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A B O U T  H E I

 vii

The Health Effects Institute is a nonprofit corporation chartered in 1980 as an independent 
research organization to provide high-quality, impartial, and relevant science on the effects of air 
pollution on health. To accomplish its mission, the institute

• Identifies the highest-priority areas for health effects research;

• Competitively funds and oversees research projects;

• Provides intensive independent review of HEI-supported studies and related 
research;

• Integrates HEI’s research results with those of other institutions into broader 
evaluations; and

• Communicates the results of HEI’s research and analyses to public and private 
decision makers.

HEI typically receives half of its core funds from the U.S. Environmental Protection Agency and 
half from the worldwide motor vehicle industry. Frequently, other public and private 
organizations in the United States and around the world also support major projects or research 
programs. HEI has funded more than 330 research projects in North America, Europe, Asia, and 
Latin America, the results of which have informed decisions regarding carbon monoxide, air 
toxics, nitrogen oxides, diesel exhaust, ozone, particulate matter, and other pollutants. These 
results have appeared in more than 260 comprehensive reports published by HEI, as well as in 
more than 1000 articles in the peer-reviewed literature.

HEI’s independent Board of Directors consists of leaders in science and policy who are 
committed to fostering the public–private partnership that is central to the organization. The 
Health Research Committee solicits input from HEI sponsors and other stakeholders and works 
with scientific staff to develop a Five-Year Strategic Plan, select research projects for funding, and 
oversee their conduct. The Health Review Committee, which has no role in selecting or 
overseeing studies, works with staff to evaluate and interpret the results of funded studies and 
related research.

All project results and accompanying comments by the Health Review Committee are widely 
disseminated through HEI’s Web site (www.healtheffects.org), printed reports, newsletters and 
other publications, annual conferences, and presentations to legislative bodies and public agencies.
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Research Report 183, Development of Statistical Methods for Multipollutant Research, presents 
two studies funded by the Health Effects Institute. These studies were conducted by Drs. Brent 
Coull of the Harvard T.H. Chan School of Public Health, Eun Sug Park of the Texas A&M 
Transportation Institute, and their colleagues. The report contains the following main elements:

The HEI Statement, prepared by staff at HEI, is a brief, nontechnical summary of the 
two studies and their findings; it also briefly describes the Health Review Committee’s 
comments on the studies.

The Investigators’ Reports, prepared by the two investigative teams, describe the 
scientific background, aims, methods, results, and conclusions of the studies.

The Critique is prepared by members of the Health Review Committee with the 
assistance of HEI staff; it places the studies in a broader scientific context, points out 
their strengths and limitations, and discusses remaining uncertainties and implications 
of the studies’ findings for public health and future research.

The two studies contained in Research Report 183 have gone through HEI’s rigorous review 
process. When an HEI-funded study is completed, the investigators submit a draft final report 
presenting the background and results of the study. This draft report is first examined by outside 
technical reviewers and a biostatistician. The report and the reviewers’ comments are then 
evaluated by members of the Health Review Committee, an independent panel of distinguished 
scientists who have no involvement in selecting or overseeing HEI studies. During the review 
process, the investigators have an opportunity to exchange comments with the Review 
Committee and, as necessary, to revise their reports. The Critique reflects the information 
provided in the final versions of both Investigators’ Reports.
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HEI’s Research Program to Develop Methods for Analyzing 
Multiple Air Pollutants and Health Outcomes 

INTRODUCTION

Air pollution is a complex mixture of gaseous, liquid,
and solid components that varies greatly in composi-
tion and concentration across the United States and
around the world owing to differences in sources,
weather, and topography. Air pollution also varies from
day to day and by season within a region. Although it is
clear that people are exposed to complex mixtures of
pollutants emitted by diverse sources, the U.S. Clean
Air Act — and most existing air quality guidelines and
standards to protect public health — focuses on con-
trolling a common set of pollutants individually (called
criteria pollutants in the United States). Given this reg-
ulatory approach, it is perhaps not surprising that the
majority of data on ambient air pollution levels and on
human exposures and their health effects have focused
on individual pollutants.

Since the air we breathe is a mixture, the scientific
community has considered the possibility that the
observed adverse health effects associated with indi-
vidual pollutants may be partly attributable to the com-
bined effects of multiple pollutants. However, the
challenges of determining whether effects are additive,
synergistic, or less-than-additive, and of identifying
possible effect modifiers in epidemiologic studies, are
substantial (Mauderly and Samet 2009). Often, a high
degree of correlation exists among levels of different
pollutants emitted from similar sources or generated
through similar atmospheric processes; and there may
be nonlinear interactions among pollutants in relation to
health outcomes. These issues complicate and may
even preclude the use of conventional linear regression
approaches. Exposure measurement and exposure
modeling errors contribute additional complications;
pollutants that are measured relatively easily (i.e., more
frequently and accurately because their concentrations
are well above detection levels) will tend to dominate

the estimation, even if their effects are less strong than
those of other pollutants. 

HEI issued Request for Applications (RFA) 09-1,
“Methods to Investigate the Effects of Multiple Air Pol-
lution Constituents” in 2009 because it was clear that
advancing scientific understanding would require im-
proved statistical methods to determine how the health
effects of a pollutant mixture as a whole differ from the
effects of individual pollutants within the mixture.

GOALS OF THE RESEARCH PROGRAM

RFA 09-1 solicited research proposals that would
address the methodologic difficulties associated with
investigating the health effects of multiple pollutants
through the development of innovative statistical
methods. HEI primarily sought applications for research
in which existing statistical approaches (including those
from fields outside epidemiology) could be modified,
extended, or combined, and then applied to a real-world
exposure and health problem, rather than proposals for
the development of purely theoretical statistical
approaches. RFA 09-1 defined two specific objectives:

1. The research should support the development of
innovative statistical methods for studying the
combined effects of individual pollutants within
complex pollutant mixtures. Analytic approaches
could include improvements to existing multivar-
iate methods and the development of strategies
for their application or the proposal of new
approaches. Of particular interest were multivar-
iate methods adapted to studying highly correlated
pollutants and methods to detect the presence of
interactions between two or more pollutants and
to evaluate their combined effects. All methods
proposed were required to include validation of
the approach either by using simulation studies or
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by conducting a thorough sensitivity analysis with
widely available data sets.

2. The research should support the development of
innovative statistical methods for studying health
effects of air pollution mixtures in animal models
and human populations. Of par ticular interest
were methods for characterizing mixtures emitted
by specific pollutant sources or groups of sources. 

The RFA welcomed proposals for methods that
would explore how the effects of a pollutant mixture
as a whole differ from the effects of individual pollut-
ants within the mixture. Applicants were expected to
employ methods that would be able to analyze both
highly correlated pollutant concentration variables and
assess the potential effects of measurement error
within the chosen statistical framework.

BACKGROUND

At the time the RFA was issued, adequate statistical
methods designed for analyzing the relationships
among multiple pollutants and health effects were
unavailable. In order to better understand the health
effects of exposure to the mixture of air pollutants that
people actually breathe, to delineate the contribution of
individual pollutants or mixtures to adverse health
effects, and to address emissions from the sources of
those pollutants more cost-effectively, approaches that
would go beyond the single-pollutant framework were
clearly needed. A 2004 repor t from the National
Research Council (NRC) Committee on Air Quality
Management in the United States called for changing
the entire air quality management system to a multipol-
lutant approach. The report recommended that the
U.S. Environmental Protection Agency (U.S. EPA) con-
sider multiple pollutant scenarios in the National
Ambient Air Quality Standards (NAAQS) review and
standard setting process: “Although the committee
does not believe that the science has evolved to a suffi-
cient extent to permit the development of multipol-
lutant NAAQS, it would be scientifically prudent to
begin to review and develop NAAQS for related pollut-
ants in parallel and simultaneously” (NRC 2004). 

The U.S. EPA responded to the NRC repor t by
undertaking a number of activities in support of multi-
pollutant research and a NAAQS targeted specifically
to multipollutant mixtures. In late 2006, the Agency

hosted the first of several workshops on multipollutant
research and commenced efforts to develop a multipol-
lutant NAAQS in 2010 (U.S. EPA 2006, 2011). In 2007,
the U.S. EPA also began development of its first two-
pollutant Integrated Science Assessment for nitrogen
dioxide (NO2) and sulfur dioxide (SO2), which was
finalized in December 2008. 

Following the NRC recommendations, HEI also
included multipollutant research as part of its research
agenda, specifying in its Strategic Plan for 2005–2010
the health effects of air pollution mixtures as a priority
research and review topic. Specifically, this plan called
for HEI to “undertake targeted research programs on
PM (particulate matter) and gases and on air toxics, two
important mixtures within the broader air pollution
mixture”. Following the discussions about research
needs at the U.S. EPA workshops, HEI issued RFA 09-1
in 2009.

At the time, some existing multipollutant modeling
approaches were available to researchers in the fields of
epidemiology and air pollution exposure. The process
of attributing measured concentrations of multiple pol-
lutants to the emissions from specific categories of
sources, known as source apportionment, had been
evolving and had become increasingly standardized
during the early 2000s (Thurston et al. 2005). When
statistically feasible, researchers also employed varia-
tions on linear regression, such as multivariate regres-
sion models, which simultaneously incorporated
covariates for multiple pollutants. Both approaches are
briefly described here. 

SOURCE APPORTIONMENT

When strong correlations among pollutants in given
mixtures preclude the use of multiple individual expo-
sure variables in conventional health effects models,
source apportionment is used to analyze the mixture of
pollutants over time and space. It is a latent-variable
method, usually applied in models that include multiple
variables, at least one of which is unobserved (or
latent). Factor analysis is a special type of latent-variable
model used in source apportionment where the anal-
ysis assumes that multiple variables are linked together
through their association with a small number of latent
variables, called factors. Source apportionment is the
process of attributing emission sources to factors based
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on the composition of the factor. For example, a factor
analysis of roadside particulate pollution data may yield
a factor in which levels of copper and iron are high and
vary together ; in a source apportionment, this factor
might be attributed to tire and brake wear given what
we know about the composition of tires and brakes.

Using source apportionment to classify mixtures —
based on source-specific markers in a mixture — can
also link health effects with emissions from specific
sources (such as facilities or activities). This approach
uses the resulting quantification of components that
comprise the different source mixtures in a given envi-
ronment to evaluate their individual or combined con-
tributions to health effects. 

However, source-apportionment techniques are not
capable of assessing the effects of interactions among
the different source-apportioned mixtures, and they
may not take into account the underlying biological plau-
sibility of any given mixture to affect health. In addition,
when HEI issued RFA 09-1, many researchers were
using source-apportionment methods and multivariate-
receptor models as “black box tools” and were not
linking them sufficiently to rigorous statistical practice or
demonstrating an understanding of method limitations.
Moreover, the inherent uncertainty of variables gener-
ated through source apportionment, due in par t to
errors in the measurement of individual pollutant con-
centrations, was not reflected in the estimates of their
associations with the health outcomes, thus rendering
reproducibility and comparison among different studies
difficult. 

MULTIVARIATE REGRESSION MODELS 

When data sets contain measurements of many
constituents of air pollution obtained at different places
and time points together with information about
health outcomes, and when there is sufficient variability
in these data, multivariate analyses of the association
between constituents and health outcomes may be
possible. Such analyses are aimed primarily at esti-
mating the effects of specific constituents of interest
while accounting for the potential effects of con-
founding. Moreover, multivariate regression models can
be used to detect whether the effects of various pollut-
ants are additive or not. However, there are limitations
to the value of simply introducing a number of pol-
lutant variables and interaction terms simultaneously

into a regression analysis and carrying out multivariate
rather than univariate regressions. For example, high
degrees of correlation among covariates render the
results statistically unstable and difficult to interpret,
and stepwise methods are inadequate in the presence
of strong collinearity.

STUDIES FUNDED UNDER RFA 09-1

The three studies funded under RFA 09-1 represent
a variety of statistical approaches and of data sets used
to test them. The studies by Dr. Brent Coull and Dr.
Eun Sug Park and their colleagues are described in
Parts 1 and 2 of this report (Research Report 183).
The study by Dr. John Molitor and associates has been
completed and is expected to be published in 2016.
The studies are described briefly below.

Statistical Learning Methods for the Effects of Multiple 
Air Pollution Constituents, Brent Coull, Harvard T.H. 
Chan School of Public Health (Principal Investigator)

Coull and colleagues developed a new analysis frame-
work based on methods that simultaneously quantify
variability in health outcomes and exposure data for
multiple pollutants in order to identify the mixture pro-
files (groupings of pollutants and concentrations) most
highly associated with the health outcomes. They devel-
oped and applied these methods using simulations, pol-
lutant concentration and health outcomes data from the
"Maintenance of Balance, Independent Living, Intellect,
and Zest in the Elderly of Boston" (MOBILIZE) study
cohort of senior citizens living in the Boston area, and
toxicologic data from canine studies. 

Development of Enhanced Statistical Methods for 
Assessing Health Effects Associated with an Unknown 
Number of Major Sources of Multiple Air Pollutants, 
Eun Sug Park, Texas A&M Transportation Institute 
(Principle Investigator) 

Park and colleagues developed enhanced statistical
methods to jointly assess source factors and health
effects using multivariate source-characterization and
source-apportionment models together with a health
outcomes analysis. The investigators’ approach incor-
porated the uncertainty in the source apportionments
into the estimation of the source-related health effects.
They applied their methods to data sets for daily pol-
lutant concentrations and acute health outcomes in
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Phoenix, Arizona, and Houston, Texas, and compared the
results with those obtained using conventional methods
of estimation. 

Modeling of Multipollutant Profiles with Applications to 
RIOPA Study Data and to Indicators of Adverse Birth 
Outcomes Using Data from the UCLA Environment and 
Pregnancy Outcomes Study, John Molitor, Oregon 
State University (Principal Investigator) 

Molitor and colleagues developed and applied statis-
tical methods to examine associations among geograph-
ically based patterns of air pollutant concentrations,
birth outcomes, and socioeconomic status. The investi-
gators used a large data set of pollutant concentrations
(for NO2, PM � 2.5 µm in aerodynamic diameter, and
on-road and off-road diesel exhaust) and data on birth
outcomes from Los Angeles County, California. They
first used Bayesian statistical methods to identify clusters
of specific mixtures of pollutants and pollutant concen-
trations frequently found together in census units, and
then associated those pollutant profiles with data on
socioeconomic status and health outcomes using
regression methods.
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Synopsis of Research Report 183, Parts 1 & 2
H E I  S TAT E M E N T

This Statement, prepared by the Health Effects Institute, summarizes a research project funded by HEI and conducted by Dr. Brent A. Coull of
the Harvard T.H. Chan School of Public Health, Boston, MA, and by Eun Sug Park of the Texas A&M Transportation Institute, College Station,
TX, and their colleagues. Research Report 183 contains both the detailed Investigators’ Reports and a Critique of the study prepared by the
Institute’s Health Review Committee.

 1

New Statistical Methods for Analyzing Multiple Pollutants, 
Sources, and Health Outcomes

BACKGROUND

The National Research Council recommended in
2004 that the U.S. Environmental Protection Agency
take steps to address the presence of a complex, mul-
tipollutant atmosphere in the process for reviewing
and setting the National Ambient Air Quality Stan-
dards, which are currently based on single pollut-
ants. One of those steps included improving statistical
methods to evaluate how simultaneous exposure to
multiple ambient air pollutants affects human
health. Conventional statistical methods are not well
suited to deal with high correlations among pollut-
ants, differences in the composition of pollutant
mixtures over time and space, or differences in how
accurately a person’s actual exposures to individual
pollutant concentrations have been estimated. These
factors can lead to errors in the estimation of the
health effects associated with individual or multiple
pollutants and the emission sources with which
they may be associated.

In response to these concerns, the Health Effects
Institute issued request for applications 09-1,
“Methods to Investigate the Effects of Multiple Air
Pollution Constituents,” to fund development of
innovative statistical methods that could be
applied to real-world exposures and health prob-
lems. HEI funded three studies: the two studies led
by Dr. Brent Coull and Dr. Eun Sug Park are described
in the current report, and a third study led by Dr.
John Molitor is expected to be published in 2016.
Both Coull and Park proposed the use of Bayesian
statistical methods, which essentially allow for the
integration of prior knowledge or data about a
problem with new data in the same analysis, thus
allowing for a more comprehensive evaluation of
available information, including the characteriza-
tion of uncertainty in the analytic process. Both

investigative teams explored joint modeling of expo-
sure and health outcomes in contrast to the conven-
tional two-stage approach in which exposures are

What These Studies Add
• Both the Coull and Park studies have 

advanced the use of Bayesian statistical 
methods to address shortcomings in the 
ability of existing approaches to 
disentangle the roles of individual 
pollutants in short-term studies of complex 
multipollutant exposures and their health 
effects.

• Coull and associates developed methods to 
identify which key pollutants within a simple 
mixture are most closely associated with 
adverse health outcomes, to accommodate 
a variety of exposure–response relation-
ships, and to characterize uncertainty in the 
estimated health effects more fully.

• Park and colleagues extended existing 
methods for characterizing relationships 
between emission sources and health by 
(1) allowing for the contributions from 
sources to be correlated and (2) making 
sure that the health effects estimates 
account for various uncertainties in 
estimating the source contributions. The 
team also developed enhanced models 
that could take into account correlations 
among pollutants from more than one 
monitoring location and estimate source 
contributions at locations of interest for 
which monitoring data may be lacking.
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estimated first and then input to the health effects
analysis. Each team developed and demonstrated
their methods using data on health outcomes
related to short-term changes in particulate matter
composition and levels.

STUDY BY COULL AND COLLEAGUES: 
STATISTICAL LEARNING METHODS 
FOR THE EFFECTS OF MULTIPLE AIR 
POLLUTION CONSTITUENTS

Approach

Coull and his colleagues developed methods that
simultaneously select pollutants to include in the
models, provide flexible approaches to estimating
exposure–response relationships (for example, al-
lowing them to be nonlinear), identify interactions
among pollutants (for example, additive or syner-
gistic effects), and allow for the quantification of
uncertainty (by using Bayesian kernel machine re-
gression [BKMR] methods). These methods involve
a joint-estimation approach in which the identifica-
tion of important exposure variables is, in a sense,
“supervised,” or influenced by, the data on health
outcomes.

The investigators formally developed and tested
different features of their BKMR methods first in
three simulation studies and then in two real-world
health and exposure data sets. The simulation stud-
ies were designed to compare the performance of
their methods with those of more conventional ones
in a range of plausible scenarios, defined by the in-
vestigators, involving different numbers of impor-
tant pollutants or sources, nonlinear as well as
linear exposure–response relationships, and differ-
ent kinds of interactions among the exposure con-
stituents. An important feature of their simulations
was that their air pollution data sets were generated
from actual PM2.5 constituent data measured at a
Boston monitoring site, thereby retaining the realis-
tic joint distributions and correlations among the
multiple pollutants. They then applied their meth-
ods to data from two previously published Boston
studies — an epidemiologic study that had evalu-
ated changes in blood pressure after short-term ex-
posure to constituents of PM2.5 in patients 70 years
of age and older, and a toxicologic study with labo-
ratory dogs. These studies also relied on pollutant
data from the same Boston monitoring site.

Results and Discussion

In its independent review of the study, the HEI
Health Review Committee noted that the statistical
approach developed by Coull and associates had
carefully addressed a number of the challenges re-
searchers face in dealing with multiple pollutants
and sources when using more conventional statisti-
cal methods. Their methods also allowed the uncer-
tainties associated with statistical modeling to be
more fully reflected in the health effects estimates,
providing useful insight into the degree of confi-
dence in those estimates. The Committee thought
the investigators had provided a strong theoretical
basis for their approach and that their simulations
and real-world applications were well chosen to
demonstrate the practical use of their methods. A
strength of those choices was that the simulated
pollutant data sets were generated from the same
pollutant data used in the two real-world studies
and thus made the simulation results more relevant
for comparisons with those of the previous epide-
miologic and toxicologic analyses.

The methods worked as expected in the simula-
tions but with some limitations in the analyses of
the epidemiologic and toxicologic data sets. In the
simulated data sets, the methods characterized
exposure–response relationships in various forms
and were more likely to correctly identify the pol-
lutants used to predict the adverse health outcomes
than more standard methods. However, as with con-
ventional statistical methods, it remained chal-
lenging to identify correctly the relative importance
of an individual pollutant’s contribution to health
outcomes when high degrees of correlation existed
among the suite of pollutants. A limitation in the
data sets for older adults and for dogs was that they
did not have either the size or complexity to repre-
sent the kinds of interactions among pollutants or
the nonlinearities in the exposure–response rela-
tionships that would be necessary to test those fea-
tures of the methods.

The Committee thought it was likely that the
methods developed by Coull and colleagues were
more systematic and transparent in identifying the
absence of interactions or nonlinearities than con-
ventional data analysis approaches would be. In
conventional analyses, investigators would ordi-
narily need to cycle through a series of models to
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test whether interactions were present, a process
that would require a number of analytic choices and
raise issues of multiple testing and possibly false-
positive findings. Methods such as the ones devel-
oped by Coull and associates could be helpful in
minimizing the ad hoc nature of this process. How-
ever, as is the case in the development of any statis-
tical approach, these methods need to be applied in
a broader range of scenarios before their usefulness
in real-world practice can be ascertained.

STUDY BY PARK AND COLLEAGUES: 
DEVELOPMENT OF ENHANCED STATISTICAL 
METHODS FOR ASSESSING HEALTH EFFECTS 
ASSOCIATED WITH AN UNKNOWN NUMBER 
OF MAJOR SOURCES OF MULTIPLE AIR 
POLLUTANTS

Approach

Park and her colleagues developed a set of meth-
ods to analyze daily variations in health and source-
apportioned air pollution (time-series data). In their
first specific aim, Park and associates developed a
Bayesian modeling approach that estimated the
number of sources and the contributions of each to
exposures at the same time as it estimated the ef-
fects of those exposures on human health outcomes.
Their joint modeling approach incorporated uncer-
tainties in the source-apportionment process into
the final estimates of uncertainty in the health ef-
fects estimates. More specifically, their analysis al-
lowed them to examine the impact of correlations
among source contributions to exposure as well as in-
corporating uncertainty from other modeling as-
sumptions into their final estimates of health effects.
In standard applications of source apportionment, the
number of sources and how much each one contrib-
utes to exposure is assumed to be known without er-
ror; if this assumption is not true, it could lead to
misspecification of how health effects are attributed
to different categories of sources.

In their second specific aim, the team developed
methods for modeling the contributions of multiple
sources to exposures that could handle more com-
plex data and model structures than conventional
source-apportionment methods. That is, they
designed methods to incorporate data from more
than one monitoring location to account for spatial

correlations among multiple pollutant measure-
ments collected at several locations, and to estimate
source contributions at locations where no data
were available.

For each of the specific aims, the investigators
evaluated their methods in two steps. First, they
conducted simulation studies in which the charac-
teristics of the data, sources, and health effects were
specified by the investigators (that is, they did not
draw directly from actual collected data as did
Coull and associates). Second, they applied their
methods to real-world data sets in order to gain a
more practical perspective. To test their methods for
estimating source-related health effects (Aim 1), the
investigators studied the associations of daily PM2.5
speciation data with respiratory mortality in
Houston, Texas, and with cardiovascular mortality in
Phoenix, Arizona. In both of these cases, PM2.5 data
had been collected at individual monitoring sites. To
test their more complex source-apportionment
models (Aim 2), they examined data on volatile
organic compounds from nine monitoring sites in
Harris County, Texas, near Houston.

Results and Discussion

In its independent review of the study, the HEI
Health Review Committee concluded that Park and
colleagues had tackled an extremely challenging tech-
nical problem and, in spite of its difficulty, conducted
a high-quality study that has provided a meaningful
extension of existing source-apportionment ap-
proaches. Useful innovations include the joint
estimation of sources and health effects, while ac-
counting for uncertainty in source-apportionment
models, allowing for spatial correlations among data
from multiple monitoring locations, and estimating
source contributions to exposure at locations with-
out monitoring data. However, implementing the
joint models and the spatial multivariate receptor
models is challenging because they require data to
be in a specific form that is often not available in ex-
isting data sets.

The Committee thought that Park and associates
had raised important scientific issues with existing
methods and developed new approaches to address
them. The investigators properly developed and
tested their methods in both simulations and appli-
cations to real-world data sets. The simulations
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performed well under the range of conditions evalu-
ated. The applications of the methods to real-world
data also provided evidence that the methods
appear to work as intended in identifying sources
and source-related health effects, albeit with differ-
ences from other published studies that need fur-
ther investigation. Uncertainties in the health
effects estimates tended to be larger, which reflected
the more comprehensive accounting for uncertainty
in the work. The Committee thought the enhanced
modeling methods developed as part of the investi-
gators’ second aim appeared to be a useful innova-
tion and were able to predict source contributions at
unmonitored locations. However, for any of these
methods to gain widespread scientific applicability,
the Committee advised that they need to be applied
in other settings, particularly ones that would allow
comparisons with other studies that use more con-
ventional approaches.

CONCLUSIONS

The HEI Health Review Committee concluded that
each of the studies by Coull and Park and their col-
leagues addressed important but separate questions

in multipollutant research. Both investigator teams
followed logical steps in developing their methods
from the conceptual underpinnings and then
applying the methods to simulated and real-world
data sets. Each team made considerable progress in
demonstrating the feasibility and applicability of
their approaches.

Challenges still remain, however, and further
work is necessary to apply and evaluate the pro-
posed methods. Although both sets of methods are
already quite computationally demanding, they
need to be evaluated in a broader range of real-
world settings representing different levels of data
complexity. They have also not yet been evaluated
in studies of long-term exposure to air pollution.
Where possible, these evaluations should include
side-by-side comparisons of the new approaches
against the more conventional two-stage approach.
Such direct comparisons could help to determine
whether the additional complexity of these new
methods will lead to better understanding of how
pollutant mixtures and their sources may contribute
to effects on human health and, ultimately, to better
decisions about how to control them.
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ABSTRACT

INTRODUCTION

The United States Environmental Protection Agency
(U.S. EPA*) currently regulates individual air pollutants
on a pollutant-by-pollutant basis, adjusted for other pollut-
ants and potential confounders. However, the National
Academies of Science concluded that a multipollutant reg-
ulatory approach that takes into account the joint effects of
multiple constituents is likely to be more protective of
human health. Unfortunately, the large majority of existing
research had focused on health effects of air pollution for
one pollutant or for one pollutant with control for the
independent effects of a small number of copollutants.
Limitations in existing statistical methods are at least par-
tially responsible for this lack of information on joint
effects. The goal of this project was to fill this gap by devel-
oping flexible statistical methods to estimate the joint
effects of multiple pollutants, while allowing for potential

nonlinear or nonadditive associations between a given
pollutant and the health outcome of interest.

METHODS

We proposed Bayesian kernel machine regression
(BKMR) methods as a way to simultaneously achieve the
multifaceted goals of variable selection, flexible estimation
of the exposure–response relationship, and inference on the
strength of the association between individual pollutants
and health outcomes in a health effects analysis of mixtures.
We first developed a BKMR variable-selection approach,
which we call component-wise variable selection, to make
estimating such a potentially complex exposure–response
function possible by effectively using two types of penal-
ization (or regularization) of the multivariate exposure–
response surface. Next we developed an extension of this
first variable-selection approach that incorporates knowl-
edge about how pollutants might group together, such as
multiple constituents of particulate matter that might rep-
resent a common pollution source category. This second
grouped, or hierarchical, variable-selection procedure is
applicable when groups of highly correlated pollutants are
being studied.

To investigate the properties of the proposed methods, we
conducted three simulation studies designed to evaluate the
ability of BKMR to estimate environmental mixtures
responsible for health effects under potentially complex but
plausible exposure–response relationships. An attractive
feature of our simulation studies is that we used actual
exposure data rather than simulated values. This real-data
simulation approach allowed us to evaluate the perfor-
mance of BKMR and several other models under realistic
joint distributions of multipollutant exposure. The simula-
tion studies compared the two proposed variable-selection

This Investigators’ Report is one part of Health Effects Institute Research
Report 183, which also includes a Critique by the Health Review Committee
and an HEI Statement about the research project. Correspondence concern-
ing the Investigators’ Report may be addressed to Dr. Brent Coull, Depart-
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approaches (component-wise and hierarchical variable
selection) with each other and with existing frequentist
treatments of kernel machine regression (KMR).

After the simulation studies, we applied the newly
developed methods to an epidemiologic data set and to a
toxicologic data set. To illustrate the applicability of the
proposed methods to human epidemiologic data, we esti-
mated associations between short-term exposures to fine
particulate matter constituents and blood pressure in the
Maintenance of Balance, Independent Living, Intellect,
and Zest in the Elderly (MOBILIZE) Boston study, a pro-
spective cohort study of elderly subjects. To illustrate the
applicability of these methods to animal toxicologic
studies, we analyzed data on the associations between
both blood pressure and heart rate in canines exposed to a
composition of concentrated ambient particles (CAPs) in a
study conducted at the Harvard T. H. Chan School of
Public Health (the Harvard Chan School; formerly Harvard
School of Public Health; Bartoli et al. 2009).

RESULTS

We successfully developed the theory and computa-
tional tools required to apply the proposed methods to the
motivating data sets. Collectively, the three simulation
studies showed that component-wise variable selection
can identify important pollutants within a mixture as long
as the correlations among pollutant concentrations are low
to moderate. The hierarchical variable-selection method
was more effective in high-dimension, high-correlation
settings. Variable selection in existing frequentist KMR
models can incur inflated type I error rates, particularly
when pollutants are highly correlated.

The analyses of the MOBILIZE data yielded evidence of
a linear and additive association of black carbon (BC) or Cu
exposure with standing diastolic blood pressure (DBP),
and a linear association of S exposure with standing sys-
tolic blood pressure (SBP). Cu is thought to be a marker of
urban road dust associated with traffic; and S is a marker
of power plant emissions or regional long-range trans-
ported air pollution or both. Therefore, these analyses of
the MOBILIZE data set suggest that emissions from these
three source categories were most strongly associated with
hemodynamic responses in this cohort.

In contrast, in the Harvard Chan School canine study,
after controlling for an overall effect of CAPs exposure, we
did not observe any associations between DBP or SBP and
any elemental concentrations. Instead, we observed strong
evidence of an association between Mn concentrations and
heart rate in that heart rate increased linearly with
increasing concentrations of Mn. According to the positive
matrix factorization (PMF) source apportionment analyses
of the multipollutant data set from the Harvard Chan School

Boston Supersite, Mn loads on the two factors that represent
the mobile and road dust source categories.

The results of the BKMR analyses in both the MOBILIZE
and canine studies were similar to those from existing
linear mixed model analyses of the same multipollutant
data because the effects have linear and additive forms that
could also have been detected using standard methods.

CONCLUSIONS

This work provides several contributions to the KMR lit-
erature. First, to our knowledge this is the first time KMR
methods have been used to estimate the health effects of
multipollutant mixtures. Second, we developed a novel
hierarchical variable-selection approach within BKMR that
is able to account for the structure of the mixture and system-
atically handle highly correlated exposures. The analyses of
the epidemiologic and toxicologic data on associations
between fine particulate matter constituents and blood pres-
sure or heart rate demonstrated associations with constitu-
ents that are typically associated with traffic emissions,
power plants, and long-range transported pollutants. The
simulation studies showed that the BKMR methods pro-
posed here work well for small to moderate data sets; more
work is needed to develop computationally fast methods for
large data sets. This will be a goal of future work.

INTRODUCTION

Air pollution is a modifiable risk factor shown to be asso-
ciated with increased respiratory and cardiovascular mor-
bidity and mortality. Air pollution is a complex mixture of
gaseous and particulate constituents. The U.S. EPA cur-
rently regulates air pollutants individually on the basis of
analyses adjusted for other pollutants and potential con-
founders. However, the National Academies of Science
(National Research Council 2004) concluded that a multi-
pollutant regulatory approach that takes into account the
joint effects of multiple constituents would likely be more
protective of human health. Specifically, the U.S. EPA
recently stated, “In recent years, air pollution scientists and
policy makers have recognized the potential benefits of
adopting a multipollutant approach to evaluating health
impacts of air pollution and management of air quality
(National Research Council [2004]). . . . A single-pollutant
approach fails to address unmeasured or infrequently mea-
sured pollutants that could have significant health effects.
There can be important health consequences from exposure
to the air pollution mixture as a whole (Brook et al. 2009).”

Several environmental health applications have shown
that exposures may have nonlinear effects on a health out-
come, and that pollutants may also interact to yield joint
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effects on health. A good example of a nonlinear effect is
the effect of climate or weather on mortality, which follows
a U shape reflecting that more people tend to die in
periods of extreme cold and extreme heat (Zanobetti and
Schwartz 2008). In children’s health, it has been shown
that associations between biomarkers of Mn exposure and
neurodevelopment can follow an inverse-U relationship
reflecting that adverse effects are associated with low
doses and high doses, but not moderate doses, possibly
because Mn can biologically play the role of both a
nutrient and a toxin (Claus Henn et al. 2010). Related work
has also shown that multiple metals may interact in their
effects on neurodevelopment (Claus Henn et al. 2012). 

Unfortunately, in large part due to limitations in existing
methods for assessing the health impacts of multipollutant
mixtures, the majority of existing research on the effects of
specific constituents has produced estimates from a model
that assumes additivity and linearity of these effects
(Dominici et al. 2010; Greenbaum and Shaikh 2010; Hidy
and Pennell 2010; Vedal and Kaufman 2011; Mauderly et
al. 2010). Despite recommendations by the National
Academy of Sciences and the U.S. EPA that a multipol-
lutant risk assessment should incorporate potential inter-
actions among pollutants in their effects on health, to our
knowledge very few epidemiologic studies have reported
interactions between even the most often studied pollut-
ants — ozone and particles. The only epidemiologic
reports of interactions among environmental exposures
relate to pollution and temperature (Pattenden et al. 2010;
Qian et al. 2010; Ren et al. 2011). As a result, Mauderly and
colleagues (2010) concluded that the ability of the air pol-
lution health research community to support a multipol-
lutant air quality management framework was limited. The
goal of the current project was to address this limitation by
developing flexible methods to estimate the joint effects
(i.e., interactions) of multiple pollutants, while allowing
for potential nonlinear associations between a given pol-
lutant and the health outcome of interest.

The most common approach to assessing the joint
health effects of multiple pollutants is to use a form of
multiple regression that includes as predictors both the
concentrations of the pollutants and the variables that con-
found the exposure–health relationship. Consider health
outcome Yi for observation i, and denote the mean of the

health outcome as . The index i here may rep-

resent a subject in a cohort study or a day in a time-series
study. The typical form of the model is 

where zi is an M � 1 vector of pollutant concentrations cor-
responding to outcome i, xi is a q � 1 vector of variables
containing information on potential confounders, Yi has a
distribution of natural exponential family form (although
in this project we considered normally distributed, contin-
uous outcomes), and g is a monotone link function that
depends on the type of outcome analyzed. Here, the M � 1
vector � and the q � 1 vector � represent the independent
effects of the multiple pollutants and of the confounders,
respectively. This formulation for the confounding vari-
ables xi is general enough to accommodate complex forms
for the effects of confounders, such as nonlinear natural
spline terms. This approach assumes that the independent
effect of each pollutant affects the mean outcome (which
has been suitably transformed by the link function) in a
linear and additive way (referred to as the additive linear
model). Such an approach has several drawbacks when
our interest focuses on the joint effects of a multipollutant
mixture. For example, this approach without any form of
variable selection can have problems associated with mul-
ticollinearity, which can cause the estimates of the inde-
pendent effects �j, j = 1,…,M, to be unstable. 

A popular approach to dealing with the collinearity
problems in a standard multipollutant regression analysis
is to apply one of several variable-selection methods that
retains only a subset of pollutants in the model. From sim-
plest to most complex, these include (1) select a priori a
subset of the pollutants thought to represent different pol-
lution source categories or different atmospheric processes
and thus not to be highly correlated; (2) orthogonalize the
pollutant data by fitting some type of principal component
analysis, factor analysis, source apportionment, or multivar-
iate receptor model and plugging the resulting components,
factors, or source category contributions as predictors into
the model; and (3) apply more sophisticated variable-
selection techniques such as the least absolute shrinkage
and selection operator (LASSO; Tibshirani 1994) or the
Bayesian stochastic search variable-selection method
(George and McCulloch 1993); the latter method estimates
the probability of including each predictor in the model.

Because all of these methods are based on the additive
linear model, they still fall short of the ultimate goal of
flexibly estimating joint effects of a complex multipol-
lutant mixture. For example, the basic model (equation 1)
to which these variable-selection procedures are applied
assumes a lack of synergy (i.e., no interactions) among the
exposure terms in the model, whether they be pollutants
selected a priori, latent factors, or pollutants remaining
after an advanced variable-selection algorithm is applied.
One can manually build such interactions into the model,
but that can result in an explosion of the number of terms
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and thus create an even more difficult model-selection
problem. Moreover, shrinkage and other regression
methods that use the output of dimension reduction tech-
niques as covariates in a regression framework typically
make strong assumptions about the form of the exposure–
response relationship. For instance, LASSO methods
shrink individual regression coefficients back toward zero,
but such shrinkage is typically based on a model assuming
that all of the pollutants or source contributions have a
linear relationship with the mean of the outcome. LASSO
also presents challenges for formal inference because
obtaining standard errors for non-zero coefficient esti-
mates is not yet a straightforward process, although some
progress has been made in this area recently (Chatterjee
and Lahiri 2011).

More generally, Billionnet and associates (2012) provid-
ed a review of more refined, complex methods to analyze
the health effects of exposure to multipollutant mixtures.
The authors considered existing statistical methods with-
in the broad categories of dimension reduction (principal
component analyses, partial least squares, and sparse ex-
tensions thereof), hierarchical model formulations (two-
stage analyses), classification methods that categorize pat-
terns of exposure (K-means, hierarchical clustering, and
self-organizing maps), and recently-developed statistical
learning methods (classification and regression trees, ran-
dom forest analysis, and logic regression). Most of these
methods are useful in summarizing evidence addressing
some, but typically not all, of the aims of this project.

For instance, regression tree (Hastie et al. 2009) and
random forest (Brieman 2001) methods allow for nonlinear
and nonadditive effects of individual pollutants. Regres-
sion trees repeatedly partition the predictor space at the
cutpoint of a single predictor that gives maximal separa-
tion in the outcome of interest. Consider the simple setting
with only two predictors, X1 and X2. Then suppose the
first cutpoint is the value a of X1. The algorithm then pro-
ceeds to find the next cutpoint, which could again be
applied to X1 or to the second exposure X2. Suppose this
next cutpoint is the value b of exposure X2 for those obser-
vations having X1 < a, and at value c of X2 for those obser-
vations having X1 > a. The algorithm is repeated until one
of several possible stopping criteria is met, yielding a par-
tition of the multipollutant predictor space in which each
group of observations (or cluster) within the partition is
estimated to have a constant outcome mean. However,
standard regression tree analyses do not provide parsimo-
nious descriptions of health effects, which can make it dif-
ficult to achieve meaningful quantification of health
effects for risk assessment purposes.

Random forests (see also Liaw and Wiener 2002) par-
tially address this shortcoming by producing “variable
importance scores”. The most basic form of random forests
repeatedly performs regression tree analysis on randomly
resampled observations from the original data set, other-
wise known as bootstrapping a regression tree analysis.
This approach improves upon regression trees in that it
produces a single summary importance score for each pol-
lutant while relaxing the simple assumptions of linearity
and additivity. However, because these scores simply
reflect the decrease in predictive performance, rather than
direction or pattern of an association between a given pol-
lutant or group of pollutants and health, it is difficult to
summarize the nature of a given exposure–response rela-
tionship. Further, it is not immediately clear how to con-
trol for confounding within a random forest analysis,
although we are aware of work in progress generalizing
this class of models to adjust for confounding. Liaw and
Wiener (2002) noted that the absolute magnitude of the
variable importance scores can be sensitive to tuning
parameters chosen as part of the analysis, such as the
number of bootstrap resamples and the size of the subset of
variables chosen in each resample, but that the rank
ordering of these importance scores across the multiple
pollutants is relatively stable. Accordingly, these random
forest importance scores are most useful as a type of
screening tool that ranks the pollutants in order of impor-
tance in predicting a health outcome under very general
assumptions about the form of the relationship between
the multivariate exposure and the outcome.

In this project we propose BKMR methods as a way to
simultaneously achieve the multifaceted goals of a health
effects analysis of mixtures. KMR methods have become a
popular tool in statistical genomics, resulting in powerful
tests of genetic effects on health endpoints (Liu et al. 2007,
2008) and providing flexible methods for risk prediction
based on genomic inputs (Cai et al. 2011). In genomic
applications, KMR methods have been applied primarily
to test for the overall effect of a genetic pathway (Liu et al.
2007, 2008) or for the effect of a gene in the presence of a
possible gene–gene or gene–environment interaction (Zou
et al. 2010; Maity and Lin 2011). In the context of com-
puter experiments, Linkletter and colleagues (2006)
applied Gaussian process models (a special case of KMR)
with variable selection to identify a subset of inputs with
the largest impacts on the system being studied. Savitsky
and associates (2011) considered a general framework for
Gaussian process models with variable selection and eval-
uated their performance in terms of their predictive power
and ability to correctly select relevant variables.
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In contrast to this previous work that has focused on vari-
able selection and prediction, the major goal in environ-
mental health applications is estimating the exposure–
response function. To our knowledge the BKMR approach,
which can be considered as an analysis that is “super-
vised" by health data, has not been explored in environ-
mental epidemiologic settings involving multipollutant
exposures.

We adopted a Bayesian paradigm for several reasons. A
Bayesian approach allows for simultaneous, as opposed to
sequential, testing of the importance of individual pollut-
ants. This feature provides a realistic assessment of the
uncertainty associated with identifying the important pol-
lutants in the mixture (which we refer to as variable selec-
tion) as opposed to calculating standard errors conditional
on the set of pollutants included in the model. In the end,
the strategy effectively estimates a high-dimensional,
potentially nonlinear and nonadditive function of pol-
lutant concentrations that reflects the joint association of
the mixture with health outcomes.

