Identifying Subgroups of the General Population That May Be Susceptible to Short-Term Increases in Particulate Air Pollution: A Time-Series Study in Montreal, Quebec.

Appendix I. Plots of Statistical Models

Mark S Golberg, John C Bailar III, Richard T Burnett, Jeffrey R Brook, Robyn Tamblyn, Yvette Bonvalot, Pierre Ernst, Kenneth M Flegel, Ravinder K Singh, and Marie-France Valois

Although this document was produced with partial funding by the United States Environmental Protection Agency under Assistance Award R824835 to the Health Effects Institute, it has not been subjected to the Agency’s peer and administrative review and therefore may not necessarily reflect the views of the Agency, and no official endorsement by it should be inferred. The contents of this document also have not been reviewed by private party institutions, including those that support the Health Effects Institute; therefore, it may not reflect the views or policies of these parties, and no endorsement by them should be inferred.

This document was reviewed by the HEI Health Review Committee but did not undergo the HEI scientific editing and production process.

Copyright © 2000 Health Effects Institute, Cambridge MA
Figure I.1. Association between all nonaccidental causes of death and coefficient of haze evaluated at the 3-day mean. The statistical model included the LOESS temporal filter, a term for year, a LOESS interaction term for mean temperature and change in pressure from the previous day. The ordinate represents the logarithmic number of daily deaths.

Figure I.2. Association between all nonaccidental causes of death and predicted PM$_{2.5}$ evaluated at the 3-day mean. The statistical model included the LOESS temporal filter, a term for year, a LOESS interaction term for mean temperature and change in pressure from the previous day. The ordinate represents the logarithmic number of daily deaths.

Figure I.3. Association between other nonaccidental causes of death and predicted PM$_{2.5}$ evaluated at the 3-day mean. The statistical model included the LOESS temporal filter, a term for year, a LOESS interaction term for mean temperature evaluated at lag 0 and change in pressure from the previous day evaluated at lag 1. The ordinate represents the logarithmic number of daily deaths.

Figure I.4. Association between other nonaccidental causes of death and predicted sulfates from PM$_{2.5}$ evaluated at the 3-day mean. The statistical model included the LOESS temporal filter, a term for year, a LOESS interaction term for mean temperature evaluated at lag 0 and change in pressure from the previous day evaluated at lag 1. The ordinate represents the logarithmic number of daily deaths.