5 8.4
� 18 yrs (current smoker) 13.0 12.4 11.3
< 18 yrs (former smoker) 11.8 15.3 12.0
� 18 yrs (former smoker) 18.4 18.3 20.8

Hours per day exposed to smokingb 3.2 (4.4) 3.6 (4.5) 2.8 (4.2)

Table continues next page

a Based on the 116 MSAs for which PM2.5 (1999–2000) data were available in the national dataset and follow-up of participants through 2000.
b Mean (SD).
c Occupational exposure to PM increases with increasing index number.
d Dietary fat consumption increases with increasing index number.
e Dietary fiber consumption increases with increasing index number.
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dynamically, during three separate exposure time win-
dows reflecting individual exposure 1–5, 6–10, and 11–15
years in the past. Overall, no clear findings emerged for
either PM2.5 or SO2. Identification of critical exposure time
windows, even among large national cohorts, remains a
challenge and further work on identifying them with other
relevant datasets — including other cohorts with different
exposure circumstances — is needed.

REVISIONS TO THE COX MODELS

An important methodologic contribution from Phase III
is the extension of the random effects Cox regression

models to handle multiple levels of clustering. The soft-
ware developed for this purpose in Phase II has been sig-
nificantly enhanced and allows for a broader class of
spatial autocorrelation models. We expect the extended
random effects Cox regression model software to find
application in a wide variety of research directions outside
of the ACS cohort.

Application of the random effects Cox model to the
updated ACS cohort data in Phase III tended to modestly
increase the air pollution risk estimates over those from
the standard Cox model, and to inflate the uncertainty in
the estimates, as is reflected in the associated broader con-
fidence limits.

Table 31 (Continued). Descriptive Statistics of Risk Factors for the Nationwide, New York City, and Los Angeles Data Sets

Variable Nationwidea New York City Los Angeles 

Marital status (%)
Married 83.9 83.0 80.9
Separated 3.5 4.5 3.6
Divorced 12.6 12.5 15.5

Body mass indexb 25.2 (4.1) 25.2 (4.0) 24.7 (4.0)

Occupational exposure to PM indexc (%)
Level 1 13.1 13.9 13.1
Level 2 11.3 10.2 12.4
Level 3 4.7 4.5 4.6
Level 4 6.4 4.9 3.8
Level 5 4.2 3.7 4.1
Level 6 1.1 0.6 0.8
Not able to access 8.7 10.1 9.2

Self-reported exposure to dust or fumes (%) 19.9 19.2 19.5

Dietary fat consumption indexd (%)
Level 1 15.9 18.2 17.8
Level 2 17.5 18.6 18.3
Level 3 21.4 21.5 21.3
Level 4 30.9 25.2 24.5

Dietary fiber consumption indexe (%)
Level 1 19.8 20.0 18.1
Level 2 18.8 19.3 17.4
Level 3 22.8 23.3 22.9
Level 4 22.0 21.2 26.4

Alcohol consumption (%)
Drink beer 22.9 23.2 22.4
Drink liquor 27.6 30.4 31.3
Drink wine 23.2 29.9 34.2

a Based on the 116 MSAs for which PM2.5 (1999–2000) data were available in the national dataset and follow-up of participants through 2000.
b Mean (SD).
c Occupational exposure to PM increases with increasing index number.
d Dietary fat consumption increases with increasing index number.
e Dietary fiber consumption increases with increasing index number.
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COMPARISON OF DATA SETS AND ANALYTIC 
METHODS FOR THE THREE FOLLOW-UP TIME 
PERIODS

We further examined how a variety of analytic factors
may influence the estimation of the long-term air pollu-
tion–mortality association in the ACS cohort over time.
Table 32 provides some descriptive statistics about three
major analyses conducted with the ACS cohort data at dif-
ferent points in time.

In the Reanalysis Project (Krewski et al. 2000b), PM2.5
exposure data were available for the time period 1979–
1983 for 50 MSAs containing 298,825 study participants.
Follow-up of participants had been performed through
1989 and had documented a total of 23,180 deaths from all
causes, 11,262 from CPD, 2,001 from lung cancer, and
5,968 from IHD.

In the Updated Analysis by Pope and colleagues (2002),
the follow-up period had been extended by 9 years until
1998. Additional PM2.5 data had been obtained and expo-
sure could be estimated for two time periods (1979–1983
and 1999–2000); these corresponded to a total of 61 and 116
MSAs, respectively. Due in large part to the longer follow-
up period, more deaths had occurred; over 80,000 deaths
from all causes were recorded among those subjects for
whom PM2.5 exposure data for 1979–1983 were available.

Finally, for the current Extended Analysis, the ACS
follow-up period had been extended by 2 more years,
until 2000. Because we examined several additional eco-
logic covariates at different levels of analysis, the total

number of MSAs and participants available for the
Nationwide Analysis was slightly lower than the number
available for the Updated Analysis by Pope and col-
leagues (2002). The two additional years of follow-up,
however, included more deaths: over 90,000 from all
causes among the same group for whom PM2.5 exposure
data were available for 1979–1983.

Table 33 compares HR estimates for the five main cause-
of-death categories using different cohort follow-up
periods (until 1989, 1998, and 2000) that correspond with
the analytic time periods used for the Reanalysis Project
(Krewski et al. 2000a,b), the Updated Analysis (Pope et al.
2002), and the current Extended Analysis. By holding the
number of MSAs and study subjects constant, we were
better able to examine the independent influence of
changing the length of the follow-up period on study find-
ings. The PM2.5 (1979–1983) results were obtained using
available data for 342,521 subjects residing in 58 MSAs,
and the PM2.5 (1999–2000) results were obtained using
available data for 488,370 subjects residing in 116 MSAs.
Results are presented with adjustment for the standard
suite of 44 individual-level covariates and with and
without adjustment for the seven ecologic covariates
examined in the current study.

With models adjusted for individual-level covariates
only, estimated HRs associated with exposure to PM2.5
(1979–1983) ranged from 1.03–1.05 for all causes, 1.07–1.10
for CPD, 1.12–1.13 for IHD, and 1.05–1.09 for lung cancer.
HR estimates were slightly higher for IHD and lung cancer

Table 32. Characteristics of the Analytic Cohorts in the Previous and Current Analysesa

Characteristic

Cohort Data Set 
Used in 

Reanalysis (2000)

Cohort Data Sets 
Used in 

Updated Analysis
(2002, 2004)

Cohort Data Sets
Used in 

Current Nationwide Analysis 
(2009)

Years of PM2.5 exposure data 1979–1983 1979–1983 1999–2000 1979–1983 1999–2000
Years of cohort follow-up 1982–1989 1982–1998 1982–1998 1982–2000 1982–2000
MSAs (n) 50 61 116 58 116
Study participants (n) 298,825 360,682 499,779b 342,521 488,370b

Person-years 2,109,750 5,302,337 7,350,011 5,542,998 7,908,283
Deaths (n)

All causes 23,180 80,819 111,677 90,783 128,954
CPD 11,262 35,782 49,539 44,866 63,917
Lung cancer 2,001 6,335 8,754 6,827 9,788
IHD 5,968 14,691 20,791 20,651 29,989

a Bolded data refer to text.
b For the PM2.5 1999–2000 exposure data, the 116 MSAs used for the Updated Analysis and in the current Nationwide Analysis are the same.  The number 

of study participants differs because several additional ecologic covariates were analyzed in the current study and those data were not available for the full 
cohort. 
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associated with the PM2.5 (1999–2000) exposure data. With
models including ecologic covariates, HR estimates
increased to 1.04–1.06 for all causes, 1.09–1.13 for CPD,
1.18 for IHD, and 1.07–1.10 for lung-cancer mortality asso-
ciated with exposure to PM2.5 (1979–1983) over the dif-
ferent follow-up time periods. Overall, there was little
change in risk estimates over different periods of follow-
up time; those for PM2.5 (1979–1983) tended to either
remain fairly similar or decrease slightly with increasing
follow-up time. An exception was lung-cancer mortality
for which HRs increased and were significant when
follow-up was extended beyond 1989.

It is possible that there may be increasing exposure
misclassification due to population mobility during the
11 years of follow-up from 1989 to 2000. A recent anal-
ysis by Jerrett and colleagues (2007) showed that popula-
tion mobility in the ACS cohort demonstrates that areas

of relatively low improvements in air pollution have
higher population gains.

Table 34 shows the influence of (1) the number of MSAs
and participants included in the analysis and (2) the
choice of statistical method (either the standard Cox model
or the random effects Cox model). For these analyses, we
either held the number of MSAs and participants constant
across the different follow-up periods (using the same
number of MSAs and participants as those in the current
study) or we allowed the number of MSAs and partici-
pants to vary across the different follow-up periods (using
the number of MSAs and participants that corresponded
with those used in the earlier analyses [Krewski et al.
2000a,b; Pope et al. 2002; see Table 32]). For PM2.5 (1979–
1983) both the number of MSAs and participants could
vary; but for PM2.5 (1999–2000), the number of MSAs was

Table 33. HRs by Cause of Death for a 10-µg/m3 Change in PM2.5 Covering Three Follow-Up Time Periods, Using the 
Same Number of MSAs and Study Participants Within PM2.5 Exposure Categories, and With and Without Adjustment for 
the Seven Ecologic Covariatesa

Covariates
in Modelb

Follow-Up 
Through 1989

Follow-Up 
Through 1998

Follow-Up 
Through 2000

PM2.5 1979–1983 1979–1983 1999–2000 1979–1983 1999–2000
MSAs (n) 58 58 116 58 116
Participants (n) 342,521 342,521 488,370 342,521 488,370

All Causes
44 Individual 1.048 (1.022–1.076) 1.031 (1.015–1.047) 1.032 (1.012–1.053) 1.028 (1.014–1.043) 1.036 (1.017–1.054)
+ 7 Ecologic 1.061 (1.031–1.091) 1.047 (1.029–1.064) 1.057 (1.033–1.080) 1.044 (1.028–1.060) 1.057 (1.036–1.079)

CPD
44 Individual 1.101 (1.061–1.143) 1.071 (1.048–1.095) 1.092 (1.063–1.123) 1.070 (1.049–1.092) 1.100 (1.073–1.129)
+ 7 Ecologic 1.129 (1.084–1.175) 1.098 (1.073–1.125) 1.134 (1.099–1.170) 1.094 (1.070–1.118) 1.138 (1.106–1.172)

IHD
44 Individual 1.122 (1.066–1.181) 1.130 (1.094–1.166) 1.143 (1.099–1.190) 1.133 (1.100–1.167) 1.155 (1.113–1.199)
+ 7 Ecologic 1.183 (1.119–1.250) 1.183 (1.143–1.225) 1.234 (1.179–1.291) 1.184 (1.146–1.222) 1.242 (1.191–1.295)

Lung Cancer
44 Individual 1.053 (0.963–1.150) 1.089 (1.031–1.151) 1.116 (1.041–1.197) 1.075 (1.021–1.132) 1.109 (1.039–1.185)
+ 7 Ecologic 1.070 (0.973–1.177) 1.104 (1.040–1.171) 1.152 (1.065–1.247) 1.092 (1.033–1.154) 1.138 (1.057–1.225)

All Other Causes
44 Individual 0.998 (0.958–1.040) 0.981 (0.957–1.005) 0.953 (0.924–0.982) 0.979 (0.957–1.000) 0.953 (0.927–0.980)
+ 7 Ecologic 0.992 (0.949–1.037) 0.984 (0.958–1.010) 0.953 (0.920–0.988) 0.983 (0.960–1.007) 0.953 (0.923–0.984)

a Based on a standard Cox model with the 44 individual-level covariates with and without adjustment for the seven ecologic covariates at MSA & DIFF 
levels. The baseline hazard function was stratified by age (1-year groupings), gender, and race. All analyses were conducted using the same 58 MSAs 
(342,521 participants) or 116 MSAs (488,370 participants) that were used in the current analysis. HRs are followed by 95% confidence intervals. Bolded 
data refer to text. 

b Data for the 44 individual-level covariates are from the ACS enrollment questionnaire. Data for the seven ecologic covariates were extracted from the 1980 
U.S. Census Bureau database for the Nationwide Analysis of the current study.
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Table 34. HRs by Cause of Death for a 10-µg/m3 Change in PM2.5 Based on Either a Standard Cox or a Random Effects Cox 
Model Covering Three Follow-Up Time Periods and Using the Same or Different Numbers of MSAs and Participantsa

Model and 
Number of 
MSAs

Follow-Up
Through 1989b

Follow-Up
Through 1998c

Follow-Up
Through 2000d

PM2.5 data 1979–1983 1979–1983 1999–2000 1979–1983 1999–2000
Samee

MSAs (n) 58 58 116 58 116
Participants (n) 342,521 342,521 488,370 342,521 488,370

Differente

MSAs (n) 50 61 116 58 116
Participants (n) 298,825 360,682 499,779 342,521 488,370

All Causes
 Standard Cox

Same 1.048 (1.022–1.076) 1.031 (1.015–1.047) 1.032 (1.012–1.053) 1.028 (1.014–1.043) 1.036 (1.017–1.054)
Different 1.067 (1.037–1.099) 1.027 (1.012–1.043) 1.028 (1.009–1.048)

 Random Effects Cox
Same 1.074 (1.028–1.122) 1.046 (1.014–1.080) 1.061 (1.023–1.101) 1.042 (1.012–1.073) 1.063 (1.026–1.102)
Different 1.101 (1.046–1.157) 1.044 (1.011–1.078) 1.058 (1.020–1.098)

CPD
 Standard Cox

Same 1.101 (1.061–1.143) 1.071 (1.048–1.095) 1.092 (1.063–1.123) 1.070 (1.049–1.092) 1.100 (1.073–1.129)
Different 1.109 (1.063–1.157) 1.060 (1.036–1.084) 1.079 (1.049–1.111)

 Random Effects Cox
Same 1.116 (1.055–1.180) 1.075 (1.032–1.120) 1.100 (1.044–1.159) 1.073 (1.031–1.116) 1.105 (1.050–1.162)
Different 1.130 (1.063–1.201) 1.061 (1.018–1.105) 1.081 (1.025–1.141)

IHD
 Standard Cox

Same 1.122 (1.066–1.181) 1.130 (1.094–1.166) 1.143 (1.099–1.190) 1.133 (1.100–1.167) 1.155 (1.113–1.199)
Different 1.122 (1.059–1.189) 1.119 (1.081–1.159) 1.141 (1.091–1.193)

 Random Effects Cox
Same 1.167 (1.062–1.282) 1.160 (1.074–1.252) 1.198 (1.099–1.305) 1.155 (1.074–1.124) 1.200 (1.106–1.301)
Different 1.174 (1.064–1.295) 1.140 (1.053–1.235) 1.192 (1.085–1.310)

Lung Cancer
 Standard Cox

Same 1.053 (0.963–1.150) 1.089 (1.031–1.151) 1.116 (1.041–1.197) 1.075 (1.021–1.132) 1.109 (1.039–1.185)
Different 1.001 (0.907–1.104) 1.072 (1.017–1.130) 1.117 (1.042–1.197)

 Random Effects Cox
Same 1.117 (0.979–1.274) 1.102 (1.032–1.177) 1.129 (1.045–1.220) 1.085 (1.019–1.156) 1.124 (1.041–1.213)
Different 1.062 (0.913–1.235) 1.083 (1.014–1.157) 1.126 (1.044–1.214)

All Other Causes
 Standard Cox

Same 0.998 (0.958–1.040) 0.981 (0.957–1.005) 0.953 (0.924–0.982) 0.979 (0.957–1.000) 0.953 (0.927–0.980)
Different 1.040 (0.993–1.089) 0.992 (0.971–1.013) 0.971 (0.944–0.998)

 Random Effects Cox
Same 1.017 (0.960–1.077) 1.001 (0.961–1.043) 0.991 (0.946–1.039) 0.999 (0.962–1.037) 0.963 (0.879–1.055) 
Different 1.063 (0.995–1.135) 1.014 (0.975–1.054) 1.010 (0.967–1.055)

a Models included the 44 individual-level covariates. The baseline hazard function was stratified by age (1-year groupings), gender, and race. HRs are 
followed by 95% confidence intervals. Bolded values refer to text.

b Follow-up period used for the Reanalysis Project (Krewski et al. 2000).
c Follow-up period used for the Updated Analysis (Pope et al. 2002, 2004).
d Follow-up period used for this Extended Analysis. 
e Rows marked “Same” use the MSAs and participants from the current Nationwide Analysis. Rows marked “Different” use the MSAs and participants 

included in the earlier analyses (as outlined in Table 32).
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the same in both follow-up periods, and only the number
of participants varied.