The first Bayesian variable-selection scheme, which we
refer to as component-wise variable selection, is similar in
spirit to what has been proposed previously (Zou et al.
2010; Savitsky et al. 2011) and assesses the importance of
each pollutant individually. This approach makes esti-
mating a complex exposure–response function possible by
effectively using two types of penalization, or regulariza-
tion, of the multivariate exposure–response surface. The
variable-selection scheme itself serves to remove, or effec-
tively zero-out, pollutants for which the data do not provide
evidence of an association with the outcome. This selection
feature reduces the dimensionality of the multivariate expo-
sure vector for which the form of the exposure–response
relationship is estimated. Furthermore, this relationship is
estimated while penalizing the complexity of the multivar-
iate surface, much like existing mixed-model formulations
of penalized-spline generalized additive models (GAMs;
Wood 2006). Rather than being conducted in two separate
steps, these two forms of regularization are used within the
proposed Bayesian model-fitting algorithm, which pro-
vides a unified scheme for variable selection, model fit-
ting, and inference.

Component-wise variable selection is not particularly
effective when the pollutants are highly correlated, which
is sometimes the case for environmental mixtures. Several
preprocessing steps could be taken to deal with the correla-
tion issue in an informal way. For instance, one could
select a single pollutant to be a representative, or tracer, of a
highly correlated group of pollutants; or one could use
some other dimension-reduction technique, such as

principal components analysis, to reduce the dimension of
the multipollutant exposure.

In this project, we pursued an extension of the compo-
nent-wise variable selection that introduces a hierarchical,
or multistep, approach to variable selection. Suppose pol-
lutants can be partitioned into groups. The groups may be
defined by high correlations, by external knowledge such
as the source category of each component, or by another
common characteristic. In our initial explorations into this
approach, we started by assuming a relatively simple
grouping structure whereby group membership was
known and each pollutant belonged to one and only one
group. Once group membership was defined, we could
include a large number of pollutants (correlated or not) in
the kernel function; we then defined a hierarchical vari-
able-selection strategy that first estimated the probability
that each group of pollutants should be included in the
model, and then assessed whether there was evidence in
the data that one of the pollutants in a group drives the
group’s effect.

OUR ORIGINAL PROPOSAL: MODEL-BASED 
SUPERVISED CLUSTERING

The BKMR framework we developed in this project dif-
fers slightly from the model framework outlined in our
original proposal — a supervised clustering approach for
assessing the health effects of multiple pollutants. That
approach is less restrictive than methods that hinge on the
additive linear model (see equation 1) in that it does not
make any assumptions about the synergy or lack of syn-
ergy among pollutants in inducing health effects. It
assumes that each exposure is associated with a latent
class (i.e., cluster) indicator Ki � {1, 2,…,K}, such that

(2)

Conditional on an exposure Zi falling within cluster k,
this approach assumes that the health outcome depends
on the cluster to which a given exposure occasion belongs:

 (3)

Fitting the cluster model (equation 2) to the exposure
data and fitting the regression model (equation 3) to the
health outcome can be performed either sequentially
(referred to as unsupervised clustering of the exposure
data) or jointly (referred to as supervised clustering). In our
original formulation of the problem we proposed to fit the
models jointly and supervise the clustering of the expo-
sure data by a given health outcome. However, since we
submitted our proposal, the initial work on this project
and parallel work on other projects motivated us to set
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aside the supervised clustering approach originally pro-
posed and adopt the BKMR approach we report here.

Specifically, in other work, members of this research
team explored a framework for unsupervised clustering of
multipollutant data based on K-means clustering (Austin
et al. 2012). That work showed that it is possible to use
diagnostic ratios of pollutants and back-trajectory analysis
of daily air masses to attach physical meaning to the
resulting clusters to identify the types of pollutant sources
that may contribute to measurements at a monitoring site
and the meteorologic conditions that govern the transport
and transformation of the emitted pollutants. Therefore,
this unsupervised approach can identify distinct pollution
patterns at a given site, and the days with common physi-
cochemical properties and meteorologic conditions can
then be separately described and investigated. This
approach appears to work well in health effects studies
involving very large administrative databases and in large
cohort studies in which the sample size is sufficiently
large to produce large clusters (Zanobetti et al. 2014). In
small studies, such as toxicologic studies, because the
clustering model effectively categorizes the multivariate
exposure distribution, a clustering approach suffers from a
loss of power if there is, in fact, an association between a
health outcome and pollutant concentrations. This loss of
power is analogous to what would occur if one were to dis-
cretize a univariate exposure in the presence of an expo-
sure–response relationship. Such loss of power is greater
when significant within-cluster variability in the pollutant
concentrations exists; thus one is effectively throwing
away that variability in exposure when entering cluster
into the health model as a predictor.

Early work in this project showed such within-cluster
variability to be present in the CAPs exposures conducted
as part of the toxicologic study of canines (described later).
Figure 1 shows results from an unsupervised clustering of
PM constituent data recorded over a period of 100 days by
the Harvard Ambient Particle Concentrator at the Harvard
Chan School (Bartoli et al. 2009). The data show signifi-
cant within-cluster variability for many of the constitu-
ents. Finally, assessing the importance of any given
pollutant in explaining differences in a health outcome
across clusters is typically informal; investigators describe
the characteristics of the pollution profiles in the cluster
that is identified as being associated with a particular
health outcome.

Therefore, we ultimately developed an alternative super-
vised modeling approach that, after adjusting for relevant
confounding factors, assumes that the outcome varies con-
tinuously as a function of pollution composition. This
approach simultaneously achieved all of the goals we
described for a method: that is, a method that (1) avoids

stringent assumptions of linearity and additivity for the
functional form of the exposure–response relationship, as
accomplished by regression trees, random forests, and
other clustering-based approaches; (2) helps identify the
pollutants within the mixture that are responsible for the
observed health effects of the overall mixture; (3) estimates
the functional form of the (potentially multidimensional)
exposure–response curve; and (4) instead of simply pre-
senting a partition of the predictor space corresponding to
extreme values of the health endpoints, allows us to quan-
tify the strength of any associations (i.e., perform infer-
ence) observed between individual pollutants and health.

KERNEL MACHINE REGRESSION

For the remainder of this work, for concreteness we
assume that the health outcome Yi is a normally distrib-
uted continuous random variable. We first outline the gen-
eral KMR framework, and then consider a Bayesian
treatment of the KMR model that includes a variable-selec-
tion procedure that yields inferences (the evidence pro-
vided by the data) that a given pollutant plays a role in the
overall health effect of the mixture.

MODEL DEFINITION

For each subject i = 1,…,n, we assume

(4)

where Yi is a health endpoint, zi = (zi1,…,ziM)T is a vector of

M pollutant concentrations, and xi contains a set of poten-

tial confounders. In this formulation, h(·) is an unknown
function to be estimated either parametrically or nonpara-
metrically, � contains the unknown but estimable effects

of the confounders, and 

A kernel machine representation of the h term reflecting
the association between the pollution mixture and health
assumes that h: RM → R resides in a function space HK with a
positive semidefinite reproducing kernel K: RM � RM → R. A
kernel function K(z,z�) has two arguments: z, which repre-
sents the M � 1 covariate vector for one subject, and z�,
which represents the M � 1 covariate vector for a second
subject. In essence, K(z,z�) measures the similarity, or dis-
tance, between two subjects’ exposure covariate vectors.

There are two ways to characterize h. One can use a
basis-function representation within regression equation

(4), termed the primal form, with  for

some set of basis functions  and coefficients

 Alternatively, one can represent h using a positive
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Figure 1. Between- and within-cluster variability of the Harvard Chan School CAPs composition data.

definite kernel function K(·,·), termed the dual form, with

 for some set of coefficients .

The Mercer theorem (Cristianini and Shawe-Taylor 2000)
established that a kernel function K(·,·) used in the dual
form for h implicitly specifies a unique function spanned
by a particular set of orthogonal basis functions in the
primal representation of h. Examples of this correspon-
dence include:

• Linear kernel: 

� Basis representation: 
(z) = [z1, z2,…,zM].

• Quadratic kernel: 

� Basis representation:

 
=1

( ) = ,
n

i ii
h K �z z z  

=1

n
ii�

  1 1( , ) = 1 .M MK z z z z    z z 

         

2
1 1, = 1 M MK z z z z    z z 

     

2 2
1 1 1 2 1( ) = , , , , , , , , .M M M Mz z z z z z z z
 

 
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• Gaussian kernel: 

� Basis representation: 
(z) is space spanned by 
radial basis functions. 

Operationally, Liu and colleagues (2007) showed that one
can fit the kernel machine regression to data using the mixed-
model representation

(5)

where 
h = (h1,…,hn)T ~ MVN(0, 
K), ε = (ε1,…,εn)T ~ MVN(0, 	2I),
and h ┴ ε. The kernel matrix K has (i,j )-element K(zi,zj). The
majority of work on this mixed model has focused on fitting
it using frequentist methods, which allows one to conduct
tests of the overall effect of the mixture, H0: h = 0. Maity and
Lin (2011) generalized this approach to test whether a given
pollutant of the zi vector contributes to the overall effect.

Clearly, fitting a KMR model relies on specifying which
kernel function to use. In this project we mainly focus on
the Gaussian kernel, which flexibly captures a wide range
of underlying functional forms for h(·), though our
approach for estimating the health effects of environ-
mental mixtures is applicable to a broad choice of kernels.
To provide some intuition for KMR using the Gaussian
kernel, consider the effect on health of exposure to the pro-
file zi for the ith person, given by hi = h(zi). Under model

(5), we assume ,

which implies that two subjects with similar exposures (zi

is close to zj) will have more similar risks (hi will be close

to hj).

COMPONENT-WISE VARIABLE SELECTION

To allow for variable selection within a Bayesian para-
digm for KMR, we expand the formulation in the previous
section to include an indicator variable (�m) for each pol-
lutant concentration zm. More specifically, we define the
augmented Gaussian kernel function to be

(6)

where r = (r1,…,rM)T, and we define KZ,r to be the n � n
matrix with (i,j )-element equal to K(zi,zj;r). We assume a
slab and spike prior on the auxiliary parameters

rm | �m ~ �m Gamma(ar,br) + (1 � �m)P0, m = 1,…,M, and
�m ~ Bernoulli(�),  (7)

where P0 denotes the density with point mass at 0. This
mixture representation is analogous to the Bayesian vari-
able-selection model for multiple regression problems
(George and McCulloch 1993) and has been applied in

Gaussian process models (Linkletter et al. 2006; Savitsky
et al. 2011). The posterior mean of the indicator �m given
the data, �m = Pr(�m = 1 | y, z, x), has the natural interpre-
tation as the posterior probability that pollutant m is an
important component of the mixture, also referred to as the
posterior inclusion probability (PIP) of pollutant m. Other
kernel functions may be augmented in a similar way. For
example, the quadratic kernel may be expanded as

In this framework we view a given inclusion probability
as an indicator of the importance of a given pollutant
within the multipollutant mixture. Our experience with
many data sets suggests that, like the variable-importance
scores provided by a random forest analysis, the absolute
magnitudes of these inclusion probabilities depend on the
tuning parameters chosen for a given analysis, which in
this setting include the prior parameters ar and br in the
mixture prior shown in equation (7). (Later, we provide an
example of this sensitivity in the analysis of exposure to
PM2.5 with different compositions and blood pressure and
heart rate.) Therefore, we take the strategy analogous to a
random forest analysis in which we use the inclusion
probabilities to order the importance of each pollutant in
predicting health outcomes, and then follow up by evalu-
ating the exposure–response relationships for those pollut-
ants ranked most important.

HIERARCHICAL VARIABLE SELECTION

In situations where concentrations of the pollutants in
the mixture are highly correlated, the above formulation
that treats pollutants exchangeably may fail because the
data may not be able to distinguish among the correlated
pollutants. We therefore also propose a hierarchical vari-
able-selection approach that incorporates knowledge of
the structure of the mixture into the model.

Suppose the pollutants z1,…,zM can be partitioned,
using prior knowledge, into groups Sg (g = 1,…,G). For
example, a wealth of information about air pollution
source categories allows for pollution constituents to be
grouped such that within-group correlation is high and
across-group correlation is moderate to low. We then
assume that the indicator variables from the slab and spike
prior in equation (7) are distributed as

, and (8)

�g ~  Bernoulli (�),

where is the vector of indicator variables

and  is the corresponding vector of prior probabilities

for the pollutants zm in group Sg. This approach allows, at

most, a single pollutant from a group of highly correlated
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pollutants to enter into the model at a time. Although this
assumes that two pollutants from the same group do not
have independent or interactive effects on the health out-
come, in the setting of high within-group correlation such
effects would not be identifiable by any model.

PRIOR SPECIFICATION

To complete the model specification, we must specify
prior distributions for the regression parameters � and 	2,
the variance component 
, and the prior inclusion proba-
bility �, and we must select values for the hyperparame-
ters ar and br of the variable selection prior in equation (7).

For the regression parameters, we assume � ~ 1 (flat
prior) and 	�2 ~ Gamma(a	,b	), where we set the shape
parameter a	 and scale parameter b	 to each be 0.001. It is
convenient to parameterize BKMR by � ≡ 
	�2, and we
assume a Gamma prior distribution for � with mean and
variance each set to 100 (let a�, b� denote corresponding
shape and rate parameters). We assume the prior proba-
bility (�) that a pollutant is included in the model comes
from a beta distribution; that is, � ~ Beta(a�, b�).  In our
implementations, we set a� = b� = 1 (Uniform).

Before discussing the choice of values for ar and br, first
note that without variable selection, KMR is analogous to a
spatial regression model in which zi corresponds to spatial
locations, and the parameter � in the Gaussian kernel cor-
responds to the range parameter (Mikl et al. 2008). It is
well known that the spatial range parameter is only weakly
identified in this setting (Banerjee et al. 2008) and so it is
necessary to specify an informative prior distribution for �
(and hence for 1/�). In addition, Bayesian variable selection
can be highly sensitive to the specification of the mixture
prior. Thus, care must be taken to select the hyperparame-
ters ar and br in equation (7).

To select these hyperparameters, it is helpful to further
consider the interpretation of the rm in our augmented
Gaussian kernel (equation 6). As noted earlier, the model
assumes that for each pollutant zm, two individuals with
more similar exposure levels will have more highly corre-
lated health outcomes, and the correlation will decay as
the difference between exposure levels increases. The
parameter rm controls the rate of decay in correlation with
this difference: smaller values of rm correspond to a slower
decay, which results in a greater degree of smoothing in the
estimated h as a function of zm, whereas larger values of rm
correspond to a faster decay resulting in a more oscillatory
(i.e., less smooth) h function of zm (see Figure 2). For auto-
matic hyperparameter selection, we therefore recommend
selecting a prior for rm that captures a range of values of
the anticipated smoothness of h as a function of each zm
based on expert knowledge. For example, in Figure 2 the

smallest value of r shown (0.01) corresponds to a very
smooth exposure–response function h, and the largest
value of r (0.54) corresponds to an exposure–response
function that is more oscillatory than those expected in
many environmental health studies. To translate this
knowledge into a prior distribution, for example, we
might select values of ar and br such that Pr(r < 0.01) =
Pr(r > 0.54) = �/2 for � small. In some cases, one might
have prior evidence that the given health effects of a mix-
ture are linear in the pollutant concentrations. In such a
case, one might want to set the hyperparameters to induce
more smoothing, which corresponds to smaller values of ar
and br. In such cases, one can obtain a preliminary esti-
mate of ρ from the fit of the frequentist model of Liu and
associates (2007) and take as the value of these hyperpa-
rameters a fraction of this parameter estimate. (We take
this approach in our analysis of the Harvard Chan School
canine toxicologic study data shown later.) Note that the
data should be transformed so that each zm is on the same
scale to ensure that the rm values correspond to the same
degree of smoothness in h as a function of each zm. Finally,
for the hierarchical variable-selection approach, for we
assumed that each pollutant of the same group was equally
likely to be included in the model.

SIMULATION STUDIES

To investigate the properties of the proposed methods,
we conducted three simulation studies designed to eval-
uate the ability of BKMR to estimate environmental mix-
tures responsible for health effects under potentially
complex but plausible exposure–response relationships.
An attractive feature of our simulation studies is that we
used actual exposure data rather than simulated values,
meaning that we sampled directly from empirical data to
generate data sets for the simulations. This approach has
the advantage that it evaluates the performance of BKMR
and several other models under realistic joint distributions
of the multipollutant exposure.

Our primary data set was from the Harvard Chan School
Boston Supersite for monitoring multiple air pollutants
(located at the Francis A. Countway Library of Medicine
on the Harvard Medical School campus). This is a unique
data set in that PM composition was recorded most days
from 1998 through 2011, resulting in data for 4,853 days.
Also, because the same multipollutant data were used for
the MOBILIZE analyses, the simulation studies are as
relevant as possible to the epidemiologic analyses con-
ducted in that project. 
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�
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Simulation Study 1 assumed that one or more of the
PM2.5 constituents exhibits an association with health
effects; this assumption reduced the dimensionality of the
highly correlated x-ray fluorescence (XRF) elemental con-
centrations by selecting a subset of concentrations to rep-
resent a group of correlated constituents that are not
themselves highly correlated. If we assume two pollutants
are associated with effects on health, we assume interac-
tions exist between the two pollutants.

Simulation Study 2 compared the performance of (a)
BKMR using component-wise variable selection with (b)
BKMR using hierarchical variable selection applied to a
large number of pollutants, some highly correlated. In
these first two simulation studies, we used each BKMR ap-
proach to test the performance of the frequentist approach
to KMR variable selection proposed by Maity and Lin
(2011).

In Simulation Study 3 we assumed that the constituent
concentrations were generated from a source apportion-
ment model and that pollutants from a particular source
category were associated with adverse health effects.

SIMULATION STUDY 1. COMPONENT-WISE VARIABLE 
SELECTION FOR A MODERATE NUMBER OF 
POLLUTANTS

Simulation Setup

For each simulation scenario we generated 100 data sets of

100 observations each,  where zi = (zi1,…,ziM)

represents concentrations of M pollutants; xi is a confound-

er (associated with zi1) generated as xi ~ N(3 cos zi1, 2); and

the health outcomes yi ~ N[�xi + h(zi1,…,ziQ), �2]. We as-

sumed that a health outcome will depend on only a subset
of Q < M of the available exposure variables, and the value
of Q will depend on the particular simulation scenario.

We analyzed three different h functions: 

• h1: a univariate nonlinear exposure–response rela-
tionship that depends only on zi1;

• h2: a linear exposure–response function with main
effects of zi1 and zi2 and an interaction between these
two exposures; and

• h3: a nonlinear exposure–response function of both zi1
and zi2 with a synergistic interaction between these
two exposures. 

For the exposure data, we chose two existing exposure
data sets, one for M = 3 pollutants and another for M = 9 pol-
lutants, and generated the simulated data sets by sampling
from these exposure data. For the M = 3 simulation we

generated data sets based on the empirical distributions of
the concentrations of As, Mn, and Pb from a study on the
neurotoxicity of in utero exposure to metal mixtures con-
ducted in Bangladesh as part of the Harvard Superfund
Research Program (Bobb et al. 2014). The concentrations
were based on measurements of biomarkers collected in
cord blood. Exposure to metal mixtures and neurotoxicity
in children is a setting in which both nonlinearity and
interaction in the exposure–response relationship have
been reported (Claus Henn et al. 2012; Bobb et al. 2014).

We constructed each exposure data set  by sampling

100 rows from the metal mixtures data set.

To evaluate the BKMR methods in air pollution epide-
miologic settings, in which a large number of pollutants
are analyzed, for the M = 9 simulation we used the Harvard
Chan School Boston Supersite multipollutant data set that
consisted of daily measurements of ambient air pollutants
from 1998 through 2011.

XRF is used to measure the concentrations of many ele-
ments. However, it is well known that XRF measures some
elements very well, others moderately well, and some with
high levels of error. For instance, experience from our Har-
vard Clean Air Research Center is that Cu, Zn, Ni, V, S, Ti,
Ca, Mg, K, Cl, Na, Al, and Si are measured well, and Br, Sr,
Pb, and Mn are measured reasonably well. However, other
elements, such as Cr, Se, As, Ba, Sn, Ce, Co, Cs, Sb, Zr, Ag, In,
W, Hg, Hf, Sm, Eu, Y, Te, Tl, Cd, and other exotic elements
are not measured well. Therefore, for the M = 9 simulation
studies, we started by considering the 17 elements that are
measured well or reasonably well by XRF. We also included
BC, as measured by aethalometer, because it is a well-
known marker of traffic-related ambient particles. Because
high correlations can negatively affect the performance of
any component-wise variable-selection procedure, in Sim-
ulation Study 1 we selected 9 of the 18 constituents that
represent major pollution sources but are not too highly
correlated: Al, S, Ni, BC, Cu, Zn, Mg, K, and Cl. The daily
multipollutant data were standardized by subtracting the
median and dividing by the interquartile range (IQR); days
with outlier values (defined as values greater than 5 IQR
away from the median) were removed.

Figure 3 presents the correlation matrix for the subset of
constituents used in Simulation Study 1. For this M = 9
scenario we generated each exposure data set  by
sampling (with replacement) 100 rows of the Harvard
Chan School Boston Supersite multipollutant data set. In
this way, the distributions of (and correlations among) the
multiple pollutants in our simulation study preserved the
underlying structure of realistic data settings.

 100
=1, , ,i i i iy x z

 100
=1i iz

 100
=1i iz
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To specify values for 	2, we considered two signal-to-
noise ratios. The first ratio we set to be equivalent to the
signal-to-noise ratio (0.91) estimated from the metal mix-
tures data set (referred to as the realistic signal-to-noise sce-
nario). In order to evaluate the performance of the methods
in a more idealistic scenario in which we have a lot of infor-
mation in the data, we set a second ratio to be twice (1.82)
the ratio used in the realistic scenario (high signal-to-noise
scenario). We tested the methods under the high signal-to-
noise ratio as a type of positive control, in that the method
should perform as expected when the exposure–response
association is strong and there is little residual error in the
response. To get a sense of the amount of noise implied by
the realistic and high signal-to-noise ratios, data generated
based on these ratios are shown for different univariate
exposure–response functions h in Figure 2.

To each of the 100 simulated data sets under each of the
12 data-generating scenarios (two exposure data-generating
mechanisms [M = 3, M = 9]; three exposure–response func-
tions [h1, h2, h3]; and two signal-to-noise ratios [realistic,
high]), we fit five different models. To start, we fit a BKMR
model that included all M of the available exposure vari-
ables (note that only one or two are truly associated with
the outcome), both without variable selection (BK-MR)

and with variable selection (BKMRvs). To specify a prior
distribution for rm, we followed the automatic selection pro-
cedure discussed in the Prior Specification section. Specifi-
cally, for the multipollutant exposure data (M = 9), we
selected hyperparameters for the Gamma prior for rm such
that Pr(rm < 0.01) = Pr(rm > 0.54) = 0.005; namely, ar = 2.1
and br = 14.0. The rationale for the bounds 0.01 and 0.54
are illustrated in Figure 2, which shows examples of simu-
lated data sets based on Al pollution data and different uni-
variate h functions. For the metal mixtures exposure data
(M = 3), because all exposure data were standardized by
subtracting the median and dividing by the IQR, the range
of the metal concentrations was similar to the range of the
M = 9 constituent concentrations. Therefore, we applied
this same prior distribution to both the M = 3 and M = 9
data sets. We ran each Markov chain Monte Carlo (MCMC)
for 10,000 iterations and kept the last 8,000 samples.

Next, we fit KMR using a frequentist approach (Liu et al.
2007), again without (KMR) and with (KMRvs) variable se-
lection. The standard errors for the estimated exposure–re-
sponse  from this approach were obtained using the best
linear unbiased prediction representation of  in this model,
as given in equation (15) in Liu and associates (2007). To con-
duct the variable selection, we applied the Garrote test from
Maity and Lin (2011) to each pollutant zm (m = 1,…,M ) one
at a time, and then re-fit the KMR including only those pol-
lutants for which the Garrote test yielded P < 0.05. We eval-
uated the power and type I error rates for this frequentist
approach.

Finally, to quantify the optimal performance achievable
if the true form of the h function were known, we applied
an oracle model, which is the model that is best suited for a
given h function. For h1 we fit a GAM including only z1,
modeled using penalized splines and a thin-plate regres-
sion basis (Wood 2006). For h2, we fit a linear model with
z1, z2,  and the interaction term z1z2. For h3 we fit a GAM
including a bivariate function of z1 and z2.

Results for Estimating the Exposure–Response Function

We first evaluated the ability of each of the five ap-
proaches to estimate the subject-specific mixture effects
hi = h(zi) for each of the simulated data sets by regressing
the estimated  on the true hi and reporting the average in-
tercept, slope, and R2 from this regression across simula-
tion repetitions.

Under the high signal-to-noise ratio (Table 1), both
approaches with variable selection (KMRvs and BKMRvs)
performed comparably to the oracle model (and outperformed
the corresponding models without variable selection) in
estimating the hi across the three true h(·) and for both the
metals (M = 3) and multipollutant (M = 9) exposure data.

ĥ
ĥ

ˆ
ih

Figure 3. Correlation matrix of multipollutant data set used for the M = 9
constituents scenario in Simulation Study 1. The shading and shapes indi-
cate the strength of the correlation between a pair of constituents, with
darker and more oval shapes reflecting higher correlations. These provide a
visual representation of the correlation structure present in the numerical
values shown in the upper triangle of the matrix.
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Table 1. Performance of Estimated hi = h(zi) Across 100 Simulated Datasets Under a High Signal-to-Noise Ratio 

 Regression of  on h  Uncertaintya

Intercept Slope R2 SD SE Coverage

M = 3 Metals
h1(z)

Oracle 0.02 0.98 0.98 0.19 0.17 0.93
KMR 0.07 0.93 0.95 0.30 0.24 0.88
KMRvs 0.02 0.97 0.98 0.19 0.17 0.91
BKMR 0.07 0.93 0.95 0.29 0.26 0.91
BKMRvs 0.02 0.98 0.99 0.19 0.17 0.92

h2(z)
Oracle �0.01 1.00 0.99 0.07 0.06 0.94
KMR 0.02 0.98 0.98 0.09 0.08 0.93
KMRvs 0.01 0.99 0.99 0.08 0.07 0.93
BKMR 0.02 0.98 0.98 0.09 0.09 0.95
BKMRvs 0.01 0.99 0.98 0.09 0.09 0.95

h3(z)
Oracle 0.02 0.95 0.96 0.17 0.17 0.96
KMR 0.03 0.93 0.95 0.19 0.16 0.92
KMRvs 0.03 0.95 0.96 0.17 0.14 0.91
BKMR 0.03 0.94 0.95 0.19 0.17 0.94
BKMRvs 0.02 0.95 0.97 0.16 0.15 0.94

M = 9 Constituents
h1(z)

Oracle 0.02 0.99 0.99 0.19 0.17 0.92
KMR 0.26 0.84 0.89 0.46 0.34 0.82
KMRvs 0.04 0.97 0.97 0.25 0.17 0.85
BKMR 0.23 0.85 0.90 0.45 0.38 0.89
BKMRvs 0.03 0.98 0.98 0.21 0.18 0.91

h2(z)
Oracle �0.01 1.01 0.99 0.11 0.10 0.94
KMR 0.05 0.97 0.96 0.19 0.18 0.94
KMRvs 0.01 0.99 0.98 0.15 0.11 0.92
BKMR 0.05 0.97 0.96 0.20 0.20 0.96
BKMRvs 0.01 0.99 0.98 0.15 0.14 0.96

h3(z)
Oracle 0.02 0.98 0.97 0.25 0.23 0.95
KMR 0.09 0.91 0.92 0.39 0.33 0.90
KMRvs 0.03 0.97 0.96 0.29 0.21 0.86
BKMR 0.07 0.92 0.92 0.39 0.36 0.93
BKMRvs 0.02 0.98 0.97 0.27 0.24 0.94

a SD denotes the empirical standard deviation of the estimated ; SE denotes the estimated standard error, which in a Bayesian analysis is the posterior 

standard deviation of the ; and coverage is the proportion of times that the 95% confidence intervals (for oracle, KMR, and KMRvs) or posterior credible 

intervals (for BKMR and BKMRvs) covered the true hi.
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Table 2. Performance of Estimated hi = h(zi) Across 100 Simulated Datasets Under a Realistic Signal-to-Noise Ratio 

 Regression of  on h  Uncertaintya

Intercept Slope R2 SD SE Coverage

M = 3 Metals
h1(z)

Oracle 0.04 0.95 0.95 0.35 0.31 0.92
KMR 0.17 0.82 0.88 0.50 0.40 0.87
KMRvs 0.06 0.92 0.95 0.35 0.30 0.91
BKMR 0.15 0.85 0.89 0.47 0.44 0.93
BKMRvs 0.05 0.94 0.96 0.33 0.34 0.95

h2(z)
Oracle �0.02 1.01 0.97 0.14 0.13 0.94
KMR 0.08 0.93 0.95 0.16 0.15 0.94
KMRvs 0.07 0.94 0.94 0.16 0.13 0.91
BKMR 0.05 0.95 0.94 0.17 0.17 0.96
BKMRvs 0.04 0.95 0.93 0.17 0.17 0.95

h3(z)
Oracle 0.05 0.90 0.89 0.29 0.28 0.95
KMR 0.10 0.81 0.84 0.33 0.28 0.91
KMRvs 0.10 0.80 0.81 0.35 0.23 0.85
BKMR 0.08 0.84 0.86 0.32 0.30 0.95
BKMRvs 0.07 0.87 0.88 0.29 0.28 0.95

M = 9 Constituents
h1(z)

Oracle 0.07 0.96 0.95 0.36 0.31 0.91
KMR 0.49 0.70 0.77 0.69 0.51 0.82
KMRvs 0.12 0.93 0.93 0.41 0.30 0.86
BKMR 0.41 0.74 0.78 0.67 0.60 0.92
BKMRvs 0.07 0.96 0.96 0.35 0.36 0.95

h2(z)
Oracle �0.03 1.01 0.97 0.22 0.20 0.94
KMR 0.16 0.90 0.90 0.33 0.31 0.95
KMRvs 0.07 0.96 0.94 0.28 0.20 0.91
BKMR 0.13 0.92 0.89 0.35 0.36 0.97
BKMRvs 0.12 0.92 0.90 0.33 0.31 0.95

h3(z)
Oracle 0.03 0.95 0.92 0.43 0.38 0.93
KMR 0.17 0.82 0.84 0.58 0.50 0.91
KMRvs 0.12 0.87 0.85 0.56 0.32 0.80
BKMR 0.13 0.85 0.84 0.58 0.59 0.96
BKMRvs 0.06 0.92 0.89 0.49 0.48 0.95

a SD denotes the empirical standard deviation of the estimated ; SE denotes the estimated standard error, which in a Bayesian analysis is the posterior 

standard deviation of the ; and coverage is the proportion of times that the 95% confidence intervals (for oracle, KMR, and KMRvs) or posterior credible 

intervals (for BKMR and BKMRvs) covered the true hi.
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Compared with the high signal-to-noise scenario (Table 1),
under the realistic scenario (Table 2) all approaches per-
formed worse than the oracle models at estimating h(·),
although the gains achieved by incorporating variable selec-
tion were larger. For example, for h1(·) and the multipol-
lutant exposure data (M = 9), the R2 increased from 0.78
under BKMR to 0.96 under BKMRvs for the realistic signal-
to-noise ratio (Table 2), compared with an increase from
0.90 to 0.98 under the high signal-to-noise ratio (Table 1).
The difference between BKMRvs and frequentist KMRvs
results also became more apparent under the realistic
signal-to-noise scenario (Table 2). For example, the less
smooth exposure–response functions h1(·) and h3(·) were
better estimated by the BKMRvs approach [for M = 9, R2 =
0.96 for BKMRvs and R2 = 0.93 for KMRvs for h1(·), and
R2 = 0.89 for BKMRvs and R2 = 0.85 for KMRvs for h3(·)];
and the smoothest (linear) function h2(·) was better esti-
mated by the frequentist KMR approach (for M = 9, R2 =
0.94 for KMRvs and 0.90 for BKMRvs). In this realistic
signal-to-noise setting, by comparing R2 values for
BKMRvs for h1 to those for h2 and h3, we also noted a sug-
gestion that the BKMRvs method appeared to perform
slightly better when there were fewer pollutants assumed
to be causal (Q = 2 versus Q = 1). 

Across all scenarios, the Bayesian approaches were better
able to capture the uncertainty in the  than the corre-
sponding frequentist KMR methods, achieving posterior SD
estimates that were close to the empirical SEs and interval
coverage closest to the nominal (95%) level (Tables 1 and 2).

Results for Identifying Important Pollutants

We next evaluated whether the proposed KMRvs and
BKMRvs approaches could correctly identify which pol-
lutant or pollutants were predictive of the health outcome
[i.e., included in h(·)]. Figures 4 and 5 show (1) the boxplots
for the PIPs under BKMRvs, and (2) the proportion of itera-
tions for which each pollutant was identified as statistically
significant under the Maity and Lin Garrote KMR test (2011;
values shown beneath the x axes) for the high (Figure 4) and
realistic (Figure 5) signal-to-noise scenarios. For the high
signal-to-noise ratio, across h(·) functions and for both the
metals and multipollutant exposure data sets, BKMRvs cor-
rectly assigned high posterior support to the pollutants that
were truly predictive of health outcomes and low posterior
support to the pollutants that were not (Figure 4). As
expected, the ability of BKMRvs to identify the correct pol-
lutants was diminished under the more realistic signal-to-
noise scenario (Figure 5), in which more individual PIPs
were below 0.6, although the PIPs were generally still

distinguishable between causal and non-causal pollutants.
Under both high and realistic signal-to-noise scenarios, the
frequentist KMRvs demonstrates reasonable power and type
I error rates that are generally close to the target 0.05 level,
although this error rate is inflated for a few elements in a few
h functions (e.g., Cu at 9% and Mg at 12% for high signal-to-
noise under h2 [Figure 4]).

A major factor affecting the ability to correctly identify
important pollutants is the correlation structure of the
exposure data. For the bivariate functions h(·) and multi-
pollutant exposure data (M = 9), because Al and S (the cor-
rect pollutants) were moderately correlated (r = 0.48), once
one of these pollutants was selected to be in the model,
insufficient residual information remained in the data to
identify the second pollutant for a portion of the simula-
tion iterations. If, instead of Al and S being the correct pol-
lutants, we replaced S with Ni (whose correlation with Al
was only 0.1), then the ability of the approach to detect
both important pollutants was substantially improved (see
Figure 6). On the other hand, for the metals exposure data
(M = 3; Figure 5), the important pollutants (Pb and Mn)
were uncorrelated and so both were able to be identified
by the model for most of the simulation iterations.

Similarly, having an unimportant pollutant that is mod-
erately or highly correlated with an important pollutant
also challenges variable selection. For example, for the
metals exposure data (Figure 5), high posterior support
was assigned to As for a portion of simulation iterations,
though it was not truly predictive of health. To investigate
whether this was due to correlated exposures or to some
other feature of the approach, we repeated the simulation
and replaced As with a sham exposure variable that had the
same mean and standard deviation as As but was indepen-
dent of Pb and Mn. We found that the median (and IQR) PIP
declined from 0.06 (0.10) for As to 0.05 (0.07) for the sham
exposure under h1(·), from 0.17 (0.20) to 0.08 (0.15) under
h2(·), and from 0.16 (0.26) to 0.08 (0.14) under h3(·), sug-
gesting that the correlated exposures are at least partly
responsible for the inflated inclusion probabilities of As.

At the suggestion of the HEI Review Committee, in addi-
tion to summarizing the distribution of the PIPs across
simulations for the h2 and h3 functions in which two pol-
lutants affected health, we also summarized how often
these procedures correctly selected none, one, or two of
the important pollutants. In order to “select” a pollutant,
one must set a threshold value such that the pollutant is
selected if its PIP in a given analysis is above that threshold
and not selected if not. We summarized the proportion of
times important variables were selected for two threshold

ˆ
ih
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Figure 4. Median (25%, 75%) of the PIPs from BKMRvs under a high signal-to-noise ratio. Calculated across 100 simulated data sets, for each of three true
h(z) functions. The vector of exposure data z was generated based on either M = 3 metals (Pb, Mn, As) or on M = 9 air pollution constituents (Al, S, Ni, BC,
Cu, Zn, Mg, K, Cl). The proportion of simulation iterations for which each pollutant had P < 0.05 under the frequentist KMR approach of Maity and Lin
(2011) is printed below the x axis.

choices: either PIP > 0.5 or PIP > 0.8. Table 3 shows the
results, which suggest that the BKMR approach does very
well in identifying both important pollutants if there are a
small number of pollutants (M = 3 metals) under either
threshold value. For the more complicated simulation

(M = 9 constituents), the methods are generally able to
identify at least one of the two pollutants, with the proba-
bility of identifying both important pollutants at 70% to
80% if one uses the less stringent threshold of PIP > 0.5.
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Figure 5. Median (25%, 75%) of the PIPs from BKMRvs under a realistic signal-to-noise ratio. Calculated across 100 simulated data sets, for each of three
true h(z) functions. The vector of exposure data z was generated based on either M = 3 metals (Pb, Mn, As) or on M = 9 air pollution constituents (Al, S, Ni,
BC, Cu, Zn, Mg, K, Cl). The proportion of simulation iterations for which each pollutant had P < 0.05 under the frequentist KMR approach of Maity and Lin
(2011) is printed below the x axis.
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Figure 6. Median (25%, 75%) of the PIPs from BKMRvs under a realistic signal-to-noise ratio, with non-null effects for Al and Ni. Calculated across 100
simulated data sets, for each of the two bivariate h(z) functions. The vector of exposure data z was generated based on M = 9 air pollution constituents (Al, Ni,
S, BC, Cu, Zn, Mg, K, Cl). The only pollutants truly associated with the outcome were Al and Ni. Compare these results with Figure 5 in which Al and S were
the associated pollutants for h(·). The proportion of simulation iterations for which each pollutant had P < 0.05 under the frequentist KMR approach of Maity
and Lin (2011) is printed below the x axis.

Table 3. Ability of BKMRvs to Correctly Select None, One, or Two of the Important Pollutants in h2 and h3 Bivariate 
Exposure Scenarios (Simulation Study 1)a

Exposure Function 
PIP

Threshold 

Number of Simulated Datasets 

Total 
Both

Identified 
One

Identified 
Neither 

Identified 

M = 3 Metals h2 PIP > 0.5  100  99  1  0 
h2 PIP > 0.8  100  94  6  0 
h3 PIP > 0.5  100  97  3  0 
h3 PIP > 0.8  100  90  9  1 

M = 9 Constituents h2 PIP > 0.5  99  71  28  0 
h2 PIP > 0.8  99  46  50  3 
h3 PIP > 0.5  97  80  17  0 
h3 PIP > 0.8  97  65  32  0 

a Results are shown for both M = 3 metals and M = 9 constituents for two h functions and two PIP thresholds [PIP > 0.5 or > 0.8] for determining that an 
important pollutant had been selected.
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variable selection (BKMR), a model with component-wise
variable selection (BKMRvs), and a model with hierarchical
variable selection (BKMRhvs). For BKMRhvs we defined the
pollutant groups S1,…,S8 based on a combination of knowl-
edge of Boston air pollution source categories (Clarke et al.
2000; Kioumourtzoglou et al. 2014; Nikolov et al. 2008) and
the empirical correlations among the different pollutants: S1
= Al, Si, Ti, and Ca; S2 = Ni, V, and Zn; S3 = S; S4 = BC; S5 =
Cu; S6 = K; S7 = Cl; and S8 = Mn. The within-group correla-
tions ranged from 0.68 to 0.87 in group S1 and from 0.45 to
0.8 in group S2. We again also fit the oracle models to each
data set simulated under each h1, h2, and h3 function.

Results for Identifying Important Pollutants

BKMRvs and BKMRhvs performed almost identically in
terms of their ability to estimate h; both methods outper-
formed the frequentist KMRvs approach. We therefore do
not show the results for KMRvs here; the full details are
reported elsewhere (Bobb et al. 2014).

Here we present the ability of three methods (BKMRvs,
BKMRhvs, and the Maity and Lin [2011] Garrote KMR test)
to correctly identify which mixture or which individual
pollutants were predictive of the health outcome [i.e.,
included in h(·)]. Figure 8 shows the boxplots of the PIPs
under BKMRvs, as well as the proportion of iterations for
which each pollutant was identified as statistically signifi-
cant by the Maity and Lin Garrote KMR test (2011; values
shown beneath the x axes). Both BKMRvs and the Garrotte
KMR test were able to identify Cu, a pollutant whose corre-
lation with the other pollutants ranged from 0.13 to 0.29, as
important in the functions h2 and h3, in which Cu was
assumed to be truly associated with the health outcome.
On the other hand, for Al, a pollutant highly correlated
with several others (correlation of 0.87 with Si, 0.70 with
Ti, and 0.68 with Ca), the Garrote KMR test had lower
power and had inflated type I errors with its correlated
exposures, especially Si. For BKMRvs, although the PIPs
remained higher for Al than for its correlated constituents,
Si also had slightly higher PIPs compared with the other
non-causal pollutants.

Figure 9 shows the PIPs for each group (i.e., the posterior
mean of the group indicators �g), as well as the conditional
PIPs for the pollutants of group S1 (Al, Si, Ti, and Ca; i.e.,
the posterior mean of ) under BKMRhvs. The
results show a clear separation between the PIPs for the
groups that included one of the pollutants that was truly
predictive of health (S1 under h1; and S1 and S5 [Cu] under
h2 and h3) and those that did not. Under BKMRhvs, the
PIPs for group S1, which includes the pollutant Al that was
truly predictive of the outcome in h(·), were higher than for

  11
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SIMULATION STUDY 2. COMPONENT-WISE VERSUS 
HIERARCHICAL VARIABLE SELECTION IN HIGH-
CORRELATION SETTINGS

In Simulation Study 2, we generated data sets in the same
way as for Simulation Study 1 using the Harvard Chan
School Boston Supersite multipollutant data set, but using
M = 13 PM constituents (Al, Si, Ti, Ca, Ni, V, Zn, S, BC, Cu,
K, Cl, and Mn), some of which were highly correlated with
one another. Figure 7 presents the correlation matrix for
these 13 constituents. The daily data were again standard-
ized by subtracting the median and dividing by the IQR, and
days with outlier values (greater than 5 IQR away from the
median) were removed. We set 	2 to correspond to the real-
istic signal-to-noise ratio from Simulation Study 1.

