Social Susceptibility to Multiple Air Pollutants in Cardiovascular Disease

Jane E. Clougherty,1 Jamie L. Humphrey,2 Laura D. Kubzansky,3 Colleen Reid,4 Ellen Kinnee,5 Lucy Robinson,1 Leslie McClure2

1 Drexel University Dornsife School of Public Health, Philadelphia PA, 2 Harvard T.H. Chan School of Public Health, Boston MA, 3 University of Colorado at Boulder, 4 University of Pittsburgh Graduate School of Public Health

Background

Cardiovascular disease (CVD), the leading cause of death in the US, is linked with chronic and acute air pollution exposures.1,2,4

1) Hospital CVD Data – All CVD emergency department (ED) events (n=1.2 million) at NYC hospitals 2005-2011, ICD-9 codes 390-459, from NY State Department of Health Statewide Planning and Research Cooperative System (SPARCS).
2) Citywide Air Pollution Data – Data from NYC Community Air Survey (NYCSS), which monitored 155 sites year-round for two years, and used Land Use Regression (LUR) to model nitrogen dioxide (NO_{2}), fine particles (PM_{2.5}), sulfur dioxide (SO_{2}), ozone (O_{3}).
3) Daily EPA Data – Daily averages from all NYC Air Quality System (AQS) stations for 2005-2011 were used to create a citywide trend. Daily AQS data was combined with NYCSS surfaces to create day- and residence-specific spatio-temporal estimates.
4) Census Tract Level Social Stressors
 I. SEP – Socioeconomic deprivation index (SDI). Spatially-stratified principal components analysis2 of 27 variables found 7 salient indicators from 2005-2009 American Community Survey (ACS)4.
 III. 2009 Violent Crime Rate/ 10,000 Population – Based on level point data on all violent crime events in NYC in 2009, from NYPD Incident Database.5 Residential population, 2007-2011 ACS.

Analyses

1) Case-Crossover (Conditional Logistic Regression): We tested daily spatio-temporal NO_{2}, PM_{2.5}, SO_{2}, and O_{3} vs. “1” ED CVD events
 - Time-stratified referent sampling, 6-6 lag days.
 - Adjusted for temperature, relative humidity, co-pollutants
 - Bonferroni Adjustment
2) Case-Crossover with Effect Modification: We tested modification in associations between spatio-temporal pollution exposures and risk of CVD, for lag day 0.
 - By tertiles of census tract social stressors
 - Bonferroni Adjustment
3) Survival Analysis: Age at CVD event, by individual race/ethnicity.
 - Cox Proportional Hazards: We tested annual mean NO_{2}, PM_{2.5}, SO_{2}, and O_{3} vs. age at CVD event using Cox proportional hazard models, adjusting for individual race and sex, and area-level SEP.
 - Sensitivity-tested effect of adjusting for all co-pollutants.

Aims

1) In ecologic cross-sectional analyses, test whether exposures to social factors and annual-average pollutants predict community age-adjusted CVD event rates in New York City (NYC).
2) Examine associations between spatio-temporal pollution exposures and CVD events using case-crossover models, across lag days 0-6.
3) Test effect modification by community-level social stressors.

Data

References

Future Directions

- Elucidate effects of residential segregation on observed modification.
- Refined spatio-temporal violence exposure metrics (e.g., by residential vs. daytime population).
- Disentangle modification by poverty into material and social/psychosocial components.
- Address off-support inference in comparing white & black populations differentially distributed across distributions of neighborhood stressors.

Cox Proportional Hazard Models

Results: Pollution was not significantly associated with risk of CVD.
- Individual-level race and sex had greatest effects.
- Non-Hispanic Blacks had a 75% greater relative hazard than did non-Hispanic whites, adjusted for social factors and chronic pollution.

Confounding by Race/ Ethnicity

Figure 4: Percent racial/ethnic composition, by census tract.

Results: Most tracts are largely white or blacks; few are truly mixed. Strong confounding among community factors and individual demographics (with little overlap) complicates interpretation of models for community-level modification.

Acknowledgments

Research was conducted under contract to the Health Effects Institute (HEI), an organization jointly funded by the United States Environmental Protection Agency (EPA) (Assistance Award No. R-82811201) and certain motor vehicle and engine manufacturers. The contents of this presentation do not necessarily reflect the views of HEI, or its sponsors, nor do they necessarily reflect the views and policies of the EPA or motor vehicle and engine manufacturers.