As noted previously, risk estimates obtained with the
random effects Cox model were slightly higher than those
obtained with the standard Cox model; the comparisons in
Table 34 show this pattern fairly consistently.

In results obtained with the standard Cox model, there
was only slight variation in the mortality HR estimates com-
paring calculations with the same number or different
number of MSAs and participants. One of the largest
changes in the HRs was found for mortality from lung-
cancer associated with PM2.5 (1979–1983) with follow-up
through 1989 with a HR of 1.00 (95% CI, 0.91–1.10) when
using data from 50 MSAs (“different” row), which increased
to 1.05 (95% CI, 0.96–1.15) when we included the 8 addi-
tional MSAs for which PM2.5 data had later been obtained
(“same” row), although it remained nonsignificant.

A similar pattern was observed with the random effects
Cox model. Again, the difference in risk estimates was
slight whether using the same number or a different
number of MSAs and participants. The largest difference
was also observed for mortality from lung cancer associ-
ated with PM2.5 (1979–1983) with follow-up through 1989
with a HR of 1.062 (95% CI, 0.913–1.235) found when
using data from 50 MSAs (“different” row), which
increased, although again remained nonsignificant, to
1.117 (95% CI, 0.979–1.274) reported when we included 8
additional MSAs (“same” row).

Table 35 presents a comparison of the modifying effect
of education attainment on the association between PM2.5
(1979–1983) and mortality over the three follow-up time
periods with and without the ecologic covariates exam-
ined as part of the Nationwide Analysis. (Note that this set
of analyses uses the same 58 MSAs and 342,521 subjects as
the current Extended Analysis.) In the two most recent
periods (through 1998 and 2000), risk of mortality
decreased with increasing level of education attainment
for all-cause and cause-specific mortality and, with the
exception of IHD, was no longer significant in those with
the highest level of education attainment. When the
follow-up time period was truncated at 1989, although the
decreasing trend was less clear, the lowest risk estimates
were also consistently reported in the highest education
group. A similar pattern of results was obtained with or
without adjustment for the seven ecologic covariates eval-
uated in the current study.

POLICY IMPLICATIONS

The results of Phase III of the Particle Epidemiology
Reanalysis Project have important implications for air

quality risk management policy. The extended follow-up
of the ACS cohort through 2000 supports earlier findings
of a positive association between long-term exposure to
PM2.5 in ambient air and increased mortality rates in urban
centers in the United States. The earlier results have fig-
ured prominently in establishing the current National
Ambient Air Quality Standard for PM2.5 in the United
States (U.S. EPA 2004). Although short-term exposures to
PM2.5 are also associated with higher mortality, one of the
effects of long-term exposure (Cohen et al. 2003) is to pre-
dispose some people to the effects attributed to short-term
exposures (Network for Environmental Risk Assessment
and Management [NERAM] 2002; Krewski et al. 2005b).

Particulate air pollution represents a major health issue
at the international level as well (Cohen et al. 2005). The
World Health Organization (WHO 2002) has estimated that
particulate air pollution is responsible for approximately
2% of all deaths worldwide. WHO has assumed a leader-
ship role in global air quality management and has
recently updated its air quality guidelines for both PM2.5
and O3 (WHO 2006).

Although the precise magnitude of the risk associated
with long-term exposure to air pollution remains subject to
some uncertainty, these and earlier results from the ACS
cohort have generally demonstrated elevated mortality
from CPD, IHD, and lung cancer. Mortality from all causes
is also clearly associated with long-term exposure to
ambient PM2.5 in U.S. urban centers. Phases II and III of
the Particle Epidemiology Reanalysis Project have both
shown these estimates to be robust to alternative analytic
methods and to adjustment for other variables that may
impact the association between air pollution and mortality.

In an attempt to address the uncertainty about the actual
magnitude of the increase in mortality due to long-term
exposure to fine particles, the U.S. EPA has recently con-
ducted an expert elicitation involving leading researchers
in the health effects of air pollution, especially those with
experience evaluating data from large cohorts including
the ACS, the Harvard Six Cities Study (Laden et al. 2006),
and the Adventist Health Study of Smog (Abbey et al.
1999). This expert elicitation process demonstrated a clear
consensus among the participating scientists that long-
term exposure to particulate air pollution is associated
with increased mortality (Industrial Economics, Incorpo-
rated 2006).

The policy implications of the current body of scientific
evidence linking air pollution to morbidity and mortality
were recently discussed at the fifth and final NERAM
Collo-quium on Air Quality and Health (NERAM 2006).
Whereas NERAM I (Cohen et al. 2003), II (Krewski et al.
2005a), and III (Craig et al. 2007) focused more on the
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scientific evidence of the adverse health effects of ambient
air pollution, NERAM IV (2005) and V (2006) focused on air
quality management. The conference statement for NERAM
V includes the following policy guidelines:

1. Current scientific evidence on adverse health impacts
is sufficient to support air quality management action.

2. Air quality management actions have been shown to
be cost-beneficial in a number of circumstances.

3. Although additional scientific evidence will be useful
in targeted areas, such as characterizing the effects of
traffic-related pollution, air quality management
actions are needed now.

4. Successful air quality management requires local,
regional, national, international, and global actions.

The results of the present analysis support the call for
greater efforts to reduce exposure to air pollution embod-
ied in the NERAM V conference statement. In developing
air quality management policy, the following additional
elements of the NERAM V conference statement are also
relevant. 

1. Harmonization of air quality measurement methods
and health assessments is desirable.

2. Different air quality management strategies may be
needed for developed and developing countries.

3. Air quality and climate change are closely linked.

4. Cross-sectoral strategies (air, climate, transportation,
energy, agriculture) based on integrated assessments
are needed.

5. Air quality management strategies should support
sustainable development.

6. The impact of air quality management interventions
needs to be evaluated.

The accountability framework proposed by the HEI
Accountability Working Group (2003) provides an excel-
lent basis for addressing the last item.

In conclusion, Phase III of the Particle Epidemiology
Reanalysis Project has provided additional support for the
development of effective air quality management policies
and strategies. The epidemiologic results reported here are
consistent with those from other population-based studies,
which collectively support the hypothesis that long-term
exposure to PM2.5 increases mortality in the general popu-
lation. We also now know mechanisms by which particles
can increase mortality from CPD (Pope et al. 2004;
National Research Council 2004), which provides a bio-
logic basis for the associations observed.
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APPENDIX A. HEI Quality Assurance Statement

The conduct of this study was subject to independent
QA oversight by Drs. W. Cary Eaton, Richard Kwok, and
James Flanagan of RTI International (RTI), Research Tri-
angle Park, NC. Dr. Eaton, who led the project, is a chemist
with over 35 years of relevant experience in air monitoring
and quality assurance and is the supervisor of the Quality
Systems Programs at RTI. Dr. Flanagan is also a chemist
with a specialization in air quality monitoring, data anal-
ysis, and quality assurance. Dr. Kwok is a research epide-
miologist with applications to air and water pollution;
cardiovascular, cancer, and respiratory outcomes; and
quality assurance auditing. Other participants on the RTI
QA oversight team included Dr. William Wheaton, a Geo-
graphic Information Systems specialist, who participated
in a conference call with ACS participants, and Drs. Abhik
Das and Breda Munoz, statisticians who reviewed the
model code and the final report, respectively.

The QA oversight program that RTI conducted of this
project consisted of a single on-site audit at  the
McLaughlin Centre for Population Health Risk Assess-
ment, Ottawa, ON, Canada, conducted by Dr. Flanagan and
Dr. Kwok. The audit included interviews with key project
staff, and review of study activities for conformance to the
study protocol and operating procedures. The investiga-
tors provided written responses to the findings of the audit
report, which are included as an appendix in the investiga-
tors’ final report.

In addition to the on-site audit, QA oversight activities
included conference calls to coinvestigators and review of
the final report.

DATE AND PHASE OF STUDY AUDITED

June 30–October 1, 2004

The auditors conducted an on-site audit at the Univer-
sity of Ottawa. Staffing and internal quality assurance pro-
cedures were reviewed. Audit observations consisted
primarily of recommendations for improving study docu-
mentation and some data processing and security issues. A

copy of code was taken for review with an audit team
member, Dr. Abhik Das, who did not participate in the on-
site portion.

October 14, 2004

Conference call with NYU collaborators

November 22, 2004

Conference call with collaborators at ACS Atlanta

February 3, 2005

Audit report delivered to HEI with findings based on the
above activities.

January–March, 2009

Review of Final Report. At HEI's request, the same RTI
personnel who conducted the QA 2004 oversight activities
(Kwok, Eaton, and Flanagan) reviewed the investigators’
final report for the project. In addition, mathematical
details in the report were reviewed by Dr. Breda Munoz of
RTI’s Genomics, Statistical Genetics, and Environmental
Research Group. No serious issues were raised during the
review, but a list of minor comments and editorial sugges-
tions was submitted to HEI.

Written reports of each activity were provided to the HEI
Project Manager, who transmitted the findings to the Prin-
cipal Investigator. Responses received from the project team
demonstrated that the study was conducted by a highly
experienced team of scientists with a high regard for the
quality and credibility of their work. The final report
appears to be an accurate representation of the study.

James B. Flanagan, Ph.D.

Chemist and Quality Assurance Specialist

Richard Kwok, Ph.D.

Epidemiologist

Auditors
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APPENDICES AVAILABLE ON THE WEB

Appendices B and C contain supplemental material not
included in the printed report. They are available on the
HEI Web site http://pubs.healtheffects.org. They may also
be requested by contacting the Health Effects Institute at 101
Federal Street, Suite 500, Boston, MA 02110, phone +1-617-
488-2300, fax +1-488-2335, or e-mail (pubs@health
effects.org). Please give (1) the first author, full title, and
number of the Research Report and (2) the title of the
appendix requested.

APPENDIX B. Algorithmic Description of the Cox–
Poisson Program

APPENDIX C. Computer Program for Random Effects
Cox Model Using the Cox–Poisson Program
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ABBREVIATIONS AND OTHER TERMS

AADT average annual daily traffic

ACS American Cancer Society

AIC Akaike information criteria

AIRS Aerometric Information Retrieval System

AQS Air Quality Subsystem

ARB Air Resources Board

BPM Best Practice Model

CI confidence interval

CPD cardiopulmonary disease

CPS-II cancer prevention study

DIFF difference between the ZCA value 
and the MSA value for an 
ecologic covariate

EPDC expected peak daily concentrations

ESRI Environmental Systems Research Institute

FRM Federal Reference Method

GIS Geographic Information System

GPS global positioning system

Ha hectare

HR hazard ratio

ICD-9 International Classification of Diseases, 
9th edition

IDW inverse distance weighting

IHD ischemic heart disease

IPMN Inhalable Particle Monitoring Network

LUR land-use regression

MAPE mean absolute percentage error

MAUP modifiable areal unit problem

MCD minor civil division

MSA metropolitan statistical area

MSA & DIFF two levels of data for ecologic covariates 
analyzed simultaneously

NAAQS National Ambient Air Quality Standard

NAD National Aerometric Database

NERAM Network for Environmental Risk 
Assessment and Management

NYMTC New York Metropolitan Transportation 
Council

NYU New York University

O3 ozone

PM2.5 particles of 2.5 µm or less in aerodynamic 
diameter

R2 coefficient of determination for multi-
variate analyses

RMSE root mean squared error

SCAG Southern California Area Governments

SO2 sulfur dioxide

SO4
2� sulfate

TEOM tapered-element oscillating microbalance

TRAPCA Traffic Related Air Pollution and Child-
hood Asthma [study]

TSP total suspended particulates

USCB U.S. Census Bureau

U.S. EPA U.S. Environmental Protection Agency

USGS United States Geological Survey

USPS U.S. Postal Service

VIF variance inflation factor

WHO World Health Organization

ZCA Zip Code area

GLOSSARY OF STATISTICAL TERMS

Absolute value    The absolute value of a number is its
numerical value without regard to its sign. For example, 3
is the absolute value of both 3 and �3.
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Bootstrapping   A method for estimating the sampling dis-
tribution of an estimator by repeatedly sampling with
replacement from the original set of data or observations.
Bootstrapping is most often done with the purpose of
deriving robust estimates of standard errors and confi-
dence intervals for the “true” population parameters such
as the mean, median, and proportion and when collecting
additional data is not feasible. It may also be used for con-
structing hypothesis tests. See also jackknifing and sample
with replacement.

Census block    The smallest geographic unit used by the
United States Census Bureau for tabulating data collected
from all homes (rather than a sample of homes). Several
blocks make up block groups, which make up census tracts.

Centroid    The intersection of all straight lines that divide a
two-dimensional figure (such as a polygon) into two parts.

Confounder   An extraneous or “unmeasured” factor that
may be partly or wholly responsible for the observed rela-
tionship between the variable and outcome that have actu-
ally been measured.  A confounder is statistically associated
(positively or negatively) with both the exposure of inter-
est and the observed outcome (both the independent and
dependent variables). For example, regular coffee drinkers
are more likely to smoke than people who do not drink
coffee. Therefore, any study to link coffee drinking with
cancer would need to take participants’ smoking habits
into account as a possible confounder. A confounder must
be accounted for in an analysis so you know if the
observed association is not entirely attributable to the con-
founder.