Models

We again fit the KMR using a frequentist approach (Liu et
al. 2007), both without (KMR) and with (KMRvs) variable
selection. Second, we fit three BKMR models that included
all 13 of the available exposure variables: a model without

Figure 7. Correlation matrix of multipollutant mixture data set used for
the M = 13 scenario in Simulation Study 2 (measured daily during 1998–
2011 at the Harvard Chan School Boston Supersite). The shading and
shapes indicate the strength of the correlation between a pair of constitu-
ents, with darker and more oval shapes reflecting higher correlations.
These provide a visual representation of the correlation structure present
in the numerical values shown in the upper triangle of the matrix.



2424

Statistical Methods for the Effects of Multiple Air Pollutants 

Figure 8. Median (25%, 75%) of the PIPs from BKMRvs under a realistic signal-to-noise ratio. Calculated across 100 simulated data sets, for each of three
true h(z) functions. The vector of exposure data z was generated from the Harvard Chan School Boston Supersite multipollutant data set with M = 13 air pol-
lution constituents, in which the truly associated pollutants were Al for the first h function, and Al and Cu for the second and third h functions. The propor-
tion of simulation iterations for which each pollutant had P < 0.05 under the frequentist KMR approach of Maity and Lin (2011) is printed below the x axis.

any of the individual pollutants of S1, suggesting that
BKMRhvs is more likely to detect important pollutants in
the high-correlation setting. Within group S1, BKMRhvs
was better able to distinguish between the important pol-
lutant (Al) and the unimportant pollutants (Si, Ti, Ca)

compared with BKMRvs (Figure 8), suggesting that there is
added value in using the hierarchical formulation com-
pared with the component-wise variable selection in high-
correlation settings.
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Figure 9. Median (25%, 75%) of the PIPs from BKMRhvs. Calculated for each of three true h(z) functions. Exposure data z were generated from the Harvard
Chan School Boston Supersite multipollutant data set for M = 13 air pollution constituents in eight pollutant groups. The truly associated pollutants were Al
(one of four pollutants in group S1) for the h1 function, and Al and Cu (sole pollutant in group S5) for the h2 and h3 functions. Plots on the left show the PIPs
for each group; plots on the right show the conditional PIPs for the pollutants in group S1, given that group S1 was included in the model.
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SIMULATION STUDY 3. SOURCE CATEGORY–SPECIFIC 
HEALTH EFFECTS

Simulation Setup

Source categories of PM2.5 and its constituents were iden-
tified using the Harvard Chan School Boston Supersite mul-
tipollutant data set described earlier and a standard source
apportionment method: the U.S. EPA PMF 3.09 (Paatero and
Tapper 1994). This method was selected because it has been
extensively used in fine-particulate source apportionment
in the past (Ito et al. 2006; Lall et al. 2011). We used the
source apportionment results described by Kioumourtzo-
glou and associates (2014), in which PMF was applied to
PM2.5 mass and 19 of its constituents. Table 4 shows the
constituents included in the PMF analysis. PMF identified
six factors consistent with the source categories of regional,
mobile, crustal, residual oil combustion, road dust, and sea
salt. Figure 10 shows the source category–specific appor-
tionment of the mass across the entire period of 1998

Table 4. Estimated Factor Loadings from the PMF Analysis Used to Identify Six Pollution Source Categories (Simulation 
Study 3)a

Constituent  Mobile  Regional  Crustal  Sea Salt 
 Residual Oil 
Combustion  Road Dust 

PM2.5  1601.30  5122.40  1057.80  43.08  646.27  544.23 
BC 436.50  129.91  6.08  3.596  29.94  14.66
Na  7.03  90.73  29.63  20.12  22.95  2.91
Al  3.24  9.90  33.01  0.267  1.24  0.00

Si  5.27  0.95  61.88  0.000  0.61  1.44
S  0.00  814.35  79.16  0.532  69.07  20.41
Cl  0.00  0.00  0.00  14.249  0.00  0.00
Ca  9.76  0.25  14.35  0.719  1.71  2.22

Ti  1.29  0.15  1.69  0.004  0.00  0.10
V  0.27  0.17  0.00  0.000  2.88  0.00
Cr  0.21  0.04  0.10  0.002  0.00  0.04
Mn  0.31  0.00  0.04  0.006  0.00  0.25

Fe  33.46  0.75  19.67  0.142  1.40  5.34
Ni  0.00  0.00  0.00  0.001  2.38  0.29
Cu  1.53  0.28  0.50  0.048  0.06  0.53
Zn  1.36  0.78  0.00  0.000  0.00  8.99

Se  0.02  0.06  0.00  0.000  0.00  0.02
Br  0.19  0.25  0.08  0.026  0.05  0.17
Ba  3.57  0.85  1.85  0.120  0.27  0.53
Pb  1.99  0.70  0.97  0.037  0.44  0.73

a Values are ng/m3. Data analyzed were from the Harvard Chan School Boston Supersite; source apportionment results are described in Kioumourtzoglou 
and associates 2014.

Figure 10. Source apportionment of PM2.5 mass from PMF analysis that
generated the source contribution estimates for use in the source category–
specific health effects analysis in Simulation Study 3.
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through 2011. The correlations across factors in the PMF
solution were small to moderate; maximal correlation was
found between road dust and mobile source categories (r =
0.45). We then randomly generated data sets containing
source category–specific exposures by sampling days
during the period 1998–2011; and, using the estimated
source contributions from the PMF analysis, we subse-
quently generated health outcomes for a simulated sample
assuming that only one source category was associated
with adverse health effects. Specifically, for the kth source
on the ith day (Wki), we assumed Yi = �0 + �1Wki + εi. We
set �1 to be relatively large, such that if we were to fit a
regression model using the source contributions used to
simulate the responses, the power to detect the association
with the correct source category was 100%. We then ran a
BKMR analysis using as pollutants 14 constituent concen-
trations (Al, S, Ni, BC, Na, Cu, Zn, V, Ti, Ca, Mg, K, Cl, and
Si) and checked to see which pollutants were identified,
using the PIPs, as being associated with the health out-
come. Our a priori hypothesis was that one or more of the
pollutants serving as tracers for a given source category, as
characterized by high factor loadings for that constituent
on that category, would be identified as “included” in the
model by the proposed BKMR.

Results

For each of the six simulation scenarios corresponding
to health effects associated with a given pollution source
category (mobile, regional, crustal, sea salt, residual oil
combustion, and road dust), Figure 11 shows the distribu-
tion of the PIPs for the 14 constituents included in the anal-
yses. Overall, the distributions of the inclusion probabilities
for constituents thought to be tracers for a particular source

category assumed to generate health effects were shifted rel-
ative to the other constituents in the model. For instance,
for the scenario in which the mobile source category was
assumed to generate health effects, the median of the PIP
distribution for BC was > 0.9, whereas the medians of the
distributions of PIPs for all other constituents were < 0.5.
For the scenario in which the source category of regional
pollution was assumed to generate health effects, the
median of the PIP distribution for S was > 0.9, whereas the
medians of the PIP distributions for all other constituents
were < 0.2. For the scenario in which the sea salt source
category was assumed to generate health effects, the
median of the PIP distribution for Cl was > 0.5, whereas
the medians of the PIP distributions for all other constitu-
ents were < 0.10. For these three scenarios, each of the
three constituents has been identified as a strong tracer for
the corresponding source category (Clarke et al. 2000;
Nikolov et al. 2008).

For the scenarios with the crustal and residual oil com-
bustion source categories, the two highly correlated constit-
uents identified are both tracers for that source category; the
BKMR inclusion probabilities tended to split the weight of
evidence across the two relevant tracers. For instance, for
the scenario in which the crustal source category was as-
sumed to generate health effects, the distributions of the
PIPs for both Al and Si were shifted relative to those for the
other constituents included in the analysis; the median of
Al was 0.25 and of Si was 0.95; whereas the medians of the
PIP distributions for the other constituents were all < 0.10.
Similarly, for the scenario in which the residual oil combus-
tion source category was assumed to generate health effects,
the distributions of the PIPs for both V and Ni were shifted
relative to those for the other constituents.
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Figure 11. Histogram of the PIPs for each pollutant across 100 simulated data sets for six source categories (resulting from source apportionment analyses)
when health effects were generated from source contributions estimated from the Harvard Chan School Boston Supersite multipollutant data set. The
vector of exposure data z represents a set of 14 air pollution constituents (Al, S, Ni, BC, Na, Cu, Zn, V, Ti, Ca, Mg, K, Cl, Si).
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PM COMPOSITION AND BLOOD PRESSURE IN 
THE MOBILIZE STUDY

We used the BKMR model to evaluate the association
between short-term changes in PM2.5 composition and
dynamic BP responses to orthostatic challenge within the
context of the MOBILIZE Boston study, a prospective,
community-based cohort study of healthy aging subjects.
Previous work has described the design of the study and
associations between BP outcomes and short-term changes
in PM2.5 levels (Wellenius et al. 2012).

STUDY DESIGN

Briefly, between 2005 and 2008, the MOBILIZE study
recruited 748 men and women age 70 years or older who
were not institutionalized, were able to communicate in
English, resided within 5 miles (8.0 km) of the study clinic
at Hebrew SeniorLife, and were able to walk 20 feet (6.1 m)
without assistance. Individuals not planning to reside in
the study area for 2 or more years and those with terminal
diseases, severe vision or hearing impairment, or cognitive
impairment (defined by a Mini-Mental State Examination
score of < 18) were excluded. Wellenius and associates
(2012) have reported in detail the characteristics of the
study participants. All subjects provided written informed
consent upon enrollment. This analysis was approved by
the Institutional Review Boards at Hebrew SeniorLife and
Brown University.

A description of the BP measurement procedure is de-
scribed in detail elsewhere (Wellenius et al. 2012). Partici-
pants were asked to stand and, with the BP cuff kept at
heart level, measurements (both diastolic and systolic)
were repeated 1 and 3 minutes after both feet touched the
floor. Data from both a baseline and a follow-up visit were
used, resulting in a total of 1362 subject observations, in-
cluding two repeated measurements for most subjects
(82%). In this analysis we focused on outcomes defined as
DBP and SBP measurements 1 minute after standing.

We used ambient measurements of PM2.5 and its constit-
uents from the Harvard Chan School Boston Supersite
multipollutant data set. This monitoring station is located
less than 10 km from the study clinic site and less than 20
km from the residential address of any study participant.
We obtained hourly meteorologic data from the National
Weather Service station at Boston Logan Airport.

Wellenius and coworkers (2012) reported that standing BP
measurements were associated with PM2.5 mass averaged
over the previous 7 and previous 14 days before the BP mea-
surement. We applied the BKMR method to analyze the asso-
ciation between standing DBP or SBP and the 7-day moving

averages of PM2.5 constituent concentrations. Because some
days were missing PM2.5 composition data, the analytic data
set contained 1050 observations for 681 subjects.

STATISTICAL ANALYSIS

We used linear mixed models and a mixed-model exten-
sion of the BKMR model (equation 4) that handles longitu-
dinal data to evaluate the association of DBP and SBP each
with PM2.5 constituent concentrations. Subject-specific
random intercepts were included in all models to account
for the within-subject correlation among repeated measures
(baseline and follow-up visits) taken on the same subject.
Based on our previous work selecting relevant confounders
for inclusion in the model (Wellenius et al. 2012), we con-
trolled for age (natural cubic spline with 3 degrees of
freedom), sex, race (white versus other), smoking status
(never, former, or current), hypertension status (normoten-
sion, controlled hypertension, or uncontrolled hyperten-
sion), diabetes mellitus, body mass index (natural cubic
spline with 3 degrees of freedom), visit number, day of
week, ambient and dew-point temperatures (natural cubic
splines with 3 degrees of freedom each), season (sine and
cosine of each calendar day), and long-term temporal trends
(calendar day as a linear continuous variable).

Let BPit denote the standing blood pressure (either dia-
stolic or systolic) value for subject i at measurement occa-
sion t. We fit the model

where Niit, Cuit, Znit, Sit, Tiit, Mnit, and BCit represent the

7-day moving averages of Ni, Cu, Zn, S, Ti, Mn, and BC,
and xit contains variables that represent the confounders

listed above, for the tth measurement occasion for the i th

subject. The subject-specific terms  are inde-

pendent from εit. In the conventional frequentist KMR ap-

proach to estimating the parameters in equation (4), we
would refer to bi as the random subject-specific intercepts. In

the BKMR, all unknown parameters are treated as random
variables, so the distinction between fixed and random ef-
fects is not applicable. To complete the prior specification
for this longitudinal extension of the model, for computa-
tional convenience we reparameterized the model as

 and assigned a prior on �b of Gamma(100, 100).

In contrast to some of the other existing approaches to as-
sessing the effects of mixtures, the ease with which BKMR
can be extended to popular study designs that generate cor-
related data is a strength of the method.

 
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RESULTS

Based on the results from Simulation Study 1 suggesting
that one must choose thoughtfully the pollutants entered
into the kernel (because inclusion of two highly correlated
pollutants tends to decrease the inclusion probabilities of
both pollutants simultaneously), of the nine pollutants used
in Simulation Study 1, we removed K, Al, and Mg due to
their correlations with the remaining six pollutants,
removed Cl since it is not associated with a major pollution
source, and added Ti because it is thought to be a compo-
nent of road dust. In addition, we included Mn since explor-
atory analyses of the animal data from the Harvard Chan
School toxicologic BP canine study (reported later) sug-
gested it could be important, and a goal of this project was to
use the same set of PM2.5 constituents in analyses of both
the MOBILIZE and canine data.

In exploratory analyses of the linear associations between
standing BP and each of these seven pollutants (Ni, Cu, Zn,
S, Ti, Mn, and BC), we fit both one-pollutant and seven-pol-
lutant linear mixed-effects models, adjusted for the con-
founders listed in the previous section. Table 5 presents the
results for DBP and SBP. For DBP, results suggest that Cu, Ti,
and BC have the strongest univariate associations with the
outcome. As one might expect in a multipollutant model
with seven pollutants, some of which are moderately corre-
lated with one another, the strength of these associations
weakens. In the seven-pollutant model, Cu and BC are the
only two pollutants for which any evidence of an associa-
tion remains, and the estimated slopes for these two pollut-
ants decrease by 20% to 30%.

Also for DBP, Figure 12 displays the PIPs for the seven
pollutants from the BKMR fit. Results show BC and Cu to
be the two constituents with the highest PIPs. Accordingly,
Figure 13 presents the estimated bivariate exposure–
response surface  as a function of BC and Cu, evaluated
at the median levels of the other five pollutants. The left
panel of this figure presents an image plot of (Ni50, Cu,
Zn50, S50, Ti50, Mn50, BC), and the right panel plots three
cross-sections of this surface across the range of BC con-
centrations, taken at the 10th, 50th, and 90th percentiles of
the observed Cu distribution. The line styles of the cross-
sections in the image plot correspond to the exposure–
response curves depicted in the right panel. This figure
plots the exposure–response relationship only for points
within the range of the data in order to avoid extrapolating
the estimated relationships beyond that range. Figure 14
displays univariate associations between BC and DBP at
fixed levels of Cu, but with point-wise 95% credible inter-
vals added for each exposure–response association.

Figures 15 and 16 depict the same image plot and univar-
iate associations, but this time reversing the role of Cu and
BC; results show the association between DBP and Cu at
increasing levels of BC. Taken in total, the BKMR analyses
provided moderate evidence of an association between
standing DBP and 7-day moving averages of Cu and BC
concentrations.

For SBP, Figure 17 displays the PIPs for the seven pollut-
ants from the BKMR fit. Results show S to have the highest
inclusion probability; those for Ni and BC are essentially
tied for second highest. Accordingly, Figure 18 presents the
estimated bivariate exposure–response surface  as a func-
tion of S and Ni evaluated at the median levels of the other
five pollutants, again only for combinations of S and Ni
within the range of the observed data. Figure 19 adds 95%
credible intervals to the plots of the estimated SBP–S asso-
ciations. Cross-sections and associated 95% credible inter-
vals in the Ni direction at increasing levels of S showed no
association between SBP and Ni (not shown). Because the
inclusion probabilities for Ni and BC were essentially tied,
we also inspected the resulting image plots as a function of
S and BC, evaluated at the median values of the other five
pollutants (Figures 20 and 21). These plots reinforce the
evidence of a linear, additive effect of S, and cross-sections
in the BC direction showed no association between SBP
and BC (not shown).

Taken all together, these analyses suggest that the associ-
ations of DBP with Cu and BC and of SBP with S are linear
and additive. Therefore, the full generality of the Gaussian
kernel for the multidimensional exposure–response surface
was not required in this case; however, we would not have
known this without fitting the more general model. One
advantage of using the BKMRvs approach when the effects
are linear and additive is that the variable-selection compo-
nent of the method allows us to detect these linear and addi-
tive effects even when we enter a relatively large number of
pollutants in the model. That is, even in cases of linear and
additive effects, it appears that the BKMR model yields
more efficient estimates of the linear Cu exposure–
response function compared with the full seven-pollutant
linear mixed model (Table 5); this is likely due to the vari-
able-selection feature of BKMRvs that serves to minimize
the impact of the inclusion of unimportant pollutants in
the kernel function. This selection serves to decrease the
effective dimension of the multipollutant covariate vector,
leading to a more parsimonious model and therefore more
efficient effect estimates.

ˆ,h

ĥ

ˆ,h
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Table 5. Estimated Regression Coefficients, Standard Errors, and P Values from Linear Mixed Models Applied to DBP 
and SBP Data from the MOBILIZE Cohorta

Pollutant

Single-Pollutant Model Seven-Pollutant Model

  

 

 P Value   

 

 P Value 

DBP 
Ni 0.06 0.82 0.94 �0.79 0.91 0.39 
Cu 0.63 0.29 0.03 0.45 0.33 0.17 
Zn 0.61 0.46 0.19 0.19 0.61 0.76 
S 0.71 0.49 0.14 �0.11 0.63 0.85 
Ti 0.69 0.39 0.08 0.38 0.46 0.41 
Mn 0.03 0.50 0.96 �0.53 0.57 0.36 
BC 0.99 0.46 0.03 0.84 0.63 0.18 

SBP
Ni 1.23 1.53 0.42 1.02 1.70 0.55 
Cu 0.87 0.53 0.11 0.60 0.62 0.33 
Zn �0.43 0.87 0.62 �1.83 1.15 0.11 
S 1.80 0.91 0.05 1.63 1.17 0.17 
Ti 0.23 0.74 0.75 �0.28 0.87 0.75 
Mn �0.62 0.95 0.51 �0.68 1.07 0.53 
BC 1.14 0.86 0.19 1.11 1.18 0.35 

a The single-pollutant models used the 7-day moving average of each constituent’s concentration; the seven-pollutant model included all seven pollutants 
simultaneously.

�̂  ˆSE � �̂  ˆSE �

Figure 12. PIPs from BKMR analysis of DBP in the MOBILIZE data set,
using prior hyperparameters equal to those from a frequentist KMR fit.
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Figure 13. Image plot of  as a function of BC and Cu concentrations for DBP, evaluated at the median concentrations of the other five pollutants in the
model (Ni, Zn, S, Ti, Mn).

ĥ

Figure 14. Plot of  as a function of BC for DBP, and the associated 95% pointwise credible intervals, evaluated at increasing concentrations of Cu and the
median concentrations of the other five pollutants in the model (Ni, Zn, S, Ti, Mn).

ĥ



33

B.A. Coull et al.

33

Figure 15. Image plot of  as a function of Cu and BC concentrations for DBP, evaluated at the median concentrations of the other five pollutants in the
model (Ni, Zn, S, Ti, Mn).

ĥ

Figure 16. Plot of  as a function of Cu for DBP, and the associated 95% pointwise credible intervals, evaluated at increasing concentrations of BC and the
median concentrations of the other five pollutants in the model (Ni, Zn, S, Ti, Mn).
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Figure 17. PIPs from BKMR analysis of SBP in the MOBILIZE data set, using prior hyper-
parameters equal to those from a frequentist KMR fit.

Figure 18. Image plot of  as a function of S and Ni concentrations for SBP, evaluated at the median concentrations of the other five pollutants in the
model (Cu, Zn, Ti, Mn, BC).
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Figure 19. Plot of  as a function of S for SBP, and the associated 95% pointwise credible intervals, evaluated at increasing concentrations of Ni and the
median concentrations of the other five pollutants in the model (Cu, Mn, Ti, Zn, BC).

ĥ

Figure 20. Image plot of  as a function of S and BC concentrations for SBP, evaluated at the median concentrations of the other five pollutants in the
model (Cu, Mn, Ti, Zn, Ni).

ĥ

Figure 21. Plot of  as a function of S for SBP, and the associated 95% pointwise credible intervals, evaluated at increasing concentrations of BC and the
median concentrations of the other five pollutants in the model (Cu, Mn, Ti, Zn, Ni).
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PM COMPOSITION AND BLOOD PRESSURE IN THE 
HARVARD T.H. CHAN SCHOOL CANINE STUDY

To illustrate the applicability of the BKMRvs and BKMRhvs
methods to animal toxicologic studies, we analyzed hemody-
namic data from the CAPs toxicologic study conducted in Dr.
John Godleski’s laboratory. Bartoli and colleagues (2009) re-
ported effects of CAPs exposure, as well as associations of
continuous measures of PM2.5 mass, BC concentrations, and
particle number, with several hemodynamic health out-
comes, as detailed below. In this report we follow up these
results by applying BKMRvs and BKMRhvs to assess the ef-
fects of CAPs composition on the same outcomes.

STUDY DESIGN

The protocol for the study that generated these data has
been described in detail previously (Bartoli et al. 2009). To
evaluate the acute effects of ambient PM on arterial blood
pressure, thirteen female mixed-breed dogs were repeatedly
exposed for 5 hours to either CAPs or filtered air in a cross-
over protocol. For convenience, animals were exposed in
pairs in which one animal was assigned to CAPs exposure
and the other to filtered air. In most instances, exposure
days were separated by at least 7 days during which no
exposures took place. Blood pressure data were available
from these thirteen animals exposed to filtered air on 63
days and to CAPs on 55 days. The range of repeated expo-
sures per dog was unbalanced across the 13 animals and
ranged from 4 to 22.

Additional experiments were conducted with prazosin, an
�-adrenergic antagonist, with 8 of the 13 animals (n = 15 fil-
tered air exposures, 16 CAPs exposures; the specific proce-
dures for administration are outlined in Bartoli et al. 2009).
Furthermore, 11 out of 13 dogs had some blood pressure
readings after an occlusion induced by a balloon occluder
implanted in the left anterior descending coronary artery
(Wellenius et al. 2003, Bartoli et al. 2009). These occlusions
had been induced to produce reversible ischemia, and BP
and heart rate measurements had been recorded before and
after the occlusions. Thus, in our analyses, we designated
whether an exposure occasion within a given dog was under
baseline, post-occlusion, or post-prazosin conditions.

Arterial BP was monitored and recorded continuously
throughout exposures (DSI Dataquest ART 3.1; Data Sci-
ences). SBP, DBP, mean pressure, pulse arterial pressure,
and heart rate were derived from the arterial BP recordings.
Rate–pressure product (R � P), a standard index of myo-
cardial metabolic demand, was calculated as the product
of heart rate and SBP (Rooke and Feigl 1982). Bartoli and
colleagues (2009) reported statistically significant effects
of exposure to CAPs, continuous concentrations of PM2.5

mass, BC, and particle number on multiple hemodynamic
outcomes. Specifically, after controlling for animal, week,
and time within a dog–exposure sequence, they reported
effect estimates (SE) for CAPs exposure (yes vs. no) with
each of the following: SBP = 2.7 (1.0) mmHg; DBP = 4.1
(0.8) mmHg; mean pressure = 3.7 (0.8) mmHg; pulse pres-
sure = �1.7 (0.7) mmHg; heart rate = 1.6 (0.5) bpm; and
R � P (bpm � mmHg) = 539 (110).

EXPOSURE TECHNOLOGY AND CHARACTERIZATION

The characteristics of the Harvard Ambient Particle
Concentrator (HAPC) and exposure chamber are well docu-
mented (Godleski et al. 2000; Sioutas et al. 1995). The HAPC
concentrates ambient fine PM with an aerodynamic diam-
eter between 0.15 and 2.5 µm to approximately 30 times
ambient levels with minimal effects on the particle-size
distribution or chemical composition. Particles with diam-
eter > 2.5 µm are removed upstream of the HAPC, whereas
particles with diameter < 0.15 µm and ambient gases are
neither enriched nor excluded. CAPs mass concentration
was measured continuously using a tapered element oscil-
lating microbalance (TEOM Series 1400a; Rupprecht &
Patashnick, East Greenbush, NY); BC concentration was
measured by Aethalometer (Model AE-9; Magee Scientific,
Berkeley, CA); and CAPs particle number concentration was
measured using a condensation particle counter (CPC
Model 3022A; TSI, Shoreview, MN), as previously
described (Godleski et al. 2000). In addition, each CAPs
exposure was measured for sulfate (SO4

2�) via ion chroma-
tography; elemental carbon (EC) and organic carbon (OC)
determined with a thermal and optical reflectance method;
and elemental concentrations (in µg/m3) were collected via
XRF for Al, As, Ba, Br, Ca, Cd, Cl, Cr, Cu, Fe, K, Mn, Ni, Na,
Pb, S, Se, Si, Ti, V, and Zn.

STATISTICAL ANALYSIS

For the analyses conducted as part of this project, for each
outcome (DBP, SBP, mean pressure, pulse pressure, heart
rate, and R � P) we averaged all 5-minute averages from a
given dog–exposure to obtain a single value for that dog for
that exposure. Constituent concentrations for all filtered air
exposures were assigned a value of zero. After removing
several outliers (defined as being more than six SDs above
the mean value) in the constituent concentrations, the data
set consisted of n = 142 dog–exposures for 13 animals.

Because of the longitudinal crossover design of the study,
we used the same mixed-model extension of the BKMRvs
(outlined in the analysis of the MOBILIZE data) that
included random effects. In order to make qualitative com-
parisons to the epidemiologic findings from the MOBILIZE
analyses, we fit a model using the same pollutants as in that
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analysis: Ni, Cu, Zn, S, Ti, Mn, and BC (M = 7). Specifically,
let Yit denote a given outcome (DBP, SBP, pulse, heart rate,
or R � P) for animal i averaged over the 5-hour exposure at
exposure occasion t. For each outcome separately, we
fitted the model

where, again, the value of any given constituent in a fil-
tered-air exposure combination i and t was equal to zero;
and xit = [I(post-occlusion)it, I(post-prazosin)it, I(CAPs)it]⊤
represents a 3 � 1 vector of dummy variables to indicate
whether at exposure occasion t, animal i was exposed post-
occlusion or post-prazosin administration and whether
exposure was to CAPs or to filtered air.

In addition, in previous work (Bartoli et al. 2009) all out-
comes exhibited an effect of CAPs (binary yes/no). An
issue that arises in such cases is that, because all filtered
air exposures are assigned concentration values of zero for
all constituents, most PM2.5 constituents exhibit associa-
tions with each outcome given the high collinearity
between CAPs and each constituent concentration. That is,
it is possible that differences between exposure groups,
and not an exposure–response between concentration and
outcome within an exposure group, drive an association
between an outcome and a concentration. (See Coull et al.
2011 for a detailed discussion of this point.) Accordingly,
we also controlled for an overall effect of CAPs exposure
while estimating the association between an outcome and
constituent concentrations among animals in the exposed
(CAPs) group.

This is not unlike well-established methods to estimate
the effects of smoking (among never, former, and current
smokers) in epidemiologic analyses. Such methods typi-
cally include both an indicator term for former and current
smokers (which reflects that some baseline effect of any
exposure exists) and the number of cigarettes smoked by a
current smoker (which reflects the effect of the amount of
current exposure). As in the MOBILIZE analyses, we

assumed , and the subject-specific intercepts bi

were independent of residual errors εit.

We also directly compared the BKMRvs and BKMRhvs
approaches when applied to a large number of correlated
pollutants. Specifically, we fit the model

where zit contained the M = 13 constituents used in Simu-
lation Study 2 (i.e., zit = [Alit, Siit, Tiit, Cait, Kit, Cuit, Mnit,
Niit, Vit, Znit, Sit, Clit, BCit]) and xit = [I(post-occlusion)it,
I(post-prazosin)it, I(CAPs)it]T contained the same variables

used in the M = 7 analysis of the canine data. We began
analyses with the Simulation Study 2 pollutant groups of
the 13 constituents: S1 = Al, Si, Ti, and Ca; S2 = Ni, V, and
Zn; S3 = S; S4 = BC; S5 = Cu; S6 = K; S7 = Cl; and S8 = Mn.
However, because in this small subsample of days, K, Cu,
and Mn were also highly correlated with Al, Si, Ti, and Ca,
we merged groups S1, S5, S6, and S8  to form a new group
S1 (all pair-wise correlations in this new S1 were > 0.76).
This S1 group of elements has been documented to collec-
tively represent pollution from road dust and crustal
source categories in the Boston area (Clarke et al. 2000).
Therefore, the final groups for this analysis were S1 = Al,
Si, Ti, Ca, K, Cu, and Mn; S2 = Ni, V, and Zn; S3 = S; S4 =
BC; S5 = Cl.

RESULTS

Component-Wise Variable Selection on a Subset of 
Pollutants

As done for the analysis of the MOBILIZE data, we first
present results from standard mixed-model analyses. That
is, we fit one-pollutant versions of model (10) and multipol-
lutant models containing linear functions of all seven
chosen constituents; then we applied the BKMRvs and
BKMRhvs models. In conducting all three steps of this
strategy, after controlling for an overall CAPs effect, pre-vs-
post occlusion, and prazosin exposure, no evidence was
found of effects of PM2.5 composition on SBP, DBP, mean
pressure, pulse pressure, or R � P (data not shown). We did
find, however, strong evidence of an effect of the multipol-
lutant exposure on heart rate. We therefore focus on the
results for this outcome.

Table 6 presents the results from the single- and seven-
pollutant linear mixed models. Results from both analyses
provide strong evidence of an exposure–response associa-
tion between Mn concentration and heart rate. Because
these models assume linear and additive associations
between the response and the individual constituent con-
centrations, we checked this assumption in two ways.
First, we fit model (10) without the exposure term h(Niit,
Cuit, Znit, Sit, Tiit, Mnit, BCit) and plotted the residuals
against Mn concentration. The resulting residual plot
(shown in Figure 22 with a smoothed local regression
[LOESS] fit added to reflect the degree of linearity) suggests
that the linearity assumption is plausible for this heart rate–
Mn association.

Second, we fit the mixed BKMRvs model in equation (10).
Figure 23 shows the PIPs of variables for the seven constitu-
ents. These probabilities were calculated while taking as the
hyperparameters of the Gamma component of the mixture
prior for rm values estimated by the frequentist KMR ap-
proach of Liu and colleagues (2007) divided by 10. Figure 24
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shows how these inclusion probabilities change if one uses
hyperparameter values equal to half those suggested by the
frequentist KMR approach. A comparison of the two sets of
estimates (Figures 23 and 24) shows that the relative rank-
ings of the inclusion probabilities are insensitive to this
change, although the absolute magnitude of the probabilities
are increased as the hyperparameter values are decreased.

The results of this analysis confirm that, under very general
assumptions for the effect of the multipollutant mixture, the
evidence is strongest for a Mn effect, and Zn is estimated to
have a slightly lower probability of inclusion.

Figure 25 shows the bivariate exposure–response rela-
tionship; points were deleted from the image if they were
beyond the range of the data. The results suggest a linear

Table 6. Estimated Regression Coefficients, Standard Errors, and P Values from Linear Mixed Models Applied to Heart 
Rate Data from the Harvard Chan School Canine Studya

Pollutant

Single-Pollutant Model Seven-Pollutant Model

  

 
 P Value   

 
 P Value 

Ni �0.17 0.87 0.84 �1.25 1.01 0.22
Cu 2.12 0.99 0.03 0.88 1.74 0.62
Zn 0.53 2.08 0.80 �3.41 2.58 0.19

S �0.35 0.65 0.59 �0.13 0.83 0.88
Ti 1.82 0.83 0.03 �0.11 1.29 0.93
Mn 2.77 0.99 0.006 3.59 1.80 0.05
BC 0.43 0.89 0.63  0.27 1.16 0.81

a The single-pollutant models used the 7-day moving average of each constituent’s concentration; the seven-pollutant model included all seven pollutants 
simultaneously.

�̂  ˆSE � �̂  ˆSE �

Figure 22. Residuals from the linear mixed model that contained the
confounders and random effects only (no exposure terms) plotted as a
function of Mn, as applied to heart rate in the Harvard Chan School
canine data.

Figure 23. PIPs for the pollutants in the z vector from BKMR analysis of
the Harvard Chan School canine data for the CAPs effects on heart rate,
using prior hyperparameters equal to those from a frequentist KMR fit
divided by 10.
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exposure–response relationship between Mn concentrations
and heart rate at all levels of Zn. Due to the smaller number
of data available in the canine study compared with the
MOBILIZE data set, Figure 26 shows cross-sections of the
image in Figure 25 calculated at the 25th, 50th, and 75th
percentiles (compared with 10th, 50th, and 90th used with
the MOBILIZE data) of Zn; corresponding point-wise 95%
credible intervals around these conditional exposure–
response relationships (conditional at the other six constitu-
ent concentrations being set at specific values) are shown;
the values of Zn are demarcated by the horizontal lines in
the image plot shown in Figure 25. Taken together, these
analyses provide strong evidence of an effect of Mn concen-
tration on heart rate and the effect appears to be linear with
the exposure concentration and relatively constant across
concentrations of the other constituents.

Component-Wise Versus Hierarchical Variable Selection

In the analyses that used a larger number of pollutants
(M = 13), we found that, although each pollutant had a PIP of
< 0.4 under the BKMRvs approach, group S1 had a PIP of
0.79 under the BKMRhvs approach (Figure 27). Given the
strong correlations among pollutants in group S1 (Al, Si, Ti,
Ca, K, Cu, and Mn), the data did not strongly favor one con-
stituent over the others as driving the observed association
between heart rate and this group of constituents (the condi-
tional inclusion probabilities ranged from 0.04 for Cu to 0.36
for Si). In this case, our strong preference is the two-level

Figure 24. PIPs for the pollutants in the z vector from BKMR analysis of
the Harvard Chan School canine data for the CAPs effects on heart rate,
using prior hyperparameters equal to half those used for Figure 23.

BKMRhvs approach, because it accurately conveys that a
group of constituents is associated with the outcome of in-
terest, but that the data cannot definitively identify a sin-
gle constituent as driving this association. In contrast, a
single-level variable-selection approach (BKMRvs) gives
the mistaken impression that no association exists be-
tween the outcome and the mixture.

Figure 25. Plot of  as a function of Mn and Zn for heart rate, evaluated at the median concentrations of the other five pollutants in the model (Ni, Cu, S,
Ti, BC).

ĥ



4040

Statistical Methods for the Effects of Multiple Air Pollutants 

Figure 26. Plot of  as a function of Mn for heart rate, and the associated 95% pointwise credible intervals, evaluated at the 25th, 50th, and 75th percen-
tiles of Zn and the median concentrations of the other five pollutants in the model (Ni, Cu, S, Ti, BC).

ĥ

Figure 27. PIPs for the toxicologic canine data estimated from BKMRvs (top) and BKMRhvs (bottom). The upper panel shows the pollutant-specific PIPs.
The lower left panel shows the source category–specific PIPs; the lower right panel shows conditional PIPs for the pollutants in group S1. Note that the
scales on the y axes differ.
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DISCUSSION

We have proposed a new approach to estimating the
health effects of multipollutant mixtures while simultane-
ously identifying which of the exposures are driving the
association. We conducted three simulation studies to
demonstrate the operating characteristics of BKMR, both
in terms of identifying important pollutants and in its
ability to estimate the form of the exposure–response rela-
tionship. Previously, KMR has been applied to genetic
data, in which a Garrote kernel has been used to identify
particular genes associated with a health outcome while
allowing for gene–gene interaction within a frequentist
KMR treatment of the model (Maity and Lin 2011). This
approach could be applied to environmental mixtures;
however, because it tests each pollutant sequentially, to
estimate the health effects of the mixture one would then
need a second-stage model that includes only the pollut-
ants found to be important (e.g., pollutants with P value
< 0.05). Our simulations suggest that, particularly in set-
tings in which pollutant concentrations are highly corre-
lated, the BKMR did a better job of fully reflecting the
uncertainty associated with identifying the important pol-
lutants within the mixture and propagating this uncertainty
through the estimation of health effects. By considering a
Bayesian paradigm, we were able to perform variable
selection and estimation in one analytic stage, and could
therefore accurately capture the uncertainty associated
with the final health effect estimates.

This work provides several contributions to the kernel
regression literature. First, to our knowledge this is the first
time KMR methods have been used for estimating the health
effects of multipollutant mixtures. Unlike previous studies
that focused mostly on variable selection and prediction,
this project’s major goal was to estimate the exposure–
response function. Second, we developed a novel hierar-
chical variable-selection approach within BKMR that is
able to account for the structure among pollutants in the
mixture and systematically handle highly correlated expo-
sures. Third, we conducted simulation studies based on
real multipollutant data sets, which allowed for a tailored
evaluation of the performance of BKMR in realistic sce-
narios with complex correlation structures. Finally, our
work adds to the literature more generally in terms of
variable-selection methods because the proposed methods
are a viable alternative for variable selection in longitu-
dinal and other correlated data settings, for which few
methods are readily available (the R package lmmlasso
being one notable exception).

One of the main goals of this project was to analyze both
epidemiologic and toxicologic data on the health effects of

air pollution mixtures focusing on a common mechanism
(hemodynamics) and using a common statistical method for
data obtained in the same geographic location. We analyzed
BP endpoints in the data from the Boston-based MOBILIZE
study and from the Harvard Chan School canine study. The
results from two sets of analyses did not show a common set
of effects across the same endpoints.

The MOBILIZE analyses yielded evidence of a linear
and additive association between BC and Cu exposures for
standing DBP, and a linear association of S with standing
SBP. Cu and BC are used as markers of traffic contributions
to air pollution and S is used as a marker of power plant
emissions or regional (or long-range transported) air pollu-
tion. Therefore, these analyses suggest that emissions from
these three source categories were most strongly associ-
ated with hemodynamic responses in this cohort.

In contrast, in the Harvard Chan School canine study,
we did not observe any associations between DBP or SBP
and any elemental concentrations (after controlling for an
overall effect of CAPs exposure). Instead, we observed
strong evidence of an association between Mn and heart
rate in which heart rate increased linearly with increasing
concentrations of Mn. According to the PMF source ap-
portionment analyses of the XRF data from the Harvard
Chan School Boston Supersite (Table 4), which is located
next to the Harvard Chan School animal exposure facili-
ties, Mn loads on the factors that represent the mobile and
road dust source categories, both of which are also related
to traffic. The results of the BKMR analyses were similar
to those from existing linear mixed-model analyses of
these data in that the effect had a linear and additive form
that is straightforward to detect with standard statistical
methods.

There are several possible reasons why the data analyses
did not provide any evidence of nonlinearities or interac-
tions among PM constituents in these studies. The signals
may have been too small and the data sufficiently noisy
that it was difficult to pick up any nonlinearities or inter-
actions that were in fact present. Or it may be that for the
MOBILIZE and CAPs toxicologic applications considered
here, the true exposure–response function is linear and
additive. We note that the BKMR method has been able to
detect nonlinearities and interactions in other multipol-
lutant settings, in particular that of metal mixtures and
neurodevelopment (as measured in cord blood for infants;
Bobb et al. 2014).

We also note that BKMR could be applied to data for expo-
sures to other air pollution mixtures, such as particles and
gases, that may also interact with temperature or other cli-
matic factors. We therefore believe there is value in formu-
lating methods that may allow for general exposure–response
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associations that may arise in several environmental settings
where mixtures of pollutants exist. We could then assess
whether evidence exists in a particular data set to support
these associations. We may not find such evidence in any
given application, but we feel this is preferable to an
approach that assumes a priori that such general exposure–
response associations are not present.

We have R scripts available for running the proposed
BKMR analyses, and are currently building an R package
that will make the methods widely available. The factor
driving the computational complexity of the proposed
approaches is the number of observations in the analysis,
since the kernel matrix is n � n (where n is the number of
observations). In this work we were able to easily fit the
small data set from the toxicologic study; and although it
took a couple of days, we were able to apply the model to
the larger MOBILIZE study data set with our current com-
puting resources. Therefore, for large cohorts or large time-
series studies involving tens to hundreds of thousands of
observations, computation based on the model-fitting algo-
rithms as currently developed is not feasible. The develop-
ment of computationally fast methods for big data sets is
an area we are actively pursuing. It will also be of interest
to extend the Bayesian fitting algorithms to the case of
non-normal outcomes, such as binary, count, and time-to-
event endpoints. We will include the resulting algorithms
into the R package that we are building as part of this
project as they become available.

Beyond the benefits of the Bayesian paradigm for fully
accounting for the uncertainty in estimating the health
effects of the mixture, BKMR has several features that may
be particularly appealing for analyzing multipollutant
mixtures, which will be topics of future research by our
group. One feature, although not given as a specific aim of
this research project, is that the method could be extended
to quantify evidence of (1) an overall effect of the mixture,
or (2) interactions among the pollutants in the mixture.
That is, it is of interest to compare the general model
(equation 4), the additive model h(zi1,…,ziM) = h1(zi1) +
h2(zi2) + … + hM(ziM), and the null model h(zi1,…,ziM) = 0.
At the current time, one could implement existing fre-
quentist solutions developed in genomic applications to
test the null hypothesis h = 0 (Liu et al. 2007) against the
general model (equation 4), but to our knowledge compar-
ison between the general model and the additive model is
an open problem.

Another extremely useful extension of the BKMR model
would be to have it accommodate exposure covariates that
involve measurement error. Such error could arise in several
contexts, including but not limited to (1) known measure-
ment error in the measured concentrations, and (2) the use of

location-specific exposure measures that are themselves
estimates from a spatiotemporal exposure model. (Such
models are designed to address the fact that the measured
concentrations are recorded at air monitoring locations
that are different from the locations at which the health
endpoints for study subjects are measured [Gryparis et al.
2009; Szpiro et al. 2011]). One approach to accommo-
dating measurement errors that arise from such scenarios
could treat each constituent concentration zim as a random
variable in the Bayesian analysis, and specify a prior dis-
tribution for each measured value with standard deviation
set as equal to the measurement uncertainty reported for
that measurement. In cases in which the exposure esti-
mates are outputs from a spatial exposure model, the prior
distribution for each of the exposure variables (zi1,
zi2,…,ziM) for subject i can be taken to be the interim mul-
tivariate posterior distribution of these missing exposures,
given the observed data (Gryparis et al. 2009).
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HEI QUALITY ASSURANCE STATEMENT

The conduct of this research project was subjected to
independent quality assurance (QA) oversight by Abt Asso-
ciates. The audits were led by Dr. Sue Greco, who has over
15 years of experience in human health risk assessment of
PM2.5. The QA oversight consisted of a First QA Audit
(focused on organizational structure; quality of air pollu-
tion, toxicologic, and human health data; and protection of
animals and human subjects) and a Final QA Audit
(focused on the Investigators’ Final Report). The dates of
the QA audits and activities are summarized below. Both
audits were conducted in Boston, MA, at the Harvard Chan
School and the Beth Israel Deaconess Medical Center
(BIDMC), with follow up questions by telephone and
email.

January 17–18, 2013. First QA Audit conducted on-site at 
the Harvard Chan School and BIDMC

This “readiness review” audit was intended to review
the standard operating procedures and data management
practices used in the research to ensure that these proce-
dures were followed consistently by all members of the
research team. The auditors met with Dr. Coull and team
members (Mittleman, Godleski, Wellenius, Bobb, and
Diaz) at the Harvard Chan School or BIDMC. All data for
this simulation study had been collected previously under
other grants. The auditors observed relevant IRB docu-
ments from the Harvard Chan School, BIDMC, and Brown
University (Dr. Wellenius’ affiliation) for the MOBILIZE
human blood pressure data. The animal protocol was
closed at the start of 2013, but the researchers could still
use the previously collected dog blood pressure data in the
analyses. The auditors found that all study team members
were well-qualified to conduct the research and that suffi-
cient levels of oversight had been implemented in the
study.

May 23, 2014. Final QA Audit conducted on-site at the 
Harvard Chan School

In the Final QA Audit, the researchers were asked to
indicate how approximately 12 tables and figures from the
August 2013 version of the Investigators’ Final Report

were generated, starting with the raw data. (The tables and
figures were preselected.) The researchers who created the
tables and figures were Drs. Coull, Bobb, and Kioumourtz-
oglou. Since Dr. Kioumourtzoglou was out of the country,
the auditors followed up with her separately for one table
and figure related to source apportionment (see June 19
entry). For the other tables and figures, Drs. Coull and
Bobb indicated where the raw data were located, how the
data were processed, and how the final tables and figures
were generated. The auditors visually inspected the model
output to ensure that it matched what was in the Investi-
gator’s Final Report; no issues impacting the study conclu-
sions were identified. The auditors recommended that all
files pertaining to this research effort be archived under
one HEI project folder once the Investigators’ Final Report
was finalized.

June 19, 2014. Final QA Audit completed by 
teleconference

A telephone meeting was held with the auditors and Dr.
Kioumourtzoglou to discuss the source apportionment
table and figure she had generated for the Investigators’
Final Report. No issues were identified with the genera-
tion of the table and figure.

Overall, the auditors found the researchers to be well-
organized and cooperative during the audits. The study
procedures, analysis steps, and data storage were system-
atic, consistent, and well-designed to manage the various
data and analytical streams necessary to complete the
study.

Sue Greco, Sc.D.
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APPENDIX A. ESTIMATION AND PREDICTION

Here we detail the MCMC sampler used to fit BKMR
with variable selection. 

In order to apply a standard Gibbs sampler in which
samples are generated from the full conditional distribu-
tions of each of the parameters, the augmented kernel

matrix KZ,r (equation 6 in the main report) must be
inverted at each iteration of the sampler, which can lead to
numeric instability if the kernel is nearly singular (see dis-
cussion in Zou et al. 2010). This problem can be avoided
by integrating out h, and obtaining posterior samples from
the marginal posterior distribution of the remaining
parameters.

SUMMARY OF BKMR AND VARIABLE SELECTION
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MCMC SAMPLER

Integrating over � (which is not of interest) and h and
applying the prior distributions specified in the Prior
Specification section under Kernel Machine Regression in
the main report, the posterior is given by

where V�,Z,r = In + �KZ,r, and KZ,r is the augmented kernel
matrix for variable selection (which depends on Z and r)
defined in equation (6) in the main report.

We updated � and 	2 using separate Gibbs steps, with
full conditionals given by 

where WSS�,�,r is the weighted sum of squares

We updated � using a Metropolis-Hastings step, where the
full conditional is given by

We used a Gamma proposal distribution with mean set to
the value of � from the previous iteration and variance
tuned to produce a good acceptance rate.

Because sampling individually from the full condi-
tionals of r and � leads to a reducible Markov chain, we
instead sampled (r, �) jointly by adapting the Metropolis-
Hastings algorithm from Sha and colleagues (2004). To
obtain a sample at the sth iteration of the MCMC, this pro-
cedure generated a proposal (r*, �*) by randomly selecting
one of the following moves: 

1.  Randomly select m � {1,…,M } and set .

If , set ; else, generate the proposal  from a

proposal distribution with density q1(·).

2. Among the components of �(s�1) = 1, randomly

choose one (say ) and generate the corresponding 

from a proposal distribution with density 

We considered q1 to be a Gamma density with mean 1

and SD 2, and q2 to be a Gamma density with mean set to

the value at the previous iteration,  and variance

tuned to have a good acceptance rate for those iterations

where move 2 (above) was selected.

ESTIMATING SUBJECT-SPECIFIC HEALTH EFFECTS

To obtain posterior samples of hi, which represents the
subject-specific association between exposure to the envi-
ronmental mixture and health, first note that the posterior
density f (h, �, 	2, �, r, � | y, X, Z) can be decomposed in
the usual way as f (h | �, 	2, λ, r, �, y, X, Z) � f (�, 	2, �, r,
�| y, X, Z), where the conditional distribution of h is given
by

Therefore for each sample [�(s), 	2(s), �(s), r(s), �(s)] gener-
ated from the marginal posterior in equation (12) with our
MCMC sampling algorithm, we generated a sample h(s)

from its full conditional equation (13).

PREDICTING HEALTH EFFECTS AT NEW EXPOSURE 
PROFILES

A critical aim in analyzing the health effects of environ-
mental mixtures is to estimate (and make visible) the expo-
sure–response surface. This entails not only estimating hi =

h(zi) at the observed data points, but also predicting h at a

collection of unobserved exposure profiles, .

Let Znew be the P � M design matrix (with rows) of new

exposure profiles, and let denote

the desired predictions. In the mixed-model representation
of KMR, we can consider the joint distribution of the
observed and new exposure profiles as

where KZ,r denotes the augmented kernel matrix defined in

equation (6), is the n � P matrix with (i,j )-element
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matrix with (i,j)-element 

Following routine calculations, the conditional posterior
distribution of hnew is given by

In theory, we could obtain predictions by generating
hnew from its conditional distribution and computing the
mean and variance of the posterior samples. However,
because, in practice, a large number of predictions are typ-
ically needed (e.g., to plot cross-sections of the estimated
exposure–response surface on a grid of points), this posterior
simulation can be very computationally expensive in that it
requires repeated simulations from a high-dimensional
multivariate normal distribution. Therefore, we propose to
approximate the posterior mean (variance) of hnew as its
conditional posterior mean (variance) evaluated at the pos-
terior mean of the other parameters.
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Mn manganese

Na sodium

Ni nickel

Pb lead

S sulfur

Sb antimony

Se selenium

Si silicon

Sm samarium

Sn tin

Sr strontium

Te tellurium

Ti titanium

Tl thallium

V vanadium

W tungsten

Y yttrium

Zn zinc

Zr zirconium

STATISTICAL NOTATION

Yi health outcome

 mean of health outcome Yi

zi an M � 1 vector of pollutant concentrations 
corresponding to observation i 

xi a q � 1 vector of variables containing infor-
mation on potential confounders 

h(·) unknown multivariate exposure–response 
function

K(z,z�) kernel function quantifying the difference 
between z and z�

n number of observations

M number of pollutants in model

Q number of pollutants associated with the 
health outcome

� regression coefficients for confounders

bi subject-specific random effects in longitu-
dinal mixed effects models

 subject-specific random effects variance

	2 residual variance

� spatial correlation parameter in Gaussian 
kernel function


 variance of the kernel-based observation-
specific random effects

rm pollutant-specific weight in the BKMRvs 
model

�m indicator variable reflecting whether pol-
lutant m is included in the model

�m posterior probability (given the data) that 
pollutant m is included in the health 
effects model

Sg group g of pollutants formed for the 
BKMRhvs model

�g indicator variable reflecting whether group 
g of pollutants is included in the BKM-
Rhvs model

 vector of conditional indicator variables 
reflecting which component within group 
g should be included in the model, condi-
tional on group g being included in the 
model

KZ,r n � n kernel matrix for variable selection 

with (i,j)-element 

ar,br user-defined hyperparameters for the posi-
tive, Gamma portion of the mixture vari-
able selection prior for rm

� prior probability of variable inclusion, 
common to all pollutants

a�,b� user-defined hyperparameters for Gamma 
distribution prior for � ≡ 
	�2

a	,b	 user-defined hyperparameters for Gamma 
distribution prior for 	�2

a�,b� user-defined hyperparameters for beta dis-
tribution prior for �
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Part 2. Development of Enhanced Statistical Methods for Assessing 
Health Effects Associated with an Unknown Number of Major Sources
of Multiple Air Pollutants
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ABSTRACT

A major difficulty with assessing source-specific health
effects is that source-specific exposures cannot be mea-
sured directly; rather, they need to be estimated by a
source-apportionment method such as multivariate
receptor modeling. The uncertainty in source apportion-
ment (uncertainty in source-specific exposure estimates
and model uncertainty due to the unknown number of
sources and identifiability conditions) has been largely
ignored in previous studies. Also, spatial dependence of
multipollutant data collected from multiple monitoring
sites has not yet been incorporated into multivariate
receptor modeling. The objectives of this project are (1) to
develop a multipollutant approach that incorporates both
sources of uncertainty in source-apportionment into the
assessment of source-specific health effects and (2) to
develop enhanced multivariate receptor models that can
account for spatial correlations in the multipollutant data
collected from multiple sites.

We employed a Bayesian hierarchical modeling frame-
work consisting of multivariate receptor models, health-ef-
fects models, and a hierarchical model on latent source
contributions. For the health model, we focused on the

time-series design in this project. Each combination of
number of sources and identifiability conditions (addi-
tional constraints on model parameters) defines a different
model. We built a set of plausible models with extensive
exploratory data analyses and with information from pre-
vious studies, and then computed posterior model proba-
bility to estimate model uncertainty. Parameter estimation
and model uncertainty estimation were implemented si-
multaneously by Markov chain Monte Carlo (MCMC*)
methods. We validated the methods using simulated data.
We illustrated the methods using PM2.5 (particulate matter
� 2.5 µm in aerodynamic diameter) speciation data and
mortality data from Phoenix, Arizona, and Houston, Texas.
The Phoenix data included counts of cardiovascular deaths
and daily PM2.5 speciation data from 1995–1997. The Hous-
ton data included respiratory mortality data and 24-hour
PM2.5 speciation data sampled every six days from a region
near the Houston Ship Channel in years 2002–2005. We
also developed a Bayesian spatial multivariate receptor
modeling approach that, while simultaneously dealing
with the unknown number of sources and identifiability
conditions, incorporated spatial correlations in the multi-
pollutant data collected from multiple sites into the esti-
mation of source profiles and contributions based on the
discrete process convolution model for multivariate spa-
tial processes. This new modeling approach was applied to
24-hour ambient air concentrations of 17 volatile organic
compounds (VOCs) measured at nine monitoring sites in
Harris County, Texas, during years 2000 to 2005.

Simulation results indicated that our methods were
accurate in identifying the true model and estimated
parameters were close to the true values. The results from
our methods agreed in general with previous studies on
the source apportionment of the Phoenix data in terms of

This Investigators’ Report is one part of Health Effects Institute Research
Report 183, which also includes a Critique by the Health Review Committee
and an HEI Statement about the research project. Correspondence concern-
ing the Investigators’ Report may be addressed to Dr. Eun Sug Park, Texas
A&M Transportation Institute, The Texas A&M University System, 3135
TAMU, College Station, TX 77843-3135; e-park@tamu.edu.

Although this document was produced with partial funding by the United
States Environmental Protection Agency under Assistance Award CR-
83467701 to the Health Effects Institute, it has not been subjected to the
Agency’s peer and administrative review and therefore may not necessarily
reflect the views of the Agency, and no official endorsement by it should be
inferred. The contents of this document also have not been reviewed by pri-
vate party institutions, including those that support the Health Effects Insti-
tute; therefore, it may not reflect the views or policies of these parties, and
no endorsement by them should be inferred.

* A list of abbreviations and other terms appears at the end of the Investi-
gators’ Report.
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estimated source profiles and contributions. However, we
had a greater number of statistically insignificant find-
ings, which was likely a natural consequence of incorpo-
rating uncertainty in the estimated source contributions
into the health-effects parameter estimation. For the
Houston data, a model with five sources (that seemed to
be Sulfate-Rich Secondary Aerosol, Motor Vehicles,
Industrial Combustion, Soil/Crustal Matter, and Sea Salt)
showed the highest posterior model probability among the
candidate models considered when fitted simultaneously
to the PM2.5 and mortality data. There was a statistically
significant positive association between respiratory mor-
tality and same-day PM2.5 concentrations attributed to
one of the sources (probably industrial combustion). The
Bayesian spatial  multivariate receptor modeling
approach applied to the VOC data led to a highest poste-
rior model probability for a model with five sources (that
seemed to be refinery, petrochemical production, gaso-
line evaporation, natural gas, and vehicular exhaust)
among several candidate models, with the number of
sources varying between three and seven and with dif-
ferent identifiability conditions.

Our multipollutant approach assessing source-specific
health effects is more advantageous than a single-pol-
lutant approach in that it can estimate total health effects
from multiple pollutants and can also identify emission
sources that are responsible for adverse health effects.
Our Bayesian approach can incorporate not only uncer-
tainty in the estimated source contributions, but also
model uncertainty that has not been addressed in pre-
vious studies on assessing source-specific health effects.
The new Bayesian spatial multivariate receptor modeling
approach enables predictions of source contributions at
unmonitored sites, minimizing exposure misclassifica-
tion and providing improved exposure estimates along
with their uncertainty estimates, as well as accounting for
uncertainty in the number of sources and identifiability
conditions.

INTRODUCTION

There has been growing interest in assessing health effects
of air pollution based on multiple pollutants (Dominici et al.
2010). High correlations often exist among multiple pollut-
ants measured in ambient air (due to common sources and
meteorology), and these high correlations lead to an estima-
tion problem such as collinearity when multiple pollutants
are included as covariates in the health-effects regression
model. Therefore, a straightforward extension of the existing
single-pollutant health-effects models is not appropriate.

Considering source-specific exposures to quantify expo-
sure to multiple air pollutants addresses the aforementioned
problem. Air pollution is generated from several sources
and each source simultaneously emits many pollutants.
While high interpollutant correlations are problematic and
lead to a collinearity problem in the multivariate regres-
sion models of pollutant-specific health effects, it is not a
problem in estimating source-specific health effects. As a
matter of fact, high interpollutant correlations make it pos-
sible to effectively characterize complex air pollution mix-
tures by a few common underlying source types using
multivariate receptor models (Park et al. 2001, 2002a,b).

More importantly, from a regulation standpoint,
assessing the health effects of specific sources or group of
sources (i.e., source-specific health effects) may be more
advantageous than assessing the health effects of indi-
vidual pollutants themselves (i.e., pollutant-specific
health effects), in that a more targeted and stringent
enforcement strategy can be developed based on the
sources that emit pollutants associated with increased
risks for adverse health outcomes. Another advantage of
assessing source-specific health effects is that the com-
bined effects of exposures to multipollutants in ambient
air (e.g., various VOCs or specific metal constituents of
PM2.5) can be evaluated. For example, fine particles that
originate from specific sources (e.g., diesel and gasoline
exhaust) could be more toxic than particulates from other
sources, and thus may have more significant adverse
health effects (Seagrave et al. 2006).

A major difficulty in achieving the goal of assessing
source-specific health effects, however, is that in most
cases the sources (source profiles) of ambient air pollut-
ants are not known and source-specific exposures cannot
be measured directly; rather they need to be estimated by
decomposing ambient measurements of multiple air pol-
lutants. While it is well recognized that multiple sources
contribute to the concentrations of air pollutants measured
at ambient monitoring stations, what is not well under-
stood is how many sources are involved and what their rel-
ative contributions are to the mixture that is present in
ambient air. To adopt a source-specific approach when
evaluating the health effects associated with air pollution,
the observed mixtures of air pollutants would first need to
be decomposed into contributions from several major
sources, using a source identification and apportionment
method. Multivariate receptor models can resolve the mea-
sured mixture of pollutants into the contributions from the
individual source types.
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MULTIVARIATE RECEPTOR MODELING

Multivariate receptor modeling is a collection of
methods for identifying major pollution sources and esti-
mating the contribution of each source based on ambient
measurements of air pollutants obtained at a given moni-
toring site, or receptor. A comprehensive review of the
field of receptor modeling can be found in Hopke (1991,
2003, 2010). Traditionally, multivariate receptor models
have been used to resolve the observed air pollutant mix-
tures into contributions from individual sources (or source
types) based on time series of multiple (or multivariate) air
pollutants — such as VOCs or specific metal constituents
of fine particulate matter (i.e., PM2.5) — at a receptor site
(see e.g., Heaton et al. 2010; Henry 1997a; Hopke 1985,
2003; Park et al. 2001; Wolbers and Stahel 2005).

A basic multivariate receptor model takes the form of:

where Xtj is the mass concentration of pollutant j (j = 1, …, J )
measured at time t (t = 1, …, T ), Atk is the mass concentra-
tion (contribution) of source k (k = 1, …, q) at time t, Pkj is
the relative concentration of pollutant j in source k, Etj is
the error associated with the j th pollutant concentration
measured at time t, and q is the total number of major con-
tributing sources. 

In matrix terms, the above model can be written as:

X = AP + E,

where X is an n by J data matrix containing n concentra-
tions of J pollutants at a receptor, A is the T by q source
contribution matrix, P is the q by J source-composition
matrix (where each row, a source-composition profile, can
be considered as a chemical fingerprint for a source), and E
is a T by J error matrix. The elements of P are assumed to
be non-negative to be physically meaningful. In relation to
statistical models, this may be viewed as a factor analysis
model or latent variable model (apart from the non-nega-
tivity constraint on the elements of P) in the sense that X is
the only observable quantity whereas q (number of fac-
tors), P (factor loading matrix), and A (factor score matrix)
are all unknown quantities that need to be estimated (or
predicted). The usual challenges in factor analysis such as
the unknown number of factors (sources) and non-identifi-
ability of parameters (i.e., parameters A and P are not
uniquely defined even when q is known) are also encoun-
tered in multivariate receptor models. As a matter of fact,
the estimation of parameters A and P depends heavily on q
and the identifiability conditions employed (additional

constraints on the parameters needed to remove non-iden-
tifiability), and these could be a major source of uncer-
tainty in factor analysis models and multivariate receptor
models. In most cases, the number of factors and identifi-
ability conditions were either assumed to be known or
were chosen in advance, thus ignoring uncertainty
involved in the selection of q and identifiability condi-
tions. This issue of model identifiability and identifiability
conditions will be discussed later.

Various forms of factor analysis or principal component
analysis methods have been applied in multivariate
receptor modeling for more than three decades. Among
several methods, positive matrix factorization (PMF)
(Paatero 1997; Paatero and Tapper 1994) and Unmix
(www.epa.gov/heasd/research/unmix.html) (Henry and
Kim 1990; Kim and Henry 1999, 2000) gained the most
popularity among environmental engineers and scientists
and have been widely used in practice. Until recently, stat-
isticians have made relatively few contributions to the
field of multivariate receptor modeling. See Pollice (2009)
for a review of multivariate receptor modeling from a sta-
tistical perspective. Park and colleagues (2001) proposed
time-series extensions of multivariate receptor models to
account for temporal correlation in air pollution data in
parameter estimation under a confirmatory factor analysis
model. Billheimer (2001) developed compositional
receptor modeling, which assumes that the source contri-
butions and the errors are logistic normally distributed.
Christensen and Sain (2002) developed a different
approach to account for temporal dependence in multivar-
iate receptor modeling, a nested block bootstrap method.
Park and colleagues (2002a) proposed new sets of realistic
identifiability conditions for multivariate receptor models
and a constrained nonlinear least squares (CNLS)
approach for parameter estimation. Gajeswski and Spie-
gelman (2004) developed estimators that are robust to out-
liers. In Park and colleagues (2002b, 2004), the unknown
number of pollution sources and unknown identifiability
conditions have been taken into account in the form of
model uncertainty using a Bayesian approach for the con-
ventional multivariate receptor modeling data, that is, for
multiple-pollutant data measured at a single monitoring
site or single-pollutant data collected from multiple moni-
toring sites. Wolbers and Stahel (2005) proposed the log-
normal structural mixing model, which assumes a
multiplicative error structure. Christensen and colleagues
(2006) developed an iterated confirmatory factor analysis
approach to source apportionment. Spiegelman and Park
(2007) performed a jackknife evaluation of the uncertainty
of the estimates of the source contribution and source-com-
position matrices as a way of incorporating dependence in
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air pollution data into the estimation of parameters. Ling-
wall and colleagues (2008) developed Dirichlet-based
Bayesian multivariate receptor modeling, and Heaton and
colleagues (2010) proposed a Dirichlet process model to
incorporate time-varying source profiles in multivariate
receptor models. Nikolov and colleagues (2011) extended
the multiplicative factor analysis model proposed by
Wolbers and Stahel (2005) by imposing mixed models on
the latent source contributions to include the covariate
effects and to adjust for temporal correlation in the source
contribution.

In all of the previous approaches, multivariate receptor
models were applied to multiple air pollutant data mea-
sured at a single monitoring site or to single-pollutant data
(e.g., nonspeciated PM2.5) collected from multiple monitor-
ing sites (see e.g., Henry 1997b; Park et al. 2002a,b, 2004).
Even for the multipollutant data collected from multiple
monitoring sites, most studies on source identification and
apportionment employed a conventional multivariate re-
ceptor modeling approach to analyze the multipollutant
data at each site separately (e.g., Buzcu and Fraser 2006) and
ignored spatial correlations in the data. Incorporating spa-
tial correlations in the multipollutant data collected from
multiple monitoring sites into multivariate receptor model-
ing has been an open problem for many years (Park et al.
2001, 2004; Pollice 2009). Recently, Jun and Park (2013)
proposed a spatial statistics extension of multivariate recep-
tor models by modeling unobserved source contributions as
a multivariate spatial process with the multivariate Matérn
covariance model (Gneiting et al. 2010), under the assump-
tion of the known number of sources and model identifi-
ability conditions, using maximum likelihood estimation.
However, accounting for uncertainty in the number of
sources and identifiability conditions in spatial multivari-
ate receptor modeling remains unexplored.

EVALUATING SOURCE-SPECIFIC HEALTH EFFECTS

The estimated source contributions (i.e., the amount of
pollution from each source) from source-apportionment or
multivariate receptor modeling can be viewed as source-
specific exposures. This estimation process is challenging
because of the aforementioned unknown number of sources
and unknown identifiability conditions that constitute
model uncertainty in multivariate receptor modeling.

While many studies have investigated myriad health
effects of individual pollutants (including particulate
matter [PM]), fewer have controlled for confounding due
to other pollutants, and even fewer investigations have
focused on source-specific health effects. Most of these
investigations, but not all, have examined daily mortality

or hospital admissions. Appendix A (available on the HEI
Web site) contains a review of studies that evaluated the
associations between the short-term effects of PM and the
specific cardiovascular or respiratory causes of mortality,
as well as studies that evaluated the associations between
VOC exposures and adverse health effects. Appendix B
(available on the HEI Web site) contains a summary of
studies that have evaluated the health risks (mortality or
morbidity) associated with source-apportioned PM.

Laden and colleagues (2000) used factor analysis to
evaluate risks for total nonaccidental mortality, from 1979
to 1988, that were associated with source-apportioned
PM2.5 in six cities in the United States (Watertown, MA;
Kingston-Harriman, TN; St. Louis, MO; Steubenville, OH;
Portage, WI; Topeka, KS). Associations with cause-specific
mortality due to ischemic heart disease, pneumonia, and
chronic obstructive pulmonary disease were investigated as
well. Findings suggested associations between daily mor-
tality and fine particles from mobile- and coal-combustion
sources. Mar and colleagues (2000) used chemical composi-
tion data from PM of varying sizes (PM10, PM10–2.5 [coarse
fraction], PM2.5) from a single monitoring station in the
center of Phoenix, Arizona, in their study of total nonacci-
dental mortality and cardiovascular mortality among indi-
viduals 65 years and older. Findings indicated that factors
related to motor vehicle exhaust and resuspended road
dust; vegetative burning; and sulfate were associated with
mortality from cardiovascular causes. Ostro and col-
leagues (2011) used PMF to examine sources of particu-
lates (PM2.5 and PM10) and daily mortality from all causes
and cardiovascular diseases over a five-year period (2003
to 2007) in a study conducted in Barcelona, Spain. They
reported statistically significant associations for sources of
PM2.5 from vehicle exhaust, fuel oil combustion, sec-
ondary nitrate and organics, minerals, secondary sulfate
and organics, and road dust with both all-cause and car-
diovascular mortality. In a study conducted in Copen-
hagen, Denmark, Andersen and colleagues (2007) applied
source apportionment of PM10 and total suspended partic-
ulate samples to study hospital admissions in elderly
people (65 years and older) and children (years 5 to 18).
Hospital admissions for the following specific diseases
were evaluated among elderly people: specific cardiovas-
cular disease (i.e., angina pectoris, acute and subsequent
myocardial infarction, acute ischemic heart disease,
chronic ischemic heart disease, pulmonary embolism, car-
diac arrest, cardiac arrhythmias, and heart failure) and
respiratory disease (i.e., chronic bronchitis, emphysema,
other chronic obstructive pulmonary diseases, asthma,
and status asthmaticus). For children, admissions due to
pediatric asthma (asthma and status asthmaticus) were
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examined. Statistically significant associations with hos-
pital admissions for cardiovascular diseases were detected
for PM10 from biomass, secondary oil, and crustal sources.
Statistically significant associations with hospital admis-
sions for respiratory diseases were detected for PM10 from
biomass and secondary sources. Associations were also
detected for PM10 from vehicular emissions and hospital
admissions for asthma among children, although they did
not reach statistical significance. Lall and colleagues
(2011) conducted a study in Manhattan, New York, during
the period from 2001 to 2002 to evaluate associations
between source-apportioned fine particles (apportioned
using PMF) and daily hospital admissions for respiratory
and cardiovascular outcomes among individuals 65 years
and older. Associations between sources of fine particles
from steel metal works were significantly associated with
respiratory hospital admissions (including pneumonia
and asthma when evaluated separately); associations
between sources of fine particles from traffic were associ-
ated with cardiovascular hospital admissions (including
stroke and heart failure when evaluated separately).

A series of publications, which emanated from a work-
shop sponsored by the U.S. Environmental Protection
Agency (U.S. EPA) in 2003, reports on results generated by
investigators from seven different institutions across the
United States who applied different source-apportionment
techniques to PM2.5 compositional data collected during
1995–1997 from Washington, D.C., and from Phoenix, Ari-
zona. Methods that were used for source-apportionment
analysis included targeted rotated principal component
analysis, absolute principal component analysis, Unmix,
and PMF. Source-apportioned results were then used to
assess associations between PM2.5 source contributions
and daily mortality due to total nonaccidental causes, car-
diovascular diseases, and cardiovascular plus respiratory
diseases. A common Poisson regression model was
applied to facilitate comparisons among source-apportion-
ment methods. Thurston and colleagues (2005) provides
an overall summary of the results of the 2003 U.S. EPA
workshop, whereas Ito and colleagues (2006) and Mar and
colleagues (2006) provide more detailed findings of differ-
ences or similarities in associations between source-appor-
tioned fine particles and daily mortality in Washington,
D.C., and Phoenix, Arizona, respectively. Generally, there
was consistency across methods in identifying the major
sources of fine particles, especially for sources from soil-,
sulfate-, residual oil- and salt-associated fine particle
mass, but to a lesser extent for sources from vegetative
burning and traffic (Thurston et al. 2005). When com-
paring results from the Poisson regression models, sources
associated with sulfate were most consistently significant

across all source-apportionment methods. Also, the degree
to which estimated values of the relative risk estimates
varied among sources was significantly greater than the
variation among research groups (Ito et al. 2006; Mar et al.
2006; Thurston et al. 2005).

In addition to studies of daily mortality or hospital
admissions, a few more recent investigations have exam-
ined associations between sources of PM and other health
endpoints. In a study conducted by Gent and colleagues
(2009), investigators examined associations between
source-apportioned PM and symptoms (wheeze, persistent
cough, shortness of breath, chest tightness) and medica-
tion use in 149 children who had asthma and lived in New
Haven County, Connecticut. Findings indicated associa-
tions between increased odds of symptoms or inhaler use
and increases in same-day and 3-day (same day, and pre-
vious 2 days) averaged exposures to PM from traffic
sources and road dust. For example, odds ratios (95% con-
fidence intervals) for wheeze were 1.10 (1.01–1.19) and
1.26 (1.05–1.51) for a 5-µg/m3 increase in particles aver-
aged over three days from motor vehicles and road dust,
respectively. Bell and colleagues (2010) used PMF to
examine sources of PM2.5 and two birth outcomes among
infants born in four counties in Connecticut (n = 3) and
Massachusetts (n = 1), that is, birth weight and small-at-
term births. Findings indicated inverse associations for
birth weight and fine particles from road dust, oil combus-
tion, and motor vehicles; associations were also detected
between fine particles from road dust and increased preva-
lence of full-term infants born small for their gestational age.

In addition to epidemiologic studies, toxicologic inves-
tigations have employed source receptor modeling as well.
For example, Seagrave and colleagues (2006) applied a
chemical mass balance receptor model to investigate the
toxic effects of PM2.5 (administered via intratracheal instil-
lation) in rats. PM2.5 samples had been collected during
summer or winter from four different sites that had dif-
fering source profiles: two urban sites (Birmingham, Ala-
bama, site — located in an urban area in close proximity to
traffic and industry, including a coke production facility;
Atlanta, Georgia, site — Jefferson Street); a mixed urban
and residential site near the Gulf of Mexico (Pensacola,
Florida); and a rural site (Centreville, Alabama). Projec-
tion-to-latent-surfaces techniques were used to examine
relationships between source-apportioned fine particles
and cytotoxic and inflammatory endpoints. Results from
the source apportionment suggested differences by season
(e.g., more wood smoke and secondary nitrates in winter
months) and by site (e.g., the diesel exhaust component
was a large contributor in the urban sites). Overall, toxicity
was greatest for the PM2.5 samples from the two urban
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sources, with significant contributions from vehicular
emissions. Nikolov and colleagues (2007, 2008) developed
a Bayesian structural equation model to assess source-spe-
cific health effects and compared their new method via
simulation techniques to traditional approaches (i.e., a
tracer approach and a two-stage approach). They further
illustrated the application of their method in a study to
evaluate the association between source-apportioned
PM2.5 (collected in Boston that is believed to have four
major sources: road dust, power plants, oil combustion,
and motor vehicles) and myocardial ischemia in dogs
(using ST-segment as the endpoint).

In most of the aforementioned studies that have
employed a source-specific approach, the estimated
source contributions were used as if they were the true
source-specific exposures (thus ignoring the uncertainty
associated with estimated source contributions) in the
health-effects models. Also, the model uncertainty due to
unknown numbers of sources and identifiability condi-
tions was not taken into account in the assessment of
source-specific health effects.

As is well known in the measurement error model liter-
ature (e.g., Carroll et al. 1995), ignoring uncertainty in
exposure estimation results in a bias in the estimated
health-effects regression coefficients. Notable exceptions
are studies by Nikolov and colleagues (2007, 2008) who
proposed a structural equation framework to assess
source-specific health effects by fitting a receptor model
and the health outcome model jointly to account for the
uncertainty associated with the estimated source contribu-
tions in the health-effects estimates. More importantly,
however, the number of major pollution sources that
drives the number of regression terms in the health-effects
model was assumed to be known (or treated as fixed once
it was estimated) in all of the previous studies. The same is
also true for model identifiability conditions. While iden-
tifiability conditions that are useful in multivariate
receptor modeling have been proposed (Park et al. 2001,
2002a) and also utilized in recent source-specific health-
effects studies (Nikolov et al. 2007, 2008), those conditions
were assumed to be known. The model uncertainty due to
the unknown number of sources and identifiability condi-
tions has never been taken into account in the assessment
of source-specific health effects. In this project, we devel-
oped a method that accounts for both model uncertainty
and parameter uncertainty (uncertainty in estimated source-
specific exposures) in the assessment of source-specific
health effects based on time-series data. We related the daily
mortality data of a population to daily fluctuations in source
contributions estimated from multipollutant data mea-
sured at a single monitoring location for the region.

Another problem that we addressed is the extension of
multivariate receptor modeling to spatial multivariate
receptor modeling. Despite the growing availability of
multipollutant data collected from multiple monitoring
sites, there has been just one attempt to incorporate spatial
dependence in such data into multivariate receptor mod-
eling. Jun and Park (2013) proposed a spatial statistics
extension of multivariate receptor modeling under the
assumption of a known number of sources and model
identifiability conditions. That research was produced as a
by-product of the present project. When the number of
sources and model identifiability conditions are unknown,
taking into account such model uncertainty in multivar-
iate receptor modeling is a challenging problem.
Accounting for uncertainty in the number of sources and
identifiability conditions in spatial multivariate receptor
modeling has never been explored. In this project, we
developed a Bayesian spatial multivariate receptor mod-
eling approach that can incorporate spatial dependence
into an estimation of source profiles and contributions and
also effectively deal with the unknown number of pollu-
tion sources and identifiability conditions. Accounting for
spatial dependence of multivariate air pollution data in
source identification and apportionment not only leads to
more efficient estimation of source profiles and contribu-
tions, but also enables prediction of pollutant concentra-
tion and source contributions at locations other than the
monitoring sites. Spatial prediction of source contribu-
tions can minimize exposure misclassification and allows
inference about the source-specific exposures in areas that
do not have any monitoring stations. Bayesian spatial mul-
tivariate receptor models developed in this project can
also provide uncertainty estimates of the predicted source
contributions, which was not previously possible.

SPECIFIC AIMS

The overall goal of this study was to develop enhanced
statistical methods for the assessment of source-specific
health effects. The specific aims were as follows: (1) to
develop a multipollutant approach that accounts for both
model uncertainty in multivariate receptor models and
uncertainty in estimated source-specific exposures in the
assessment of source-specific health effects, and (2) to
develop enhanced spatial multivariate receptor models that
can account for spatial correlations in the multipollutant
data collected from multiple monitoring stations while
accounting for model uncertainty caused by the unknown
number of major sources and identifiability conditions.
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METHODS

APPROACH TO ASSESSING HEALTH EFFECTS 
ASSOCIATED WITH AN UNKNOWN NUMBER OF 
MAJOR SOURCES OF MULTIPLE AIR POLLUTANTS

Basic Modeling Framework

We employ a Bayesian hierarchical modeling frame-
work to incorporate multiple data sources (ambient air
pollution data and health outcome data) into a single
coherent statistical model. Our model consists of two main
parts: the receptor model and the health model. In this
project, we focus on the time-series design for the health
model. An additional hierarchical model on latent source
contributions and distributional assumptions about errors
can also be added, which is introduced in the next section.
A basic model form can be given as:

Receptor model: Xt = AtP + Et,    t = 1,…,T,  (1) 

Health model: 

Xt = (Xt1, Xt2,…, XtJ): concentrations of J pollutants (chem-
ical species) measured at time t at a receptor,

T: number of observations (number of days),

q: number of major pollution sources (unknown),

P: q � J source-composition matrix of which rows are the
source-composition profiles (Pk, k = 1,…, q),

Pk = (Pk1, Pk2,…, PkJ): kth source-composition profile con-
sisting of the fractional amount of each chemical species in
the emissions from the kth source,

At = (At1, At2,…, Atq): source-contribution vector in time t
where Atk is the contribution from the kth source,

Et = (Et1, Et2,…, EtJ): measurement error in pollutant con-
centrations at time t,

yt: health outcome at time t,

�: overall baseline risk of death,

� = (�1,…, �q)�: parameter describing the influence of each
source-specific exposure on mortality rate,

Zt = (Zt1,…, ZtI): transformations of confounding variables
such as temperature, humidity, the day of the week, etc.,

� = (�1,…, �I)�: parameter describing the influence of con-
founding variables on mortality.

The link function g can be changed depending on the
type of the health outcome variable. For example, it can be
the identity function for a continuous health outcome vari-
able such as lung function, or the log function for a dis-
crete health outcome variable such as daily mortality or
morbidity count. We will assume that the measured pol-
lutant concentrations and the health outcomes are condi-
tionally independent given the unobserved source
contributions and other covariates in the model, which
seems to be a reasonable assumption.

Note that Equation 2 represents an individual-lag
model. Without loss of generality, we present the model
(and the method) using lag 0 contributions.

Other individual-lag l models can be expressed as:

Receptor model: Xt�l = At�l P + Et�l,

Health model:

Our main goal is to estimate parameters A, P, and �. (A is
a T � q source contribution matrix of which rows are At,
t = 1,…,T; � and � are nuisance parameters), along with
their uncertainties and model uncertainties. The parame-
ters � = (�1,…, �q)� quantify the q source-specific health
effects. A major source of model uncertainty in the model
defined by Equations 1 and 2 is the unknown number of
major pollution sources, q, and identifiability conditions.

Model Identifiability in Multivariate Receptor Models
It is well known in multivariate receptor modeling as well
as in factor analysis that the receptor model in Equation 1
is not identifiable, even under the assumption that q is
known (see Park et al. 2002a,b), without imposing addi-
tional constraints on the parameters. Since both A and P
are unknown, the parameterization for the mean is not

unique, i.e., E(X) = AP = A*P*. Under the additional as-
sumption that rank(A) = q and rank(P) = q, it can be shown

that AP = A*P* always implies that A* = AR and P*= R�1P
for a q � q nonsingular matrix R. Thus, with the additional
rank assumption, non-identifiability of the receptor model
in Equation 1 can be reduced to the so-called factor inde-
terminacy problem in factor analysis. Fortunately, under
some constraints (called identifiability conditions) on ei-
ther A or P, the parameters can be uniquely defined (see

Park et al. 2002a). Since there are q2 elements in the matrix

R, we need to impose q2 independent conditions on P or A
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to rule out this indeterminacy. There could, in principle,
be infinitely many different identifiability conditions that
are each sufficient but not necessary. Because identifiabil-
ity conditions are additional assumptions about the pa-
rameters, it is important to select conditions that are
physically meaningful in the given context of the problem
(though there could be many other purely mathematical
identifiability conditions). For this reason, we restrict the
type of identifiability conditions to be compared to those
that are often reasonable and make sense in the context of
receptor modeling or source apportionment. One set of
such conditions is prespecification of zero elements in the
source-composition matrix P:

C1. There are at least q�1 zero elements in each row of P;

C2. For each k = 1,…, q, the rank of P(k) is q�1, where P(k)

is the matrix composed of the columns containing the
assigned zeros in the kth row with those assigned zeros
deleted (i.e., the kth row deleted);

C3-1. Pkj = 1 (or any positive constant ck) for some j (j =

1,…, J ) for each k = 1,…, q; or 

C3-2.  for each k = 1,…, q. 

The conditions C1–C2 imply that some pollutants (cor-
responding to zeros in P) are not contributed by a partic-
ular source type (i.e., the kth source does not affect the jth
pollutant), and no two sources share the exactly same set
of zeros. These are the same conditions as those used in
confirmatory factor analysis to remove the factor indeter-
minacy problem (see, for example, Anderson [1984],
Chapter 14.2.2). With regard to the condition C2 and its

practical implementation, it needs to be ensured that P(k) is

not close to singular (in some cases, P(k) may be close to a
singular matrix although it may still have the rank q�1).

The condition number of P(k) (the ratio of the largest sin-

gular value of P(k) to the smallest) can be examined to pre-

vent P (k)  from being close to a singular matrix. A
normalization constraint C3-1 or C3-2 (only one of them is
needed) is enforced during estimation to remove indeter-
minacy resulting from the multiplication of a row of P by a
scale constant. Note that the normalization constraint is
somewhat arbitrary and does not recover the absolute

values in P. The constraint  indicates that only

the relative amount of species for each source profile is of
interest. As long as the relative amounts of species in a
source profile are given, the source can be identified. Note

that any change in the scale of P can be absorbed into A
and vice versa. Another way of eliminating scale invari-
ance of factors by a constant multiplication is to assume
that the source contributions have unit standard devia-
tions or to assume an orthogonal factor model as a prior
distribution for At (instead of C3-1 or C3-2). In practice,

the source profiles and contributions are often rescaled to

be for ease of interpretation after estimation,

even in the case that C3-1 or an orthogonal factor model for
a prior for At is used during the estimation.