Construct validity    The agreement between the theoret-
ical properties of the object being studied and the proper-
ties of the specific measure of that object used.

Dependent and independent variables    In an experiment,
the dependent variable is the “event” being studied that is
expected to change when the independent variable is
changed. An independent variable is one whose value is
controlled or selected by the experimenter to determine its
relationship to the dependent variable. In the current study,
the dependent variable is mortality data, and the indepen-
dent variables are PM2.5 exposure data, individual-level
covariates, and information about communities.

Explanatory power    The ability of a model or theory to
account for the observed phenomenon.

Geostatistics    Originally applied to problems in geology;
it involves statistical procedures to describe and analyze
patterns and associations in spatially defined (geographic)

data (that is, data whose values are associated with loca-
tions in space). 

Gini coefficient    A measure of statistical dispersion most
prominently used as a measure of inequality of income or
wealth distribution within a defined area (such as a city,
state, or country). It is presented as a ratio with values
between 0 and 1: A low value indicates relatively uniform
income or wealth distribution and a high value indicates
unequal distribution.

Heteroskedasticity    In statistics, a sequence of random
variables displays heteroskedasticity if the variables have
different variances.

Inverse distance weighting (IDW)    A process of assigning
values to location points for which measured values are
unavailable using existing values, usually from a scattered
set of known location points.  The contribution of existing
values to the estimated value are weighted by the inverse
of their distance from the estimated location point (that is,
closer values receive greater weight); used for multivariate
interpolation.

Jackknifing    An analytical method that estimates the pre-
cision of sample statistics (means, medians, variances, per-
centiles) using subsets of an available data set with each
data point systematically removed and replaced. Jack-
knifing assesses the sensitivity of calculated statistics to
the presence or absence of a single data point. See also
bootstrapping. 

Kernel    A mathematical method used to identify the
underlying structure of complex data. Nonlinear clus-
tering methods based on kernels provide a common means
of resolving patterns in spatially correlated data.

Kriging    A family of geostatistical techniques that use the
distance between data points and the degree of variation to
interpolate or estimate values across a surface (e.g., geo-
graphic area) or for unsampled locations. 

Manual forward selection process    A process of manually
adding variables one by one to a regression model, instead
of allowing the statistics program to automatically select
which variables to add.

Multiple linear regression model    A model used to ana-
lyze the relationship between a set of independent variables
and a dependent variable.

Nested analysis    An analysis that statistically accounts
for the effects of the structure of the data, and in which the
values for a variable are dependent on the values of the
class of variables to which they belong. For example,
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health status may be associated with one’s neighborhood
of residence or city or state; but it may also be related to
which neighborhood within the city, and which city
within the state, and even to the neighborhood within that
city and state together. A nested analysis accounts for
these joint effects at different geographic levels.

Orthogonality    The quality of being completely indepen-
dent. When performing statistical analysis, variables that
affect a particular result are said to be orthogonal if they are
uncorrelated; that is, their statistical relationship is zero.

Orthophoto    An aerial photograph that has been geomet-
rically corrected so the scale is uniform; like a map, it lacks
distortion. Unlike an uncorrected aerial photograph, an
orthophoto can be used to measure true distances, because
it is an accurate representation of the earth’s surface,
having been adjusted for topographic relief, lens distor-
tion, and camera tilt.

Principal component analysis    A statistical procedure for
reducing the number of variables in an analysis.  It com-
bines variables that appear to be correlated  into a smaller
number of artificial, but uncorrelated, variables called
principal components. The resulting principal compo-
nents may then be included as independent variables in
statistical analyses with the expectation that they will
account for most of the variance in the dependent or
observed variables.

Queen contiguity matrix    A matrix in which each element
is considered to be the neighbor of another element if it
shares a border or vertices with the observation of interest.
It is used to characterize spatial contiguity between spatial
units (such as a Thiessen polygon or a Zip Code area) in
which both border and vertices are used to define contiguity.

Random effects Cox model    In statistics, many models
proceed from the assumption that observed values are
independent of one another — that information for any
given participant is completely unrelated to information
on another. A random effects model does not assume that
observations are independent. For example, it does not
assume that people living in the same neighborhood or
household have completely unrelated dietary or smoking
habits, pollution exposures, or health status. See also stan-
dard Cox model.

Residual (or fitting error)    An observable estimate of the
unobservable statistical error. For example, if you have a
random sample of n men whose heights are measured, and
the mean of the sample is used as an estimate of the (unob-
servable) population mean, then: 

• the difference between the height of each man in the 
sample and the unobservable population mean is a 
statistical error; and

• the difference between the height of each man in the 
sample and the observable sample mean (predicted 
height) is a residual.

See also statistical error.

Root mean squared error    A frequently used measure of
the mean of the differences between values predicted by a
model or by an estimator and the values actually observed.
A measure of fit. See also residual.

Sample with replacement    A sampling method that
involves randomly selecting a specified number of data
points for analysis, and returning them to the population
before randomly selecting another set of data points.
Because these data points are not permanently removed,
the population remains intact. If the randomly sampled set
of data points had been deleted, the probability for
selecting an equivalent set of points in the next sample
would be changed.

Semivariogram / variogram    A mathematical function
used in geostatistics to visualize the spatial or the temporal
correlation of data.

Spatial analysis    Any of the formal techniques for
studying entities using their topological, geometric, or geo-
graphic properties.

Spearman rank correlation coefficient    A measure of cor-
relation (relationship) between two variables that does not
make any assumptions about the shape of the distribution
of the observed values. It measures the correspondence
between the rankings of observations for each variable in
the data and assesses its significance.

Standard Cox proportional-hazards regression model of
survival    A proportional-hazards model is a subclass of
statistical survival models. Survival analysis deals with
time until event, death, or failure. Survival models consist
of two parts: the underlying hazard function, which
describes how hazard (or risk) changes over time; and the
effect parameters, which describe how hazard may be
affected by other factors, such as the choice of treatment
for an illness. The proportional-hazards assumption is that
effect parameters multiply hazard in a constant manner
over the study follow-up time: For example, if taking drug
X reduces your hazard by half at time 0, it also does so at
time 1, or time 0.5, or at any time t. The effect parameter(s)
estimated by any proportional-hazards model can be
reported as hazard ratios.
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Sir David Cox observed that if the proportional-hazards
assumption holds (or is assumed to hold), then it is possible
to estimate the effect parameter(s) without any consider-
ation of the hazard function. This approach to survival data
is referred to as applying the Cox proportional-hazards
model (referred to as standard Cox model in this report).

Stationarity / nonstationarity    Qualities of a random pro-
cess: the statistical properties (such as mean and standard
deviation) of a process that exhibit stationarity do not
change over time or across space. If the process exhibits
nonstationarity, the statistical properties do change.

Statistical error    The amount by which an observation
differs from its expected value, which is based on the
whole population from which the statistical unit was ran-
domly chosen. The expected value — for example, the
mean of the entire population — is typically unobservable.
See also residual.

Thiessen polygons    A type of Voronoi diagram used to
analyze spatially distributed data (such as air pollution
measurements). A Thiessen polygon defines the area of

influence around one of a set of points (e.g., an air pollu-
tion monitor). The boundaries of the polygon define the
area that is closest to each point relative to all other points.
The center of the polygon is called the centroid.

Variance    The amount of variation among the data mea-
sured for one variable. It is a measure of the distribution of
values.

Variance inflation factor (VIF)    An index that measures
how much the variance of a coefficient (square of the stan-
dard deviation) is increased because of multicollinearity.
Multicollinearity is a statistical phenomenon in which two
or more predictor variables in a multiple regression model
are highly correlated.

(Glossary prepared by Health Effects Institute)
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COMMENTARY
Health Review Committee

Research Report 140, Extended Follow-Up and Spatial Analysis of the American Cancer 
Society Study Linking Particulate Air Pollution and Mortality, D. Krewski et al.

INTRODUCTION

In their report to HEI, Dr. Daniel Krewski and colleagues
provide details of Phase III of the Particle Epidemiology
Evaluation Project, which summarizes their research with
the cohort from the American Cancer Society (ACS*)
Cancer Prevention Study II (CPS-II), an ongoing prospec-
tive study of mortality among adults residing across the
United States and in Puerto Rico. In Phases I and II of their
research (referred to here as the Reanalysis Project; Krewski
et al. 2000), Krewski and colleagues validated and repli-
cated earlier results from other investigators of associations
between exposure to particulate air pollution and mortality
and then used their data to try new methods of analysis that
incorporated individual-level and ecologic covariates. 

Dr. Krewski submitted a preliminary application to HEI
in February 2001, requesting funds to conduct a third
phase of his analysis of the ACS cohort. Later that year, he
submitted a full application, and in February 2002, HEI
approved the project. 

The HEI Research Committee chose to fund Phase III
(referred to here as the Extended Analysis) because they
believed it would yield further important information
about the effects of long-term exposure to air pollution on
mortality. During the Reanalysis Project, Krewski and col-
leagues had developed new statistical models to incorpo-
rate city-level ecologic covariates and control for spatial
autocorrelation in the data. For this Extended Analysis,
they planned to apply updated statistical methods to new
follow-up data (through 2000) for the ACS cohort. This
cohort remains a key source of information on the effects
of long-term exposure to air pollution on mortality from

chronic disease. Among the many uses of the ACS results
in U.S., European, and global risk analyses is the use of
health risk estimates that resulted from the Reanalysis
Project by the U.S. Environmental Protection Agency (U.S.
EPA) in the development of the cost–benefit analyses for
regulations of emissions from heavy-duty diesel engines.
Past results from studies of this cohort along with the Phase
III results are also being considered in the current U.S. EPA
process for reviewing the National Ambient Air Quality
Standard (NAAQS) for fine particles (particulate matter
2.5 µm or smaller in aerodynamic diameter [PM2.5]). 

BACKGROUND 

Epidemiologic studies conducted over several decades
have suggested that long-term exposure to elevated ambient
levels of particulate air pollution is associated with
increased premature mortality. Commentary Table 1 sum-
marizes the details of some key cohort studies that have
found and continue to corroborate and further define the
relationship between exposure to PM2.5 and mortality. 

Two U.S. cohort studies became central to the 1997 debate
on the NAAQS for PM2.5 pollution in the United States: the
Harvard Six Cities Study (Dockery et al. 1993), a 20-year pro-
spective cohort study begun in the 1970s, and the ACS study
(Pope et al. 1995), a larger retrospective cohort study initi-
ated in 1982 and involving data from 151 cities. Both of
these studies estimated exposure to PM2.5 based on ambient
air monitoring data, and both reported that the risk of death
from all causes increased in association with exposure to
higher annual average concentrations of PM2.5.

Several analyses of these two cohorts were also consid-
ered in the EPA review of the NAAQS for PM2.5 in 2006.
Other important cohort studies that were considered in that
review included the Seventh-Day Adventist Health Study of
Smog (AHSMOG; Abbey et al. 1999) and the Veterans study
(Lipfert et al. 2006; U.S. EPA 2006). Results from the
AHSMOG cohort provided some suggestive but less conclu-
sive evidence, and evidence from the Veterans cohort was
inconsistent. Nevertheless, looking at all the available evi-
dence, the U.S. EPA concluded that overall the epidemio-
logic evidence of an association between long-term
exposure to PM2.5 and mortality was strong (U.S. EPA 2004).

Dr. Krewski’s 4-year study, “Extended Follow-Up and Spatial Analysis of
the American Cancer Society Study Linking Particulate Air Pollution and
Mortality,” began in May 2002. Total expenditures were $425,000. The draft
Investigators’ Report from Krewski and colleagues was received for review
in January 2007. A revised report, received in January 2008, was accepted
for publication in June 2008. During the review process, the HEI Health
Review Committee and the investigators had the opportunity to exchange
comments and to clarify issues in both the Investigators’ Report and in the
Review Committee’s Commentary.

This document has not been reviewed by public or private party institu-
tions, including those that support the Health Effects Institute; therefore, it
may not reflect the views of these parties, and no endorsements by them
should be inferred.

* A list of abbreviations and other terms appears at the end of the Investiga-
tors’ Report.
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Commentary on Investigators’ Report by Krewski et al.

THE HARVARD SIX CITIES STUDY  

As part of the Harvard Six Cities Study, Dockery and col-
leagues (1993) had prospectively followed a cohort of 8111
adult subjects in the Northeast and Midwest regions of the
United States for 14 to 16 years, beginning in the mid-
1970s. For these analyses, data from the most-polluted city
were compared with those from the least-polluted city and
the results were described as being associated with the dif-
ference in concentrations between the two cities. A differ-
ence of 18.6 µg/m3 PM2.5 was associated with a 26%
increase in mortality from all causes. The same difference
in PM2.5 was associated with a 37% increase in deaths from
cardiopulmonary disease. A follow-up study of this cohort
conducted in a period of lower air pollution and including
8 additional years of mortality data showed that associa-
tions between pollutant exposure and risk of mortality
were also lower (Laden et al. 2006).

THE ACS STUDY  

In the past 15 years, the ACS cohort has been the subject
of numerous analyses and a primary source of information
on air pollution exposure and associated mortality for risk
estimates and policy making throughout the world. The
various ACS cohort analyses, including those from the
study reported here, are listed in Commentary Table 2. (A
more detailed description of each study, except the current
one, is found in Commentary Table 1.)

In the original ACS study, Pope and colleagues (1995)
followed 552,138 adult subjects in 151 U.S. cities from
1982 through 1989. Again, higher ambient levels of PM2.5

were associated with increased mortality from all causes
and from cardiopulmonary disease in the 50 cities for
which PM2.5 data were available (data from monitors for
1979 to 1983). Higher ambient SO4

2� levels were associated

with increased mortality from all causes, cardiopulmonary
disease, and lung cancer in the 151 cities for which SO4

2�

data were available (data from monitors for 1980 to 1982).
The difference in all-cause mortality between the most-
polluted city and the least-polluted city was 17% for PM2.5

and 15% for SO4
2� (the difference in the pollutant levels

was 24.5 µg/m3 for PM2.5 and 19.9 µg/m3 for SO4
2�).

Although these two cohort studies produced similar
results, they differed in design and limitations. Important
strengths of the Six Cities Study included the random
selection of study subjects; the high response rate of partic-
ipants enrolling (> 70%); the personal interviews con-
ducted with respondents at the time of enrollment and
subsequent follow-up interviews at intervals of 3, 6, and
12 years; lung-function measurements at baseline; and the
gathering of residential histories. The air pollution mea-
surements were collected by the research team, who had
designed the Six Cities Study to monitor a range of air pol-
lutants that was nearly as large as that used for the ACS
study. A limitation was that exposure for each pollutant was
represented in each city by one average level for the span of
years, so only 6 air pollutant data points were used to esti-
mate the exposure–response function. 