The related but much stronger set of identifiability con-
ditions is:

D1. There are at least q columns in P with each of q col-
umns containing only one nonzero element;

D2. Same as C2;

D3. Same as C3-1.

These conditions correspond to the assumption of
having at least one tracer element for each source, an
assumption that has been used for a long time for identifi-
ability in the receptor modeling community. A tracer ele-
ment is a single species that is contributed by only one
pollution source type. Note that C1 is automatically satis-
fied if we have a tracer element for each source, but not
vice versa. If columns of P (along with the columns of the
data matrix) are reordered, it can be easily shown that the
D1–D3 conditions are equivalent to specification of the
leading q�q submatrix of P as Iq (the q�q identity matrix),
which is another mathematically convenient set of identifi-
ability conditions presented in Anderson (1984).

Both sets of identifiability conditions (C1–C3 and D1–
D3) require the investigator to have some prior knowl-
edge about likely sources, which might be obtained from
previous studies or exploratory analyses. In practice, the
preassigned zero elements are rarely actually zeros but
they are small enough to be considered zero (i.e., minor
compounds). As demonstrated by Nikolov and colleagues
(2007) in a simulation study designed to investigate the
impact of choosing incorrect identifiability constraints,
and also by our simulation study described later, the
results are not sensitive to errors of assuming a zero
where the truth is nonzero, as long as the preassigned
zero element is not a major constituent of a source profile.
For example, when Road Dust is considered as one of the
likely sources for PM speciation data, we may preassign
zero for S in the candidate profile using prior knowledge
that S is not a major constituent of the Road Dust profile.
If we do not have any priori information on the position
of zeros in P, then we may start with several candidate
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positions for zeros proposed by exploratory data analysis
(PMF or Unmix can be utilized in this step).

Instead of prespecification of zero elements in P, we may
also consider preassigning zeros in the source contribution
matrix A, which implies that each source is missing on
some days (see Park et al. 2002a), or the combination of pre-
specification of zeros in P and A. We did not use constraints
on A in this project because putting constraints on A
would hinder the stochastic modeling of A and it would be
hard to generate samples from the distribution of A in the
current Bayesian modeling. The constraints on A have been
utilized in the previous study (Park et al. 2002a) when
implementing a frequentist approach to estimate A. Recall
that there could be many different identifiability condi-
tions that are sufficient, but there have been no identifi-
ability conditions that are both sufficient and necessary. As
long as at least one set of identifiability conditions are sat-
isfied for the data at hand, the model should be identifiable.

As mentioned earlier, in most of the previous ap-
proaches to evaluating source-specific health effects, the
estimated source contributions were used as if they were
true source-specific exposures or, at least, the number of
major pollution sources (that drives the number of regres-
sion terms in the health effects model) and identifiability
conditions were assumed to be known. As a matter of fact,
estimation of parameters A, P, and �, heavily depends on q
and also on the identifiability conditions employed (e.g.,
where to preassign zeros in P), and these could be a major
source of uncertainty in the estimated health effects. In
some cases, we may have some prior knowledge about
this, that is, the number of sources and the position of
zeros can be assumed known (see, e.g., Park et al. 2001).
More frequently, that information is lacking, and it be-
comes a main source of model uncertainty.

Park and colleagues (2002b) proposed a Bayesian
approach that can simultaneously estimate such model
uncertainty as well as the parameters in each model. The
method computes the marginal likelihoods, the posterior
model probabilities, or both using MCMC for a range of
plausible models (rather than a single model) that are
selected by varying the number of sources and zero ele-
ments in P. In this project, we aimed to quantify the uncer-
tainties in q and identifiability conditions along with other
parameter uncertainties so that the inherent variability of
the source apportionment can be taken into account in the
assessment of source-specific health effects.

To develop a method that can account for model uncer-
tainty in the assessment of source-specific health effects,
we build on the Bayesian method developed by Park and
colleagues (2002b) that computes marginal likelihoods

and posterior model probabilities for a range of plausible
models (with different q and identifiability conditions) by
MCMC.

We extend the method developed in Park et al. (2002b)
in two aspects:

1. by adapting enhanced multivariate receptor models
explicitly incorporating correlated source contribu-
tions, that is, assuming a priori correlated source con-
tributions (an oblique factor model),

2. by including health models.

Estimation of Parameter Uncertainties and Model 
Uncertainties under Enhanced Multivariate Receptor 
Models and Health Models

The method of Park and colleagues (2002b) was devel-
oped by assuming an orthogonal factor model as a prior
distribution for the source contributions, that is, assuming
a priori uncorrelated centered source contributions,

where � = �1, �2, �3,…, �q is the mean of At, Iq is the q�q
identity matrix, and Nq(.,.) represents a q-variate normal
distribution. A normal distribution was chosen as a prior
for �t for mathematical convenience because �t can be con-
sidered as latent variables, and the form of the prior distri-
bution of the latent variables is essentially arbitrary and
largely a matter of convention (Bartholomew and Knot
1999). Note that the receptor model defined by Equation 1
can be reparameterized as:

where 

Although the method of Park and colleagues (2002b)
was shown to be robust to violations of the prior assump-
tion on the correlation structure of source contributions, in
this project the method is generalized to formally account
for correlated source contributions, that is, assuming a
priori correlated source contributions (an oblique factor
model) to see if it improves the prediction of source contri-
butions. We assume an oblique factor model as a prior dis-
tribution for source contributions as follows:

or
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(4), 1, , ,                               t t tX E t T� �   P 
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6060

Enhanced Statistical Methods to Assess Heath Effects

where � is a general covariance matrix. (Note that the
models defined by Equations 1 and 2 can be reparameter-
ized in terms of centered source contributions �t without
loss of generality. In particular, our key parameter � is not
affected whether or not the source contributions are cen-
tered.) Originally, we explored both priors in Equations 5
and 6, but it turned out that, for the purpose of computing
marginal likelihoods, reparameterization of the Equation 1
and 2 models using centered source contributions, �t, is
more convenient because we can more effectively cope with
the issue of scale invariance of factors by a constant multi-
plication. Although we need a normalization constraint in
estimation, such as Pkj = 1 of C3-1, the condition is enforced
only to remove indeterminacy of factors by a constant mul-
tiplication in estimation; it does not mean that the true
absolute value (there is no such thing, in fact) of Pkj is 1. In
practice, the estimated source-composition profiles and
the source contributions are usually renormalized to bring
them onto the preferred scale, for example, see Ramadan
and colleagues (2000, 2003). As a result, the estimated
mean parameter, �, of source contributions under the iden-
tifiability condition, C3-1, is not to be interpreted as an
estimate for the true mean source contribution unless it is
renormalized. The same comments can also be applied to �
that is, the estimated diagonal elements of � are not to be
interpreted as an estimate for the true variance of source
contributions. However, the estimated off-diagonal ele-
ments (relative to diagonal elements) of � can be used to
estimate correlations among source contributions, which is
scale-free and meaningful even without renormalization.

Note that the model for the centered source contributions
in Equation 5 does not have a nonnegativity constraint. Non-
negativity constraints are placed on the elements of P, how-
ever. As a matter of fact, the nonnegativity constraints on P
are much more important for the resulting source profiles
to be physically meaningful, and it is crucial to enforce
those constraints in the estimation. Although we do not use
the nonnegativity constraints on At in estimation (because

we decided to work with the centered source contributions
�t for the reasons stated above), the estimates of At (that can

be obtained by adding the estimated mean contribution

 to estimated �t) are usually nonnegative un-

less the true source contributions are negligible or close to
zero.

Using the centered source contributions, we can rewrite
the models in Equations 1 and 2 as follows:

Receptor model: (7)

where 

Continuous Health Outcome When yt is a continuous health
outcome variable such as some biological parameter of
pulmonary or cardiac function (e.g., peak ST-segment ele-
vation in Nikolov et al. 2006, 2007) or daily mortality (or
morbidity) count with a large enough mean, yt may be
assumed to follow a normal distribution, and the link
function g in Equation 2 becomes the identity function.
Using the centered source contribution and the identity
link function for the health model, the model for source-
specific health effects can be written as follows:

Receptor model: 

where

We make the following assumptions about errors Et and εt:

To complete a Bayesian model specification, the prior dis-

tributions for the unknown parameters, � = {�t, t = 1, …, T},
�, 	, �, µ, �, �, �, and  are required. We assume inde-
pendence among {�t, t = 1, …,T} given the hyperparameter
� and the parameters P, �, �, �, µ, �, �, and  as follows:
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As noted earlier, the prior distribution for the centered
source contribution {�t} is assumed to be �t ~ Nq(0, �).

For a prior distribution for P, we assume a point mass at
zero for q(q�1) elements of P preselected for identifiability
conditions. For the free elements of P, we use the truncated

normal distribution, vecP+ ~ NJq�q(q�1)(c0,C0) I (vecP+ � 0),

where vecP+ denotes the Jq�q(q�1)-dimensional vector of
free elements of P stacked column-wise, to incorporate the
nonnegativity constraints (which is critical for the estimated
source profiles to make physical sense) while facilitating
computation. Other choices for prior distributions for P
have been used in the literature. For example, Lingwall and
colleagues (2008) use a generalized Dirichlet distribution
and Heaton and colleagues (2010) use a Dirichlet distribu-
tion to constrain profile elements to be small when accom-
panied by one or more dominant elements of the same
profile. Note that a Dirichlet distribution might be more ap-
propriate when the sum-to-one constraint for each row of P
(C3-2) is used instead of C3-1. Nikolov and colleagues
(2011) use a log-normal distribution for the free elements in
P. As noted, however, defining a vague log-normal prior is
not straightforward. In practice, the information on the pos-
sible range of values in P is often lacking and a vague prior
for P is preferred. For the prior distributions of �, �, µ, �, �,

�, and , we assume:
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where IW refers to inverted Wishart and the density of � is
given as:

(see next page): 
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where  is the multivariate gamma function defined

by 1 . Then the joint posterior

distribution for , , , , , , , , is given by Equation 11
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where �z is the cdf (cumulative distribution function) of

the standard normal distribution.

Because of the complexity of the joint posterior distri-

bution in Equation 11, MCMC methods are employed for

the estimation of parameters. In the MCMC sampling algo-

rithm employed here, one sweep consists of nine updating

procedures: (i) updating �, (ii) updating P, (iii) updating �,

(iv) updating �, (v) updating µ, (vi) updating �, (vii)

updating �, (viii) updating �, and (ix) updating . The

full conditional distributions are given in Appendix C

(available on the HEI Web site).

As discussed earlier, each combination of q and identi-
fiability conditions (here, position of prespecified zeros)

leads to a different model. Assume that there are G candi-
date models associated with different q and identifiability

conditions, M1, …, MG. Typical Bayesian model compar-
ison is based on posterior model probabilities:

where p(Mg) is the prior model probability and l(X,y|Mg)
is the marginal likelihood for model Mg , respectively.
Note that under the indifference prior model probabili-
ties, the posterior model probability is proportional to the
marginal likelihood and the above equation becomes:
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Thus, we only need to calculate the marginal likelihood of

each model for model comparison. Note that l(X,y|Mg)

can be estimated by:

where l(X,y|�g, Mg) is the likelihood of �g under model Mg,

p(�g|Mg) is the prior of �g under model Mg,  is a single

point of under mod-

el Mg, and  is the estimated posterior densi-

ty function of . For simplicity of notation,

we suppress the index g for the rest of the section. Using

the same algorithm of Oh (1999), we have:

Because the full conditional posterior density functions

are known,  can be estimated as the sample

average of the product of the full conditional posterior
density functions using the posterior sample of � under
model M. Although in theory �c can be an arbitrary point
in the parameter space, for efficiency it needs to be chosen
from the region with high posterior density. An approxi-
mate posterior mode of �c, based on a preliminary MCMC
run, would be a reasonable choice for �c.

Discrete Health Outcome When the health outcome in
Equation 8 is a discrete variable such as a daily mortality
count, assuming a normal linear model would not be
appropriate unless the mean mortality count is large
enough so that normal approximation is satisfied. For
cause-specific mortality count data, the mean is typically
small, and a Poisson model with a log link function is typ-
ically assumed for such data, for example,

Health model:  

Note that Equation 13 represents an individual-lag model.
Without loss of generality, we present the model (and the
method) using lag 0 contributions. We assume that errors
Et follow a multivariate normal distribution with a mean
vector 0 and the diagonal covariance matrix: 

To complete a Bayesian model specification, the prior dis-
tributions for the unknown parameters, � = {�t, t = 1,…,T}, �,
	, �, µ, �, �, and � are required. We assume independence
among {�t, t = 1,…,T} given the hyperparameter � and also
among the parameters �, 	, �, �, µ, �, and � as follows:

It turned out that for discrete outcome data, the extension
of the method in Park and colleagues (2002b) is much
more difficult due to the complexity of full conditional
distributions. 
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For the prior distribution {�t} given the hyperparameter
�, we assume �t ~ Nq(0,�), and for the prior distributions of
	, �, �, µ, �, �, and �, we assume:

Then the joint posterior distribution for (�, �, 	, �, µ, �,
�, �) is given by: 
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It is clear from Equation 14 that, due to the presence of

nonconjugacy for some of the model parameters, the full

conditional posterior distributions for them are very com-

plex and cannot be given in closed forms.

Our approach addresses this nonconjugate problem by

introducing normal auxiliary variables into the model, fol-

lowing the ideas of Oh and Park (2002). They facilitated

implementation of MCMC and computation of marginal

posterior density functions based on the Gibbs outputs by

introducing auxiliary variables into random effects gener-

alized linear models (GLM) for count data.

Given �t, �, �, and �, let �t = � + �t� + Zt� and introduce

a latent variable Wt following N(�t, 1) distribution. Define

Yt = yt if ��1[F(yt�1|�t)] < Wt ��t � ��1[F(yt|�t)],

where � is the standard normal cdf and F is the cdf of Yt
which depends on �t.

The joint density function of (Yt,Wt) given �t is:

f(yt, Wt|�t) = 
(Wt|�t, 1) 
� I (��1[F(yt�1|�t)] < Wt��t 
� ��1[F(yt|�t)]),

where 
 ( .|µ, 	2) is the density function of N(µ, 	2), and I
is the indicator function. It can be easily shown that the
marginal density function of Yt, derived from the joint den-
sity f(yt,Wt|�t), correctly gives the density f(yt|�t) corre-
sponding to the cdf F(yt|�t).

With the extra auxiliary variables Wt in the model, we
may consider � = ({�t}, �, 	, �, µ, �, �, �, {Wt}) as new
unknown parameters in the model. Now, the posterior den-
sity function of � is given as: 
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From the above posterior kernel, it can be easily seen
that the full conditional density of vecP+, µ, �, and � are
given as a multivariate truncated normal, a multivariate
normal, an IW, and an inverse gamma density, respectively.
In addition, if we ignore the restriction in the indicator
function of Ht, then the log posterior is a quadratic function
of �, �t, �, �, Wt. Hence, the full conditional posterior distri-
butions of �, �t, �, �, Wt are all restricted normal distribu-
tions. See Appendix C for the full conditional distributions
for the parameters.

In the MCMC sampling algorithm employed here, one
sweep consists of nine updating procedures: (i) updating
W, (ii) updating �, (iii) updating �, (iv) updating �, (v)
updating �, (vi) updating �, (vii) updating µ, (viii) updating
	, and (ix) updating �. The sample generation of �, µ, and
� is straightforward because there is no restriction in the
full conditional posterior distribution of those. The full
conditional posterior distribution of  is a multivariate
normal distribution restricted to nonnegative numbers,
from which sample generation is also relatively easy.

On the other hand, the full conditional posterior distri-
butions of �t, �, �, �, and Wt are restricted multivariate nor-
mals (or univariate normals for � and Wt) with highly
complex forms of restrictions, and sample generations are
not easy. Appendix C also contains the algorithm for
sample generation of those parameters.

The marginal likelihood for each model can then be esti-
mated by:

where �c is a single point of � = ({�t}, �, 	, �, µ, �, �, �, {Wt})
under model M.
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Using the same algorithm of Oh (1999), in Equation 18

we have:

and  can be estimated as the sample average

of the product of the full conditional posterior density
functions using the posterior sample of � under model M.

A MATLAB program implementing MCMC and com-
puting marginal likelihoods using the above method was
developed. Coding of the algorithm turned out to be a formi-
dable task and took a considerable amount of time and effort.

 ˆ , ,c X y M� �
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Evaluation by Simulation

Simulation Studies Under the Normal Health Outcome 

Model We conducted three simulation studies to assess
the performance of the new method that incorporates
parameter uncertainty in source contributions into the
estimation of source-specific health effects, assuming the
normal health outcome models, while coping with uncer-
tainty in both the number of sources and identifiability
conditions in multivariate receptor models.

1

2

3

4

Si S Ni OC Al Ti Ca Sulfate Se V Br BC EC

1 0 0 0 0.88 0.83 0.91 0.00 0.02 0.16 0.18 0.17 0.13

0 1 0 0 0.00 0.08 0.02 0.95 0.65 0.04 0.58 0.41 0.27

0 0 1 0 0.01 0.34 0.31 0.00 0.05 1.02 0.26 0.44 0.51

0 0 0 1 0.00 0.09 0.17 0.01 0.26 0.03 0.43 0.65 0.81
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Simulation 1 The data were generated using the same
parameter values for 	, �, and � used in the simulation
study of Nikolov and colleagues (2006). They based their
simulation on the known sources of Boston PM pollution:
Road Dust (P1), Power Plants (P2), Oil Combustion (P3),
and Motor Vehicles (P4), and obtained realistic parameter
settings for 	, �, and � from a confirmatory factor analysis
on the complete aggregated exposure data. They con-
strained one tracer element for each of the four sources
according to the D1–D3 identifiability conditions. The
exposure data were simulated from the model in Equation
9 with the following parameter values. For the true source-
composition matrix 	, 
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In Nikolov and colleagues (2006), the health outcome

data yt were generated from the following normal linear

model without considering the weather variables: 

Yt = �N + �t�
N + εt, 

where 

εt ~  �N = 86,  = 64, and �N = (2 0 0 0)�.

In our simulation, the health outcome data were gener-
ated from a more general model, Equation 10, incorpo-
rating the weather variables and the following parameter
values: � = (0.5 0 1 0.5)�, � = (1 0.5)�, � = 3, and 
The weather data were generated from the lognormal dis-
tribution as follows: 

Log(Zti) ~ N(0,0.5),    t = 1,…,T,    i = 1,2. 

Recall that in real applications, we do not model weather
variables; we just use the measured weather data (or trans-
formations of them) as covariates.

The sample size T was taken to be 100. With the param-
eter values given above, the normal health outcome model
leads to data (y) in a simulated data set with an average
number of counts per day (e.g., average mortality count per
day) and a 95% interval (2.5th to 97.5th percentile) of 4.6
and (0.65–8.52), respectively.

As opposed to assuming the known number of sources (q0
= 4) and identifiability conditions, we defined the candidate
models by varying the number of sources (q = 1, 2, 3, 4, 5)
along with identifiability conditions D1–D3 and estimated

the parameters under each model as well as computed
marginal likelihoods. Although the diagonal covariance
matrix was used for � to generate the simulated data (as in
Nikolov et al. 2006), we treated � as an unknown general
covariance matrix in estimation, allowing estimation of cor-
relations among the source contributions.

Recall that under the indifference prior model probabil-
ities, the posterior model probability is proportional to the
marginal likelihood. Thus, we only need to calculate the
marginal likelihood of each model for model comparison.
The simulation was repeated 200 times. Throughout the
simulation the true parameter values for �, �, �, �, and µ
remain the same as given above, and only the errors (for X
and y) are regenerated to obtain the data at each simulation.
The following hyperparameter values were used for gener-

ating MCMC samples: a0 = 0.01, b0j = 0.01 (j = 1,…,13), c0 =

0.5 	 1p+, C0 = 100 	 Ip+, m0 =  M0 = 100 	 IJ, r0 = q, R0

= Iq 	 (r0 + q + 1), �0 = 0, U0 = 100, �0 = 0q, B0 = 100 	 Iq, �0

= 0I, 
0 = 100 	 II, The estimated

marginal likelihoods for each q-source model are reported in
Table 1 on a log scale as logMD (log of marginal likelihood)
(only 10 cases are shown for illustration). The selected
model is the one having the maximum logMD for each
dataset. The true model (with q = 4) was selected for 199 out
of 200 simulations, that is, for 99.5% of times. (For only one
simulation out of 200, a model with q = 5 was selected.)

We also monitored the R2 values among the true source-
composition profiles and the estimated source-composition

 20, ,N
yN �

2N
y�

2 1.y� 

,X

0 00.01, and 0.01.y ya b 

Table 1. Log of Marginal Likelihood (logMD) for q-Source Models (q = 1, 2, 3, 4, 5)

Dataset

Number of Sources (q)a

1 2 3 4 5

1 �2419.1 �2258.9 �2069.6 �2001.3 �2086.9
2 �2413.6 �2268.8 �2063.9 �2003.7 �2089.2
3 �2428.4 �2271.3 �2097.6 �2000.3 �2069.0

4 �2389.0 �2242.9 �2042.1 �1960.5 �2028.9
5 �2421.0 �2264.6 �2078.1 �2004.9 �2068.4
6 �2416.9 �2245.7 �2059.0 �1963.5 �2040.8

7 �2375.7 �2234.9 �2063.4 �2007.6 �2076.5
8 �2421.1 �2260.4 �2066.4 �1990.5 �2075.1
9 �2387.1 �2257.1 �2051.3 �1982.9 �2070.0

10 �2441.7 �2296.3 �2073.5 �1995.8 �2080.3

a The model having the maximum logMD was selected for each dataset. q = 4 was selected for all 10 of these datasets.
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profiles as well as among the true source contributions and
the estimated source contributions for q = 4. Throughout the

simulation, R2 values were all greater than 0.94, which indi-
cates that the estimated source profiles and contributions
agree well with the true source profiles and contributions.

Figure 1 presents the time-series plots of the true centered
source contributions and the estimated centered source
contributions (based on one of the simulated datasets),
which again shows that the estimated source contributions
are very close to the true source contributions. Note that

Figure 1. True and estimated centered source contributions from a simulated dataset under the normal health outcome model.
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estimates for noncentered source contributions can be ob-
tained by adding the estimated mean contribution

 to the estimated centered source contribu-

tions. The mean squared errors for the source composi-
tions and contributions under the true model were less
than 0.01 and 0.1, respectively.

The estimated source-specific health-effects parameter
� was very close to the true value throughout the simula-
tion. The 95% posterior intervals were computed in each
simulation. Overall, the posterior interval for each ele-
ment of � contained the true value approximately 96% of
the time (there were 32 instances out of 800 when the pos-
terior interval for an element of � did not contain the true
value). The average widths of posterior intervals for �
parameters for each of the four sources over 200 simula-
tions were 0.31, 0.38, 0.42, and 0.39, respectively.

Simulation 2 Next, we performed a simulation to com-
pare the performances of two methods. Method 1 (an
oblique factor model) assumed a priori correlated source
contributions and Method 2 (an orthogonal factor model)
assumed a priori uncorrelated source contributions. The
data were generated using the same parameter values
given above except for �. We used the � matrix allowing
correlations among different source contributions for this
simulation:

The sample size T was again taken to be 100. Recall that
Method 2 does not need a separate normalization con-
straint, D3, because indeterminacy resulting from the mul-
tiplication of a row of � by a scale constant is removed by
assuming a priori the unit standard deviations of the
source contributions. We defined the candidate models by
varying the number of sources (q = 1, 2, 3, 4, 5) along with
identifiability conditions D1–D3 for Method 1 and D1–D2
for Method 2.

The simulation was repeated 50 times for each of
Methods 1 and 2. Throughout the simulation the true param-
eter values for �, �, �, �, and µ remain the same as given
above, and only the errors (for X and y) are regenerated to
obtain the data at each simulation. The following hyperpa-
rameter values were used for generating MCMC samples: a0
= 0.01, b0j = 0.01 (j = 1,…,13), c0 = 0.5 � 1p+, C0 = 100 � Ip+,
m0 =  M0 = 100 � IJ, r0 = q, R0 = Iq � (r0 + q + 1), �0 = 0,
U0 = 100, �0 = 0q, B0 = 100 � Iq, �0 = 0I, �0 = 100 � II,

 The estimated marginal likeli-
hoods for each q-source model from Method 2 are reported
in Table 2 on a log scale as logMD (only 5 cases are shown
for illustration). The selected model is the one having the
maximum logMD for each dataset. For both Methods 1 and
2, the true model (with q = 4) was selected for all 50 of the
simulations.

We also monitored the R2 values among the true source-
composition profiles and the estimated source-composi-
tion profiles as well as among the true source contribu-
tions and the estimated source contributions for q = 4.
Throughout the simulation, R2 values were greater than
0.95 for both Methods 1 and 2, which indicates that the
estimated source profiles and contributions agreed well
with the true source profiles and contributions. Figure 2
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Table 2. Log of Marginal Likelihood (logMD) for q-source Models from Method 2 (q = 1, 2, 3, 4, 5)

Dataset

Number of Sources (q)a

1 2 3 4 5

1 �1972.2 �1789.8 �1696.4 �1569.6 �1720.4
2 �1957.2 �1754.6 �1664.7 �1574.1 �1746.3
3 �1936.2 �1767.1 �1662.2 �1558.1 �1707.7
4 �1972.0 �1807.0 �1668.2 �1563.0 �1692.2
5 �1947.7 �1783.8 �1670.1 �1571.3 �1726.5

a The model having the maximum logMD was selected for each dataset. q = 4 was selected for all 5 of these datasets.
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Figure 2. True and estimated centered source contributions by Methods 1 and 2 from a simulated dataset under the normal health outcome model.
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presents the time-series plots of the true centered source
contributions and the estimated centered source contribu-
tions (based on one of the simulated datasets) from
Methods 1 and 2 (after rescaling the estimated source con-
tributions appropriately, i.e., by the diagonal elements of
the leading q � q matrix of P in this case), which shows
that the estimated source contributions from Methods 1
and 2 are very close to the true source contributions. For
both Methods 1 and 2, the mean squared errors for the
source compositions and contributions under the true
model were less than 0.01 and 0.1, respectively.

The estimated source-specific health-effects parameter �
was close to the true value for both methods throughout
the simulation. The 95% posterior intervals were com-
puted in each simulation. For Method 1, the posterior
interval for each element of � contained the true value
approximately 98% of the time (there were 4 instances out
of 200 when the posterior interval for an element of � did
not contain the true value). The average widths of posterior
intervals for � parameters for each of the four sources over
50 simulations were 0.31, 0.43, 0.44, and 0.41, respec-
tively. For Method 2, the posterior interval for each ele-
ment of � contained the true value approximately 98% of

the time (there were also 4 instances out of 200 when the
posterior interval for an element of � did not contain the
true value). The average widths of posterior intervals for �
parameters for each of the four sources over 50 simulations
were 0.37, 0.44, 0.53, and 0.44, respectively. Our limited
simulation suggests that there is not a real advantage of
modeling � to be correlated a priori in terms of parameter
estimation. We could achieve approximately the same
accuracy in estimating the key parameters, 	, �, and �,
with assuming a priori an orthogonal factor model even
when �’s were actually generated under an oblique factor
model in simulation. We conjecture that it is because the
form of the prior distribution of the latent variables, �t, is
essentially arbitrary and largely a matter of convention as
mentioned before.

Simulation 3 We performed an additional simulation to
investigate the impact of preassigning zeros in 	 for identi-
fiability conditions when the corresponding elements in
true 	 are not zeros. This time we generated the data with a
different true 	 that does not assume the existence of a
tracer element for each source type and � matrix allowing
correlations among different source contributions: 

1 2 3 4 5 6 7 8 9 10 11 12 13

1

2

3

4

1 0 0 0.2 0.88 0.83 0.91 0.20 0 0.76 0.18 0.17 0.13

0 1 0.3 0 0.30 0.08 0.02 0.65 0.65 0 0.58 0.41 0.27

0 0 1 0.6 0.20 0.34 0.80 0 0.05 1.02 0.26 0.44 0.51

0.2 0 0 1 0.10 0.09 0.95 0.50 0.90 0 0.43 0.65 0.81

s s s s s s s s s s s s s

P

P

P

P








	

1 2 3 4

1

2

3

4

,

and

2.36 0.8 0.8 0.8

0.8 1.60 0.8 0.8

0.8 0.8 1.49 0.8

0.8 0.8 0.8 1.62

P P P P

P

P

P

P

�





 
 
 
 

 
 
 
 
 
 
  

.



73

E.S. Park et al.

73

The other parameters are the same as those of Simula-
tion 1. To examine the effect of preassigning zeros to non-
zero elements on estimation, we included multiple 4-
source candidate models with different sets of prespecified
zeros in model comparison (note that true q is 4). In Model
2, zeros are preassigned to truly zero elements, in Model 3
zeros are preassigned to some minor nonzero elements (s6
for Source 2, s9 for Source 3, and s6 for Source 4), in Model
4 a zero is preassigned to a major nonzero element (s7 for
Source 3). We also included models with an incorrect
number of sources (Models 1 and 5). Table 3 gives the can-
didate models compared in Simulation 3.

The simulation was repeated 50 times with applying the
method a priori assuming an orthogonal factor model
(Method 2) with the preassigned zeros given in Table 3. We
observed in this case that assuming an orthogonal factor
models for � is more beneficial in terms of more easily satis-
fying the constraint C2 and avoiding numerical problems in
MCMC implementation. Throughout the simulation the true
parameter values for �, �, �, �, and µ remain the same, and
only the errors (for X and y) are regenerated to obtain the
data at each simulation. The following hyperparameter
values were used for generating MCMC samples: a0 = 0.01,

Table 3. Candidate Models in Simulation 3

Model 
Number q Source

Prespecified Position 
of Zeros in P

1 3 1
2
3

s2, s3
s1, s10
s1, s2 

2 4 1
2
3
4

s2, s3, s9
s1, s4, s10
s1, s2, s8
s2, s3, s10

3 4 1
2
3
4

s2, s3, s9
s1, s4, s6
s1, s2, s9 
s2, s3, s6

4 4 1
2
3
4

s2, s3, s9
s1, s4, s10
s1, s2, s7
s2, s3, s10

5 5 1
2
3
4
5

s2, s3, s9, s13
s1, s4, s6, s7
s1, s2, s8, s9
s2, s3, s6, s10
s1, s2, s3, s4

Table 4. Marginal Likelihoods for Candidate Models in 
Simulation 3a

Dataset /
Model Number (q)

LogMD
(� 104) PostP

1
1 (3) �1.7120 0.0000
2 (4) �1.6312 1.0000
3 (4) �1.6475 0.0000
4 (4) �1.7052 0.0000
5 (5) �1.6858 0.0000

2
1 (3) �1.6713 0.0000
2 (4) �1.5924 0.9874
3 (4) �1.5968 0.0126
4 (4) �1.6645 0.0000
5 (5) �1.6412 0.0000

3
1 (3) �1.6982 0.0000
2 (4) �1.6195 0.9982
3 (4) �1.6258 0.0018 
4 (4) �1.6814 0.0000
5 (5) �1.6744 0.0000

4
1 (3) �1.6839 0.0000
2 (4) �1.6080 0.6161
3 (4) �1.6084 0.3839
4 (4) �1.6738 0.0000
5 (5) �1.6712 0.0000

5
1 (3) �1.6627 0.0000
2 (4) �1.5767 0.9160
3 (4) �1.5790 0.0840
4 (4) �1.6200 0.0000
5 (5) �1.7041 0.0000

a LogMD and PostP denote the Log of Marginal Likelihood and Posterior 
Model Probability, respectively.

b0j = 0.01 (j = 1,…,13), c0 = 0.5 � 1p+, C0 = 100 � Ip+, m0 =

 M0 = 100 � IJ, r0 = q, R0 = Iq � (r0 + q + 1), �0 = 0, U0 =

100, �0 = 0q, B0 = 100 � Iq, 	0 = 0I , 
0 = 100 � II,

 The estimated marginal likeli-

hoods (on a log scale as logMD) as well as the corresponding

posterior probabilities for candidate models considered are

reported in Table 4 (only 5 cases are shown for illustration).

The simulation results suggest that the results are not
sensitive to errors of assuming a zero where the truth is
nonzero as long as the preassigned zero element is not
actually large. Model 2 and Model 3 resulted in the highest
marginal likelihood (or posterior model probability) for 44

,X

0 00.01, and 0.01.y ya b 
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and 6 out of 50 simulations, respectively. A candidate

model incorrectly preassigning a zero to a major element

(Model 4) as well as models with incorrect q (Model 1 or

Model 5) results in smaller marginal likelihoods than

models preassigning zeros to true zero elements (Model 2)

or to minor nonzero elements (Model 3) almost all the time.

As can be observed from Table 4, posterior probabilities for

Models 2 and 3 are both greater than zero for datasets 2–5

and are sometimes comparable because the two models are

very similar in nature. (Model 3 preassigning zeros to some

minor elements in 	 is not materially different from

Model 2.) The estimated 	 under both models are very

close to each other (R2 values were greater than 0.96) when

the corresponding posterior probabilities are comparable.

Figure 3 presents the time-series plots of the true centered

source contributions and the estimated centered source

Figure 3. True and estimated centered source contributions under Models 2 and 3 based on Dataset 5 of Table 4.
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contributions (based on one of the simulated datasets,
Dataset 5 in Table 4) from Models 2 and 3, which shows
that the estimated source contributions from Models 2 and
3 are both very close to the true source contributions and
not really distinguishable.

The source-specific health-effects parameter � esti-
mated under Models 2 and 3 are also close to each other
when the corresponding posterior probabilities are compa-
rable. The 95% posterior intervals were computed in each
simulation. For Model 2, the posterior interval for each
element of � contained the true value approximately 95%
of the time (there were 11 instances out of 200 when the
posterior interval for an element of � did not contain the
true value). The average widths of posterior intervals for �
parameters for each of the four sources over 50 simulations
were 0.37, 0.41, 0.55, and 0.44, respectively.

It is worth noting that Bayesian model averaging (BMA)
can be applied in the cases that we compare the models
(such as Models 2 and 3) with different identifiability con-
ditions but with the same number of sources and same
source types. (Model averaging does not make sense when
the number of sources or the interpretation of source pro-
files changes.) As a matter of fact, we may apply BMA to
parameters between Model 2 and Model 3 although the
actual consequence of BMA would not be much different
from selecting one of Model 2 or Model 3 in this case
(again because those two models are very similar in
nature). This simulation suggests that the estimation
results are not sensitive to errors of assuming a zero where
the truth is nonzero as long as the preassigned zero ele-
ment is not a major constituent of a source profile.

Simulation Study Under the Poisson Health Outcome 
Model We conducted a simulation study to assess the per-
formance of the new method that incorporates parameter
uncertainty in source contributions into the estimation of
source-specific health effects, assuming the Poisson health
outcome models, while coping with uncertainty in both
the number of sources and identifiability conditions in
multivariate receptor models.

The air pollution data were generated from the model in
Equation 9 using the same parameter values for 	, �, and �
used in the simulation study of Nikolov and colleagues (2006)
presented in the previous section. The health outcome data yt
were generated from the following Poisson model:

The sample size T was taken to be 200. Note that we
tried to simulate the least favorable case (in terms of the
sample size) for which our method still works. For the
Poisson health outcome model, we needed a larger sample
size than normal for a reasonable estimation of �. With the
parameter values given above, the Poisson health outcome
model leads to data (y) in a simulated dataset with an
average number of counts per day (e.g., average mortality
count per day) and a 95% interval (2.5th to 97.5th percen-
tile) of 1.28 and (0–4), respectively.

Again, as opposed to assuming the known number of
sources (q0 = 4) and identifiability conditions, we defined
the candidate models by varying the number of sources (q
= 3, 4, 5) along with identifiability conditions D1–D3 and
estimated the parameters under each model as well as
computed marginal likelihoods.

It needs to be noted that implementing the Poisson
health outcome model by MCMC took considerably more
time (approximately 50 times longer) than implementing
the normal health outcome model. For this reason, the
simulation could be repeated only 30 times rather than 200
times as in the normal health outcome model. Throughout
the simulation the true parameter values for 	, �, �, µ, �, �,
and � remain the same as given above, and only the errors
(for X and y) are regenerated to obtain the data at each simu-
lation. The following hyperparameter values were used for
generating MCMC samples: a0 = 0.01, b0j = 0.01 (j = 1,…,13),
c0 = 0.5 � 1p+, C0 = 100 � Ip+, m0 =  M0 = 100 � IJ, r0 = q,
R0 = Iq � (r0 + q + 1), �0 = 0, U0 = 10, �0 = 0q, B0 = 10 � Iq, �0
= 0I, and �0 = 10 � II. The estimated marginal likelihoods
for each q-source model are reported in Table 5 on a log
scale (only 10 cases are shown for illustration). The selected
model is the one having the maximum logMD. The true
model (with q = 4) was selected for all of 30 simulations.

We also monitored the R2 values among the true source-
composition profiles and the estimated source-composition
profiles as well as among the true source contributions and
the estimated source contributions for q = 4. Throughout the
simulation, R2 values were all greater than 0.99, which indi-
cates that the estimated source profiles and contributions
agree well with the true source profiles and contributions.
Figure 4 presents the time-series plots of the true centered
source contributions and the estimated centered source
contributions (based on one of the simulated datasets).
Note that estimates for noncentered source contributions
can be obtained by adding the estimated mean contribution

 

 
1 1
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log ,

t t
q I

t t t k tk i ti
k i
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 to the estimated centered source contribu-
tions. The mean squared errors for the source compositions
and contributions under the true model were less than 0.01
and 0.1, respectively.

The 95% posterior intervals were computed in each sim-
ulation. The posterior interval for each element of � con-
tained the true value approximately 96% of the time (there
were 5 instances out of 120 when the posterior interval for
an element of � did not contain the true value).

APPROACH TO INCORPORATING SPATIAL 
DEPENDENCE IN MULTIPOLLUTANT DATA FROM 
MULTIPLE MONITORING SITES INTO MULTIVARIATE 
RECEPTOR MODELING: BAYESIAN SPATIAL 
MULTIVARIATE RECEPTOR MODELS

In this portion of the project, we developed a Bayesian
spatial multivariate receptor modeling approach that can
incorporate spatial dependence into the estimation of
source profiles and contributions as well as cope with the
unknown number of pollution sources and identifiability
conditions. Space–time variation in source contributions
and their associated levels of uncertainty can be examined
using this approach. These enhanced multivariate receptor
models enable prediction of unobserved source contribu-
tions (and pollutant concentrations) at locations other than
the monitoring sites, which allows inference about the
source-specific exposures and associated health effects in
the study areas that do not have any monitoring stations.

Spatially Extended Multivariate Receptor Models

Let N be the number of receptors. As given in Equation 1
of the earlier section concerning a single receptor site, the
standard model for the rth receptor at time t is:

where � is a q � J source-composition matrix,

 is a vector of observed concentrations

on J pollutants at receptor r at time t,  is a

vector of contributions from q sources at receptor r at time t,

and  is a J-dimensional vector of errors

associated with each observation at the rth receptor and time

t. The elements of � are constrained to be nonnegative.

We model these multivariate spatial temporal data 
by adapting the dynamic factor process convolution mod-
els (a version of multivariate spatial temporal process con-
volution models) introduced by Calder (2003, 2007),
although we focus on spatial modeling and do not pursue
the dynamic nature of the model over time in this project.
Unlike traditional geostatistical models, the dynamic fac-
tor process convolution models do not require defining the
cross-covariance function directly. Dynamic factor process
convolution models are a generalization of the discrete
process convolution approach to modeling spatial data
proposed by Higdon (1998) for which the spatial process is
expressed as a sum of the discrete underlying (latent) pro-
cess defined on L locations on a coarse grid {�1, �2,…, �L},
covering the spatial domain, smoothed by the kernel �. It
is known that the covariance function of the spatial pro-
cess obtained by this approach is guaranteed to be valid

  1ˆ ˆ ˆ ˆˆ� �

 P PP

 (19),              1, , ,      1, , ,r r rX A E t T r Nt t t   P  

 1, ,r r r
t t tJX X X 

 1
, ,

t
r r r
t tqA A A 

 1, ,r r r
t t tJE E E 

r
tX

Table 5. Log of Marginal Likelihood (logMD) for q-Source Models (q = 3, 4, 5)

Dataset

Number of Sources (q)a

3 4 5

1 �3518.7 �3289.2 �3379.1
2 �3664.0 �3232.9 �3327.9
3 �3604.1 �3315.0 �3400.6

4 �3615.8 �3334.0 �3406.7
5 �3649.1 �3204.0 �3299.1
6 �3460.0 �3179.2 �3284.7

7 �3531.0 �3230.5 �3363.1
8 �3473.6 �3197.5 �3294.2
9 �3719.8 �3275.6 �3368.8

10 �3603.1 �3329.3 �3428.1

a The model having the maximum logMD was selected for each dataset. q = 4 was selected for all 10 of these datasets.
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(positive definite) and features such as nonstationarity and
anisotropy can also be easily incorporated into the model
(see Calder 2003, 2007). The dynamic factor process convo-
lution models are constructed by inserting the factor model
into the multivariate dynamic process convolution model to
specify the covariance among the columns of the data at
time t. This approach has several advantages, compared to
traditional geostatistical models, in that it can cope with
nonseparable covariance functions, potential asymmetry in

the cross-covariance function, and with misaligned and
missing data.

In Calder (2003, 2007), the number of factors (q) was
assumed either known or chosen by a rule-of-thumb
method without considering uncertainty in q. The model
identifiability conditions were also assumed known. The
conditions used in Calder (2003, 2007) assumes zeros for all
elements of the lower triangular matrix of 	 (coupled with
an assumption of orthogonal factor models). The assump-
tion of the lower triangular matrix of 	 makes the order of

Figure 4. True and estimated centered source contributions from a simulated dataset under the Poisson health outcome model.
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the pollutant series in X matter (because such constraint in
	 implies that the first factor is completely determined by
the first series [pollutant] and the second factor is com-
pletely determined by the first and second series [pollut-
ants], and so on), and the estimates of source-composition
matrix and source contributions may be affected signifi-
cantly depending on the order of columns in the data. Our
Bayesian spatial multivariate receptor modeling relaxes
the assumption of the known number of sources and iden-
tifiability conditions and also incorporates physically
meaningful non-negativity constraints (that were not
enforced in Calder 2007) for the source-composition
matrix 	 into the estimation.

To extend multivariate receptor models to incorporate
spatial dependence in multipollutant data obtained from
multiple monitoring sites, we consider the following mod-
el for the multivariate data {X(sr, t), t = 1,…,T} collected at
N spatial sites {s1, s2,…, sN} over T time points:

X(sr, t) = K(r)GtP + µ + E(sr,t), (20)

where sr is the spatial location of the r th receptor (r = 1, …,
N), Gt represents q underlying processes located at L spa-

tial locations {�1, �2, …, �L}, K(r) = [�(�1�sr),…,�(�L�sr)],

� is a smoothing kernel, µ = (µ1,…,µJ) is the mean of X(sr , t),
and E(sr, t) is an independent and identically distribut-
ed, mean zero, Gaussian process on (sr, t) with variance

Note that the source contributions at

any location can be estimated as K(r)Gt by plugging in the
estimates for Gt and the corresponding values for K(r).

In matrix terms, the above model can be written as

Xt = KGtP + µ + Et, (21)

where 
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We assume that Gt and Et are independent across loca-

tion and time and have matrix normal distributions (see

Dawid 1981) as follows: 

Using vec(.) operator stacking the columns of a matrix, the

model in Equations 21–23 can be written as:

For prior distributions of parameters, we assume inde-

pendent priors p(G,	,�,µ,�) = p(G|�)p(	)p(�)p(µ)p(�)

with multivariate truncated normal for free elements of 	

inverse gamma for diagonal elements of �, multivariate

normal for µ, and IW distribution for �, respectively. That

is,

We used the Gibbs sampling algorithm in implementa-

tion of MCMC for parameter estimation. One sweep con-

sists of five updating procedures: (i) updating G, (ii)

updating 	, (iii) updating �, (iv) updating �, and (v)

updating µ.

The full conditional distributions of G, �, µ, �, and 	

are given as follows:

where dj is the jth diagonal element of 

For the columns of 	 with no preassigned (zero or one) ele-

ments,

c0j is a q-dimensional prior mean vector of Pj, C0j is a cor-

responding submatrix of C0, Xj is the jth column of X, and

1TN is the TN-dimensional column vector consisting of 1’s.

For the columns of 	 containing preassigned (zero or one)

elements,

where qj
+ is the number of free elements in the jth column

of 	; and

where  is a qj
+-dimensional prior mean vector of

 is a corresponding submatrix of C0, and  con-

sists of the columns of � corresponding to qj
+-elements of

the jth column of 	.
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We also assessed uncertainty in the unknown number of
sources and identifiability conditions by computing the
marginal likelihood and posterior model probability of
each model in the set of candidate models (with different q
and prespecification of zeros in 	).

The marginal likelihood of model M can be estimated by

where �c is a single point of � = (G, 	, �, �, µ) under model M

and  is the estimated posterior density function of

 Using the same algorithm of Oh (1999), we have:

Because the full conditional posterior density functions
are known,  can be estimated as the sample
average of the product of the full conditional posterior
density functions using the posterior sample of � under
model M. We chose �c as an approximate posterior model

based on a preliminary MCMC run. Note that when � = Iq is

assumed a priori to eliminate the multiplication of a row by

a scale constant in 	, the step involving � in sample gener-

ation and marginal likelihood computation can be omitted.

Evaluation of Spatially-Enhanced Bayesian Multivariate 
Receptor Models by Simulation

We conducted a simulation study to assess the perfor-
mance of the new enhanced multivariate receptor models
accounting for spatial dependence in the data as well as
uncertainty in both the number of sources and identifi-
ability conditions. The spatial locations (s1, s2,…, sN) for
the data are generated randomly from a uniform distribu-
tion over a unit square with N = 9. The spatial locations
{�1, �2,…, �L} where the latent processes are generated
were chosen so that the distance between adjacent loca-
tions (that is equal to standard deviation of the kernel if the
Gaussian convolution kernel is used) is 	� = 0.3, which
results in L = 9. The true source-composition matrix 	 and
mean µ are set as:

and µ = �P where � = (4,6,10), respectively.

The latent space–time process Gt and error process Et were
generated from the following matrix normal distributions:
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To assess the prediction performance of the spatial mul-
tivariate receptor models for the source contributions at an
unmonitored site, we used the data from eight locations for
model fitting and computing marginal likelihood, and
then predicted source contributions at the ninth location
under the true model for model validation. The sample
size T at each site was taken to be 100.

As opposed to assuming the known number of sources
(q0 = 3) and identifiability conditions, we defined the can-
didate models by varying the number of sources (q = 2, 3,
4, 5) and position of zeros in identifiability conditions
(C1–C3) and estimated the parameters under each model
as well as computed marginal likelihoods.

The simulation was repeated 50 times. The following
hyperparameter values were used for generating MCMC
samples: a0 = 0.01, b0j = 0.01 (j = 1,…,9), c0 = 0.5 � 1p+, C0
= 100 � Ip+, m0 =  M0 = 100 � IJ, r0 = q, and R0 = Iq � (r0
+ q + 1). The estimated marginal likelihoods for each q-
source model are reported in Table 6 on a log scale (only 5
cases are shown for illustration). The selected model is the
one having the maximum logMD. The true model (with q =
3) was selected for all 50 of the simulations.

We also monitored the sample correlations among the
true source-composition profiles and the estimated source-
composition profiles as well as among the true source con-
tributions and the estimated source contributions for q = 3.
Throughout the simulation, the correlations for source-
composition profiles were all greater than 0.92, which
indicates that the estimated source profiles agree well with
the true source profiles. The sample correlations for source
contributions at monitored sites were greater than 0.91.
Figure 5 presents the time-series plots of the true centered

source contributions and the estimated centered source
contributions (based on one of the simulated datasets) at
one of the monitored sites (site 1). Note that estimates for
noncentered source contributions can be obtained by

adding the estimated mean contribution  to

the estimated centered source contributions. The mean
squared errors for the source compositions and contribu-
tions under the true model were less than 0.2 and 0.4,
respectively.

Next, we predicted the source contribution at an
unmonitored site (site 9). Figure 6 contains the time-series
plots of the true centered source contributions and pre-
dicted centered source contributions (based on one of the
simulated datasets) at the unmonitored site. The sample
correlations for source contributions at the unmonitored
site were greater than 0.91, and the mean square error of
predicted source contributions at the unmonitored site
under the true model was less than 0.5.

Then, we performed a simulation assuming � = Iq a priori
to eliminate the multiplication of a row by a scale constant
in 	. The simulation was repeated 50 times. The following
hyperparameter values were used for generating MCMC
samples: a0 = 0.01, b0j = 0.01 (j = 1,…,9), c0 = 0.5 � 1p+, C0 =
100 � Ip+, m0 =  and M0 = 100 � IJ. As noted in an earlier
section, assuming an orthogonal factor model for � (with �
= Iq) is more beneficial than assuming an oblique factor
model (unless 	 can be assumed to have a special structure
such as Iq for the leading q � q submatrix of 	 for identifi-
ably conditions) in terms of more easily satisfying the con-
straint C2 and avoiding numerical problems in MCMC
implementation. The estimated marginal likelihoods for

,X

  1ˆ ˆ ˆ ˆˆ� �

 	 		

,X

Table 6. Log of Marginal Likelihood (logMD) for q-Source Models Assuming a priori an Oblique Factor Model 
(q = 2, 3, 4, 5)

Dataset

Number of Sources (q)a

2 3 4 5

1 �1292.6 �802.4 �1201.1 �1301.2
2 �1668.4 �875.6 �1337.4 �1310.8
3 �1447.4 �980.8 �1414.7 �1413.1
4 �1624.8 �714.9 �1242.2 �1396.8
5 �1686.9 �690.7 �1634.1 �1112.8

a The model having the maximum logMD was selected for each dataset. q = 3 was selected for all 5 of these datasets.
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Figure 5. True and estimated centered source contributions at one of the monitoring sites in a simulated dataset assuming a priori an oblique
factor model.
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Figure 6. True and predicted centered source contributions at an unmonitored site in a simulated dataset assuming a priori an oblique factor model.



8484

Enhanced Statistical Methods to Assess Heath Effects

each q-source model are reported in Table 7 on a log scale
(only 5 cases are shown for illustration). The selected model
is the one having the maximum logMD. The true model

(with q = 3) was selected for all 50 of the simulations.

We also monitored the sample correlations among the
true source-composition profiles and the estimated source-
composition profiles as well as among the true source con-
tributions and the estimated source contributions for q = 3.
Throughout the simulation, the correlations for source-
composition profiles were all greater than 0.93, which
indicates that the estimated source profiles agree well with
the true source profiles. The sample correlations for source
contributions at monitored sites were greater than 0.91.
Figure 7 presents the time-series plots of the true centered
source contributions and the estimated centered source
contributions (based on one of the simulated datasets) at
one of the monitored sites (site 1). Note that estimates for
noncentered source contributions can be obtained by

adding the estimated mean contribution  to

the estimated centered source contributions. The mean
squared errors for the source compositions and contribu-
tions under the true model were less than 0.05 and 0.2,
respectively.

Next, we predicted the source contribution at an
unmonitored site (site 9). Figure 8 contains the time-series
plots of the true centered source contributions and pre-
dicted centered source contributions (based on one of the
simulated datasets) at the site. The sample correlations for
source contributions at the unmonitored site were greater
than 0.92, and the mean square error of predicted source
contributions at the site under the true model was less
than 0.3.

RESULTS

PHOENIX DATA ANALYSIS

The method developed in the previous section has been
applied to the Phoenix PM2.5 speciation data along with
temperature and relative humidity data and daily cardio-
vascular mortality data (Hopke et al. 2006; Mar et al. 2006).
The same data were used in the 2003 workshop on the
Source Apportionment of PM Health Effects, sponsored by
the U.S. EPA PM centers (Hopke et al. 2006; Mar et al.
2006; Thurston et al. 2005).

The daily 24-hour PM2.5 speciation data for Phoenix
were obtained from Dr. Philip Hopke. The original PM2.5
data consisted of 981 samples, collected over a 1208-day
period (3/11/1995–6/30/1998), with measured concentra-
tions for 46 chemical elements: Na, Mg, Al, Si, P, S, Cl, K,
Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Br,
Rb, Sr, Y, Zr, Mo, Rh, Pd, Ag, Cd, Sn, Sb, Te, I, Cs, Ba, La,
W, Au, Hg, Pb, organic carbon (OC), and elemental carbon
(EC). We also received the Phoenix mortality data (i.e.,
daily numbers of deaths due to cardiovascular causes and
due to all nonaccidental causes) for residents � 65 years of
age at the time of death along with the corresponding
weather data (temperature and relative humidity) from Dr.
Teresa Mar. These data were collected over a 1057-day
period (2/9/1995–12/31/1997). The overlap in collection
dates for the Phoenix PM2.5 speciation data and the mor-
tality data is a 1027-day period (3/11/1995–12/31/1997).

The original Phoenix PM2.5 speciation data with 981
observations on 46 chemical species contains many nega-
tive values. For some species, more than half of the mea-
surements have negative values. Species with more than
200 negative values are: Sc (662), V (281), Cr (305), Co (513),
Ni (203), Ga (552), Ge (450), Se (226), Y (601), Zr (527),

  1ˆ ˆ ˆ ˆˆ� �

 	 		

Table 7. Log of Marginal Likelihood (logMD) for q-Source Models Assuming a priori an Orthogonal Factor Model 
(q = 2, 3, 4, 5) 

Dataset

Number of Sources (q)a

2 3 4 5

1 748.6 1223.6 1160.5 1137.4
2 393.0 1330.1 656.7 884.4
3 708.0 1229.7 1187.6 1158.3
4 639.0 1144.3 1102.7 1051.7
5 675.8 1205.8 1148.2 1123.8

a The model having the maximum logMD was selected for each dataset. q = 3 was selected for all 5 of these datasets.
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Figure 7. True and estimated centered source contributions at one of the monitoring sites in a simulated dataset assuming a priori an orthogonal
factor model.
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Figure 8. True and predicted centered source contributions at an unmonitored site in a simulated dataset assuming a priori an orthogonal
factor model.
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Mo (486), Rh (596), Pd (561), Ag (539), Cd (470), Sn (349),
Sb (349), Te (446), I (246), Cs (277), La (257), W (515), Au
(517), and Hg (524) where the number in parentheses repre-
sents the number of negative measurements. Another
problem with the PM2.5 data was that some species were
missing a large number of values (e.g., Na and Mg). The pat-
tern of the missing values in the original Phoenix data is
given in Appendix D (available on the HEI Web site).

The first important step in multivariate receptor mod-
eling is to select an appropriate subset of species for the
analysis. Prior knowledge about the potential sources for
the region of the study (e.g., Lewis et al. 2003; Ramadan et
al. 2003), as well as an expert’s opinion (Dr. Hopke), was uti-
lized in the initial selection of species for fitting. None of the
species listed above (with > 200 negative values) were
deemed to be associated with major pollution sources.

It needs to be emphasized that although we removed
species that had a large number of negative or missing
values, it does not mean that the effect of sources con-
taining the removed species cannot be incorporated into
examining source-specific health effects. For example,
copper smelters are one of the main sources of Co and
although Co is not selected as one of the fitting species in
this case, copper smelters may still be identified by other
species in the data; their contributions, as well as their
health effects, can still be estimated. This is one of the
major advantages of a source-specific approach over a pol-
lutant-specific approach in assessing associations between
air pollutants and health outcomes.

In a pollutant-specific approach, once Co is removed
from the data, the effect of Co on a health outcome (e.g.,
respiratory disease) cannot be assessed. On the other hand,
in a source-specific approach, we are concerned about the
effect of a combination of species (realized as source con-
tributions), and even the effect of missing species can be
incorporated into the health-effects analysis of sources
emitting that species. Note that individual species affect
only the estimation of source-composition profiles. The
source contributions are the same for all species consti-
tuting source-composition profiles and do not depend on
individual species.

The only exception to incorporating the effect of a
removed species into the analysis is when the source of
that species cannot be identified (and so the corresponding
contributions cannot be estimated), that is, when the
removed species is a tracer element or a key species for a
non-negligible source. In such cases, although the species
have many missing values, they may still need to be
retained in the data (with help of a good imputation proce-
dure) rather than be deleted.

As a matter of fact, we had such an incidence with Na.
Although Na is one of the key species for Sea Salt identi-
fied in previous studies for the region along with Cl, about
75% of Na values were missing. Without Na, however, Sea
Salt did not appear to be able to be successfully identified
in our analyses. Thus, we finally decided to include Na
(after imputation) in the fitting species.

The final selection of species used in the model
included the following 15 species:

Na (645 missing), Al (19), Si (0), S (0), Cl (60), K (0), Ca (0), 
Mn (1), Fe (0), Cu (6), Zn (0), Br (2), Pb (6), OC (28 missing), 
and EC (28 missing),

where the number in parentheses represents the number of
negative measurements or missing values in the data for
868 out of 1027 days for which PM2.5 speciation measure-
ments existed.

There were no missing values for the mortality data for
this 1027-day period. On the other hand, the PM2.5 data
were available for only 868 of these days at most as men-
tioned above (223 days for Na, 840 days for OC and EC, 868
days for the remaining 12 species). The weather data were
also missing for some of 1027 days (temperature was
missing for 56 days and relative humidity was missing for
76 days). Although one option for evaluating the source-
specific health effects would be to include only the 868
days that are common for all of PM2.5 data, weather data,
and the mortality data, it would not allow for exploration
of a different lag structure of the source-specific effects on
mortality other than a lag 0 effect. Thus, we decided to
impute the missing values (in PM2.5 data and weather data)
prior to applying the new method so that they could be
aligned with the mortality data for all 1027 days. Appendix
D contains the plots showing the structure of missing values
in two species (OC and K) when all 1027 days are consid-
ered. Other species also show a similar structure because
most of the missing values come from the days when no
measurements on PM2.5 species were available.

The SPSS procedure based on the EM algorithm was used
for imputation of missing values. The EM algorithm uses a
linear model for the variables that are present to estimate
the missing data in an iterative manner. It uses maximum
likelihood estimates for the missing data (M step), then
plugs those estimates (E step) into the data and iterates until
convergence (see Dempster et al. 1977). In cases where all
the PM2.5 species are missing, we still had temperature and
relative humidity to use for imputations. We used a t-distri-
bution with 7 degrees of freedom (df) to capture the heavy-
tailed (outlier prone) distribution of our data. Thus, the EM
method uses a t-distribution with 7 df as the likelihood to
maximize in the M step of the EM algorithm.
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To provide a consistent basis for comparison with other
results from Mar and colleagues (2006), we used the same
mortality model as they did, controlling for confounding by
including an indicator variable for extreme temperatures, a
day-of-week variable, and smoothing terms for time trends,
temperature, and relative humidity (namely, natural spline
smoothers with 12 df for the smoothing of time trend, 5 df
for the smoothing of temperature with 2 days lag, and 2 df
for the smoothing of relative humidity with 0 days lag).

We constructed a range of different receptor models
(resulting from each combination of numbers of sources (q)
and identifiability conditions) to be compared with each
other for the Phoenix data. Based on several previous
studies on the Phoenix PM2.5 data (Hopke et al. 2006;
Lewis et al. 2003; Ramadan et al. 2000; Ramadan et al.
2003) and the NUMFACT procedure (Henry et al. 1999;
Park et al. 2000), we presumed that the number of major
sources is between three and eight. For candidate positions
of zeros in � under each q-source model, we also used the
information on the major sources, such as the information
on minor species (absent or low in concentration) for each
potential source type, obtained from previous studies on
Phoenix PM2.5. For example, we could use the information
that the element Al is typically not present in emissions
from Motor Vehicles (Traffic) and then prespecify zero to
Al. In practice, the elements that are preassigned zero ele-
ments are rarely actual zeros but are small enough to be
considered zero (i.e., minor compounds). We preassign
zeros to absent species for each source profile to indicate
that the true concentrations for the corresponding ele-
ments are relatively small, if not zeros. For example, in
Table 8, Source 1 under Model 1 has Al and S absent from
its profile; in practice it could be any source profile (such
as Biomass Burning, Traffic, or Sea Salt) for which those
species are not major constituents. Source 2 with Cl and Fe
absent from the profile (or low in concentration) may rep-
resent Smelter, Biomass Burning, or Secondary Sulfate),
and Source 3 with OC and EC absent (or low) in the profile
could be a profile not having those species as major con-
stituents (e.g., Soil or Sea Salt). Note that we use this type
of information from previous studies only to find out the
plausible sets of identifiability conditions (positions of
zeros) under each q-source model. Other than that, the can-
didate models do not depend on the results from those pre-
vious studies. The ten candidate models for comparisons
with different numbers of sources (q = 3, 4, 5, 6, 7, 8) and
different prespecification of identifiability conditions
(zeros in �) are listed in Table 8.

The PM2.5 data and cardiovascular mortality data were
simultaneously fitted to estimate source-composition pro-
files, contributions, and health-effects parameters as well
as marginal likelihood under each model in Table 8 at lag
0–5 days. Because concentrations of PM2.5 species differed
by two or three orders of magnitude, each element was

Table 8. Candidate Models for Phoenix PM2.5 
Speciation Data

Model 
Number q Source

Prespecified Position 
of Zeros in P

1 3 1
2
3

Al, S
Cl, Fe
OC, EC 

2 4 1
2
3
4

Al, Si, K
Al, Cl, Fe
Cl, OC, EC 
Al, Si, Ca

3 5 1
2
3
4
5

Al, Si, S, K
Al, Si, Cl, Fe
Cl, Cu, OC, EC 
K, Ca, Br, EC
Al, Si, OC, EC

4 5 1
2
3
4
5

Al, Si, S, K
Al, Si, Cl, Fe
Cl, Cu, OC, EC 
Al, Si, Ca, Fe 
K, Ca, Br, EC

5 5 1
2
3
4
5

Al, S, Cl, Fe
Cl, Fe, Cu, Zn
Cl, Cu, OC, EC 
Al, Si, Ca, Cu
Al, Si, K, Ca

6 6 1
2
3
4
5
6

Al, Si, S, Cl, Ca
Al, Si, Cl, K, Fe
Cl, Cu, Pb, OC, EC 
Al, Si, Cl, Ca, Fe
Al, Si, Cl, K, Ca
Al, Cl, K, Ca, EC

7 6 1
2
3
4
5
6

Al, Si, S, Cl, K
Cl, Ca, Mn, Br, EC
Cl, Cu, Pb, OC, EC 
Al, Si, Cl, Ca, Fe
Cl, Fe, Cu, Zn, Pb
Al, K, Pb, OC, EC

8 6 1
2
3
4
5
6

Al, Si, S, Cl, K
Al, Si, Cl, K, Fe
Cl, Cu, Pb, OC, EC 
Al, Si, Cl, Ca, Fe
Al, Cl, Mn, Br, EC 
Al, K, Pb, OC, EC

9 7 1
2
3
4
5
6
7

Al, Si, S, Cl, K, Fe
Al, Cl, Ca, Mn, Br, EC 
Cl, Cu, Br, Pb, OC, EC 
Al, Si, Cl, Ca, Fe, Zn
Na, Al, Si, Cl, K, Ca 
Na, Cl, Fe, Cu, Zn, Pb
Al, K, Cu, Pb, OC, EC

10 8 1
2
3
4
5
6
7
8

Al, S, Ca, Mn, Zn, Br, Pb
Al, Cl, Mn, Fe, Cu, Zn, Pb
Cl, Mn, Cu, Br, Pb, OC, EC 
Al, Si, Cl, Ca, Mn, Fe, Zn
Al, Si, Cl, K, Ca, Mn, Br 
Al, Cl, Mn, Zn,  Br, Pb, EC
Al, Cu, Zn, Br, Pb, OC, EC
S, K, Fe, Cu, Pb, OC, EC
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scaled by its sample standard deviation before running
MCMC. It is known that convergence problems are
common when elemental concentrations are on widely dif-
ferent scales (Nikolov et al. 2007).

However, after the run, the individual elements of the es-
timated source profiles were multiplied by the correspond-
ing sample standard deviations to bring them back to the
original scale, so that the relative amounts of species in each
profile are physically interpretable. The estimated source
contributions were also rescaled by multiplying the sum of
elements of the corresponding source-composition profile
in the original scale. It needs to be noted that although the
PM data were scaled by the standard deviations at the begin-
ning, this does not actually affect the estimation of � or A. It
only changes the scales in the source-composition matrix
during the MCMC implementation. By rescaling back to the
original scale at the end, however, the relative amounts of
species in each source profile are preserved.

The following hyperparameter values were used for gener-
ating MCMC samples: a0 = 0.01, b0j = 0.01 (j = 1,…,15), c0 =

0.5 � 1p+, C0 = 100 � Ip+, m0 =  M0 = 100 � IJ, �0 = 0, U0
= 100, �0 = 0q, B0 = 100 � Iq, �0 = 0I, �0 = 100 � II,

 Also, an orthogonal factor model
assuming � = Iq a priori was employed for �t. Note that
from a Bayesian standpoint, � can be viewed as a hyperpa-
rameter of the prior distribution for �, and as shown in
Park et al. (2002b) the correlation structure in � can still be
uncovered by the sample correlations of the estimated �’s
even in the case that � = Iq is misspecified a priori.

For each model, an approximate posterior mode is
obtained from a preliminary MCMC run, and this is used for

 at which the marginal

likelihood is calculated. An approximate posterior
mode is obtained by evaluating the joint posterior den-
sity for 100,000 iterations after the first 100,000 draws
are discarded. A main MCMC run is then started from

 and the samples are col-

lected for 200,000 iterations, subsampling every 10th value
(resulting in 20,000 samples), without additional burn-in
(the practice of discarding some iterations at the beginning
of an MCMC run). The marginal likelihood for each model
can be computed in sample generation without storing the
samples. Table 9 gives the estimated marginal likelihoods
(in log) for each model of Table 8, jointly modeling the
PM2.5 and cardiovascular mortality data at lag day 0. The

posterior probability of each model under the indifference
prior is also provided in Table 9. Model 7 with six sources is
selected as the best model because the posterior probability
for Model 7 is almost 1. For other lag days (lag days 1–5)
Model 7 also led to the highest posterior model probability

,X
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Table 9. Marginal Likelihoods for Candidate Models for 
Phoenix PM2.5 Speciation Data and Cardiovascular 
Mortality at Lag 0 Daysa

Model 
Number

Number of 
Sources (q)

LogMD
(� 104) PostP

1 3 �1.5761 0.0000
2 4 �1.5580 0.0000
3 5 �1.5598 0.0000

4 5 �1.5219 0.0000
5 5 �1.5549 0.0000
6 6 �1.5392 0.0000

7 6 �1.5153 1.0000
8 6 �1.5316 0.0000
9 7 �1.5440 0.0000

10 8 �1.5849 0.0000

a LogMD and PostP denote the Log of Marginal Likelihood and Posterior 
Model Probability, respectively.

that is very close to 1. This is consistent with the observation
from Mar and colleagues (2006), who noted that there are six
source components most consistently reported for the
Phoenix data by the various investigators and methods.

The estimated source profiles under Model 7 are given in
Table 10. The estimated source profiles and contributions
based on the PM2.5 and cardiovascular mortality data with
other lags are materially the same as those in Table 10.
Major species in the estimated source profiles of Table 10
are consistent with main elements of major PM2.5 sources
for Phoenix identified by several previous studies (Hopke et
al. 2006; Lewis et al. 2003; Ramadan et al. 2000; Ramadan et
al. 2003). For example, Source 3, which is characterized by
Al, Si, K, Ca, and Fe, and Source 4, which is characterized
by high percentages of OC and EC, and some K appear to
correspond to Soil/Crustal Matter and Biomass/Wood Com-
bustion, respectively. Source 6 is characterized by high per-
centages of Na and Cl and likely represents Aged Sea Salt.
Source 2 and Source 5 are both characterized by high per-
centages of S and OC. Source 2 is also characterized by Cu,
Zn, and Pb, while percentages of those elements are forced
to be zeros in the Source 5 profile. It is conjectured that
Source 2 represents a Smelter and Source 5 represents Sec-
ondary Sulfate.

Source 1, characterized by high percentages of OC and EC,
seems to represent Traffic, as defined by Mar and colleagues
(2006). The Heavy Duty Diesel source that had been identi-
fied in some of the previous studies (Lewis et al. 2003;
Ramadan et al. 2000; Ramadan et al. 2003) could not be
separated from Motor Vehicles. The non-negligible
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percentage of Fe in the Source 1 profile seems to imply that
Source 1 might be a mixture of Motor Vehicles and Heavy
Duty Diesel. In their intercomparison of source apportion-
ment studies, Hopke and colleagues (2006) reported that
some investigators identified and quantified Diesel sepa-
rately from Motor Vehicles, and some did not. As a result, in
the study by Mar and colleagues (2006) that assessed the
health effects of PM2.5 sources based on the source-appor-
tionment results of Hopke and colleagues (2006), Diesel and
Motor Vehicles were combined and named Traffic.

To obtain the corresponding source contributions that
are scaled appropriately by the normalizing constants of
the source profiles, S and OC in Table 10 needed to be
rescaled because all of the S would be present as sulfate,
which has three times the mass of S. OC includes only the
carbon in organic compounds and does not include the
unmeasured H, O, and N that will also be in the organic
species. Since ammonium is not included in the profile, S
was multiplied by 4.125 to be converted to (NH4)2SO4.
Also, OC was multiplied by 1.5 to be converted to organic
matter (OM) that includes H, O, and N. The rescaled
source-composition profiles along with their uncertainty
estimates (95% posterior intervals) and the estimates of
the mean, standard deviations, and the 5th-to-95th percen-
tiles of source contributions are presented in Table 11.

Figure 9 contains the time-series plots of the estimated
source contributions (in µg/m3) for the 1027-day study
period along with the 95% posterior intervals. In general,
the daily patterns of estimated source contributions of
Figure 3 are similar to those of figure 1 in Mar and col-
leagues (2006) and those of figure 2 in Ramadan and col-
leagues (2003).

The plots of predicted versus measured concentrations
for species used in model fitting, as well as the plot of the
sum of estimated source contributions versus measured
total PM2.5 mass concentration (which was not used in
model fitting), are also provided in Appendix D. The R2

values between the measured and predicted values were
greater than 0.7 for all but two minor species (Zn and Br).
The R2 values between the sum of the estimated source
contributions and measured total PM2.5 mass concentra-
tion was 0.93.

Table 12 presents source-specific effects on cardiovas-
cular mortality at lag days 0–5. Only the source-specific
effects due to Source 2 (that appears to be Smelter) at lag
day 0 and Source 6 (that appears to be Sea Salt) at lag day 5
were statistically significant (i.e., a 95% posterior interval
does not contain 0). In Mar and colleagues (2006), the
effects of Sulfate (lag 0), Traffic (lag 1), Smelter (lag 0), and
Sea Salt (lag 5) on cardiovascular mortality were found to

Table 10. Estimated Source Composition Profiles of 15 Species Under Model 7a

Species
Source 1
Traffic

Source 2
Smelter

Source 3
Soil/Crustal

Source 4
Biomass / Wood 

Combustion

Source 5
Secondary 

Sulfate
Source 6
Sea Salt

Source Composition
Na 0.00 0.04 1.11 0.03 7.81 34.90
Al 0 0.23 17.04 0 0.39 0
Si 0 2.58 44.61 0 0.45 8.58
S 0 64.33 1.85 0.20 28.82 1.36

Cl 0 0 0 0 0 41.36
K 0 1.58 6.70 3.15 2.34 0
Ca 0.53 0 15.25 0 0.13 6.32
Mn 0.11 0 0.34 0.00 0.01 0.32

Fe 2.61 0.87 12.73 0 0 5.62
Cu 0.11 1.14 0 0.04 0 0.06
Zn 0.38 1.46 0.29 0.05 0 1.26
Br 0.04 0 0.07 0.04 0.14 0.20

Pb 0.16 1.73 0 0.13 0 0
OC 67.51 26.05 0 76.54 58.35 0
EC 28.55 0 0 19.82 1.57 0

a Source compositions are normalized to Sum = 100%. Bolding gives the position of pre-assigned zeros. Source names in italics are conjectures based on the 
source compositions of previous studies. 
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be statistically significant. The effects of the fine particle

soil and biomass burning factors were not significant at any

lag days in Mar and colleagues (2006) or in our analysis.

Overall, the effects of Smelter, Sea Salt, Soil, and Bio-

mass Burning on cardiovascular mortality seemed to be

consistent between our analysis and that of Mar and col-

leagues (2006). However, Secondary Sulfate at lag day 0

and Traffic at lag day 1 that were statistically significant in

Mar and colleagues (2006) were not statistically significant

in our analysis. Recall that the uncertainties in the esti-

mated source contributions were not accounted for in the

estimation of the health effects parameters in Mar and

colleagues (2006), which may have introduced the poten-

tial bias as noted in their study. On the other hand, our

Table 11. Rescaled Source Composition Profiles and Contributions of 15 Species Under Model 7a

Species
Source 1
Traffic

Source 2
Smelter

Source 3
Soil/Crustal

Source 4
Biomass / Wood 

Combustion

Source 5
Secondary 

Sulfate
Source 6
Sea Salt

Source Composition: % (95% Posterior Intervals)b

Na 0.00
(0.00–0.01)

0.01
(0.00–0.05)

1.05
(0.76–1.33)

0.02
(0.00–0.08)

3.56
(3.14–4.07)

33.48
(29.23–37.30)

Al 0 0.07
(0.00–0.25)

16.11
(14.87–17.28)

0 0.18
(0.02–0.37)

0

Si 0 0.82
(0.33–1.35)

42.17
(38.96–45.20)

0 0.20
(0.01–0.57)

8.24
(4.61–11.47)

(NH4)2SO4 0 84.49
(72.97–95.59)

7.23
(0.75–14.08)

0.60
(0.02–2.00)

54.22
(47.82–61.59)

5.37
(0.15–16.70)

Cl 0 0 0 0 0 39.68
(34.42–44.13)

K 0 0.50
(0.04–1.07)

6.33
(5.68–7.01)

2.27
(2.08–2.47)

1.07
(0.71–1.42)

0

Ca 0.40
(0.35–0.44)

0 14.42
(13.29–15.49)

0 0.06
(0.00–0.18)

6.07
(4.27–7.78)

Mn 0.08
(0.08–0.09)

0 0.32
(0.29–0.36)

0.00
(0.00–0.00)

0.00
(0.00–0.01)

0.31
(0.16–0.47)

Fe 1.95
(1.89–2.03)

0.28
(0.04–0.56)

12.03
(11.01–13.01)

0 0 5.39
(3.41–7.23)

Cu 0.08
(0.08–0.09)

0.36
(0.31–0.42)

0 0.03
(0.02–0.04)

0 0.06
(0.00–0.17)

Zn 0.28
(0.26–0.31)

0.46
(0.34–0.60)

0.27
(0.15–0.40)

0.04
(0.00–0.08)

0 1.21
(0.47–1.96)

Br 0.03
(0.03–0.03)

0 0.06
(0.05–0.08)

0.03
(0.02–0.03)

0.07
(0.05–0.08)

0.19
(0.09–0.31)

Pb 0.12
(0.11–0.13)

0.55
(0.47–0.64)

0 0.09
(0.07–0.11)

0 0

OM 75.71
(75.04–76.34)

12.44
(1.19–24.04)

0 82.65
(81.14–83.96)

39.93
(32.44–46.10)

0

EC 21.34
(20.76–21.96)

0 0 14.27
(13.19–13.36)

0.71
(0.02–2.18)

0

Source Contribution (µg/m3)
Mean 4.37 0.31 0.83 1.92 2.34 0.03
Standard deviation 3.62 0.65 0.64 1.85 0.97 0.10
5th-to-95th increment 11.81 1.92 1.91 4.97 2.97 0.14

a Source names in italics are conjectures based on the source compositions of previous studies (cited in the text).

b Source composition percentages are normalized to Sum = 100%. Bolding gives the position of preassigned zeros.
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Figure 9. Time-series plots of the estimated source contributions (in µg/m3) for 1027 days along with their uncertainty estimates (95% posterior
intervals). (Continues next page.)
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Figure 9 (Continued).
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approach does account for the uncertainty in the esti-
mated source contributions in the estimation of the health
effects parameters. Statistically insignificant estimates for
Secondary Sulfate (lag 0) and Traffic (lag 1) might have
been a consequence of incorporating the uncertainty that
had not previously been addressed.

HOUSTON DATA ANALYSIS

We obtained data on mortality, weather, and air pollu-
tion for the Houston, Texas, area near Clinton Drive
(which is close to the Houston Ship Channel) shown in
Figure 10, as well as for the entire Harris County
(including the Clinton Drive area). Appendix E (available
on the HEI Web site) contains detailed explanations on
database development and summary statistics.

For the assessment of source-specific health effects in
the Clinton Drive region, we used the PM2.5 speciation
data for which prior information on potential source types
around the area were available from previous studies (e.g.,
Sullivan 2007). Because there are no PM2.5 speciation data
available at the Clinton Drive monitoring site, the PM2.5
data measured (every 6th day from January 2002 to August
2005) at the Houston East monitoring station on Mae Drive
were used for the analysis. This site is closest to Clinton
Drive (three miles northeast of Clinton), and the data from
this site has been used in other source-apportionment

Table 12. Source-Specific Effects on Cardiovascular Mortalitya

Source 1
Traffic

Source 2
Smelter

Source 3
Soil/Crustal

Source 4
Biomass / Wood 

Combustion

Source 5
Secondary 

Sulfate
Source 6
Sea Salt

� (lag 0) �0.37
(�0.99 to 0.26)

0.46
(0.02 to 0.91)

0.08
(�0.48 to 0.65)

0.13
(�0.28 to 0.55)

0.28
(�0.19 to 0.74)

�0.11
(�0.31 to 0.09)

� (lag 1) 0.29
(�0.34 to 0.88)

�0.03
(�0.47 to 0.42)

�0.16
(�0.71 to 0.38)

0.24
(�0.18 to 0.66)

0.07
(�0.39 to 0.54)

�0.14
(�0.34 to 0.05)

� (lag 2) 0.00
(�0.64 to 0.60)

0.08
(�0.42 to 0.47)

�0.23
(�0.75 to 0.29)

0.19
(�0.20 to 0.59)

0.08
(�0.36 to 0.70)

�0.03
(�0.25 to 0.18)

� (lag 3) 0.08
(�0.54 to 0.69)

�0.03
(�0.48 to 0.41)

�0.34
(�0.86 to 0.17)

0.27
(�0.13 to 0.67)

0.16
(�0.28 to 0.61)

0.17
(�0.03 to 0.38)

� (lag 4) 0.31
(�0.32 to 0.92)

0.15
(�0.29 to 0.59)

�0.45
(�0.96 to 0.07)

�0.21
(�0.62 to 0.20)

0.45
(�0.00 to 0.90)

0.12
(�0.08 to 0.32)

� (lag 5) �0.25
(�0.87 to 0.37)

0.01
(�0.42 to 0.43)

�0.03
(�0.55 to 0.48)

0.10
(�0.29 to 0.49)

�0.27
(�0.73 to 0.19)

0.39
(0.19 to 0.59)

a The � coefficient of PM2.5 contributions from each source type represents the estimated average increase in daily mortality counts per 5th-to-95th 
percentile increment of estimated PM2.5 source contribution (µg/m3) while controlling for other variables in the model; significant effects are denoted in 
bold; 95% credible intervals are given in parentheses. Source names in italics are conjectures based on the source compositions of previous studies.

Figure 10. Map of Harris County, TX (2000–2005), showing a 10-mile
buffer surrounding the Clinton Drive monitoring site (red triangle) with
geocoded residences of decedents (purple dots).

analyses of Clinton Drive (see Sullivan 2007). The original
PM2.5 speciation data consist of measurements on 77 spe-
cies. Summary statistics for the original 77 PM2.5 species
measured at the Houston East monitoring station are pro-
vided in Appendix Table E.15. As noted earlier, the first
important step in multivariate receptor modeling is to
select an appropriate subset of species for the analysis.
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Inclusion of unhelpful species (e.g., species of which
uncertainty values exceed the measurement value) in fit-
ting may hinder receptor modeling. The same set of 17 spe-
cies used in Sullivan (2007) that incorporated both prior
knowledge about potential sources for the region and
signal-to-noise ratio for the selection of species was also
selected for our model fitting. Table 13 contains the list of
selected species as well as their summary statistics. Recall
that in a source-specific approach, we are concerned about
the effect of a combination of species (realized as source
contributions) and even the effect of excluded species can
be incorporated into the health-effects analysis of sources
emitting that species because the source contributions do
not depend on individual species.

The method developed to analyze the discrete health
outcome data with a low mean has been applied to daily
counts of deaths due to respiratory causes along with the
PM2.5 speciation data collected from the Houston East
monitoring site. Summary statistics for all nonaccidental
causes and specific-cause mortality by area (10-mile buffer

region, Harris County) for decedents of all ages and dece-
dents 65 and older at the time of death are shown in
Table 14. Our approach will be primarily illustrated with
respiratory mortality data because daily mean counts are
small with mean values of 1.0 and 3.1 (for decedents 65
and older) for the 10-mile buffer region near Clinton drive
and for the entire Harris County, respectively.

The weather data from the Clinton Drive monitoring
station had too many missing values (4% of temperature
data and 80% for relative humidity data), so temperature
and dew point temperature data collected from the Hobby
airport were used. The airport is close to Clinton Drive (see
Appendix Figure E.6).

Previously, as many as seven sources were identified as
the sources affecting the Houston East monitoring site by
PMF analysis: Sulfate-Rich Secondary Aerosol, Motor
Vehicles, Industrial Combustion, Biomass Burning,
Soil/Crustal Matter, Sea Salt, and Nitrate-Rich Aerosol (see
Sullivan 2007). We constructed a set of plausible candi-
date models (resulting from each combination of numbers

Table 13. Summary Statistics for 17 PM2.5 Chemical Species Measured at Houston Easta

Species
Number

PM2.5 
Speciesb

Number of 
Nonmissing 

Values Average SDb Minimum Maximum

1 Aluminum 217 0.073 0.191 0 1.410
2 Calcium 217 0.099 0.066 0 0.395
3 Chromium 217 0.001 0.003 0 0.035
4 Chlorine 217 0.070 0.184 0 1.440

5 Iron 217 0.111 0.114 0 0.877
6 Nickel 217 0.002 0.002 0 0.008
7 Titanium 217 0.008 0.013 0 0.113
8 Vanadium 217 0.005 0.005 0 0.029

9 Silicon 217 0.283 0.426 0 3.220
10 Zinc 217 0.016 0.021 0 0.201
11 Potassium 217 0.075 0.059 0 0.359
12 Ammonium ion 217 1.251 0.884 0 5.690

13 Sodium 217 0.158 0.236 0 1.490
14 OC CSN unadjusted 224 3.464 1.690 0.416 9.610
15 EC CSN 224 0.676 0.348 0 2.050
16 Nonvolatile nitrate 217 0.345 0.438 0.017 3.630
17 Sulfate 217 3.761 2.279 0.020 14.800

a All units are in µg/m3.

b CSN denotes chemical speciation network; SD denotes standard deviation.
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of sources and identifiability conditions) to be compared
based on previous studies of the region and exploratory
analyses using PMF and the NUMFACT procedure.
Table 15 contains six candidate models corresponding to the
numbers of sources (q = 4, 5, 6, 7) and identifiability condi-
tions (prespecification of zeros in 	) that we compared.