Important strengths of the ACS study were the number of
cities studied (151); the very large cohort of subjects
enrolled; and the extensive information collected for the
enrollment questionnaire on health status, demographic
characteristics, smoking history, alcohol use, and occupa-
tional exposure. One limitation was that these subjects were
enrolled by ACS volunteers from among their friends and
relatives so the subjects may not be representative of the gen-
eral population. Another was that the air quality measure-
ments were not designed for this study; they were obtained
from monitors set up and maintained by the U.S. EPA.

In 1997, the two studies came under intense scrutiny
when the U.S. EPA used the results to support new NAAQS
standards for PM2.5 and to maintain the standards for parti-
cles of 10 µm or smaller in aerodynamic diameter (PM10)
that were already in effect. Members of Congress and
industry, the scientific community, and others interested in
the regulation of air quality scrutinized the studies’
methods and their results. Some insisted that any data used
in studies that were conducted with federal funding should
be made public. Others argued that the individual health
and mortality data had been gathered with assurances of
confidentiality for the individuals who had agreed to partic-
ipate. Still others claimed that the concept of public access
to federally funded data did not take into account the intel-
lectual property rights of the investigators and their sup-
porting institutions. To address the public controversy,
Harvard University, the ACS, Congress, the U.S. EPA, and
representatives of the motor vehicle industry requested that

Commentary Table 2. Studies of Air Pollution and Public 
Health That Used the ACS CPS-II Cohort

Principal Investigator
Publication 

Year

End of 
Follow Upa

(n Years)

Pope (Original) 1995 1989 (7)
Krewskib (Reanalysis) 2000 1989 (7)
Pope (Updated) 2002 1998 (16)
Pope (Updated) 2004 1998 (16)
Krewski (Current Extended) 2009 2000 (18)

a Cohort was enrolled 1982.
b Part of the HEI-funded Reanalysis of both the original ACS study (Pope et 

al. 1995) and the Harvard Six Cities Study (Dockery et al. 1993).



119

Health Review Committee

the Health Effects Institute organize an independent
reanalysis of the data from these studies. The investigators
agreed to provide access to their data to a team of analysts
to be selected by HEI through a competitive process. HEI’s
Board of Directors approved the request. HEI then assem-
bled an Expert Panel to provide scientific oversight of the
Reanalysis Project on HEI’s behalf and to ensure that the
Reanalysis would be conducted by independent and
impartial investigators. The Panel recommended that Dr.
Daniel Krewski of the University of Ottawa and his team
conduct the Reanalysis. The HEI Board of Directors
approved the Panel’s recommendation of Dr. Krewski in
November 1997.

THE REANALYSIS PROJECT  

The overall objective of the Particle Epidemiology
Reanalysis Project (Krewski et al. 2000) was to conduct a
rigorous and independent assessment of the findings of the
Six Cities and ACS studies of air pollution and mortality
(Dockery et al. 1993; Pope et al. 1995). This objective was
met in two phases. In Phase I: Replication and Validation,
the Reanalysis Team sought to replicate the initial studies
through a quality assurance audit of a sample of the orig-
inal data and to validate the original numerical results. In
Phase II: Sensitivity Analyses, they tested the robustness of
the original analyses to alternative risk models and analytic
approaches, including models that used different hazard
functions and models that incorporated spatial factors
(Krewski et al. 2000). Overall, the Reanalysis confirmed the
quality of the original data, replicated the original results,
and validated those results using alternative risk models
and analytic approaches; none of them substantively
altered the original finding of an association between indi-
cators of particulate air pollution and mortality. 

THE UPDATED ANALYSIS  

After the Reanalysis Project, Pope and colleagues under-
took a subsequent set of analyses of the ACS cohort data
using an additional 10 years of data (covering 1982
through 1998), thus doubling the follow-up time to more
than 16 years and tripling the number of deaths. Exposure
data were expanded to include data on gaseous copollut-
ants and new PM2.5 data that had been collected since the
enactment of the new air quality standards. Recent
advances in statistical modeling were incorporated in the
analyses, including the introduction of random effects and
nonparametric spatial smoothing components into the
standard Cox proportional-hazards regression model of
survival (referred to as the standard Cox model; see Glos-
sary of Statistical Terms in the Investigators’ Report). This

Updated Analysis provided the strongest evidence that the
long-term exposure to fine particulate air pollution that is
common to many metropolitan areas is an important risk
factor for death from lung cancer and cardiopulmonary
disease (Pope et al. 2002). Each 10-µg/m3 increase in long-
term average ambient PM2.5 concentrations was associated
with approximately a 4%, 6%, or 8% increase in risk of
death from all causes, cardiopulmonary disease, and lung
cancer, respectively. There was no evidence of a threshold
exposure level within the range of observed PM2.5 concen-
trations. There was also no statistically significant evidence
that the survival data were spatially autocorrelated after
controlling for fine particulate air pollution and the various
individual-level risk factors. Graphic examination of the
residual mortality also revealed no significant spatial auto-
correlation with distance between metropolitan areas.

In the Updated Analysis of the ACS cohort data pub-
lished in 2004, Pope and colleagues refined their classifica-
tion of causes of death within the cardiopulmonary category
by separately analyzing ischemic heart disease, dysrhyth-
mias, hypertensive disease, atherosclerosis, chronic
obstructive pulmonary disease, pneumonia, and other sub-
categories of cardiovascular and respiratory causes of death.
They found significantly increased risks of death (ranging
from 8% to 18% per 10-µg/m3 increase in PM2.5) for the var-
ious subcategories of cardiovascular causes of death
(ischemic heart disease, dysrhythmias, heart failure, and
cardiac arrest) and only nonsignificant associations for all
respiratory subcategories. This study demonstrated that the
strongest association between PM2.5 exposure and mortality
within the broadly defined cardiopulmonary category is for
death from ischemic heart disease.

THE EXTENDED ANALYSIS 

The current study, conducted by Daniel Krewski and
colleagues, extends the follow-up period for the ACS
cohort through 2000 (18 years). The investigators have
continued to produce nationwide estimates of the risk of
death from various causes using additional years of data.
In addition, this project extended the range of analyses to
include the following:

• A Nationwide Analysis integrating control for spatial 
autocorrelation and socioeconomic covariates at the 
neighborhood (Zip Code area [ZCA]) and city (metro-
politan statistical area [MSA]) scales in a single statis-
tical model;

• Intra-Urban Analyses for the New York City and Los 
Angeles regions featuring land-use regression (LUR) 
techniques to refine estimates of exposure from local 
sources (e.g., traffic and industry); and
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• An exploration of Critical Exposure Time Windows 
through analyzing estimated average exposures for up 
to 5 years, 6 to 10 years, and 11 to 15 years before death 
to test whether longer-term or more recent exposures 
might have a stronger effect on premature mortality.

These refinements of methods and additional analyses
were intended to further explore the relationships between
air pollution exposure and mortality by incorporating
sophisticated controls for known sources of bias and con-
founding in the statistical models.

STUDY SUMMARY

SPECIFIC AIMS

Phase III of the Particle Epidemiology Reanalysis
Project, presented in this report, was designed to further
analyze associations between air pollution and mortality
in U.S. cities using alternative spatial models and to
extend the follow-up of the ACS CPS-II cohort to 18 years.
Dr. Krewski and his team proposed to address four key
research questions in this study:

1. Do social, economic, and demographic (ecologic) vari-
ables confound or modify the relationship between
particulate air pollution and mortality?

2. How can spatial autocorrelation and multiple levels
of spatial analysis be taken into account within the
random effects Cox model?

3. What critical time periods of exposure affect the asso-
ciation between air pollution and mortality?

4. How does refining the exposure gradient to the intra-
urban level affect the size and significance of health
effects estimates? 

To achieve Specific Aims 1 and 2, the investigators per-
formed a Nationwide Analysis of air pollution exposure
and mortality using an innovative extension to the standard
Cox model. It relaxed the assumption that cohort observa-
tions are independent, thus enabling the researchers to
include multiple levels of nested variables and control for
spatial autocorrelation within a single model (referred to as
the random effects Cox model). This method contrasts with
earlier two-stage analyses of this cohort that used the stan-
dard Cox model to produce city-specific estimates of mor-
tality risk and then calculated a nationwide risk estimate
from a regression of these city estimates and ecologic cova-
riates (variables that represent local social, economic, and
environmental conditions that are known or suspected to
influence mortality). 

The researchers addressed Specific Aim 3 (Critical Expo-
sure Time Windows) by calculating average exposure con-
centrations in 5-year time windows and analyzing their
relationship with patterns of mortality in the cohort. The
Specific Aim 4 (Intra-Urban Analyses), added in year 2 of
the study, was carried out in collaboration with a team of
researchers led by Dr. Michael Jerrett. This team built sepa-
rate LUR models to estimate exposure for the New York City
and Los Angeles regions using local land-use and traffic
data to supplement ambient monitoring data for PM2.5. ACS
cohort mortality data for these cities were analyzed with the
locally refined exposure assessments using the same
methods used in the Nationwide Analysis. Each of these
research efforts is described in greater detail below.

SOURCES OF DATA

Study Population

In late 1982, volunteers from the ACS recruited partici-
pants in the 50 U.S. states, Puerto Rico, and the District of
Columbia for a large prospective cancer prevention study
(ACS CPS-II) of 1.2 million adults. The ACS allowed air
pollution researchers access to the cohort data for the orig-
inal study of air pollution and mortality (Pope et al. 1995),
the HEI-sponsored Reanalysis Project (Krewski et al.
2000), the Updated Analysis (Pope et al. 2002, 2004), and
the current Extended Analysis reported here. For the pur-
poses of air pollution research, the cohort has been
restricted to participants who reside in metropolitan areas
of the contiguous 48 states and District of Columbia that
have adequate air pollution monitoring data for the study
period. This yielded approximately 575,000 total partici-
pants for the air pollution study, including about 360,000
and 500,000 who resided in areas with adequate PM2.5
monitoring information in 1980 and in 2000, respectively.

At enrollment in 1982, participants were at least 30
years of age and were members of households with at least
one person 45 years of age or older. Participants filled out
an extensive questionnaire that included personal demo-
graphic characteristics, personal habits, occupational his-
tory and exposures, tobacco and alcohol use, and other
factors possibly related to mortality from cancer. These
questionnaires provided data for the 44 individual-level
covariates (see details in the 44 Individual-Level Covari-
ates sidebar in the Investigators’ Report) used in these and
other analyses of the cohort. Covariate data are summa-
rized in Table 31 of the Investigators’ Report.

The ACS has followed this cohort using volunteers to
contact participants in 1984, 1986, and 1988, and to gather
data through the National Death Index thereafter. They
obtained death certificates for participants who were
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known to have died and compiled cause-of-death informa-
tion. Causes of death analyzed in this study fall into these
categories: all causes, cardiopulmonary disease, ischemic
heart disease, lung cancer, and all other causes. The orig-
inal study and the Reanalysis of this cohort contained
follow-up information through 1989, the Updated Anal-
ysis through 1998, and this Extended Analysis through
2000 — 11 additional years of follow-up that were unavail-
able for the initial studies.

In addition to the individual-level covariate information
from the ACS enrollment questionnaires, Dr. Krewski’s
research team gathered data for seven ecologic covariates
to use in their analyses. Ecologic covariates are intended to
represent local neighborhood-level conditions or factors
known to or suspected of influencing mortality. For
example, poverty, level of education attainment, and
unemployment in a person’s neighborhood are known to
influence an individual’s health beyond that predicted by
a person’s own attributes and situation (e.g., diet and expo-
sure to tobacco smoke). Ecologic covariates are included in
health research analyses because of a growing awareness
that the possible influences of local neighborhood or urban
conditions need to be directly accounted for in a health
assessment in order to eliminate them as the primary cause
of a health outcome (referred to as control of confounding).

For this study, the researchers enumerated ecologic
covariates for both the ZCA and city of residence for each
participant based on demographic data from the 1980 U.S.
Census. These neighborhood factors included prevalence
of air conditioning use, percentage of residents who com-
pleted high school, percentage of residents who were not
white, unemployment, median household income, relative
income disparity (income distributed within neighbor-
hoods and cities), and percentage of persons who live in
poverty (see details in the Ecologic Covariates sidebar and
Table 2 of the Investigators’ Report). 

Air Pollutants

Air pollutant exposure was estimated from data gath-
ered by several air pollution monitoring systems through-
out the continental United States. These networks are run
either by the U.S. EPA or by state and local organizations
in conjunction with the U.S. EPA. Pollutants and the dis-
tributions of exposure to them appear in Table 1 of the
Investigators’ Report.

PM2.5 data were obtained for cities in the Inhalable Par-
ticle Monitoring Network (IPMN) and the Aerometric
Information Retrieval System (AIRS). Long-term exposure
variables were constructed to study how exposure early
and late in the follow-up years might have affected the
association between particulate exposure and mortality
and to compare results from the Nationwide and Intra-

Urban Analyses: PM2.5 and PM15 levels for 1979–1983
were averaged from IPMN data, and PM2.5 levels for 1999–
2000, which were averaged from AIRS data. Dr. Krewski’s
team constructed similar variables for long-term exposure
to other pollutants of interest from single-year (1980) aver-
ages: total suspended particles (TSP) from National Aero-
metric Database (NAD) data, and ozone (O3), nitrogen
dioxide (NO2), and sulfur dioxide (SO2) from AIRS data.
Additional O3 data for April through September of 1980
represented the peak seasonal average exposure, which
was calculated from third-quarter 1980 AIRS data. SO4

2�

levels for 1980–1981 were averaged from IPMN and NAD
data and SO4

2� levels for 1990 were supplied by the New
York University investigators. 

METHODS FOR EACH ANALYSIS

NATIONWIDE ANALYSIS (SPECIFIC AIMS 1 AND 2)  

In order to address Specific Aim 1 (Do social, economic,
and demographic [ecologic] variables confound or modify
the relationship between particulate air pollution and mor-
tality?), Dr. Krewski’s team used pollutant data for MSAs
and ecologic covariate data at both the ZCA and MSA
scales.

As shown in Table 1 of the Investigators’ Report, the
number of MSAs with sufficient monitoring data for expo-
sure assessment and the resulting total number of CPS-II
participants varied for the different pollutants. For each
monitor site, averages of measurements for each pollutant
for each of the years of interest were computed and aver-
aged to obtain a summary concentration for the monitor. If
a metropolitan area included more than one monitor, the
mean concentration of each pollutant from all available
monitoring sites was calculated in order to obtain the
exposure level to assign to each participant who lived in
the MSA (see also Pope et al. 2004).