The PM2.5 speciation data, respiratory mortality data, and
weather data were simultaneously fitted to estimate source-
composition profiles, contributions, and health-effects
parameters as well as marginal likelihood under each model
in Table 15 at lag days 0–2. We first considered the respira-
tory mortality data for decedents (of all ages) whose resi-
dences at the time of death belonged to the 10-mile buffer
region surrounding the Clinton Drive monitoring site. We
constructed the base health effects model as a function of
time trends and seasonality and of weather variability in

Poisson GLMs. The model includes smoothing terms for
calendar time, temperature, and dew point temperature.
Using natural spline smoothers, the base model was con-
structed to adjust for long-term time trends and other
unmeasured seasonal confounders as well as potential
nonlinearity in the relationship between weather condi-
tions and mortality (Bell et al. 2004). The degrees of
freedom for the natural splines were selected to minimize
autocorrelation in the residuals and the Akaike information
criterion (AIC) values. Indicator variables for the day of the
week and extreme temperature were also included in the
model. Extreme temperature values (< 5th or > 95th percen-
tiles) were coded as 1, all other temperature values were
coded as 0. The base model was compared with and without
including extreme temperature in the model as a part of sen-
sitivity analyses. We also compared a day-of-week variable

Table 14. Summary Statistics for All Nonaccidental Mortality and Specific Causes of Cardiovascular and Respiratory 
Mortality for the 10-Mile Buffer Region Surrounding the Clinton Drive Monitoring Site and for all of Harris County, Texas, 
2000–2005

Population / 
Mortality Causeb

Area

10-Mile Buffer Region Harris Countya

Number
Mean Daily 

Number of Deaths Number
Mean Daily 

Number of Deaths 

All Ages
Cardiovascular (I00-I99) 15,316 6.7 41,708 19.0
IHD (I20-I25) 7,384 3.4 20,370 9.3
Acute MI (I21) 2,910 1.3 7,786 3.6
Heart failure (I50) 1,088 0.5 2,884 1.3

Stroke (I60-69) 2,806 1.3 8,129 3.7
Respiratory (J00-J98) 2,818 1.3 8,478 3.9
COPD (J40-44) 1,317 0.6 4,124 1.9
Pneumonia (J12-18) 825 0.4 2,335 1.1
Nonaccidental causes (A00-R99) 38,610 17.6 106,772 48.7

�65 Years
Cardiovascular (I00-I99) 11,287 5.1 31,425 14.3
IHD (I20-I25) 5,478 2.5 15,370 7.0
Acute MI (I21) 2,216 1.0 5,990 2.7
Heart failure (I50) 976 0.4 2,606 1.2

Stroke (I60-69) 2,216 1.0 6,694 3.1
Respiratory (J00-J98) 2,250 1.0 6,930 3.1
COPD (J40-44) 1,111 0.5 3,537 1.6
Pneumonia (J12-18) 652 0.3 1,902 0.9
Nonaccidental causes (A00-R99) 25,494 11.6 71,986 32.8

a Includes the 10-mile buffer region. 

b IHD denotes ischemic heart disease, MI denotes myocardial infarction, and COPD denotes chronic obstructive pulmonary disease. 
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temperature, with 2 lag days for temperature and 0 lag days
for dew point temperature, respectively.

In implementing MCMC, we used the following hyper-
parameter values for generating MCMC samples: a0 =
0.01, b0j = 0.01 (j = 1,…,17), c0 = 0.5 � 1p+, C0 = 100 � Ip+,
m0 =  M0 = 100 � IJ, �0 = 0, U0 = 10, �0 = 0q, B0 = 10 �
Iq, �0 = 0I, �0 = 10 � II, r0 = q, and R0 = Iq � (r0 + q + 1).

For each model, an approximate posterior mode is ob-
tained from a preliminary MCMC run, and this is used for

 at which the margin-
al likelihood is calculated. An approximate posterior
mode is obtained by evaluating the joint posterior den-
sity for 30,000 iterations after the first 30,000 draws
are discarded. A main MCMC run is then started from

 and the samples are
collected for 30,000 iterations, subsampling every 10th
value (resulting in 3,000 samples), without additional
burn-in. The marginal likelihood for each model was com-
puted in the main run. Table 16 gives the estimated mar-
ginal likelihoods (in logs) for each model of Table 15,
jointly modeling the PM2.5 and respiratory mortality data at
0 lag days. The posterior probability of each model under the
indifference prior is also provided in Table 16. Model 2 with
five sources led to the highest posterior probability (that is
almost 1) among the models considered. For other lag days
(lag days 1–2) also, Model 2 led to the highest posterior
model probability that is very close to 1.

The estimated source-composition profiles, along with
their uncertainty estimates (95% posterior intervals) under
Model 2 are given in Table 17. The estimated source-compo-
sition profiles and contributions based on the PM2.5 and
respiratory mortality data with other lags are materially the
same as those in Table 17. Major species in the estimated

,X

, , , , , , , ,c c c c c c c c c cW� � � � � � � � ,P

, , , , , , , ,c c c c c c c c c cW� � � � � � � � ,P

Table 15. Candidate Models for Houston PM2.5 
Speciation Data

Model 
Number q Source

Prespecified Position of 
Zeros in P

(Species Numbera with 
Preassigned Zeros)

1 4 1
2
3
4

1, 6, 16
12, 13, 16
6, 10, 12 
7, 10, 11

2 5 1
2
3
4
5

1, 4, 6, 16
3, 7, 10, 11
3, 5, 6, 10 
4, 6, 10, 12
4, 7, 10, 11

3 5 1
2
3
4
5

1, 4, 6, 16
3, 7, 13, 16
3, 5, 6, 10 
4, 6, 10, 12 
3, 7, 10, 11

4 6 1
2
3
4
5
6

1, 4, 5, 6, 16
4, 9, 12, 13, 16
3, 5, 6, 8, 10 
4, 6, 10, 12, 13
1, 4, 7, 10, 11
1, 3, 4, 5, 17

5 6 1
2
3
4
5
6

1, 4, 5, 6, 16
4, 9, 12, 13, 16
3, 5, 6, 8, 10 
4, 6, 10, 12, 13
1, 4, 7, 10, 11
4, 6, 7, 9, 10

6 7 1
2
3
4
5
6
7

1, 4, 5, 6, 8, 16
1, 3, 4, 5, 7, 17 
4, 8, 9, 12, 13, 16 
3, 5, 6, 7, 8, 10
3, 4, 6, 10, 12, 13 
1, 2, 4, 7, 10, 11
4, 6, 7, 8, 9, 10

a Species numbers are defined in Table 13.

and workday variable (i.e., 1 for weekday and 0 for
weekend) in the base model, and found almost no differ-
ence in AIC. A range of alternative lags and degrees of
freedom were explored. We explored 2–6 df for the
smoothing of temperature and dew point temperature with
0–2 lags, but there was no big difference in AIC. We ended
up using the base model with extreme temperature,
workday, 4 df per year for the smoothing of calendar time, 4
df for the smoothing of temperature, and 3 df for dew point

Table 16. Marginal Likelihoods for Candidate Models for 
Houston East PM2.5 Speciation Data and Respiratory 
Mortality at Lag 0 Daysa

Model
Number

Number of
Sources (q) LogMD PostP

1 4 �5276.3 0.0000
2 5 �5116.0 1.0000
3 5 �5298.6 0.0000

4 6 �5276.9 0.0000
5 6 �5422.6 0.0000
6 7 �5639.6 0.0000

a LogMD and PostP denote the Log of Marginal Likelihood and Posterior 
Model Probability, respectively.
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Table 17. Estimated Source Composition Profiles for 17 Species Under Model 2 for Houston Easta

Species
Number

PM2.5 
Speciesb

Source 1
Motor Vehicles

Source 2 
Industrial 

Combustion
Source 3
Sea Salt

Source 4
Soil/Crustal 

Matter

Source 5
Sulfate-Rich 
Secondary 

Aerosol

Source Composition: % (95% Posterior Intervals)

1 Aluminum 0 0.17
(0.01 to 0.52)

4.16
(1.78 to 6.56)

18.11
(15.52 to 20.62)

0.22
(0.01 to 0.55)

2 Calcium 1.09
(0.76 to 1.43)

0.23
(0.03 to 0.47)

3.52
(2.49 to 4.77)

4.95
(4.12 to 5.81)

0.06
(0.00 to 0.17)

3 Chromium 0.01
(0.00 to 0.03)

0 0 0.16
(0.12 to 0.20)

0.01
(0.00 to 0.01)

4 Chlorine 0 0.58
(0.06 to 1.25)

22.85
(17.60 to 28.62)

0 0

5 Iron 1.22
(0.88 to 1.61)

0.36
(0.10 to 0.62)

0 11.67
(10.08 to 13.20)

0.03
(0.00 to 0.10)

6 Nickel 0 0.05
(0.05 to 0.06)

0 0 0.00
(0.00 to 0.00)

7 Titanium 0.00
(0.00 to 0.01)

0 0.07
(0.01 to 0.16)

1.43
(1.23 to 1.61)

0

8 Vanadium 0.00
(0.00 to 0.01)

0.17
(0.15 to 0.19)

0.03
(0.00 to 0.07)

0.04
(0.00 to 0.08)

0.01
(0.00 to 0.02)

9 Silicon 0.11
(0.00 to 0.54)

0.92
(0.07 to 2.01)

8.79
(2.21 to 14.68)

44.76
(38.76 to 50.34)

0.07
(0.00 to 0.30)

10 Zinc 0.43
(0.29 to 0.59)

0 0 0 0

11 Potassium 0.85
(0.49 to 1.21)

0 3.68
(2.53 to 4.96)

3.16
(2.40 to 3.98)

0

12 Ammonium ion 1.78
(0.10 to 4.38)

9.85
(7.03 to 12.61)

1.00
(0.02 to 3.61)

0 21.48
(19.84 to 28.28)

13 Sodium 0.21
(0.01 to 0.70)

0.28
(0.01 to 0.93)

31.59
(25.29 to 38.22)

1.35
(0.05 to 3.65)

0.32
(0.01 to 0.87)

14 OC CSN unadjusted 71.46
(63.33 to 80.64)

42.81
(36.78 to 49.95)

3.71
(0.09 to 12.67)

4.07
(0.13 to 13.10)

20.95
(16.10 to 25.31)

15 EC CSN 11.26
(8.95 to 13.70

4.89
(3.19 to 6.55)

0.88
(0.02 to 3.16)

0.76
(0.01 to 2.48)

0.43
(0.01 to 1.25)

16 Nonvolatile nitrate 0 4.31
(1.97 to 6.61)

12.58
(3.58 to 20.90)

3.04
(0.16 to 7.69)

0.68
(0.02 to 1.93)

17 Sulfate 11.56
(1.89 to 20.21)

35.39
(29.52 to 40.83)

7.16
(0.17 to 22.84)

6.53
(0.27 to 16.45)

55.75
(52.05 to 59.88)

Source Contribution (µg/m3)

Mean 3.32 2.75 0.41 0.52 3.72
Standard deviation 1.94 2.47 0.59 0.91 3.42
5th-to-95th 
increment

5.92 7.31 1.50 2.25 9.46

a Source composition percentages are normalized to Sum = 100%. Bolding gives the position of preassigned zeros. Source names in italics are conjectures 
based on the source compositions of previous studies (cited in the text).

b CSN denotes chemical speciation network. 
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source-composition profiles of Table 17 were consistent
with main elements of Sulfate-Rich Secondary Aerosol,
Motor Vehicles, Industrial Combustion, Soil/ Crustal
Matter, and Sea Salt that were also identified in previous
studies (Sullivan 2007). For example, Source 1, which is
characterized by high percentages of OC and EC, seems to
represent Motor Vehicles (or Traffic). Source 3, which is
characterized by high chlorine and sodium, and Source 4,
which is characterized by aluminum, iron, and silicon,
appear to correspond to Sea Salt and Soil/Crustal Matter,
respectively. Source 2 and Source 5 both have ammonium,

OC, and sulfate as main species, which likely represent
Industrial Combustion and Sulfate-Rich Secondary Aerosol,
respectively.

Figure 11 contains the time-series plots of the estimated
source contributions (in µg/m3) for 215 days (1/2/2002–
8/26/2005) along with their uncertainty estimates (95%
posterior intervals), which play a role of source-specific
exposures in health effects estimation.

Table 18 presents source-specific effects on respiratory

mortality at 0–2 lag days. Only the effect due to Source 2

Figure 11. Time-series plots of the estimated source contributions (in µg/m3) for 215 days along with their uncertainty estimates (95% posterior
intervals).
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(that appears to be Industrial Combustion) at 0 lag days
was statistically significant (i.e., a 95% posterior interval
does not contain 0).

Next, we considered decedents �65 years of age whose
residences at the time of death due to respiratory disease
were within the 10-mile buffer region surrounding the
Clinton Drive monitoring site to determine whether effects
were different among an older population. Model 2 again
led to the highest posterior probability that is close to 1,
and estimated source-composition profiles and source
contributions did not change materially from those of
Table 17. The estimated health effects parameters at 0–2
lag days are provided in Table 19. As in the case of Table
18, only the health effects due to Source 2 (that appears to
be Industrial Combustion) at 0 lag days was statistically
significant (i.e., a 95% posterior interval does not contain
0). There appeared to be slightly stronger effects of Source
2 for decedents 65 and older, compared to decedents of all

ages. Note that the length of time series is very short for
these data (only 215 days), which might have contributed
to the insignificance and frequent sign changes of most of
the health effects. The 95% posterior intervals given in
Tables 18–19 generally appear to be wide, perhaps because
of the small number of observations, but also because
uncertainty in the estimated source contributions was
incorporated into these intervals.

We also analyzed the daily COPD mortality counts (for
decedents � 65 years of age whose residences at the time
of death were within the 10-mile buffer region sur-
rounding the Clinton Drive monitoring site) along with the
same PM2.5 speciation data and weather data as above.
There was no noticeable change in the estimated source-
composition profiles and contributions as well as in the
number of sources. The estimated PM2.5 source-specific
effects associated with COPD at 0–2 lag days are provided
in Table 20. No significant effects were observed.

Table 18. PM2.5 Source-Specific Effects on Respiratory Mortality for Decedents (Regardless of Age) Who Resided at the 
Time of Death in the 10-Mile Buffer Regiona

Source 1 Source 2 Source 3 Source 4 Source 5

� (lag 0) �0.06
(�0.48 to 0.39)

0.44
(0.07 to 0.88)

0.14
(�0.29 to 0.55)

0.17
(�0.19 to 0.48)

0.23
(�0.24 to 0.64)

� (lag 1) 0.02
(�0.42 to 0.47)

0.16
(�0.25 to 0.58)

0.12
(�0.29 to 0.50)

0.22
(�0.13 to 0.53)

0.10
(�0.35 to 0.53)

� (lag 2) �0.13
(�0.59 to 0.32)

0.17
(�0.23 to 0.57)

0.27
(�0.09 to 0.63)

�0.32
(�0.86 to 0.13)

0.00
(�0.44 to 0.44)

a The � coefficient of PM2.5 contributions from each source type represents the estimated log-relative risk per 5th-to-95th percentile increment of estimated 
PM2.5 source contribution (µg/m3); significant effects are denoted in bold; 95% posterior intervals are given in parentheses. 

Table 19. PM2.5 Source-Specific Effects on Respiratory Mortality for Residents � 65 Years at the Time of Death Who 
Resided in the 10-Mile Buffer Regiona

Source 1 Source 2 Source 3 Source 4 Source 5

� (lag 0) 0.13
(�0.39 to 0.70)

0.54
(0.09 to 0.98)

�0.04
(�0.57 to 0.46)

0.14
(�0.30 to 0.52)

0.20
(�0.28 to 0.65)

� (lag 1) 0.25
(�0.31 to 0.83)

0.13
(�0.33 to 0.60)

0.18
(�0.28 to 0.62)

0.19
(�0.20 to 0.57)

0.12
(�0.41 to 0.64)

� (lag 2) 0.00
(�0.47 to 0.49)

0.26
(�0.15 to 0.67)

0.30
(�0.11 to 0.71)

�0.52
(�1.23 to 0.04)

�0.08
(�0.57 to 0.40)

a The � coefficient represents the estimated log-relative risk per 5th-to-95th percentile increment of estimated PM2.5 source contribution (µg/m3); significant 
effects are denoted in bold; 95% posterior intervals are given in parentheses. 
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Lastly, we analyzed the respiratory mortality counts and

the PM2.5 speciation data (controlling for weather vari-

ables as before) for Harris County for residents � 65 years

of age at the time of death to determine whether observed

associations are modified when the study area is increased

to include decedents whose residences are distant from

the monitoring site where the source contributions were

estimated. There was no noticeable change in the esti-

mated source-composition profiles and contributions as

well as in the number of sources. However, regression

coefficients were generally attenuated and no sources were

statistically significant. Even the effects of Source 2 (at 0

lag days) diminished greatly in magnitude and lost statis-

tical significance compared with the significant effects for

the 10-mile buffer zone (see Tables 19 and 21). This may

indicate that source-specific effects from estimated source

contributions that rely on monitoring data from a single

monitoring site are attenuated when the study area

expands in size.

ANALYSIS OF HARRIS COUNTY VOC DATA 
COLLECTED FROM MULTIPLE MONITORING SITES

The spatially-enhanced receptor models developed in
this project, Bayesian spatial multivariate receptor models,
have been applied to the 24-hour VOC data collected every
six days from nine monitoring sites in Harris County
during January 1, 2000–December 30, 2005. Figure 12
shows the locations of the nine monitoring sites.

There were a total of 421 days when VOC measurements
were made for at least one of the nine monitoring sites.
Occasionally, observations were made less than 6 days
apart at some of the locations, which led to 56 extra days in
addition to those sampled every 6th day. The number of
missing observations (days with no VOC measurements) at
each site ranges from 34 to 128. We imputed the missing
observations by k-nearest neighbor imputation (Little and
Rubin 1987), namely, using the spatial average of pollut-
ants from three nearest neighboring sites for each day. The
patterns of missing data are given in Appendix Tables E.16
and E.17.

Table 20. PM2.5 Source-Specific Effects on Mortality from COPD for Residents �65 Years at the Time of Death Who 
Resided in the 10-Mile Buffer Regiona

Source 1 Source 2 Source 3 Source 4 Source 5

� (lag 0) �0.15 0.37 0.03 0.22 0.27
� (lag 1) 0.24 0.25 �0.04 �0.35 �0.38
� (lag 2) �0.33 0.30 0.38 �0.45 0.10

a The � coefficient represents the estimated log-relative risk per 5th-to-95th percentile increment of estimated PM2.5 source contribution (µg/m3); 
significant effects are denoted in bold. 

Table 21. PM2.5 Source-Specific Effects on Mortality from Respiratory Causes for Residents �65 Years at the Time of 
Death Who Resided in Harris Countya

Source 1 Source 2 Source 3 Source 4 Source 5

� (lag 0) �0.07 �0.06 0.05 0.01 0.19
� (lag 1) 0.04 0.00 0.18 0.01 �0.04
� (lag 2) 0.06 �0.08 �0.04 0.03 0.07

a The � coefficient represents the estimated log-relative risk per 5th-to-95th percentile increment of estimated PM2.5 source contribution (µg/m3); significant 
effects are denoted in bold. 
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Recall that the first important step in multivariate
receptor modeling is to select an appropriate subset of spe-
cies for an analysis; inclusion of noisy or unhelpful spe-
cies could hinder source apportionment (Park et al. 2001).
It is better to remove any species with many near-zero
values, unless it is a tracer element of a major source. Also,
reactive species are typically excluded from the analysis
because those species do not satisfy the basic underlying
assumptions in multivariate receptor modeling. It needs to
be noted that the number of sources that can be identified
also depends on which species were included in the anal-
ysis. It is possible to identify more sources with the inclu-
sion of more species. Thus, it is important not to omit key
species for potential sources for the region while
excluding noisy species. Based on the previous studies on
the region (e.g., Buzcu and Fraser 2006), refineries, petro-
chemical production facilities, unburned gasoline (liquid
or evaporated), natural gas, vehicle exhaust, and aromatics
were presumed to be potential candidate sources affecting
the region. This prior knowledge was utilized in selecting
an appropriate subset of the species that are contributed by
those sources as well as in prespecification of zeros in the
source-composition profile matrix to later achieve model
identifiability. Table 22 gives the major species for each of
the candidate source types. We selected 17 species (pre-
sented in Table 24) that seem to be important at the sites

considered (in Figure 12) from the 107 VOC species origi-
nally measured. Spatial correlations over nine monitoring
sites in Figure 12 for some of the VOCs included in Table
24 are given in Appendix E.

We constructed a range of different models (resulting
from each combination of different number of sources and
identifiability conditions) to be compared for the Harris
County VOC data. Based on previous studies on source
identification and apportionment of VOCs for the region
and the NUMFACT procedure, we presumed that the
number of major sources was between four and seven. For
candidate positions of zeros in � under each q-source
model, we again used the information on the major sources
from previous studies and also conducted exploratory data
analyses using PMF. For example, we can use the informa-
tion that ethane is typically not present in emissions from
Gasoline Evaporation and can be prespecified to be zero.
Note that we use this type of information from previous
studies only to find out the plausible sets of identifiability
conditions (positions of zeros) under each q-source model.
Other than that, the candidate models do not depend on
the results from those previous studies. We compared
seven candidate models with different numbers of sources
(q = 4, 5, 6, 7) and different prespecification of identifi-
ability conditions (zeros in �) in Table 23.

Figure 12. Map of nine monitoring sites (diamonds) in Harris County, TX. Unmonitored site (triangle): latitude: 29.856, longitude: �95.452.
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We fitted Bayesian spatial multivariate receptor models to
the data consisting of 17 VOC species and estimated source-
composition profiles and other model parameters along with
marginal likelihood under each model. The following hyper-
parameter values were used for generating MCMC samples:
a0 = 0.01, b0j = 0.01 (j = 1,…,15), c0 = 0.5 � 1p+, C0 = 100 �

Ip+, m0 =  and M0 = 100 � IJ. Also, we set �q = Iq as a
way to get around a scale invariance problem for these
data.

For each model, an approximate posterior mode is
obtained from a preliminary MCMC run, and this is used for

 at which the marginal likelihood is

calculated. An approximate posterior mode is obtained by
evaluating the joint posterior density for 50,000 iterations
after the first 50,000 draws are discarded. A main MCMC

run is then started from  and the

samples are collected for 50,000 iterations, subsampling
every 10th value (resulting in 5,000 samples), without
additional burn-in. The marginal likelihood for each
model can be computed in sample generation without
storing the samples. The estimated marginal likelihood (in
logs) for each model is also provided in Table 23 as well as
the posterior probability under the indifference prior.
Model 2 with 5 sources is selected as the best model
because the posterior probability for Model 2 is the highest
(almost 1) among the candidate models considered.

Table 24 gives the estimated source-composition profiles
along with their uncertainty estimates (95% posterior inter-
vals) and the estimated mean source contributions under

,X

 , , , ,
c c c c c

G� � � P

 , , , ,
c c c c c

G� � � P

Table 22. Major Species for Candidate Sources 
Considered in the Analysis

Candidate 
Sources

Major 
Species

Refinery Propane, ethane, n-butane, 
isobutane

Petrochemical 
production

Ethylene, propylene

Unburned gasoline n-Butane, isopentane, isobutane, 
n-pentane, tolune

Natural gas Ethane, propane

Vehicle exhaust Tolune, xylenes, acetylene, 
ethylene, isobutane, propylene

Aromatric Tolune, xylenes

Table 23. Candidate Models for Harris County VOC Dataa

Model 
Number q Source

Prespecified 
Position of 
Zeros in P 

(Species Numberb 
with Preassigned 

Zeros)
LogMD
(� 104) PostP

1 4 1
2
3
4

8, 12, 16
10, 16, 17
6, 8, 12 
8, 12, 15

�8.8043 0.0000

2 5 1
2
3
4
5

2, 9, 12, 16
6, 11, 14, 16
4, 6, 12, 17 
1, 3, 12, 17
1, 3, 14, 17

�8.7913 1.0000

3 5 1
2
3
4
5

4, 8, 12, 15
3, 7, 8, 12
4, 6, 7, 8
6, 8, 11, 15 
1, 11, 14, 17

�8.8059 0.0000

4 5 1
2
3
4
5

8, 12, 14, 15
3, 7, 8, 12
4, 6, 7, 8 
4, 10, 11, 14
1, 10, 14, 17

�8.8083 0.0000

5 6 1
2
3
4
5
6

4, 8, 12, 16, 17
4, 7, 10, 14, 17
1, 4, 6, 7, 8 
4, 8, 9, 10, 12
1, 10, 11, 14, 16
8, 9, 10, 11, 14

�8.8381 0.0000

6 6 1
2
3
4
5
6

1, 3, 7, 10, 12
4, 7, 10, 14, 17
1, 4, 6, 7, 8 
2, 4, 8, 10, 12
1, 10, 11, 14, 16
8, 9, 10, 11, 14

�8.8230 0.0000

7 7 1
2
3
4
5
6
7

2, 4, 8, 12, 16, 17
4, 7, 10, 14, 16, 17
1, 2, 4, 6, 7, 8 
4, 8, 9, 10, 12, 16
1, 2, 10, 11, 14, 16
8, 9, 10, 11, 14, 16
4, 6, 8, 10, 12, 16

�8.8440 0.0000

a LogMD and PostP denote the Log of Marginal Likelihood and Posterior 
Model Probability, respectively.

b Species numbers are defined in Table 24. 
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Model 2. Major species in the estimated source-composi-
tion profiles of Table 24 are consistent with main elements
of major VOC sources for Harris County identified by pre-
vious studies, namely, Refinery, Petrochemical Production,
Gasoline Evaporation, Natural Gas, and Vehicle Exhaust.

The estimated mean source contributions indicate that
overall refineries and petrochemical production facilities
play a major role in VOC emissions for the region; this

agrees with result in Buzcu and Fraser (2006). We illus-
trated an application of estimated source contributions from
spatially-enhanced multivariate receptor models in health
effects modeling in Appendix F (available on the HEI Web
site).

Note that spatial multivariate receptor models result in
more precise estimates of source profiles compared to an
approach that did not account for spatial dependence, as

Table 24. Estimated Source Composition Profiles Under Model 2a

Species
Number

Species 
Name

Source 1
Refinery

Source 2
Petrochem

Source 3
Gasoline

Source 4
Natural Gas

Source 5
Vehicle Exhaust

Source Composition: % (95% Posterior Intervals)

1 1,2,4-Trimethylbenzene 0 0 0.31
(0.19 to 0.47)

0.45
(0.34 to 0.60)

1.04
(0.51 to 1.77)

2 1,3-Butadiene 0.33
(0.24 to 0.42)

0.51
(0.18 to 0.85)

0.89
(0.58 to 1.25)

0 1.75
(0.54 to 3.33)

3 2,2,4-Trimethylpentane 0 0 1.27
(0.96 to 1.68)

0.43
(0.16 to 0.76)

0.89
(0.08 to 2.03)

4 Acetylene 2.46
(0.13 to 2.78)

0.63
(0.03 to 1.58)

0 4.80
(3.61 to 6.09)

20.84
(13.54 to 31.95)

5 Benzene 1.33
(1.11 to 1.56)

1.53
(0.28 to 2.41)

2.67
(1.94 to 3.51)

0.38
(0.02 to 0.95)

2.57
(0.26 to 5.79)

6 Ethane 26.58
(24.50 to 28.63)

25.83
(19.11 to 31.52)

0 42.06
(37.74 to 46.16)

0

7 Ethylbenzene 0.11
(0.05 to 0.16)

0.07
(0.00 to 0.19)

0.34
(0.15 to 0.55)

0.47
(0.30 to 0.66)

0.93
(0.21 to 1.85)

8 Ethylene 6.91
(6.09 to 7.74)

12.61
(9.75 to 15.89)

10.32
(7.64 to 13.25)

3.41
(0.96 to 5.80)

26.31
(17.27 to 36.58)

9 Isobutane 16.91
(14.43 to 19.45)

1.08
(0.03 to 3.84)

29.64
(21.76 to 36.11)

0 5.09
(0.15 to 16.69)

10 Isopentane 6.61
(5.95 to 7.28)

7.13
(4.80 to 9.57)

15.60
(13.33 to 18.67)

2.13
(0.59 to 3.74)

4.34
(0.25 to 10.11)

11 Propane 19.87
(18.57 to 21.24)

17.87
(13.24 to 21.85)

5.38
(1.24 to 8.85)

27.92
(24.82 to 30.82)

0

12 Propylene 0 25.51
(19.51 to 32.59)

0 0 23.00
(2.30 to 40.59)

13 Toluene 0.45
(0.02 to 1.10)

1.40
(0.07 to 3.48)

3.91
(1.71 to 6.55)

4.94
(2.64 to 7.53)

5.10
(0.24 to 13.10)

14 n-Butane 14.16
(13.08 to 15.23)

0 20.32
(17.27 to 23.37)

10.10
(6.96 to 13.15)

0

15 n-Hexane 1.01
(0.87 to 1.15)

1.93
(1.36 to 2.61)

2.89
(2.34 to 3.61)

0.17
(0.01 to 0.49)

2.07
(0.39 to 4.06)

16 n-Pentane 3.26
(2.96 to 3.57)

3.91
(2.71 to 5.14)

6.48
(5.38 to 7.82)

0 0

17 m- & p-Xylenes 0 0 0 2.74
(1.32 to 4.21)

6.07
(0.93 to 12.71)

Mean source 
contribution (ppbC)

21.61 10.79 2.28 6.49 2.42

a Source composition percentages are normalized to Sum = 100%. Bolding gives the position of preassigned zeros. Source names in italics are conjectures 
based on the source compositions of previous studies (cited in the text). ppbC denotes parts per billion carbon. 
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Figure 13. Time-series plots of the predicted source contributions along with uncertainty estimates (95% posterior intervals) at the unmonitored site (see
Figure 12). ppbC denotes parts per billion carbon. 

demonstrated in Jun and Park (2013). In addition, the new
Bayesian spatial multivariate receptor models allow us to
predict source contributions at any site (not just at moni-
toring sites) along with their uncertainty estimates, pro-
viding improved exposure estimates. Figure 13 contains
the time-series plots of the predicted source contributions,
along with their uncertainty estimates (95% posterior

intervals), at an unmonitored site (denoted by a triangle)
in Figure 12. This location is in a highly populated resi-
dential area with no available monitoring sites nearby. Air
pollution epidemiologists or policy makers who develop
air quality management plans may desire to know contri-
butions of sources at such a location.
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SUMMARY AND DISCUSSION

We have developed new statistical approaches to eval-
uate source-specific health effects associated with an
unknown number of major sources of multiple air pollut-
ants. The proposed methods effectively deal with model
uncertainty in source apportionment by providing poste-
rior model probabilities for a range of candidate models
resulting from different numbers of sources and identifi-
ability conditions, while accounting for parameter uncer-
tainty that has been largely ignored in the previous
assessments of source-specific health effects. The esti-
mated posterior model probabilities can also be used as a
basis for BMA, which is often used as a way of accounting
for model uncertainty when competing models are nested
(e.g., in variable selection in regression). We did not
pursue BMA in this project because, in our case, models
with different numbers of sources are not nested. For
example, the source-composition and contribution param-
eters as well as the health-effects parameters under a 2-
source model and a 3-source model do not have the same
physical interpretations. Although we can estimate the
posterior model probabilities for models with different
numbers of sources, we cannot take an average over
source-composition profiles, contributions, or the corre-
sponding health-effects parameters estimated with dif-
ferent numbers of sources (i.e., BMA is not possible for
models with different numbers of sources).

We discovered that the posterior model probabilities for
competing models were comparable only if the models
were very similar in nature, (i.e., having the same number
of sources and choosing one set of prespecified zeros is not
materially different from choosing another set). Although
we selected a single model with the highest posterior
model probability from the candidate models in the exam-
ples we considered in the project (because the models we
compare are usually distinctive and posterior model prob-
abilities were incomparable), it needs to be remembered
that BMA is also possible when comparing similar models
(i.e., models with the same number of sources and same
source types).

The approach assuming normally distributed health
outcome data (that may be used for continuous health out-
come data or the count data with a large enough mean) was
illustrated with PM2.5 speciation data and cardiovascular
mortality data from Phoenix. The results from our methods
agreed in general with those from the previously con-
ducted workshops and studies on PM source-apportion-
ment and health effects for the Phoenix data, in terms of
the number of major contributing sources, as well as esti-
mated source profiles and contributions.

For the health effects of specific sources, there were sim-
ilarities and dissimilarities. The health effects of
Soil/Crustal Matter and Biomass/Wood Combustion were
statistically insignificant both in Mar and colleagues
(2006) and in our analysis. However, while Mar and col-
leagues (2006) identified adverse health effects for four
source types (Sulfate at lag 0, Traffic at lag 1, Smelter at lag
0, and Sea Salt at lag 5, our analysis identified only two to
be statistically significant (Smelter at lag 0 and Sea Salt at
lag 5), which seems to be a natural consequence of incor-
porating uncertainty in the estimated source contributions
into the health effects parameter estimation.

Computation of marginal likelihoods for Poisson models
imposes enormous computational demands. Because of
these computational demands, the approach assuming
Poisson models for the health outcome data will be most
beneficial in comparing only a few plausible models, rather
than comparing numerous models, when the mean of the
count data is very small, say less than 2, for which a
normal approximation may not be well-justified.

Although not included in the report, our limited simula-
tion indicated that even for a Poisson health outcome vari-
able with a low mean (such as 1 or 2), the approach
developed assuming the normal health outcome variable is
also accurate in selecting the true model. We conjectured
that it is because the likelihood of the air pollution data
contributes much more to marginal likelihood (in com-
paring models with different numbers of sources and iden-
tifiability conditions for source apportionment) than does
the likelihood of the health outcome data. (We speculate
that the reason that the air pollution likelihood contrib-
uted more to the inference is because the number of pollu-
tion sources (q) is typically greater than one, so we expect
that the health effects contributed 1/(q+1)th of the mod-
eling variation. This follows because the rank of the
observed pollution data matrix of dimension T by J has
rank q. The health model adds one more independent
equation to the likelihood model.) It might not be the case
if we also compared models with different baseline models
(varying the forms of weather variables and long-term
trends) related to health-outcome variables through mar-
ginal likelihoods (not just by sensitivity analysis),
although we did not attempt that in this project.

Because there is no explicit relationship between the
parameters for Poisson regression and those for normal
linear regression, we did not pursue the approach for the
normal health outcome variable further for the discrete
health outcome data with a low sample mean. However,
when the length of the time series is large, it may be com-
putationally more advantageous to first use the approach
for the normal health outcome variable to select a few of
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the most plausible models from a rather large number of
models. Then the method for the Poisson health outcome
variable may be applied to select among those few com-
peting models, while simultaneously obtaining health
effects parameter estimates under Poisson models. Our
limited observation was that estimation of the parameters
for multivariate receptor models was minimally affected
whether normal health outcome models or Poisson health
outcome models were used.

The approach assuming Poisson models was applied to
the PM2.5 speciation data and respiratory mortality data
from the 10-mile buffer region surrounding Clinton Drive
and from Harris County. When the PM2.5 data were fitted
jointly with the health outcome data for the Clinton Drive
area, five sources — that might represent Sulfate-Rich Sec-
ondary Aerosol, Motor Vehicles, Industrial Combustion,
Soil/Crustal Matter, and Sea Salt — were identified as
important sources associated with respiratory mortality.
There was a statistically significant positive association
only between same-day PM2.5 concentrations attributed to
one of the sources (that appears to be either Sulfate-Rich
Secondary Aerosol or Industrial Combustion) and respira-
tory mortality. No other statistically significant association
was observed for other source types or lags. Sign changes
of the health-effects estimates across lags were also
observed for some source types. Note that the length of the
time series was very short for these data (only 215 days),
and this might have contributed to insignificance of the
health effects and their sign changes. Again, it needs to be
emphasized that our approach to the evaluation of source-
specific health effects incorporates uncertainty in the esti-
mated source contributions into the estimation of source-
specific health effects, while coping with model uncer-
tainty that has not been addressed in previous studies on
assessing source-specific health effects.

We have also developed a Bayesian spatial multivariate
receptor modeling approach that can incorporate spatial
dependence in the multivariate pollutant data collected
from multiple monitoring sites into an estimation of
source-composition profiles and a prediction of source
contributions. This new approach can also take into
account model uncertainty caused by the unknown
number of sources and identifiability conditions, which
has never been accounted for in previous spatial multivar-
iate receptor modeling.

The spatially-enhanced multivariate receptor models
enable predictions of source contributions at any site
(whether monitored or unmonitored). These predicted
source contributions, along with their uncertainty esti-
mates, can greatly enhance air pollution epidemiologic
studies and facilitate development of an effective air

quality management plan by quantifying environmental
impacts of pollution sources where no monitoring stations
are available. Although we illustrated (in Appendix F) the
use of estimated source contributions from spatially-
enhanced receptor models to evaluate associations
between source-apportioned pollutants and health out-
comes based on subregion-level aggregated mortality data,
our method can also be used to improve exposure esti-
mates based on individual-level data because spatially-
enhanced receptor models can predict source contribu-
tions (exposure estimates) at any location. For instance,
our approach may be of great significance in air pollution
epidemiology studies of exposure–health outcomes for a
target population in a relatively small geographic area,
especially when there is a strong spatial gradient in con-
centrations of pollutants from the source, as is the situa-
tion for many mobile-source traffic-related pollutants
(Briggs 2005). We also illustrated an application using a
GLM procedure in R as a two-stage approach rather than
MCMC implementation, due to computational burdens of
MCMC implementation that increases with the size of the
data and the number of models to fit. However, in prin-
ciple, estimation of spatially-enhanced receptor models
and health effects parameters can be simultaneously per-
formed as in the analyses near one monitoring site.

Extending our Bayesian spatial multivariate receptor
models developed in this project to account for missing
values in the air pollution data is ongoing. Also, in our
spatial modeling, we assumed the independence of obser-
vations over time, which is typically satisfied when the
data are measured at longer time intervals, such as every
three or six days. When pollutants are measured at hourly
intervals, temporal correlation often exists in the data. The
spatial modeling approach presented in this project can be
further generalized to account for spatiotemporal correla-
tion in the data by considering temporal dependence
structures for errors as in Park and colleagues (2001) or by
including a temporal evolution equation for Gt such as Gt
= Gt�1� + ut as in Calder (2003, 2007).

It needs to be kept in mind that as with all other model
comparison approaches, there should be at least one good
model (useful model if not the true model) in the set of
models to be compared. It would not be meaningful to
select the best model if none of the models compared are
reasonable or realistic. The results are conditional on the
set of models considered, and that is why exploratory anal-
ysis or good prior knowledge about the problem is so
important, especially in selecting candidate models to be
compared. As illustrated in this report, prior knowledge
about likely sources or source types for the region, that can
be obtained from previous studies or exploratory analysis,
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needs to be utilized as much as possible in selecting a
range of the number of sources and the positions of preas-
signed zeros.

While we did, for the first time, incorporate model
uncertainty in source apportionment into source-specific
health-effects evaluations, we did not address some other
potentially important uncertainties such as uncertainty
due to the choice of the confounder model or uncertainty
due to data imputation. Although our method of com-
puting marginal likelihoods and posterior probabilities
can in principle be used to address uncertainty for the
choice of the confounder model, we did not pursue it, as it
is beyond the scope and the budget of the project. Note that
the number of � parameters is not affected by the choice of
the confounder model as opposed to being affected by the
number of sources included, and BMA based on posterior
probabilities (that can be computed by our method) for dif-
ferent confounder models can be used for the � parameter
of interest to address uncertainty with the choice of the
confounder model. We are continuing research on
extending the Bayesian spatial multivariate receptor
models developed in this project to account for missing
values in the air pollution data.

Finally, it will be important to have rich interdisci-
plinary input into future implementation of the methods
proposed in this research. It is reasonable to treat the
examples in this report as preliminary (since they focused
on demonstrating the statistical methods rather than
ensuring scientific credibility) and recognize that actual
applications will need meaningful collaboration from sci-
entists in other disciplines, such as atmospheric science,
to assure that the assumptions and results are scientifically
credible.
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HEI QUALITY ASSURANCE STATEMENT

The conduct of this research project was subject to inde-
pendent quality assurance (QA) oversight by Abt Associ-
ates. The audit was led by Mr. Jose Vallarino, who has
overseen QA programs for the past 20 years. The QA over-
sight consisted of a First QA Audit (focused on organiza-
tional structure, data quality of air pollution and health
data, and human subjects’ protection) and a Final QA
Audit (focused on the Investigators’ Final Report). The
dates of the QA audits and activities are summarized
below. Both audits were conducted on site at the Texas
Transportation Institute (TTI) in College Station, Texas.

August 27–28, 2012. First QA Audit 
conducted on-site at TTI. 

This “readiness review” audit was intended to review the
standard operating procedures and data management prac-
tices used in the research to ensure that these procedures
were followed consistently by all members of the research
team. The auditors met with Dr. Park and all team members.
The auditors observed the relevant Institutional Review
Board documents from the University of Texas Health Sci-
ence Center and Texas A&M University. The auditors made
minor recommendations related to documentation of hand-
checking procedures that had been performed.

May 15–16, 2014. Final QA Audit 
conducted on-site at TTI.

Dr. Park showed the auditors how approximately 15
tables and figures from the December 2013 version of the
Investigators’ Final Report were generated, starting with
the raw data. (The tables and figures were preselected.)
The auditors identified two minor discrepancies that
could be readily addressed and did not impact the overall
data quality or the findings of the report.

Overall, the auditors found the researchers to be well
organized and cooperative during the audits. The study
procedures, analysis steps, and data storage were system-
atic, consistent, and well designed for managing the var-
ious data and analytical streams that were necessary to
complete the study.

Jose Vallarino, M.Sc.

APPENDICES AVAILABLE ON THE WEB

Appendices A–F contain supplemental material not
included in the printed report. They are available on the
HEI Web site http://pubs.healtheffects.org.

Appendix A: Literature Review on Studies that Evalu-
ated the Effects of Short-Term Exposures to Air Pollution
(PM2.5 or VOCs) on Mortality (or morbidity) from Specific
Cardiovascular Diseases and Respiratory Diseases

Appendix B: Summary of Studies Evaluating Health
Effects Associated with Source-Apportioned Particulate
Matter (PM)

Appendix C: Full Conditional Distributions for Parameters

Appendix D: Phoenix, Arizona Data

Appendix E: Database Development and Summary Sta-
tistics for Harris County Data

Appendix F: Application to the Harris County Mortality
Data from Multiple Subregions
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ABBREVIATIONS AND OTHER TERMS

AIC Akaike information criterion

BC black carbon

BMA Bayesian model averaging

cdf cumulative distribution function

CNLS constrained nonlinear least squares

COPD chronic obstructive pulmonary disease

df degrees of freedom

EC elemental carbon

EM algorithm with an E-step and an M-step

GLM generalized linear models

IW inverted Wishart

logMD log of marginal likelihood

MCMC Markov chain Monte Carlo

OC organic carbon

OM organic matter

PM particulate matter

PM2.5 PM � 2.5 µm in aerodynamic diameter

PM10 PM � 10 µm in aerodynamic diameter

PMF positive matrix factorization

PostP posterior model probability

QA quality assurance

RFA request for applications

TTI Texas A&M Transportation Institute

U.S. EPA U.S. Environmental Protection Agency

VOC volatile organic compound

Chemical Elements

Ag silver

Al aluminum

As arsenic

Au gold

Ba barium

Br bromine

Ca calcium

Cd cadmium

Cl chlorine

Co cobalt

Cr chromium

Cs cesium

Cu copper

Fe iron

Ga gallium

Ge germanium

Hg mercury

I iodine

K potassium

La lanthanum

Mg magnesium

Mn manganese

Mo molybdenum

Na sodium

Ni nickel

P phosphorus

Pb lead

Pd palladium

Rb rubidium

Rh rhodium

S sulfur

Sb antimony

Sc scandium
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Se selenium
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Sr strontium

Te tellurium

Ti titanium

V vanadium

W tungsten

Y yttrium

Zn zinc

Zr zirconium
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Research Report 183, Parts 1 & 2, Development of Statistical Methods for Multipollutant 
Research, B.A. Coull et al. and E.S. Park et al.

INTRODUCTION

Air pollution is a complex mixture of gaseous, liquid,
and solid components that varies greatly in composition
and concentration across the United States and around the
world owing to differences in sources, weather, and topog-
raphy. Yet, in part due to a regulatory history focused on a
limited number of criteria air pollutants, the necessary air
pollution monitoring networks, scientific study designs,
and statistical methods have not evolved as fully as they
could to study this multipollutant atmosphere. The scien-
tific community has long considered the possibility that
the observed adverse health effects associated with indi-
vidual pollutants may be attributable, in part, to the com-
bined effects of multiple pollutants. A 2004 report from
the National Research Council’s Committee on Air Quality
Management in the United States recommended that the
U.S. Environmental Protection Agency (U.S. EPA*) take
steps to address the presence of a complex, multipollutant
atmosphere in the process for reviewing and setting
National Ambient Air Quality Standards (National Research
Council 2004). The U.S. EPA undertook that challenge in a
series of workshops beginning in 2006.

The scientific challenges of understanding the health
effects of exposure to the mixture of air pollutants that
people actually breathe, estimating better the contribution
of individual pollutants or their mixtures, and ultimately,

addressing more cost-effectively the sources of those pol-
lutants are substantial (Mauderly and Samet 2009). Con-
ventional statistical methods are not well suited to deal
with high correlations among pollutants, differences in the
composition of pollutant mixtures over time and space, or
differences in how accurately or precisely a person’s expo-
sure[s] to individual pollutants have been estimated. These
factors can lead to errors (e.g., bias, incomplete accounting
for uncertainty, or both) in the estimation of the health
effects associated with individual pollutants or the joint
contributions of multiple pollutants and the sources with
which they may be associated.

The limitations of existing methods in dealing with
these complexities have made it clear that advancing sci-
entific understanding of multipollutant mixtures would
require improved statistical methods. In response, HEI
issued request for applications (RFA) 09-1, “Methods to
Investigate the Effects of Multiple Air Pollution Constitu-
ents,” which solicited research proposals that would
address these methodologic difficulties through the devel-
opment of innovative statistical methods. The RFA pri-
marily sought applications in which existing statistical
approaches (including those from fields outside of epidemi-
ology) could be modified, extended, or combined, and then
applied to a real-world exposure and health problem, rather
than the development of purely theoretical approaches. (See
the Preface for more detail on the scientific background for
the RFA’s development.)

Three studies were funded under RFA 09-1 and repre-
sent a variety of statistical approaches and data sets neces-
sary to test them. The studies by Dr. B. A. Coull and Dr. E.
S. Park and their associates are described in Parts 1 and 2
of this report (Research Report 183). The study by Dr. J.
Molitor and his colleagues has been completed and is
expected to be published in 2016.

Development of methods must typically follow a series
of important steps before they can enter general use (see
sidebar — Process of Statistical Methods Development and
Evaluation). Any new method must first have a strong con-
ceptual basis before being applied in data sets whose prop-
erties are well known. Simulated data sets that are
designed to have specific properties amenable to testing by
the proposed methods are often a first step, followed by
application of the method in a real-world data set that is
either relatively simple or has been well studied. Use of

Dr. Brent A. Coull’s 2-year study, “Statistical Learning Methods for the
Effects of Multiple Air Pollution Constituents,” began in January 2010. Total
expenditures were $257,361. The draft Investigators’ Report from Dr. Coull
and colleagues was received for review in September 2013. A revised
report, received in June 2014, was accepted for publication in July 2014.

Dr. Eun Sug Park’s 2-year study, “Development of Enhanced Statistical
Methods for Assessing Health Effects Associated with an Unknown Number
of Major Sources of Multiple Air Pollutants,” began in May 2010. Total
expenditures were $251,811. The draft Investigators’ Report from Dr. Park
and colleagues was received for review in February 2013. A revised report,
received in December 2013, was accepted for publication in February 2014.

During the review process, the HEI Health Review Committee and both
teams of investigators had the opportunity to exchange comments and to
clarify issues in the Investigators’ Reports and in the Review Committee’s
Critique.

This document has not been reviewed by public or private party institu-
tions, including those that support the Health Effects Institute; therefore, it
may not reflect the views of these parties, and no endorsements by them
should be inferred.

* A list of abbreviations and other terms appears at the end of each Investi-
gators’ Report.
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Process for Statistical Methods 
Development and Evaluation

• Formulate problem

• Develop conceptual framework for statistical models and 
specify parameters of interest including, where appropri-
ate, development of statistical theory

• Write software to estimate parameters based on the con-
ceptual framework

• Conduct preliminary tests in simulated data sets with 
known attributes

• Conduct preliminary tests in a well-studied data set, if 
available

• Test in a simplified real-world setting

• Test in a complex real-world setting

• Other investigators apply methods in settings that differ 
from those with which the method was developed and 
tested

these simpler data sets, whether simulated or real, often
requires that a number of simplifying statistical assump-
tions be made. At any step, iterations of the design or its
assumptions might be necessary to adjust the method
before going forward. Only when the method behaves as
expected a priori in simple settings is it time to move in a
careful and systematic way to test it in more complex set-
tings where more unknown factors may come into play.

The considerable work conducted by Drs. Coull and
Park and their colleagues addressed the first several steps
in the methods development process. An overview of the
two studies, their goals, their use of simulation studies and
applications in real-world data sets is provided in Critique
Table 1. In its independent review of the two studies, the
HEI Health Review Committee focused on a critical evalu-
ation of the progress made by each of the investigator
teams toward developing their methods, the quality and
the limitations of the work completed, and what next steps
might be needed to extend their work to more complex
multipollutant settings.

This critique provides the HEI Health Review Com-
mittee’s evaluation of the reports by Coull and Park. It is
intended to aid the sponsors of HEI and the public by high-
lighting both the strengths and limitations of the studies
and by placing the Investigators’ Reports into scientific
and regulatory perspective.

PART 1. STUDY CONDUCTED BY COULL AND 
COLLEAGUES

SCIENTIFIC BACKGROUND AND METHODS

Dr. Coull and his colleagues proposed Bayesian kernel
machine regression (BKMR) methods designed to simulta-
neously address a number of goals in evaluating multipol-
lutant exposures and associated health effects. These goals
include selection of exposure variables, nonparametric es-
timation of possibly nonlinear exposure–response rela-
tionships, identification of interactions among pollutants
(e.g., additivity or synergism), and quantification of uncer-
tainty through Bayesian posterior distributions. These meth-
ods model the relationship between the exposure and a
health outcome in a flexible manner that draws strength
from the idea that subjects with similar exposures should
have similar risks. This approach naturally assumes, like
most other approaches, that the relationship between the
exposures and the outcome is smooth. The design for these
steps to be done simultaneously means that the methods, in
essence, let the data drive some decisions in the modeling
process that might otherwise be made on a more ad hoc ba-
sis by the analysts.

One of the early challenges the investigators faced was
how to select the pollutants for inclusion in their models
(i.e., variable selection). They explored two Bayesian
approaches: (1) an approach using component-wise vari-
able selection in which pollutants are essentially selected
based on the strength of their individual associations with
the health outcome of interest but in concert with the
overall model fitting and inference steps; and (2) a hierar-
chical or multistep approach that first determines likely
groupings of pollutants based on their correlations or
common sources and then selects important individual
pollutants within the groups. The investigators added the
second approach because variable-selection methods,
including the first approach, tend to have difficulty in
cases where the variables exhibit a high degree of correla-
tion. By grouping the variables (in this case, pollutants)
into mutually exclusive sets according to a priori knowl-
edge about their degree of correlation in the data or the
commonality of their sources, the investigators created
sets of pollutants that are approximately uncorrelated.
Their method was then adapted so that, conditional on a
group being selected to be in the model, only one pollutant
in that group ultimately enters the model. This approach
avoids the difficult statistical situation of having highly
correlated predictors in the same model.

Coull and colleagues formally developed and tested
their methods in three simulation studies that were
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designed to evaluate different features of their approach. The
simulations involved scenarios using various pollutant-
interaction structures, nonlinear exposure–response rela-
tionships, and variables of different importance in the
model (details are given in Critique Table 1). An important
feature of their simulations was that their air pollution
data sets were generated from actual PM2.5 (particulate
matter � 2.5 µm in aerodynamic diameter) constituent
data measured at the Harvard T.H. Chan School of Public
Health Boston Supersite, thereby retaining the concentra-
tion profiles and the realistic joint distributions and corre-
lations among the multiple pollutants. They then tested
how their methods performed in each of the scenarios and
compared their results with those found using the frequen-
tist kernel machine regression (KMR) approach that has
been proposed by other authors (Maity and Lin 2011).

The investigators next tested the methods using data
from two studies that relied on the same Boston moni-
toring site used to generate data sets for the simulation
studies. They evaluated (1) associations between changes
in blood pressure and 7-day exposures to constituents of
PM2.5 in an epidemiologic study of patients 70 years of age
and older — the MOBILIZE study (the Maintenance of Bal-
ance, Independent Living, Intellect, and Zest in the Elderly
of Boston study; Wellenius et al. 2012); and (2) associations
between blood pressure and heart rate in a toxicologic
study conducted with dogs exposed for 5-hour periods
either to filtered air or to concentrated ambient particles
with known chemical composition (Bartoli et al. 2009).
They compared their findings using the new methods with
those from previously published studies that had used
more standard linear, mixed models to analyze the same
MOBILIZE and canine data.

HEI HEALTH REVIEW COMMITTEE’S CRITIQUE OF 
THE STUDY BY COULL AND COLLEAGUES

In its independent review of the study, the HEI Health
Review Committee thought that the approach taken by the
Coull investigative team addressed key problems in multi-
pollutant research — the need to analyze large numbers of
exposures or predictors of health outcomes whose interac-
tion structure or exposure–response relationships with the
outcome may be only vaguely known. Their approach
therefore included both variable-selection approaches that
are useful for identifying a small subset of exposures that
are considered important in relation to the health effects of
interest, as well as flexible nonparametric methods that are
useful for allowing a wide range of possible exposure–
response functions beyond the linear functions more typi-
cally assumed.

Throughout the research and review phases of their
project, the investigators demonstrated a willingness to
change course and improve upon their analyses. The inves-
tigators initially proposed a supervised clustering model
that groups pollutants into categories or clusters based on
several factors in the data that relate them to one another.
However, in discussions with the HEI Research Committee,
they realized that such an approach was better suited to
large population-based studies using administrative data-
bases in which a sufficient number of clusters could be
identified, but it did not work as well in smaller-scale
studies with small sample sizes, like theirs. The investiga-
tors are to be commended for realizing this limitation early
on and taking an alternate (and ultimately more successful)
route. Furthermore, in response to the initial review of the
draft final report by the HEI Health Review Committee, the
investigators conducted several additional analyses and
other revisions that substantially improved the research.

One of the benefits of the BKMR described by Coull and
colleagues is that it removes some of the vagaries of con-
ventional data analysis methods used in air pollution and
health research. Although statistical methods for per-
forming variable selection or for estimating nonlinear
exposure–response relationships already exist, their appli-
cation to problems involving multidimensional exposures
are typically ad hoc and require that many choices be
made by the investigator, some of which may go undocu-
mented. Particularly in a multidimensional setting, it is
essential to have a statistical method that can simultane-
ously address exposure variable selection and the poten-
tial for nonlinear exposure–response relationships. In
addition, ad hoc applications of conventional approaches
generally do not account for the total uncertainty intro-
duced and probably underestimate the uncertainty in the
final health effects estimate. The approach developed by
the investigators carefully brings all of these challenges
under a Bayesian umbrella so that the uncertainties associ-
ated with both exposure variable selection and exposure–
response estimation can be properly propagated to the
health effects estimates.

The Committee thought that the three simulation studies
conducted by the investigators to test their methods were
well-crafted to represent scenarios that were also reflected
in the data sets for the MOBILIZE and canine studies. A
notable strength of the simulation studies was that the expo-
sure data sets were generated from observed data and there-
fore reflected the kinds of correlation structures among
pollutants that have been measured in the real world.

In their analyses of both the MOBILIZE study and the
canine study data sets, Coull and colleagues did not find
substantial evidence of interactions among the pollutants
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Critique Table 1. Overview of Coull and Park Statistical Methods Studies

Investigator /
Project Goals Simulations Applied Data Sets

Differences Between 
New Methods and 

Conventional Methods

Coull

To develop flexible sta-
tistical methods to 
estimate the joint 
effects of multiple pol-
lutants, while allowing 
for potential nonlin-
ear or nonadditive 
associations between a 
given pollutant and 
the health outcome of 
interest

To apply variable selec-
tion using Bayesian 
kernal machine regres-
sion (BKMR): 

(a) component-wise 
variable selection, and

(b) hierarchical variable 
selection

To compare results with 
those of frequentist 
KMR variable-
selection methods

Simulated exposure data sets by 
sampling directly from actual 
exposure data (the Harvard T.H. 
Chan School Boston Supersite 
multipollutant data set) rather than 
by a set of characteristics specified 
by investigators. Exposure–
response relationships were 
assumed.

(1) Developed component-wise 
variable selection methods for a 
moderate number of pollutants.   
Generated data sets for (a) three 
metals (As, Mn, and Pb) and (2) 
nine PM constituents (Al, S, Ni, 
BC, Cu, Zn, Mg, K, and Cl) where 
only one or two were assumed to 
be known as causal. Assumed 
three different exposure–response 
relationships. Assumed two signal-
to-noise ratios (high, realistic).

(2) Compared component-wise and 
hierarchical variable selection 
methods in high-correlation 
settings.   Generated data sets for 
13 PM constituents with moderate 
to high correlations (Al, Si, Ti, Ca, 
Ni, V, Zn, S, BC, Cu, K, Cl, and 
Mn). Assumed the same three 
exposure–response relationships 
and the realistic signal-to-noise 
ratio

(3) Tested ability to identify source 
category–specific health effects.   
Based on prior source-
apportionment analyses of the 
Harvard T.H. Chan School Boston 
Supersite multipollutant data set, 
modeled exposures to 14 
constituents (Al, S, Ni, BC, Na, Cu, 
Zn, V, Ti, Ca, Mg, K, Cl, and Si) 
representing six source categories, 
only one of which was assumed to 
be associated with adverse health 
outcomes.

(1) MOBILIZE 
prospective cohort 
study.   Estimated 
associations between 
short-term (7-day) 
exposures to seven 
PM2.5 constituents (Ni, 
Cu, Zn, S, Ti, Mn, and 
BC) and blood 
pressure in healthy, 
aging, human subjects, 
2005–2008.

(2) Canine toxicologic 
studies at the Harvard 
T.H. Chan School.   
Estimated associations 
between exposure to 
concentrated ambient 
particles (CAPs) and 
blood pressure and 
heart rate in dogs.

• Implements automatic 
model selection

• Accounts for uncertainty 
in model selection

• Allows for nonlinear, 
nonadditive exposure–
response relationships

• Allows for complex 
interactions among 
pollutants

• Identifies important 
pollutants within the 
mixture via inclusion 
probabilities

• BKMR variable-selection 
approach allows for 
“supervision” of 
selection by health data; 
has not been explored in 
environmental health

Table continues next page
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Critique Table 1 (Continued). Overview of Coull and Park Statistical Methods Studies

Investigator /
Project Goals Simulations Applied Data Sets

Differences Between New 
Methods and Conventional 

Methods

Park

To develop a multipol-
lutant approach that 
accounts for both 
model uncertainty in 
multivariate receptor 
models and uncer-
tainty in estimated 
source-specific expo-
sures in assessing 
source-specific health 
effects

Generated synthetic data sets.

(1) Assumed four sources that have 
known tracer elements.   
Evaluated ability of model to 
estimate health effects given 
uncertainty about the number of 
sources (up to five) and the 
correlations among source 
contributions.

(2) Extended previous simulation to 
include comparison of two 
methods.   Method 1 assumed a 
priori correlated source 
contributions; Method 2 assumed a 
priori uncorrelated source 
contributions.

(3) Assumed sources that did not 
rely on tracer pollutants.   Varied 
the number of sources and 
identifiability conditions.

(4) Conducted simulations that 
assumed either normal- or 
Poisson-distributed health 
outcomes.

(1) Phoenix, AZ.   Time 
series of daily PM2.5 
speciated data and 
counts of 
cardiovascular disease 
mortality from 1995–
1997.

(2) Houston, TX.   Time 
series of 24-hour PM2.5 
speciated data and 
counts of respiratory 
mortality from 2002–
2005.

• Joint modeling estimates 
parameters in the 
multivariate receptor 
models at the same time 
as estimating health 
effects parameters.

• Incorporates source 
apportionment into a 
time-series health effects 
analysis using a 
Bayesian hierarchical 
modeling framework.

• Quantifies model 
uncertainty caused by 
the unknown number of 
sources and 
identifiability 
conditions in source 
apportionment.

• Accounts for uncertainty 
in source-specific 
exposures in the health 
effects parameter 
estimates.

To develop enhanced 
spatial multivariate 
receptor models that 
can account for 
spatial correlations in 
the multipollutant 
data collected from 
multiple monitoring 
stations

Assumed nine monitoring 
locations and three underlying 
sources.   Eight locations were 
used for model fitting and one was 
used for model performance. 
Sources were assumed a priori to 
be correlated in one case, 
uncorrelated in another.

(1) Houston, TX.   
24-hour ambient 
concentrations of 17 
VOCs measured at 
nine monitoring sites 
from 2000–2005.

• Implements Bayesian 
multivariate receptor 
models.

• Incorporates time-series 
data from multiple 
monitoring locations.

• Evaluates impact of 
correlations among 
sources contributions.

• Demonstrates that 
source contributions can 
be predicted at an 
unmonitored location.
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or nonlinearity in the exposure–response relationships,
either because they do not exist or because there was insuf-
ficient power in the studies to detect them. However, as
the investigators noted, they did not know in advance
whether nonlinearity or an interaction structure might
exist. Conventional data analysis approaches would have
needed to cycle through a series of models to test whether
interactions were present, which would have raised issues
of multiple testing and possibly false-positive findings.
Although they might have led to the same results achieved
by these investigators, the numerous steps might be diffi-
cult for others to reproduce. Ultimately, data analysis can
never be fully automated, and sound judgment by investi-
gators always plays an important role; as problems become
more multidimensional, methods like the one the investi-
gators propose are important tools for minimizing the ad
hoc nature of the process.

Despite the lack of the hoped-for complexity of the
exposure–response relationships in the MOBILIZE study
data set and the canine study data set, the investigators
analyses did demonstrate that the new methods were prac-
tical to apply to real data sets and that they produced
results that were largely sensible. It is arguably unreason-
able to expect that the first application of new statistical
methods would necessarily identify groundbreaking scien-
tific findings. Rather, in this context, it is important that
the applications contribute to an understanding of the
methods’ theoretical properties and how they perform on
real-world data sets. Coull and colleagues have amply
achieved both of these goals and their findings suggest that
their methods need to be applied in a greater range of sce-
narios before we can ultimately evaluate their usefulness
in real-world practice.

When applying statistical methods, typically a tradeoff
is made between the number of assumptions about the
data and the computational complexity of the method.
These investigators’ approach is quite flexible and allows
for a wide class of model structures, different statistical
distributions, and choices of variables. However, the
approach is quite a bit more computationally demanding
than standard approaches. Coull and colleagues report that
software to implement the method will soon become avail-
able; the Committee thought it will be a welcome addition
to the statistical toolbox. The availability of user-friendly
software that is efficiently implemented is a key compo-
nent of the wider adoption of this approach beyond the
statistical community.

PART 2. STUDY CONDUCTED BY PARK AND 
COLLEAGUES

SCIENTIFIC BACKGROUND

Dr. Park and her colleagues focused on improvements to
multivariate receptor models, the class of models used to
identify the number of pollution sources, to characterize
the pollutant composition profiles associated with each
source, and to estimate the contributions of each source to
exposure experienced by the “receptor”, which in practice
is the monitoring location, but in concept represents
exposed individuals. The results of the receptor models
can then be input to epidemiologic models in which the
contribution of different sources to health outcomes can be
evaluated.

The Park study had two specific aims: (1) to develop a
multipollutant approach that, in the estimation of source-
specific health effects, accounts for both model uncertainty
in multivariate receptor models and uncertainty in the
source-specific exposures; and (2) to develop enhanced spa-
tial multivariate receptor models that can account for spa-
tial correlations in the multipollutant data collected from
several monitoring stations. Typically, multivariate models
are applied to data from one monitoring station or receptor
and the output of the model (number of sources and
strength of each source’s contribution) are treated as cer-
tain. The investigators aimed to account fully for uncer-
tainties in the numbers and contributions of the sources
identified, and in the health effects associated with them,
by addressing more explicitly the implications of key
assumptions in the receptor modeling choices (i.e., model
uncertainty). In contrast to Coull’s approach, Park did not
allow for flexibility in the shape of the exposure–response
relationship in her models.

For each of the specific aims, Park and colleagues evalu-
ated the methods they developed in two steps. First, they
used simulation studies in which all of the distributions,
data structures, and parameters to be estimated were speci-
fied by the investigators so the “truth” is known. This kind
of evaluation provides an important first step in assuring
that the methods are performing properly because the esti-
mated parameters can be compared with their “true” values.
Second, they applied their methods to three existing data
sets, two to address Aim 1, and one to address Aim 2. Cri-
tique Table 1 gives a simple overview of the project and its
comparison with the work by Coull and colleagues; details
are provided below.
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SPECIFIC AIM 1

Most time-series studies of health effects reported in the
air pollution epidemiology literature used a two-stage
approach in which exposures are estimated first and the
results input to the health effects analysis. In their first
specific aim, Park and colleagues extended existing
methods by developing a joint modeling approach that
estimated parameters in the multivariate receptor models
at the same time as the health effects parameters. Specifi-
cally, they incorporated source apportionment into a time-
series health effects analysis using a Bayesian hierarchical
modeling framework. Their focus was on estimating the q
source-specific health effects parameters, where q is the
number of sources. In this Bayesian framework, prior dis-
tributions are specified for the parameters in the health
model and for latent source contributions in the multivar-
iate receptor models. Multivariate receptor models are
used to decompose a time series of multipollutant mea-
surements (e.g., matrix X) into a time series of mass contri-
butions from multiple sources (e.g., matrix A) multiplied
by a matrix of relative contributions of each pollutant to
each source (e.g., matrix P) plus a matrix of errors (e.g.,
matrix E).

Multivariate receptor models are in general not “well
identified”, even when the number of sources is known.
That is, there is not a unique set of values that make the
equations in the model true. In the example given above,
there are infinite combinations of the values of A (source
contributions) and P (source composition profiles) that can
satisfy the equality presented by the model. Thus, one of
the key challenges is to impose constraints or assumptions
(referred to in the report as identifiability conditions) that
both make the problem analytically tractable and are sci-
entifically meaningful. The identifiability conditions for
sources include (1) specifying which pollutants do not
contribute to a specific source, (2) assuming that this set of
noncontributing pollutants is not identical for any two
sources, and (3) assuming that the relative contributions
across all pollutants sum to 1 for each source.

Plausible models for these identifiability conditions can
be based on preliminary data analyses or estimates culled
from the literature. Estimation depends upon the assumed
number of sources and the identifiability conditions
selected. One of the important contributions of Park’s previ-
ous work (Park et al. 2002) was to account for the uncertainty
in both of these assumptions through a Bayesian approach to
modeling, allowing for straightforward comparisons be-
tween model fit under different assumptions through poste-
rior probability estimates. (The choice of the number of
sources and identifiability conditions is specified through
prior distribution assumptions in Bayesian modeling.)

In this first aim, Park and colleagues extended their pre-
vious work to (1) explicitly incorporate an a priori assump-
tion of correlated source contributions, and (2) expand the
modeling framework to also estimate the health effects
parameters while accounting for the uncertainty in esti-
mating the source contributions. This approach was
implemented using a Markov chain Monte Carlo proce-
dure by evaluating the joint models for a specific number
of sources and set of identifiability conditions and then
comparing the resulting log of the marginal likelihoods
(and posterior model probabilities).

Evaluation of Aim 1 Methods

In the first simulation Park and colleagues based their
framework on a previously published simulation study
that used four known sources of particulate matter pollu-
tion in Boston, with some limited modifications to better
understand the health effects parameter estimation. By
doing so, they provided a comparison between the results
of their more complex method with those of a more con-
ventional and simpler one (i.e., Nikolov et al. 2006, 2007).
In this case, they assumed that a tracer pollutant is known
to exist for each source (this use of tracer pollutants is an
alternative approach to addressing the model identifi-
ability challenge). The investigators then ran simulations
with scenarios that allowed for one to five possible sources
and allowed for correlations among the source contribu-
tions. They found that the estimated source-specific health
effects estimates were consistent with the truth; that is, the
posterior credible intervals for each parameter contained
the true value approximately 96% of the time.

In the second simulation, they extended the first simula-
tion to determine the performance of a model that assumes
a priori that source contributions are uncorrelated when
the underlying source contributions were actually corre-
lated. They then compared these results with those of the
first model that assumed a priori that source contributions
are correlated. They found little difference in the results.

In a third simulation, Park and colleagues used a more
complex model to identify the underlying sources that did
not rely on tracer pollutants, and investigated the impact
of misspecification of zeros in the source composition
matrix. They considered several different combinations of
the number of sources and assumed identifiability condi-
tions; they then studied the performance of their models
under those sets of assumptions. They found that their
estimates of source-specific health effects were not very
sensitive to the misspecification of pollutants as absent
species (zeros) for particular sources as long as those pol-
lutants were not actually important contributors to a given
source. They also found that the 95% posterior credible



122

Critique of Investigators’ Reports by B.A. Coull et al. and E.S. Park et al. 

intervals for the estimated health effects parameters con-
tained the true value 96% of the time. These findings held
when the health outcomes were modeled using either con-
tinuous (normal) distributions or discrete (Poisson) distri-
butions, although the investigators noted that the Poisson
models took considerably longer to compute. Thus, based
on the simulation studies, the investigators found that they
could obtain reasonable results using the methods devel-
oped in the first aim.

Evaluation of Aim 1 Using Real-World Data Sets

To evaluate the methods developed in the first aim from a
more practical perspective, Park and colleagues used data
sets from Houston, Texas, and from Phoenix, Arizona. The
Houston data included 24-hour PM2.5 speciation data from
2002–2005 in a region near the Houston Ship Channel and
actual counts of respiratory deaths in the region. The
Phoenix data included daily PM2.5 speciation data from
1995–1997 and daily counts of cardiovascular deaths. The
Phoenix data had been used in studies previously pub-
lished by others (Hopke et al. 2006; Mar et al. 2006; Thur-
ston et al. 2005). For sake of brevity, we focus on the
Phoenix results to illustrate the evaluation of her methods.

The Phoenix data illustrated some practical problems
faced in these real-world applications, namely that many
of the 46 pollutant species had negative concentration esti-
mates, and data for various species in the data set were
missing on several days. The investigators addressed these
challenges by reducing the number of species considered
in their models to 15 and by imputing missing measure-
ments for species or confounding variables (temperature,
relative humidity). They applied models with different lag
days and numbers of sources and compared the results.
The model selected had six sources and gave results that
were consistent with observations reported by Mar and
colleagues (2006). However, the uncertainties of the health
effects estimates tended to be larger, which reflected the
more comprehensive accounting for uncertainty in this
work.

SPECIFIC AIM 2

In the second aim, the investigators’ goal was to extend
multivariate receptor models to incorporate data from
multiple spatial locations and to allow for spatially depen-
dent data among locations. This approach is in contrast to
more conventional multivariate receptor model analyses
with time-series data that typically do neither. It also
allows source contributions to be predicted at locations
where monitoring data are not collected.

In more specific terms, Park and colleagues extended
existing methods through adapting dynamic factor process
convolution models (which are versions of multivariate
spatial temporal process convolution models that require
fewer investigator assumptions about underlying spatial
correlations than do conventional geostatistical models) to
a Bayesian framework where assumptions about the
number of sources and identifiability conditions were
relaxed and the standard nonnegativity constraints com-
monly included in source apportionment were applied.
Unlike the first aim, this aim focused entirely on source
apportionment without also incorporating estimation of
health effects. This extension of their method also has the
advantage that it can handle more complex data and model
structures than a conventional geostatistical modeling
approach. As in the investigators’ first aim, the uncertainty
in the number of sources and identifiability conditions was
addressed by comparing posterior model probabilities.

Evaluation of Aim 2 Using Simulations

Park and colleagues used two types of simulations to
test the spatially dependent multivariate receptor mod-
eling approach. For all simulations, they generated the
data with three underlying sources (of which contribu-
tions are correlated with one another) from nine moni-
toring locations in a multipollutant framework. In the first
simulation, they performed estimation assuming a priori
that the contributions from three sources were correlated
with one another, and in the second simulation they per-
formed estimations assuming a priori that the contribu-
tions from three sources were uncorrelated. In both
simulations, eight monitoring locations were used for
model fitting and a ninth (the “unmonitored” site) was
evaluated for model performance. For both methods, the
estimated number of sources was the same as the true
number of sources in every simulation, and the predicted
source contributions at the “unmonitored” site were
highly correlated with the true source contributions.

Evaluation of Aim 2 Using Real-World Data Sets

Park and colleagues evaluated the performance of their
enhanced multivariate receptor model using monitoring
data for volatile organic compounds (VOCs) measured every
six days between 2000 and 2005 from nine monitoring sites
in Harris County, near Houston, Texas. Based on knowledge
of local sources from previous studies of the area, of the pos-
sible 107 VOCs measured they selected for analysis a subset
of 17 as being relevant to the likely local sources. They con-
structed a range of candidate models to evaluate, varying
the number of sources from four to seven and varying the
assumptions about identifiability conditions. As in the first
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specific aim, the investigators implemented the models
using a Markov chain Monte Carlo procedure and then
compared their resulting log of the marginal likelihoods
and posterior model probabilities. For this data set, the
model with the highest posterior probability was one with
five VOC sources that were consistent with those found in
earlier studies of the area. Park and colleagues then dem-
onstrated how their spatial multivariate receptor model
might be allowed to predict source contributions in a pop-
ulated area for which a monitoring site was lacking.

HEI HEALTH REVIEW COMMITTEE’S CRITIQUE OF 
THE STUDY BY PARK AND COLLEAGUES

In its independent evaluation of the study, the HEI
Health Review Committee thought that Park and her col-
leagues had tackled an extremely challenging technical
problem yet produced work that represents a meaningful
extension of source-apportionment estimation to jointly
estimate health effects (Aim 1) and to predict source con-
tributions at new locations (Aim 2). Throughout the
review process, Park worked collaboratively with the
Committee to make her work clearer and more accessible
to a broader audience.

Estimating health effects from pollutant sources has been
of great interest, and previous methods have been limited by
their inability to account for uncertainties in the multivar-
iate receptor modeling in the health effects estimation. The
investigators’ work advances the statistical methods for
source apportionment in time-series health effects studies,
by both (1) estimating source-related health effects in which
the uncertainty in the sources and source contributions is
properly accounted for in the models, and (2) extending
multivariate receptor models to incorporate dependence
among source contributions.

The Committee also concluded that the methods de-
scribed in the report were properly developed and tested.
The simulations demonstrated good performance under the
range of conditions evaluated; that is, the correct number of
sources was selected and the 95% posterior intervals for the
health effects parameters were close to their nominal, or as-
sumed, values. The caveat that needs to be stated for this
work, as for all simulation studies, is that the simulations
provide evaluations of only a defined number of condi-
tions; thus generalizations about the performance of the
methods under other conditions need to be made cau-
tiously.

The applications of the methods to real-world data also
lend credibility to the conclusions that the methods
appear to work as the investigators intended. Their anal-
yses to replicate the findings from Mar and colleagues
(2006) generally succeeded in doing so, albeit with fewer

statistically significant findings for the health effects. The
Committee agreed with the investigators that fewer such
findings would be expected from a method that incorpo-
rates uncertainty in the receptor model into the health
effects estimates. Overall, the authors have reached con-
clusions from their data analysis that are appropriate
within the context of an exercise in methods development.

One of the key challenges faced by the investigators was
that the joint modeling framework was not as straightfor-
ward when discrete health outcome data were used, such
as the daily mortality counts in time-series studies, as it
was when health outcomes were modeled using contin-
uous (normal) distributions for which they first developed
their methods and software. When extending the methods
to a discrete outcome modeled using Poisson distribu-
tions, they needed to cope with additional complexity
because the conditional densities were not all conjugate
(i.e., in the same family of distributions) and the resulting
full conditional posterior distributions could not be
written in closed form (and, for example, solved analyti-
cally). They solved this problem by introducing normal
auxiliary variables into the model in order to obtain trac-
table full conditional densities that could be estimated
using Markov chain Monte Carlo procedures. However,
this entire approach was computationally very complex
and, as their report states, “coding of the algorithm turned
out to be a formidable task, and took a considerable
amount of time and effort.”

The Committee thought that the spatial multivariate
receptor modeling method, developed in the second spe-
cific aim to handle time series of concentration data from
multiple locations, appeared to be a useful innovation.
From the simulation and from the application of the
method to the VOC data, it was apparent that source con-
tributions can be predicted at unmonitored locations.
However, for this method to gain widespread scientific
applicability, the Committee thought that future work
should include an additional explanation for nonstatisti-
cians on the use of the method to deal with correlation
among source contributions at different locations.

The challenge for implementing both of these joint
models for health effects estimation and the spatial multi-
variate receptor models for prediction of sources at
unmonitored locations is that they require data in a spe-
cific form, which is often not available in existing data
sets. For example, the spatial multivariate receptor model
requires complete multipollutant and speciation data from
multiple monitoring sites. In reality, relatively few loca-
tions exist where multiple sites within the same airshed
collect detailed data on PM constituent species or on
VOCs. In order to show proof-of-concept, a number of
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imputation and data-massaging steps were necessary to get
the data into the necessary form before analysis. In order to
use the Phoenix data, for example, the investigators
needed to reduce the number of pollutants they analyzed
and impute missing data for some of the remaining species
as well as for the weather variables. Such steps are not ideal,
but are not uncommon for real-world data. However, the
potential impacts of these assumptions on outcomes from
the analysis were not studied and could be important.

A more complex question relates to the potential for
feedback in joint receptor and disease modeling when
either the health outcome or the exposure data are unbal-
anced or the models are poorly specified. That is, to the
extent that the health outcome data influences the choice
of sources, and the choice of sources affects the estimates
of source-specific health effects, it is possible that biases
can develop in the joint model estimates that are artifacts
of the quality of the underlying data. A related conceptual
issue is whether, when one is interested in multiple health
outcomes, the source apportionment should be the same or
different for each health outcome. A single joint model
would likely produce slightly different source apportion-
ments for each outcome, though some scientists might
argue that they should be the same.

Problems with underlying data also affect estimation in
more conventional two-stage models. However, in recent
work in the air pollution literature dealing with error in
exposure measurement, investigators have intentionally
chosen to model exposure first, and then correct explicitly
for the impact of the exposure modeling error on health
effect inferences (see, for example, Gryparis et al. 2009;
Szpiro et al. 2011; Szpiro and Paciorek 2013). The two-
stage approach not only avoids the potential bias issues
due to feedback but also reduces the computational chal-
lenges in joint approaches. More work needs to be done to
explore the feedback question in joint modeling and to
understand the larger question of how best to estimate
regression parameters for inference about health in com-
plex settings such as the one tackled in this research.

The test cases in Phoenix and Houston were an impor-
tant first step but their results provide some indications
that further development work is necessary. For example,
the Committee noted that the Phoenix test case identified a
preferred model (with posterior probability of 1) with
seven sources that accounted for only about 80% of emis-
sions and that appeared to be missing some important
sources associated with the Phoenix area (e.g., secondary
organic aerosols and secondary nitrates). The Houston test
case identified only five sources within a complex area
whereas other studies have more recently identified as

many as ten (Sullivan et al. 2013). Although these differ-
ences suggest the need for more comparisons with other
source-apportionment studies, they may also reflect differ-
ences in the questions that the studies’ methods were
designed to address; for example, if they were designed to
identify all sources or just those sources associated with
health effects.

In summary, the Committee thought the new methods
from Park and associates were properly implemented; the
Committee recognized the inherent validity in advancing
statistical methods, even when the details of the applica-
tion are simplified or in other ways altered to make the
problem tractable. To this extent, the work led by Park has
raised important scientific issues with existing methods
and she and her team have developed new approaches to
address them. The Committee did not expect that this
work alone would resolve how well the methods will work
in practice in more complex settings. An important philo-
sophical question for future investigators considering joint
estimation approaches is to how to evaluate and weigh
carefully the scientific reasons for and against doing so.

SUMMARY AND CONCLUSIONS

HEI issued RFA 09-1 to encourage the development of
new statistical methods to address the challenges investi-
gators have long faced in characterizing health risks from
multipollutant atmospheres. Conventional statistical
methods are not well suited to deal with high degrees of cor-
relation among pollutants, differences in the composition of
pollutant mixtures over time and space, or differences
among pollutants in how completely or representatively a
person’s exposure to individual pollutants has been mea-
sured. Consequently conventional methods can lead to
errors (e.g., bias, incomplete accounting for uncertainty, or
both) in the estimation of the health effects of individual
pollutants or in the estimation of the joint contributions of
multiple pollutants and the sources with which they may
be associated.

The two studies discussed in this Critique each ad-
dressed important but separate questions in multipollut-
ant research. The study by Coull and colleagues developed
a BKMR method that simultaneously performs exposure
variable selection, allows for nonparametric estimation of
nonlinear exposure–response relationships, and allows for
quantification of uncertainty through Bayesian posterior
distributions. The study by Park and colleagues set out to
develop a statistical approach to analyze multipollutant
time-series data that incorporated different sources of un-
certainty in source-apportionment models in estimating
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source-specific health effects. The Committee recognized
two important distinctions between the two studies. First,
Coull and colleagues focused on dimension reduction (or
reduction of the complexity of the exposure data to the
most influential pollutants) to simplify the analysis,
whereas Park and colleagues used all of the available expo-
sure data, in some cases from multiple monitoring loca-
tions, to choose and characterize sources. Second, Coull
and colleagues partitioned pollutant exposures into mutu-
ally exclusive groups, whereas Park and colleagues esti-
mated sources while allowing any single pollutant to
belong to multiple sources.

Despite the differences in the specific questions they set
out to answer, the two projects share some similarities in
their modeling approaches. Both teams used Bayesian sta-
tistical frameworks to estimate health effects using joint, or
supervised, health and exposure models. The objective of
such approaches is to evaluate the set of exposure condi-
tions that are associated with the greatest health risk esti-
mates at the same time. Both teams followed appropriate
processes expected of statistical methods development
(see sidebar), whereby each began by developing a solid
conceptual basis for their methods, and then tested their
methods first in simulation studies using data sets with
known properties and next in real-world data sets that
were either relatively simple or previously studied.

Both sets of methods are complex and computationally
demanding. They may be even more demanding when
tested in even more complex exposure environments
(although the Houston data set used by Park and col-
leagues is already quite complex). Neither project could
answer all the questions that RFA 09-1 posed; for example,
they were unable to characterize more directly the interac-
tions between individual pollutants or to evaluate nonlin-
earities in exposure–response relationships.

From the standpoint of methods development, further
work is necessary to evaluate the methods proposed in
these reports. They need to be applied in a broader range of
settings representing different types of sources, compo-
nents, and levels of data complexity. These newer models
need to be compared side-by-side against the more con-
ventional two-stage approach in air pollution epidemi-
ology, in which exposure is modeled first and those results
are used in a health model in which exposure measure-
ment error is explicitly considered. Future work should
investigate the potential for feedback in the joint modeling
approaches proposed by both investigative teams. Such
analyses could help to determine whether the additional
complexity of these new methods will lead to better under-
standing of how pollutant mixtures and their sources may
contribute to effects on human health and, ultimately, to

better decisions about how to control them. In any future
extension or evaluation of these methods, the active
involvement of subject-matter experts will be important to
keep the statistical methods well-tuned to scientific needs
and to realistic interpretation of the results.

Ultimately, the 2006 U.S. EPA workshops on multipol-
lutant science recognized that statistical methods alone
would likely not be sufficient to address the many issues in
characterizing multipollutant exposures and health effects.
“We can’t model our way out of it; we can’t measure our
way out of it….” was the refrain repeated throughout the
workshop. Further advances are necessary in monitoring
and modeling the spatial and temporal variability in compo-
nents of the air pollution mixture, in characterizing their
related human exposures, and in statistical methods to deal
with the inevitable and ongoing uncertainties that remain.
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