For ecologic covariates, the research team encountered
difficulties extracting information from the 1980 U.S.
Census database at the ZCA scale. Zip Codes are used by the
U.S. Postal Service to simplify the delivery of mail and are
not necessarily areas with well-defined boundaries. The U.
S. Census Bureau has therefore defined ZCAs to approxi-
mate the land areas covered by Zip Codes. Some Zip Codes
were for post office boxes and commercial areas, not for res-
idences, and others could not be matched to Census ZCAs,
paper maps, or private data sources. Despite these difficul-
ties, approximately 10,000 of the nearly 12,000 Zip Codes
listed for CPS-II participants in 1982 were successfully con-
nected with ZCAs listed for the 1980 Census. 

For each ecologic covariate, ZCA-scale data from the
U.S. Census Bureau files were averaged to obtain a value
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for each MSA. The difference between the ZCA value and
the MSA value for each ecologic covariate is referred to as
DIFF. The DIFF values represent the variability of the eco-
logic covariates at the ZCA level within their MSA.
Because the MSA value and ZCA values are highly corre-
lated by definition (the MSA value is the mean of ZCA
values), statistical instability might arise from using the
MSA and the ZCA values together if the ZCA values were
not adjusted for the MSA value.

Survival analyses are frequently used in long-term
cohort studies of air pollution exposure and mortality. In
this survival analysis, a fixed number of participants are
followed over time; mortality data are collected as mem-
bers die, and no new members are recruited. Groups of
participants are classified according to exposure level, and
subgroups are compared with each other to understand
how levels of exposure may affect the number of cohort
members who die and the causes of death over the life of
the cohort. Risk analyses are typically adjusted for age,
smoking status, sex, and other variables known to affect
longevity that could confound the relationship between
pollutant exposure and death. The resulting comparisons
yield a hazard ratio (HR) or a relative risk of mortality
based on exposure to the pollutant of interest. 

Dr. Krewski’s team chose the standard Cox model to cal-
culate hazard ratios for the various causes of death associ-
ated with the levels of air pollution exposure experienced
by the cohort. They used two variations of this model for
their statistical analysis: the standard Cox model and the
random effects Cox model. 

The standard Cox model assumes that the mortality expe-
rience of individuals in the study is independent (after
adjusting for covariates), even for participants living in the
same household or neighborhood. However, it is possible
that mortality experience for people in the same community
will be more similar than that for people in different com-
munities, even after controlling for all available risk factors.
Lack of statistical control for these factors can bias the esti-
mate of air pollution’s effect on health. Despite these limita-
tions, the researchers used the standard Cox model to test
each of the pollutant and cause-of-death combinations of
interest in the Nationwide Analysis to find those with the
strongest associations. They then explored the selected pol-
lutant–cause of death combinations with the far more com-
putationally powerful random effects Cox model, which
allowed them to account for spatial autocorrelation and
include multiple levels of spatially defined covariates (Spe-
cific Aim 2). 

The random effects Cox model relaxes the assumption
that every participant’s mortality experience is indepen-
dent of that of his or her neighbors. It permits the

researcher to account for (1) the statistical similarity in the
risk of mortality often found in persons living near each
other (also known as spatial autocorrelation), and (2) the
joint effects of neighborhood-level and city-level variables.
Dr. Krewski and colleagues developed the random effects
Cox model as an extension to the standard Cox model spe-
cifically to analyze the complex spatial patterns of risk in
the CPS-II data.

INTRA-URBAN ANALYSES (SPECIFIC AIM 4)  

In order to address Specific Aim 4 (How does refining
the exposure gradient to the intra-urban level affect the
size and significance of health effects estimates?), the
research team collaborated with investigators in New York
City and Los Angeles, two very large metropolitan areas that
have extensive pollution monitoring networks. Their goal
was to estimate mortality risks associated with exposure to
PM2.5 in urban areas and compare them with those obtained
from the Nationwide Analysis. In the Intra-Urban Analyses,
however, they would use land-use data to estimate exposure
locally and comprehensively, whereas in the Nationwide
Analysis, they had assigned exposure according to metro-
politan area averages. These analyses differed from the
Nationwide Analysis in the following ways: 

• Exposure was restricted to PM2.5 in a single large met-
ropolitan area.

• Additional monitoring data were available at local 
levels. 

• A variety of markers of emissions (most notably 
nearby vehicle emissions) and local exposures were 
used to estimate participants’ exposures.

• Kriging and LUR statistical methods were used to esti-
mate and assign local exposures to participants rather 
than assigning the same MSA average value to everyone.

New York City Analysis  

The investigators used New York City data on pollutants
and the CPS-II cohort mortality data that were used for the
Nationwide Analysis. A total of 43,930 CPS-II participants
lived in the New York City region at enrollment in 1982,
and a total of 10,525 deaths had been recorded for this
group during the 18 years of follow-up (1982 through
2000). The team chose to analyze mortality from all causes,
ischemic heart disease, cardiopulmonary disease, lung
cancer, endocrine disorders, diabetes, digestive cancers
and disorders, and accidents. 

To estimate pollutant levels, the research team calcu-
lated 3-year averages for each monitor from daily moni-
toring data collected for the U.S. EPA’s Air Quality Sub-
system (AQS) for 1999 through 2001. In addition, they
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used LUR, a relatively new statistical process that esti-
mates pollutant exposures at specific locations by incorpo-
rating air pollution monitoring data, road and traffic data,
land-use information (e.g., population density, industry,
vegetation), and data on emissions from local sources. The
ultimate goal was to be able to explain the variations in
local exposures over a broad area. In New York City, land
use was assessed using traffic counting systems, roadway
network maps, satellite photos, and local government
planning and tax-assessment maps. 

Developing a LUR model requires evaluating land use
around pollution monitors using different types of land-
use variables to find which ones best predict monitored
pollutant levels. Data for a selected set of monitors were
used to develop the model, and then the model was used to
predict pollutant concentrations at the remaining monitors
that had not been used. When the predicted value was com-
pared with the actual measured value at a validation site,
the team could assess how accurately the model predicted
pollutant exposure at locations without monitors but with
similar land-use characteristics. The final LUR model for
New York City predicted 66% of the variation in monitored
PM2.5 concentrations across the study area (R2 = 0.66).

Three LUR models were created for the New York City
region: two covering 28 counties (one using a 3-year expo-
sure average and one using only winter exposure averaged
over 1 season) and one covering 9 counties using a 3-year
exposure average. Only the 28-county models were used in
the mortality analysis; the 9-county model was used only
for testing methods.

The LUR model results were compared with the results
of a spatial interpolation of measured values known as
kriging. Using kriging, the investigators produced esti-
mates of exposure for the entire study area by interpolating
data from the 62 pollution monitoring sites in the 28-
county area. The LUR and kriging models produced sim-
ilar estimates of pollution levels in cross-validation
studies in which data from one monitor were removed
from the data set and data from the other monitors were
used to estimate exposure at the “missing” monitor’s loca-
tion (the procedure was repeated for each monitor in turn).
The authors still chose to use their LUR model to assign
exposure to participants (for analyzing mortality) because
the LUR was more likely to account for highly local varia-
tions in exposure due to traffic patterns and land use in the
areas where participants actually resided, whereas kriging
relied only on data from nearby pollution monitors.

As with the Nationwide Analysis, the investigators used
both the standard Cox and random effects Cox models for
analyzing pollutant exposure and mortality. They incorpo-
rated the 44 individual-level covariates from the ACS

enrollment questionnaire as well as data for the seven eco-
logic covariates at the ZCA and MSA scales. Even in the
28-county winter-2000 model, the team chose to include
the percentage of homes with air conditioning as an eco-
logic covariate because (1) the availability of air condi-
tioning is a good proxy for the type of home construction;
and (2) buildings with air conditioning typically have a
relatively low level of infiltration of outdoor air into the
structure (and therefore less exposure to outdoor ambient
air pollution) in the winter as well as in the summer.

Los Angeles Analysis  

The Intra-Urban Analysis in the Los Angeles region
included 22,905 ACS CPS-II participants in 267 ZCAs cov-
ering five counties; 5,856 deaths had been recorded at the
end of 2000. As with the New York City Analysis, associa-
tions between exposure and mortality were analyzed for
mortality from all causes, ischemic heart disease, cardiop-
ulmonary disease, lung cancer, endocrine disorders, dia-
betes, digestive cancers and disorders, and accidents. In
addition, the Los Angeles Analysis included other cancers
and all remaining causes. The investigators used both LUR
and kriging methods to estimate exposure concentrations at
the center of each ZCA. The standard Cox and random
effects Cox models were used to calculate exposure–mor-
tality associations; they included the 44 individual-level
covariates (from the ACS enrollment questionnaire) and
seven ecologic covariates. Unlike the New York City Anal-
ysis, the Los Angeles researchers did not include a seasonal
(winter-only) model and they did not construct a test model
for a smaller portion of the study area; they did, however,
control for O3 concentrations.

In their attempt to model fine geographic variations in
pollutant exposure, the team led by Dr. Jerrett assembled
data from a wide variety of sources. For the LUR and
kriging models, they started with air monitoring data from
several sources including the California EPA database for
23 PM2.5 monitors and the California Air Resources Board
42 sites that monitor O3. Although PM2.5 was of primary
interest, the Los Angeles Analysis included O3 concentra-
tions as a copollutant in the health analyses. 

To develop the LUR models, the team used data for dig-
ital land use, mapped road networks, road classes and
speed limits, traffic counts, population, and topography
(elevation). The investigators constructed a LUR model for
the Los Angeles area that predicted 69% of the variation in
local PM2.5 concentrations when evaluated using regres-
sion diagnostics (as described in the Investigators’ Report).
Primary predictors of exposure in the LUR model were
traffic volume, industrial areas, and government areas (as a
proxy for traffic intensity around major destinations such
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as schools, government service offices, and hospitals).
They do note, however, that this model tended to predict
excessively high values in certain high-pollution areas,
including several freeway intersections with heavy traffic
and the Long Beach area near the port facilities for Los
Angeles and Long Beach.

As with the New York City Analysis, the team led by Dr.
Jerrett built a kriging model based on data from the 23 PM2.5
monitors in the Los Angeles metropolitan area. The results
lacked much of the local-area variation in concentrations
found with the LUR model. The investigators expected this
difference because the monitors had been placed for pur-
poses of federal and state regulatory compliance and did not
specifically monitor sources of pollution, such as nearby
industry and traffic, or pollutant concentrations in residen-
tial areas. A brief comparison of the associations (hazard
ratios) for death from various causes and PM2.5 exposures
modeled using both kriging and LUR for Los Angeles and
LUR for New York City is presented in Table 30 of the Inves-
tigators’ Report and in Commentary Table 3.

The investigators also built two kriging models for expo-
sure to O3 using data from the 42 monitors. One model
mapped the interpolated exposure values based on an
average of the four highest 8-hour concentrations for each
monitor in 2000. The second one mapped the interpolated
values for the expected peak daily concentrations (based
on the average daily concentration for each monitor for
1999 through 2001). 

The team led by Dr. Jerrett applied the same standard
Cox and random effects Cox models used for the Nation-

wide and New York City Analyses of mortality and expo-
sure concentrations to the Los Angeles region. Unlike the
other analyses, Dr. Jerrett’s team also included covariates
for O3 exposure because it is sufficiently high in the Los
Angeles Basin to be a potential confounder of the relation-
ship between PM2.5 exposure and mortality. 

CRITICAL EXPOSURE TIME WINDOWS ANALYSIS 
(SPECIFIC AIM 3) 

To address Specific Aim 3 (What critical time periods of
exposure affect the association between air pollution and
mortality?), Dr. Krewski’s team performed an analysis of
how exposure to pollutant concentrations in different time
intervals might be associated with mortality patterns. This
analysis was designed to address hypotheses about long-
term exposures — that some time periods of exposure may
be more critical than others to possible health outcomes —
and whether more recent exposures to air pollution are
more or less associated with mortality than exposures much
further in the past. The researchers selected three time
periods to investigate: 1 to 5 years, 6 to 10 years, and 11 to
15 years before a participant died.

The investigators used the same CPS-II data set used for
the Nationwide Analysis to analyze critical time windows
of exposure, but with some important distinctions. For one
exposure group, they selected participants in the Nutrition
Cohort, a subcohort of the CPS-II, to analyze the effect of
relocation on exposure and mortality. The Nutrition Cohort
was formed in 1992–1993 and composed of 189,194 CPS-II

Commentary Table 3. Selected Hazard Ratios from the Nationwide and Intra-Urban Analysesa

Nationwideb
Intra-Urban

New York Cityc
Intra-Urban

Los Angelesb

Exposure estimation method MSA Average LUR LUR Kriging

28-County
3-Year Model

28-County
Winter-2000

Modeld

Cause of death
All causes 1.04 (1.03–1.06) 0.87 (0.67–1.13) 0.97 (0.82–1.13) 1.14 (1.03–1.27) 1.17 (1.05–1.30)
Ischemic heart disease 1.18 (1.15–1.22) 1.47 (1.00–2.00) 1.56 (1.21–1.97) 1.33 (1.08–1.63) 1.39 (1.12–1.73)
Cardiopulmonary disease 1.09 (1.06–1.11) 0.67 (0.33–1.07) 1.08 (0.85–1.36) 1.11 (0.97–1.28) 1.12 (0.97–1.30)
Lung cancer 1.09 (1.03–1.15) 0.73 (0.00–1.60) 0.72 (0.26–1.31) 1.39 (0.96–2.01) 1.44 (0.98–2.11)

a Results are from random effects Cox models, stratified by age (1-year groupings), sex, and race; adjusted for the 44 individual-level covariates; and adjusted 
for seven ecologic covariates at the MSA & DIFF levels. HRs are followed by 95% confidence intervals.

b HRs for the Nationwide and Los Angeles analyses were calculated for a 10-µg/m3 change in PM2.5.
c For easier comparison with Nationwide and Los Angeles results, HRs for the New York City analyses were calculated for a 10-µg/m3 change in PM2.5 

converted from data reported for a 1.5-µg/m3 change in PM2.5 for the 28-county 3-year model and from data reported for a 3.9-µg/m3 change in PM2.5 for 
the 28-county winter-2000 model.

d Based on data for January, February, and March 2000.
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participants who were between the ages of 50 and 74 years
and resided in one of 21 states with population-based
cancer registries. These subcohort members completed
follow-up questionnaires with detailed questions on diet,
physical activity, and other individual-level factors not
covered in the initial 1982 enrollment questionnaire and
provided updated information in 1997–1998, 1999–2000,
and every 2 years thereafter. 

From the Nutrition Cohort, the investigators identified
approximately 61,000 participants who resided in 106
MSAs with enough available average PM2.5 monitoring
data; of those, 8181 were known to have moved to another
MSA during follow-up. This group is referred to as the
PM2.5-A group. 

A second analysis group (81,466 members in 53 MSAs)
was formed from members of the full CPS-II cohort who
were not in the Nutrition Cohort and who died while
residing in the same MSA in which they were enrolled in
1982; they were assumed to have lived continuously in
that MSA from enrollment until death. This group is
referred to as the PM2.5-B group; the PM2.5-B group and the
PM2.5-A group are mutually exclusive. 

A 15-year exposure profile for each member of the
PM2.5-A and PM2.5-B groups was constructed from PM2.5
concentrations for the MSA of residence for the three time
periods (1 to 5 years, 6 to 10 years, and 11 to 15 years)
before his or her death. For participants who were known
to have moved, exposures in the new MSAs of residence
were also used to create the exposure profiles. For this pur-
pose, PM2.5 levels were derived by Lall and colleagues
(2004) from average annual measured TSP and PM10 con-
centrations for 1972 through 2000.

A third group included 80,711 Nutrition Cohort partici-
pants in 120 MSAs for which at least 20 years of annual
average SO2 measurements were available; 5762 (7.1%)
participants moved at least once during the exposure
period. Similar exposure profiles for SO2 were constructed
for each participant based on the MSA of residence for
1972 through 2000. 

As with all other analyses, the investigators used the
standard Cox model to analyze the data, with stratification
and adjustment for the 44 individual-level variables from
the ACS 1982 enrollment questionnaire. In this set of anal-
yses, however, they used the three 5-year time-period
exposure variables instead of the exposure averages for
1980 or 2000. Only one exposure window (1 to 5 years, 6 to
10 years, or 11 to 15 years) was analyzed at a time because
the model was designed to avoid statistical complications
that would arise if two or more were included together.
The PM2.5-A and PM2.5-B groups were also analyzed sepa-
rately because they were distinct risk groups. 

Dr. Krewski’s research team considered the time
window with the best-fitting model to be the period during
which pollution could have had the strongest influence on
mortality. The best-fitting model was judged by the HRs
and CIs and by the Akaike information criterion [AIC], a
statistical measure of how well a model fits the available
data; the lowest AIC value indicates the time window most
strongly connected with the pattern of mortality. For
example, in Table 26 of the Investigators’ Report, the com-
bination of the PM2.5-B group, all causes of death, and
average exposure 1 to 5 years before death shows an AIC of
933,094.00; for exposure 6 to 10 years in the past, the AIC
is 933,094.94; and for exposure 11 to 15 years in the past,
the AIC is 933,095.03. The investigators thus ranked the
exposure window 1 to 5 years before death as potentially
more important than earlier exposure periods, although
both the AIC values and HRs were sufficiently close as to
be inconclusive.

KEY FINDINGS

NATIONWIDE ANALYSIS

The researchers investigated a suite of U.S. EPA criteria
pollutants using the standard Cox model. The primary focus
of this project, however, was to extensively evaluate the
analytic results for exposure to PM2.5 and mortality
obtained from the random effects Cox models that were
adjusted for ecologic covariates and spatial autocorrelation. 

Generally speaking, use of the random effects Cox
model leads to somewhat different results than the stan-
dard Cox model, most notably small increases in the
hazard ratios and slightly wider confidence intervals (CIs).
Results of standard Cox and random effects Cox models for
the associations of PM2.5 with various causes of death are
presented in Commentary Table 4. 

For the standard Cox models that included the 44 indi-
vidual-level covariates, the associations between average
PM2.5 concentrations for both 1979–1983 and 1999–2000
and all listed causes of death (except “all other causes”) were
statistically significant. When random effects Cox models
were used with controls for ecologic covariates (in addition
to the 44 individual-level covariates included in the stan-
dard Cox models), the effect estimates increased and
remained significant; the largest hazard ratio (1.24; 95% CI,
1.19–1.29) was noted for ischemic heart disease. Additional
controls for these ecologic covariates at the MSA and ZCA
scales appeared to remove some confounding effects, even as
the switch to the random effects model, with its relaxed
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assumptions, resulted in decreased certainty for some esti-
mates. 

Although conventional statistical models, including the
standard Cox model, assume that all data points are inde-
pendent of one another, it is unlikely that individuals who
live in the same household or neighborhood are indepen-
dent with respect to measured and unmeasured factors
that affect health and mortality. A number of sensitivity
analyses were conducted to allow for nonindependence of
observations for CPS-II participants living close together.
The results demonstrate relatively unchanged estimates of
risk with widened confidence intervals (see Table 9 in the
Investigators’ Report). This pattern suggests that some
clustering of mortality is not explained by the ecologic
covariates for MSAs and ZCAs. 

Results for some pollutants other than PM2.5 are worth
noting. In the Reanalysis Project (Krewski et al. 2000), the
research team had investigated whether the relationship
between PM2.5 exposure and mortality changed when O3
was included in the model and had found little effect.
Therefore, the investigators did not repeat those combina-
tions and analyzed O3 in single-pollutant models. Summer
O3 levels (calculated from concentrations measured from
April to September in 1980) were significantly associated
with mortality from all causes (HR = 1.02; 95% CI, 1.01–
1.03) and from cardiopulmonary disease (HR = 1.03; 95%
CI, 1.02–1.04). O3 exposure has recently been linked with
mortality from pulmonary causes (Jerrett et al. 2009),
whereas PM2.5-related mortality has been shown to be
dominated by cardiovascular causes (Pope et al. 2002).

This implies that exposure to O3 does not confound the
association between PM2.5 and mortality. Dr. Krewski’s
team did not construct a random effects Cox model for O3
with ecologic covariates, nor did they compare mortality
from respiratory causes with mortality from other causes
of death. They have recently published the results of fur-
ther analyses of O3 exposure and death from pulmonary
causes in this cohort (Jerrett et al. 2009).

Hazard ratios for exposure to SO4
2� and SO2 were sig-

nificantly elevated for all analyzed causes of death in the
standard Cox models (Table 3 of the Investigators’ Report);
the research team did not analyze them with random
effects Cox models because of the project’s limited com-
puting resources and their focus on PM2.5 analyses.
Because SO2 concentrations have been reduced across the
United States during the follow-up years, however, SO2
was evaluated separately for possible critical periods of
exposure, described below.

Level of education attainment has been identified as a
possible surrogate indicator of socioeconomic status and
occupational exposure. In the Reanalysis Project (Krewski
et al. 2000) and some parts of the Updated Analysis (Pope
et al. 2002, 2004), the education level of the cohort mem-
bers appeared to modify the effect of exposure on mor-
tality: Participants with less than a high school education
had substantially higher estimates of risk, and those with
more than a high school education had no apparent
increase in risk. In the current analysis, with substantial
additional follow-up data, there is a moderate suggestion
of this same trend (most notably for mortality from lung

Commentary Table 4. Associations Between Various Causes of Death and Long-Term Exposure to PM2.5 in Two Time 
Periods from the Nationwide Analysisa

Cause of Death Standard Cox Model Random Effects Cox Modelb

HR per 10-µg/m3 Change in PM2.5 Exposure Level (Average for 1979–1983)
All causes 1.03 (1.01–1.04) 1.04 (1.03–1.06)
Ischemic heart disease 1.12 (1.09–1.16) 1.18 (1.15–1.22)
Cardiopulmonary disease 1.06 (1.04–1.08) 1.09 (1.06–1.11)
Lung cancer 1.08 (1.03–1.14) 1.09 (1.03–1.15)

HR per 10-µg/m3 Change in PM2.5 Exposure Level (Average for 1999–2000)
All causes 1.03 (1.01–1.05) 1.06 (1.04–1.08)
Ischemic heart disease 1.15 (1.11–1.20) 1.24 (1.19–1.29)
Cardiopulmonary disease 1.09 (1.06–1.12) 1.13 (1.10–1.16)
Lung cancer 1.11 (1.04–1.18) 1.14 (1.06–1.23)

a Analyses with the standard Cox model were stratified by age (1-year groupings), sex, and race and were adjusted for the 44 individual-level covariates. 
Analyses with the random effects Cox model were also adjusted for the 7 ecologic covariates at the MSA & DIFF levels. HRs are followed by 95% 
confidence intervals. Values are from Tables 3 and 6 in the Investigators’ Report.

b Results are for the MSA & DIFF combination of ecologic covariates. The DIFF value for each ZCA is the ZCA-specific value minus the MSA mean. This 
model allowed nested ecologic information to be analyzed.
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cancer), but the hazard ratios for participants with more
than a high school education were positive for all evalu-
ated causes of death. For ischemic heart disease, the trend
seemed to be reversed — those with higher education had
the highest risk. Full results for the analyses of effect mod-
ification by education attainment are presented in Table 8
of the Investigators’ Report.

INTRA-URBAN ANALYSES 

The Intra-Urban Analyses produced very different
hazard ratios and confidence intervals for New York City
and Los Angeles. Commentary Table 3 presents hazard
ratios by cause-of-death category for different methods of
estimating and assigning exposure levels to participants:
the New York City 28-county LUR-based models for the 3-
year (1999–2001) and winter-2000 pollutant levels, and
the Los Angeles models with exposure estimated by
kriging and LUR. For easier comparison with the hazard
ratios for the Los Angeles and Nationwide Analyses, hazard
ratios for the New York City Analysis have been converted
to a 10-µg/m3 change in exposure from a 1.5-µg/m3 change
for the 3-year model and from a 3.9-µg/m3 change for the
winter-2000 model. The results for the fully adjusted
Nationwide Analysis are included for comparison.

Even though the New York City and Los Angeles Anal-
yses share common theoretical and methodologic
approaches, the results of LUR models for assigning expo-
sure and the estimates of attributable health effects are
strikingly dissimilar. The hazard ratios are much higher for
Los Angeles than for New York City, except for ischemic
heart disease. Possible reasons for this difference may be
the range of PM2.5 exposures derived for the Los Angeles
area and the relative uniformity of exposures in the New
York City region. Annual averages of measured PM2.5 con-
centrations from air monitors in the Los Angeles region
ranged from 9.5 to 28 µg/m3, and annual average exposure
values predicted by the LUR at high-exposure locations
such as freeway interchanges were in excess of 125 µg/m3.
In contrast, the interdecile (10th to 90th percentile) range
of exposure for the New York City region was 1.9 µg/m3 for
the 3-year model and 3.9 µg/m3 for the winter-2000 model.
These differences may stem, in part, from the different
LUR models constructed for the two cities because LUR
models are inherently driven by land-use factors that pre-
dict exposure and are specific to each urban environment.

CRITICAL EXPOSURE TIME WINDOWS ANALYSIS

This analysis was an innovative start at understanding
how the timing of exposure may influence health out-
comes. Unfortunately, it did not yield conclusive results.

Some interesting contrasts were noted between the PM2.5-
A group, composed of Nutrition Cohort participants, and
the PM2.5-B group, made up of CPS-II cohort members who
were assumed to have died without moving from their
1982 MSAs of residence. Table 26 in the Investigators’
Report details the results for PM2.5 and SO2 exposure in 5-
year segments.

Overall, differences in model-fit statistics and in the
hazard ratios and confidence intervals for combinations of
two exposures, two cohorts, and three 5-year time periods
of exposure are modest and demonstrate no definitive pat-
terns. However, some possible trends can be discerned.
Deaths from cardiopulmonary disease were most strongly
associated with SO2 exposure 1 to 5 years before death and
with PM2.5 exposure 6 to 10 years before death. Associa-
tions between exposure to PM2.5 and mortality from lung
cancer showed some interesting patterns for all time win-
dows for both PM2.5-A and PM2.5-B groups, and some asso-
ciations for the PM2.5-B group were significant. Lung
cancer is known to be a disease of long latency (typically
15 to 30 years) and yet the strongest statistical association
with PM exposure was reported for the time window 5 to
10 years before death.

DISCUSSION

The Extended Analysis was a complex and important
project that addressed several research questions includ-
ing (1) statistical issues related to confounding and modifi-
cation of effects by community-level covariates,
(2) improved models to accommodate spatial autocorrela-
tion in the data, and (3) within a subcohort with detailed
residential data, methods of investigating critical time
periods of exposure. Because this project included more
years of follow-up and more deaths than previous anal-
yses, it further consolidates existing knowledge about mor-
tality risks in this cohort. Although the intra-urban
associations obtained using kriged exposure data for Los
Angeles have been published previously (Jerrett et al.
2005), this report describes more refined methods of expo-
sure assessment. The results for the New York City region
are entirely new.

NATIONWIDE ANALYSIS

Study Design  

The broad study design for this Extended Analysis of the
nationwide database was the same as that used in the pre-
vious Updated Analysis of this cohort (Pope et al. 2002) and
fully appropriate for the task. We have no reason to believe
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that limitations in the ascertainment of outcomes would
have had any important impact on the study results. The
additional years of follow-up added substantially to the
data available at the time of the original study (Pope et al.
1995) and the Reanalysis (Krewski et al. 2000), and mod-
estly to the Updated Analysis (Pope et al. 2002, 2004). 

Statistical Methods

The model that underlay all mortality analyses was the
standard Cox model, which was appropriate for address-
ing the study’s specific aims. The influence of risk factors
on which information had been collected through the ACS
enrollment questionnaire (including age, sex, diet, educa-
tion attainment, and occupational exposures) could be
controlled at the individual level by including the factors
in the model. When an air pollutant variable was consid-
ered, the investigators could assume that including these
44 individual-level covariates would substantially control
confounding that could arise if one of these risk factors
were associated with the pollution variable (for example, if
diets are generally poorer where exposures are higher). 

The standard Cox model has two major limitations that
the investigators addressed in innovative ways: ecologic
confounding and spatial autocorrelation. Ecologic covari-
ates are risk factors for mortality that are measured at the
neighborhood level rather than at the individual level. Typ-
ically, in spatial studies of health, such variables are found
to predict mortality even when — as here — adjustment is
made for individual-level risk factors. Ecologic con-
founding arises when such variables are associated with air
pollution levels — a matter of particular concern here,
because air pollution was estimated at the larger MSA
scale. In this study, the ecologic covariates included were
aggregate measures derived from the 1980 U.S. Census;
they included measures of income, unemployment, avail-
ability of air conditioning, and race. This information was
collected at the smaller ZCA scale rather than the MSA
scale, although MSA-scale values were calculated from
ZCA-scale values and included in the analysis.

The inclusion of ZCA-level covariates made the evalua-
tion of ecologic confounding more refined in this
Extended Analysis than for the Reanalysis (for which only
MSA-scale ecologic covariates were considered). However,
not all previously considered ecologic covariates were
included in this analysis. In particular, population migra-
tion and ambient temperature had both been shown to be
determinants of mortality with some evidence of con-
founding in the Reanalysis and were not further evaluated
in this project. 

Spatial autocorrelation is the tendency for variables to
have similar values for people or areas that are geographically

(spatially) close. Experience with spatial analysis of health
data generally has led us to expect this pattern, even when
individual and ecologic covariates are controlled. Spatial
autocorrelation is of particular concern with respect to the
mortality data used in this study because the Reanalysis
documented that air pollution levels are spatially auto-
correlated. Spatial autocorrelation has two types of effects
that might be relevant here: Its presence suggests the
existence of determinants of mortality otherwise unac-
counted for in the model, which might (though need not)
confound the association between air pollution and
mortality; and its presence distorts (and usually exag-
gerates) the precision of the estimates.

In this and previous analyses of the ACS study data, the
investigators incorporated spatial components into the sta-
tistical model in order to reduce such adverse impacts of
spatial autocorrelation. The spatial models in this analysis
differed from those used in the Reanalysis and in the
Updated Analysis by Pope and coworkers (2002). Both of
those studies used a variety of approaches; in particular,
they included a regional fixed effect; and they fitted a spa-
tially smooth surface to mortality that was unexplained by
covariates in the models (Pope et al. 2002). The model
used in the current Extended Analysis includes (1)
random effects at the ZCA, MSA, and state scales, and (2)
correlation between adjacent ZCAs, MSAs, and states
(although only two levels could be incorporated in the
model simultaneously). (In the Nationwide Analysis sec-
tion Statistical Methods and Data Analysis, the investiga-
tors note that the degree of correlation can, alternatively,
be assumed to depend on distance; but results for distance-
based models are not presented.) 

Technical problems in fitting such spatial models have
previously prevented their use in complex formulations
such as those used here. The investigators are to be con-
gratulated on overcoming these technical complexities to
produce what in many ways is a more comprehensive rep-
resentation of spatial structure in these data. It remains
very difficult, however, to be sure that the range of models
considered is broad enough that all of the adverse impacts
described above are controlled by the incorporation of spa-
tial patterns of mortality due to unmeasured risk factors. In
particular, though the models used seem well formulated to
capture local spatial patterns, it is less obvious that they
captured larger-scale patterns. For example, the Reanalysis
found important residual variation in mortality across
regions and incorporated regional terms (as fixed and
random effects) in the model. There does not appear to have
been any analogous direct representation of larger-scale pat-
terns in this Extended Analysis, although allowing for cor-
relation between adjacent states may have done this to some
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extent. One also wonders what the impact would be of
allowing for the effects of latitude or longitude, which were
not considered. 

In summary the approach used to allow for spatial auto-
correlation in these analyses was technically innovative
and provided quite comprehensively for patterns at the
local scale. However, the absence of any investigation of
larger-scale spatial patterns due to factors other than air
pollution makes it impossible to rule out an impact of such
factors on results. 

Results 

We agree with the investigators that including ecologic
covariates (social and economic factors) — measured at the
ZCA scale for the first time in this study — changed the
risk estimates relatively little (Commentary Figure 1). This
lack of strong effect adds to the reassurance provided in
previous reports on this cohort that the effects on health of
these variables did not bias the risk estimates. However, as
noted above, not all ecologic covariates considered in pre-
vious analyses were assessed in this study. Some variables
not considered in this study — population change and cli-
mate (temperature) — did have an impact on pollution risk
estimates in some previous analyses (Commentary
Figure 2). Although we do not know that including them
would have had a similar influence in the current analyses,
omitting them amplifies the uncertainty due to possible
residual confounding by ecologic covariates that were not
included in the models. 

We also agree with the investigators that key results were
robust when spatial autocorrelation in mortality was incor-
porated in the statistical models (Commentary Figure 3).
This is reassuring, particularly because the spatial autocor-
relation models developed in the course of this work repre-
sent a refinement of those used previously. However, such
reassurance cannot be absolute. It remains possible that
spatial patterns in mortality due to unmeasured risk factors
could bias estimates of risk. In particular it is unclear to
what extent the models used allowed for large-scale geo-
graphic patterns, such as those presented in the Reanalysis
by fitting regional effects (Krewski et al. 2000). However, an
analysis of semivariance presented in a follow-on study of
O3 (Jerrett et al. 2009) using the same individual and eco-
logic covariates showed no indication of important residual
spatial autocorrelation of the O3 and mortality relationship
in this same data set when individual and ecologic covari-
ates were included. 

In this Extended Analysis the research team adhered to
the practice in early reports of combining deaths from car-
diovascular and respiratory causes. This is important for
reasons of continuity, but it can be questioned from a bio-
medical point of view. Although there may well be overlap

Commentary Figure 1. Adjustments to control confounding by ecologic
covariates for mortality from all causes related to PM2.5 exposure.  

Commentary Figure 2. Ecologic variables found to influence the relation-
ship between PM2.5 exposure and mortality from all causes in the
Reanalysis (data are Independent Observations from Table 46 in Krewski
et al. 2000).

Commentary Figure 3. Adjustment for spatial autocorrelation with dif-
ferent statistical methods. Random effects Cox models were used with
covariates clustered at ZCA, MSA, and state levels with and without spa-
tial autocorrelation.  HRs are shown for PM2.5 exposure and mortality from
all causes.
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of International Classification of Disease codes between the
two categories, it would be more prudent to present them
separately, as well as in combined categories, until more is
known about the biologic mechanisms involved in the
effects. The recent report from a Dutch cohort study
(Brunekreef et al. 2009) stated that, depending on the expo-
sure metric used, risks tended to be higher for respiratory
than for cardiovascular mortality. 

The current study, although focused on particles, reports
the emergence of a relationship between O3 and cardiopul-
monary mortality that recently has been further analyzed by
examining causes of cardiovascular and respiratory mor-
tality separately. The more recent analysis (Jerrett et al. 2009)
found an association between O3 exposure and respiratory
but not cardiovascular mortality, which further supports the
desirability of presenting results for the two categories sepa-
rately. Similarly, the Health Review Committee would have
liked to see the results for other categories of cardiovascular
disease, such as stroke and heart failure, presented along-
side those for ischemic heart disease. As more cohort studies
are conducted, separate presentation (of these categories)
would facilitate meta-analysis.

The Investigators’ Report singled out the associations
between PM2.5 and ischemic heart disease; although other
cardiovascular causes of death were not presented, mor-
tality from ischemic heart disease appears to be the category
of cardiovascular disease where much of the association
between cardiovascular mortality and air pollution expo-
sure is concentrated, as reflected in previous investigations
with this cohort (Pope et al. 2004). The investigators
referred to this association as having “high biologic plausi-
bility,” but the Review Committee thought that the existing
limited epidemiologic and mechanistic evidence, though
suggestive, does not justify such a strong assertion. 

Given that the Reanalysis (Krewski et al. 2000) had exten-
sively tested the potential for the gaseous pollutants to con-
found the relationship between exposure to PM2.5 and
mortality and had not found any significant confounding
(other than by SO2), it is understandable that the current
investigators chose to focus their limited resources on the
extensive exploration of spatial autocorrelation in a series
of one-pollutant models. In this case, including gasses
such as NO2 and SO2 as copollutants would have pre-
sented some challenges in a model with PM2.5 because
(1) levels of NO2 recorded at central monitoring stations do
not reflect the fine scale on which these gases vary; (2) NO2
and SO2 are generated by some of the same sources that gen-
erate PM2.5 (NO2 from traffic; SO2 from power plants) and
their levels will be correlated with those of PM2.5; and (3)
the gases are important precursors to components of fine
nitrate and SO4

2� particles. Still, it is always reassuring if
two-pollutant analyses can be conducted. Further analyses

of O3 and respiratory mortality that were completed
recently by members of Dr. Krewski’s team included a two-
pollutant analysis for PM2.5 and O3 (Jerrett et al. 2009).

INTRA-URBAN ANALYSES

Study Design  

Epidemiologically, the design for the two Intra-Urban
Analyses (in the New York City and Los Angeles regions)
was essentially the same as that for the Nationwide Anal-
ysis, from which the data for these two analyses were
selected. The differences and methodologic innovations
lie in the methods of exposure assessment. 

The Nationwide Analysis compared MSAs across a wide
range of air shed regions; and because some cities have a
common regional background (e.g., New England cities),
this study compared effects of air pollution between cities
and between air sheds. By contrast, the Intra-Urban Anal-
yses primarily investigated variations in local exposures
added to common regional and urban background expo-
sures. Spatial variations within urban areas are driven more
by local near-source emissions such as traffic, industry, and
residential space heating; the resulting analyses can tell us
little about the health effects of chronic exposure to the
background pollutant levels. 

Statistical Methods  

The statistical analysis for these studies had two compo-
nents. The LUR analysis, used to estimate exposures, will
be discussed below. The epidemiologic analysis, designed
to estimate the effects of air pollution after controlling for
the influence of ecologic covariates, followed essentially
the same methods as those used in the Nationwide Anal-
ysis, with some differences due to the local scale (e.g.,
state-level components of the Nationwide Analysis were
not relevant to assessing the impact of spatial autocorrela-
tion). For this set of analyses, as for the Nationwide Anal-
ysis, the Review Committee considered these methods
very appropriate and probably adequate to control most
potential confounding. Climate is more homogeneous in
these Intra-Urban Analyses, and possible unmeasured
determinants of large-scale spatial confounding are not an
issue, so residual confounding from these sources is much
less of a concern than in the Nationwide Analysis.

Exposure Assessment  

Both Intra-Urban Analyses used LUR and kriging tech-
niques to predict exposure at each ZCA centroid (the cen-
tral point in a ZCA); this is clearly described for the Los
Angeles model in the Investigators’ Report, but less clearly
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stated for the New York City model. These studies are
among the first to use LUR to predict PM2.5 concentrations
at the local level. Unlike NO2 and elemental carbon, which
remain localized near their sources, PM2.5 has a large
regional component and a smaller local-source component
(e.g., traffic emissions), which make it challenging to esti-
mate the contribution of local sources to air pollution
exposure. Including specific land uses in the assessment
may help make local estimates more precise. 

The LUR models differed substantially between the two
cities in several important ways, including the number of
ambient monitoring sites used (23 in Los Angeles, 62 in
New York City); the size of the buffers surrounding each
monitoring site (50 m to 5000 m) for determining which
land-use variables were significant predictors of moni-
tored levels; and the sources of information available for
constructing the independent variables of traffic, land use,
and population for each location. In addition, the New
York City model used county-wide emissions inventory
data to estimate PM2.5 emissions for certain types of indus-
trial point sources. In developing the New York City
models, the investigators considered about 30 variables,
whereas for the Los Angeles model they considered over
140. The three final models for New York City (Table 14 of
the Investigators’ Report) included single indicators for
traffic (within 500 m of each monitor for the 3-year 28- and
9-county models and within 300 m for the 28-county
winter-2000 model), total population (within 1000 m for
all three models), industrial land use (within 300 m for the
3-year 28- and 9-county models), and vegetation land use
(within 1000 m for the 28-county winter-2000 model). The
New York City models were able to explain 60% to 64% of
the variation in local PM2.5 measurements. The final Los
Angeles model also included three variables: traffic within
300 m, industrial area within 5000 m, and government
area within 5000 m of each monitor; it explained 63% of
the variation. 

Despite the substantial differences in how the LUR
models were constructed and the probable quality of avail-
able data, the New York City and the Los Angeles Analyses
were both successful in explaining about two-thirds of the
variability in PM2.5 concentrations at the ZCA scale. Each
model is unique to the area where it was developed and is
not likely to be transferable to other metropolitan areas.

In addition to the number and spatial distribution of the
air-quality monitoring sites, the type of independent vari-
ables selected, and the quality of the available data, a
number of additional factors need to be considered when
assessing the applicability of LUR for providing better spa-
tial estimates of PM2.5 concentrations. The ranges of
average annual monitored PM2.5 concentrations were

moderately different between Los Angeles (9.5–28 µg/m3)
and New York City (10–20 µg/m3) and suggest that the
PM2.5 levels in New York City were more strongly influ-
enced by regional transport than by local emissions. The
models reflected this difference. The intercepts in the New
York City models varied between 12.3 and 13.2 µg/m3,
whereas the intercept in the Los Angeles model was
2.3 µg/m3. It is difficult to compare coefficients for the
independent variables between cities, particularly for
traffic, since the variables were constructed from different
forms of land-use and traffic data.

LUR has the potential to provide a better estimate of
PM2.5 levels on a finer spatial scale than simple spatial
averaging using central-site air pollution monitors; thus it
is somewhat disappointing that the LUR models in valida-
tion studies have only slightly outperformed kriging
models. For a regional pollutant such as PM2.5, it is not clear
that there are substantial benefits in using LUR models,
compared with spatial averaging models, in extending the
analysis of data from regional air pollutant monitors to a
finer spatial scale. 

Two additional issues arise in using LUR models. As the
authors report, the LUR method may include hidden or
unmeasured factors that relate to health care, socioeco-
nomic status, or mortality risks and can confound the esti-
mated exposure. This means that although LUR may be
good at predicting exposure, confounding may occur if the
LUR-derived exposure estimate is then used in a health-
assessment model that contains the same or similar factors
as variables. (For example, population density may be
independently associated with both mortality and air pol-
lution.) This issue deserves further attention. 

It is reassuring that the results from the random effects
Cox model for Los Angeles obtained using LUR-based
exposure assignments were similar to those obtained using
kriging. Residential location data for the ACS cohort were
available only at the ZCA scale, thus LUR-modeled expo-
sures were appropriate for the central point of the ZCA,
but not necessarily for where residences were likely to be
located throughout a ZCA. If data for the independent vari-
ables were to be applied at the residential addresses of the
participants, the modeled exposures might be very dif-
ferent from exposures assigned to the ZCA of residence. 

Results

The Intra-Urban results for the two cities were very dif-
ferent. Whereas for Los Angeles there was a strong positive
and statistically significant association between PM2.5 expo-
sure and mortality from cardiopulmonary disease, the result
of the corresponding analysis for New York City was nega-
tive and not significant. The confidence intervals were,
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however, quite wide for both Intra-Urban Analyses
(although more so for New York City), and when the
results are compared for the same exposure range, they are
both consistent with the Nationwide Analysis result and
with one another (Commentary Figure 4). One explanation
for the differences could be the play of chance. Other expla-
nations are offered by the authors. In the case of Los
Angeles, they suggest that the higher estimate is due to less
error in estimating exposure, although this assertion can be
questioned. In the case of New York City, the investigators
suggest that there was too little heterogeneity in the PM2.5
estimates to detect differences in the mortality patterns at
high and low ends of the range of exposures; this statement
is consistent with our comments on the width of confidence
intervals. The authors further suggest that differences
between the Los Angeles and New York City Analyses lie in
the underlying geographic distribution of social and eco-
nomic factors in the population relative to exposure levels.
For example, in New York City, pollution appears to be
worst in areas where people are wealthier and are likely to
be in better overall health, whereas pollution in Los Angeles
tends to be worst in areas of low socioeconomic status.

Both the Los Angeles and New York City results showed
significant associations between PM2.5 exposure and mor-
tality from ischemic heart disease, in line with the results of
the Nationwide Analysis. The Review Committee noted,
however, that the ranges of results for cause-specific mor-
tality that are presented differ among the three analyses,
making comparisons more difficult. The Committee also
noted that there was a strong and robust association between
PM2.5 exposure and deaths from endocrine disorders (but
not diabetes) in Los Angeles, but not New York City. This
comparison is intriguing; it would be helpful to see the cor-
responding results from the Nationwide Analysis. 

In the section Implications of the Findings / Summary of
Results from Phase III / Intra-Urban Analyses, the investi-
gators advance the hypothesis that the impact of exposure
measurement error on the results of PM–mortality regres-
sion coefficients will be less in small-scale spatial studies
than in large-scale studies. This suggests that the hazard
ratios calculated for the Intra-Urban Analyses would be
less subject to the statistical effects of measurement error
than the hazard ratios from the Nationwide Analysis
would be. There is an intuitive plausibility to this sugges-
tion; but it is not persuasive for reasons elaborated below. 

Two types of statistical error are important to this anal-
ysis: classical measurement error, which biases coefficients
toward the null; and Berkson error, which does not bias
coefficients appreciably, though it increases standard errors,
widening confidence intervals. It is thus important to iden-
tify which type of measurement error was operating to what
extent in the Intra-Urban and the Nationwide Analyses. 

In this context, Berkson error is that due to differences
in individual true exposures and in the true means for the
areas used in analysis. Zeger and colleagues (2000)
explored this concept for time-series studies; the principle
is the same for geographic studies. Thus, though using
larger spatial units will increase Berkson error, Berkson
error does not cause bias in coefficients; therefore this
source of error would lead us to expect coefficients to be
less biased in small-scale studies. 

In this context, classical error, which does bias coeffi-
cients downwards, is that due to differences between the
true mean exposures for the areas and the values actually
used in the regression. Zeger argued that for ecologic time-
series studies, classical error will have less variance than
Berkson error, and similar arguments seem likely to lead to
the same conclusion for geographic studies. That these
observed means will be less precisely measured as areas get
bigger has some plausibility, though the presumption is
much weaker than for the increase in Berkson error in
larger-scale studies. Furthermore, if bias due to measure-
ment error in the coefficients based on MSAs in the Nation-
wide Analysis is compared with that in an analysis based on
ZCAs in one region (Los Angeles or New York City), one
also has to allow for the greater variation in (true) exposures
across the nation, as compared with the variation in one
region. The bias due to classical error is (to a reasonable
approximation) a function of the ratio of the standard devia-
tion of the error to the standard deviation of the true expo-
sure (Armstrong 1998). It is not at all clear that this ratio is
bigger for MSAs nationally than for ZCAs in Los Angeles or
New York City. Thus, we should not expect that measure-
ment error bias due to classical error will be greater in
small-scale studies than in large-scale studies. 

In summary, we saw no persuasive argument that bias
due to random measurement error would be expected to be
less in the Los Angeles or New York City Analysis than in
the Nationwide Analysis. The extent of bias in each remains

Commentary Figure 4. Comparison of results from Nationwide and Intra-
Urban Analyses. The New York City data were adjusted from a 1.5-µg/m3

change in PM2.5 to a 10-µg/m3 change to match the scale of the other anal-
yses.  HRs are shown for PM2.5 exposure and mortality from all causes.
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an open question, as does the reason for the differences
between New York City and Los Angeles observations.
Overall, the divergent results argue for caution in applying
or extrapolating the results from any such analysis of only
one city to any other city. 

CRITICAL EXPOSURE TIME WINDOWS ANALYSIS 

Study Design

The epidemiologic design (specifically, the selection of
study subjects) for the analyses of critical time periods of
exposure was more complex than the selection for the
Nationwide Analysis, which considered only single esti-
mates of exposure. For this set of analyses to explore expo-
sure over time, the investigators needed to have participants
with residential histories, and those were available for only
the Nutrition Cohort, a subset of the full ACS study. There-
fore, the PM2.5-A group comprised some of the participants
for whom information was available on changes in resi-
dence since enrollment in 1982. Dates of moving were
approximate, and no information was available for before
1982, so these sources of approximation are likely to have
resulted in misclassification of exposures in specific time
windows. 

The PM2.5-B group is the most unusual epidemiologi-
cally. This group comprised subjects who were not in the
Nutrition Cohort (and for whom ongoing residential infor-
mation was therefore not available) but who had died and
were assumed to have lived continuously in the same MSA
in which they had been living at enrollment in 1982. The
investigators reasonably inferred that it was most likely that
these subjects did not move in the intervening time, and
their time-specific exposures could therefore be assumed to
be those determined for the MSA in which they resided in
1982 and in which they died. However, a usual epidemio-
logic principle for cohort studies is that a subject’s presence
in the cohort (his or her person-time at risk) should not
depend on subsequent death. Because persons who did not
die were not included, this group did not adhere to this
principle. Though it is not obvious that the nonstandard
nature of the group would have caused bias in this context,
the validity of the analysis cannot be deduced from the
usual “guarantees” of standard cohort analyses.

Statistical Methods

Although fitting a standard Cox model with time-depen-
dent exposures is not as typical as is fitting the model with
time-fixed exposures, it is well established (notably for
occupational epidemiology), and the approach used by the
investigators seemed to fall within the established methods.
It is understandable that the compounded complexity of

handling both time-dependent exposures and random
effects (to reflect spatial autocorrelation) proved to be too
much of a technical challenge, and we concur with the
investigators that this is a minor limitation here. 

The investigators’ use of AIC values to compare models
for different time windows of exposure is broadly reason-
able, though it is curious that more was not made of compar-
isons of deviance statistics, for which the magnitude as well
as the direction of difference between models can be inter-
preted. Happily, however, because the number of parame-
ters in the models compared is the same, differences in AIC
values are the same as differences in deviance and may be
interpreted as such. 

The Review Committee was somewhat disappointed
that the investigators did not present results for “multi-
window” models, which would be analogous to multi-pol-
lutant models. The investigators discuss using such
models, but they decided that the resulting estimation of
negative coefficients for some time windows precluded
their useful interpretation. It seemed to the Review Com-
mittee that the use of such multi-window models (well
established in occupational epidemiology) in conjunction
with single-window models would provide the best basis
for assessing the evidence for the independent effects of
each window (for example, using likelihood ratio tests in
nested models). The investigators favored “constrained”
multi-window models, in which all coefficients are con-
strained to be non-negative. Such models are of interest,
but, particularly because the technical difficulty in fitting
them was apparently insurmountable, unconstrained
multi-window models would also be of interest. 

For the purposes of formulating and evaluating air pol-
lution policy, it is very important to know whether more
recent exposure has a greater effect on risk than earlier
exposure. However, the Review Committee thought that
the evidence presented was not substantial enough for any
conclusions to be drawn from these analyses. This view is
mainly based on the extremely small differences in AIC
values between the time windows for each pollutant and
group. For example, for PM2.5 exposure, the three AIC
values for the models with exposure in windows 1 to 5, 6
to 10, or 11 to 15 years before death differed by little more
than 1 for the PM2.5-A group and for the PM2.5-B group
(Table 26 in the Investigators’ Report). As noted above, dif-
ferences in AIC values for these models will closely
approximate differences in deviance, and differences of
less than 3.84 (the 5% point of the chi-squared distribution
with 1 degree of freedom) can easily be explained by
chance. 

In only one of the comparisons were differences in AIC
large enough to show any more than very weak, suggestive
evidence for the greater importance of one time window
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over another. The exception was for lung cancer and PM2.5
exposure for the PM2.5-B group; the AIC value (9346.729)
for the time window of 1 to 5 years was 0.515 lower than
that for the window of 6 to 10 years (9347.244). However,
the direction of the difference (showing that recent expo-
sure is the better predictor) does not correspond with
expectations for lung cancer (a disease with a latency of
20 years or longer); therefore, as one “significant” pattern
among many results, it cannot be considered as strong
evidence. 

When the group was restricted to participants who died
in the same city where they lived in 1982 (PM2.5-B group),
no attempt was made to adjust for the effects of exposure
earlier or later than the time period of interest. Given the
potentially high correlations among exposures 1 to 5, 6 to
10, and 11 to 15 years before death within each city, differ-
ences among the effect estimates reported for each separate
time window cannot be accepted as meaningfully different
from the others. 

Patterns of risk estimates across time windows also
showed only very weak evidence for the superior predictive
value of one window over another, though the width of the
confidence intervals indicated that the precision of the study
— despite its size — was not sufficient to conclusively deter-
mine if there were statistically significant differences. 

Exposure Assessment

Average exposures were calculated for each of the
deceased participants in 5-year windows of exposure pro-
ceeding back from the date of death and are based on previ-
ously published work (Lall et al. 2004). Because there were
no comprehensive exposure monitoring data available
before 1973, cohort members who died before 1987 had data
for 1973 substituted for 1967 through 1972 in the calcula-
tions of the earliest exposure time window. This practice
has the potential to introduce uncertainty in exposure esti-
mations for the most distant time window for the earliest
decedents because those estimates may or may not reflect
actual exposure concentrations for 1967 through 1972. 

CONCLUSIONS

The current Extended Analysis, described in the Investi-
gators’ Report, represents a broadly sound and thorough
analysis of extended follow-up of an already important
cohort study, with several innovative features. The results of
the Nationwide Analysis presented in this report will be of
great importance worldwide. This is the case because coeffi-
cients from earlier analyses (Pope et al. 2002) have been cen-
tral to the calculation of burden-of-disease estimates, policy

evaluation, and comparison of policy options not only in
the United States, but in countries and regions throughout
the world (e.g., for organizations such as Global Burden of
Disease; Clean Air for Europe; U.K. Department for Envi-
ronment, Food, and Rural Affairs; U.S. EPA). The ACS
study remains paramount owing to its size and the rich-
ness of the data. 

The results presented in this report consolidate earlier
findings by showing that the application of state-of-the-art
statistical approaches to controlling confounders and spa-
tial autocorrelation does not materially change risk esti-
mates; important residual confounding (by climate and
possibly other unmeasured determinants of large-scale spa-
tial variation) cannot be excluded, however, particularly in
the Nationwide Analysis. In analyzing the extended follow-
up data for mortality, the report also provides new risk esti-
mates, including — for the first time — an estimate for O3
and premature mortality.

Previous analyses of this ACS cohort have identified
subjects with lower education attainment (and probably
lower socioeconomic status) as having a higher risk of
mortality associated with exposure to PM2.5, although this
trend was not as consistent in the ACS study as it was in
the Harvard Six Cities Study (Krewski et al. 2000). In this
Extended Analysis, effect modification by level of educa-
tion attainment was considerably less marked than it was
in the Reanalysis (Krewski et al. 2000); for ischemic heart
disease, however, increasing levels of education had the
reverse effect (i.e., the association of mortality with air pol-
lution exposure increased as education attainment
increased). The Review Committee thought that this recent
evidence suggests that effect modification by education is
probably not as important as was previously thought and
that some of the associations may have been at least partly
due to chance. Nonetheless, it is interesting that the recent
report on the Netherlands Cohort Study of diet and cancer
found some indication that lower education attainment
was associated with higher risk (Brunekreef et al. 2009). 

The Review Committee’s Commentary for the Reanal-
ysis Report mentioned that no single study can be the basis
for accepting the existence of a causal relationship
between air pollution and mortality. With this in mind, the
Committee thought that — with the emergence of new
cohort evidence from the United States and Europe — the
similarities and differences among the results of the var-
ious studies need to be examined closely. Nevertheless, the
size and character of the ACS cohort makes it likely that it
will remain preeminent. 

The number of intra-urban studies is growing along with
increased interest in the potential effects of exposure to
pollutants from local sources. It is important to recognize,
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however, that such studies address the effects of a different
pattern of exposure from that addressed in intercity
studies, such as those conducted with the national ACS
cohort, and that they employ different exposure-assess-
ment techniques. Although the results of the Los Angeles
and New York City Intra-Urban Analyses contribute to this
body of evidence, their precision is limited. 

Information on the time period of exposure that might
be critically associated with illness and mortality from var-
ious causes, if any, remains elusive in the absence of
cohort data with better residential histories. Since very
few cohorts are as large as the ACS cohort to begin with,
future attempts to find and track a sufficiently large sub-
population to document critical periods of exposure while
accounting for the separate effects of earlier or later expo-
sure periods will require careful statistical design and
power calculations at the inception. Although many ques-
tions remain about the timing of exposures in terms of the
development of diseases associated with air pollutants
(e.g., the relationship between actions to improve air
quality and subsequent improvement in health), this
Extended Analysis serves to underscore the difficulty of
assessing the relative importance of the timing of exposure
in a cohort study, even with a large base population.

The results from this Extended Analysis will likely be
very influential in the coming years, despite the limita-
tions discussed in this Commentary. Dr. Krewski and his
colleagues have successfully designed, constructed, and
implemented advanced statistical methods that include
nested random effects variables and control for autocorre-
lation in a single model of survival. Furthermore, they
have confirmed our understanding that exposure to PM2.5
is associated with increased mortality and have again vali-
dated earlier findings. These results also bolster earlier
reports of increased risk of lung cancer associated with
long-term exposure to PM2.5. For the first time, the associ-
ation between long-term O3 exposure and mortality has
been identified with a standard Cox model; in further,
more recent analyses, the same association was evident
with a random effects Cox model (Jerrett et al. 2009).

The Intra-Urban Analysis for Los Angeles suggests that
mortality risks associated with PM2.5 exposure may be ele-
vated when there is a strong local component of exposure.
When the New York City and Los Angeles Analyses are
taken together, however, they underscore the important
point that cities differ markedly in their local exposure
conditions and emphasize the variable importance of the
contributions of local sources to the overall risk of mor-
tality associated with PM2.5 exposure. These divergent
results argue for caution in extrapolating from such studies
in any one metropolitan area to other areas. 

In summary, the additional follow-up years and method-
ologic developments used in the Nationwide Analysis
have confirmed with remarkable consistency the associa-
tion of mortality and exposure to PM2.5 reported in pre-
vious studies of the ACS data starting 15 years ago. In
addition to consolidating evidence for a causal associa-
tion, the new analyses have added precision, especially for
the evidence that ischemic heart disease is a cause of death
particularly affected by exposure. The lack of support for
previous findings of greater risks of mortality for under-
privileged population groups adds importantly to evi-
dence on this topic, though no doubt the debate will
continue. The Intra-Urban Analyses in Los Angeles and
New York City advance methods for such studies; the dif-
ferences between results from the two cities could be
explained by chance, but we must be careful about over-
generalizations, given the very local nature of each study.
The search for greater precision on critical periods of expo-
sure was well conducted, but power limitations preclude
clear conclusions. The richness of these latest findings
from the ACS cohort confirms the vital role of such large,
ongoing epidemiologic studies in assessing and protecting
human health in relation to air pollution.
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