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A B O U T  H E I

 v

The Health Effects Institute is a nonprofit corporation chartered in 1980 as an independent 
research organization to provide high-quality, impartial, and relevant science on the effects of air 
pollution on health. To accomplish its mission, the institute

• Identifies the highest-priority areas for health effects research;

• Competitively funds and oversees research projects;

• Provides intensive independent review of HEI-supported studies and related 
research;

• Integrates HEI’s research results with those of other institutions into broader 
evaluations; and

• Communicates the results of HEI’s research and analyses to public and private 
decision makers.

HEI typically receives balanced funding from the U.S. Environmental Protection Agency and the 
worldwide motor vehicle industry. Frequently, other public and private organizations in the 
United States and around the world also support major projects or research programs. HEI has 
funded more than 330 research projects in North America, Europe, Asia, and Latin America, the 
results of which have informed decisions regarding carbon monoxide, air toxics, nitrogen oxides, 
diesel exhaust, ozone, particulate matter, and other pollutants. These results have appeared in 
more than 260 comprehensive reports published by HEI, as well as in more than 1,000 articles in 
the peer-reviewed literature.

HEI’s independent Board of Directors consists of leaders in science and policy who are 
committed to fostering the public–private partnership that is central to the organization. The 
Research Committee solicits input from HEI sponsors and other stakeholders and works with 
scientific staff to develop a Five-Year Strategic Plan, select research projects for funding, and 
oversee their conduct. The Review Committee, which has no role in selecting or overseeing 
studies, works with staff to evaluate and interpret the results of funded studies and related research.

All project results and accompanying comments by the Review Committee are widely 
disseminated through HEI’s website (www.healtheffects.org), printed reports, newsletters and 
other publications, annual conferences, and presentations to legislative bodies and public agencies.
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Research Report 193, Particulate Air Pollutants, Brain Structure, and Neurocognitive Disorders in 
Older Women, presents a research project funded by the Health Effects Institute and conducted 
by Dr. Jiu-Chiuan Chen, of the Department of Preventive Medicine and the Memory and Aging 
Center/Alzheimer’s Disease Research Center, Keck School of Medicine, University of Southern 
California, Los Angeles, California, U.S.A., and his colleagues. This research was funded under 
HEI’s Walter A. Rosenblith New Investigator Award Program, which provides support to 
promising scientists in the early stages of their careers. The report contains three main sections.

The HEI Statement, prepared by staff at HEI, is a brief, nontechnical summary of the 
study and its findings; it also briefly describes the Review Committee’s comments on 
the study.

The Investigators’ Report, prepared by Chen and colleagues, describes the scientific 
background, aims, methods, results, and conclusions of the study.

The Critique, prepared by members of the Review Committee with the assistance 
of HEI staff, places the study in a broader scientific context, points out its strengths 
and limitations, and discusses remaining uncertainties and implications of the study’s 
findings for public health and future research.

This report has gone through HEI’s rigorous review process. When an HEI-funded study is 
completed, the investigators submit a draft final report presenting the background and results of 
the study. This draft report is first examined by outside technical reviewers and a biostatistician. 
The report and the reviewers’ comments are then evaluated by members of the Review 
Committee, an independent panel of distinguished scientists who have no involvement in 
selecting or overseeing HEI studies. During the review process, the investigators have an 
opportunity to exchange comments with the Review Committee and, as necessary, to revise 
their report. The Critique reflects the information provided in the final version of the report.
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This Statement, prepared by the Health Effects Institute, summarizes a research project funded by HEI and conducted by Dr. Jiu-Chiuan
Chen, Keck School of Medicine, University of Southern California, Los Angeles, California, and colleagues. Research Report 193 contains both
the detailed Investigators’ Report and a Critique of the study prepared by the Institute’s Review Committee.
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Air Pollution and Neurocognitive Effects in Older Women

INTRODUCTION

Dementia is relatively common in elderly people.
Because there are no cures, there has been much
interest in identifying modifiable risk factors.
Recently, epidemiological studies have begun to
explore the etiological role of exposures to common
environmental pollutants, including air pollution.
Yet to date, few epidemiological studies have inves-
tigated neurocognitive effects of long-term expo-
sure to air pollution in older people. There are
many methodological challenges involved in con-
ducting such research, including the potential for
selection bias, misclassification of the outcome,
and uncertainties in the exposure estimation; many
challenges also stem from the nature of dementia,
which can have a decades-long incipient phase. 

Dr. Jiu-Chiuan Chen of the University of Southern
California, a recipient of HEI’s Walter A. Rosenblith
New Investigator Award, and colleagues examined
the association between long-term outdoor particu-
late air pollution exposure and neurocognitive out-
comes and brain volumes of older women in the
United States. They also examined effect modifica-
tion by factors that may increase susceptibility, such
as a history of cardiovascular disease. 

APPROACH

Dr. Chen used data from women enrolled in the
U.S.-based Women’s Health Initiative Memory
Study (WHIMS), which consisted of two random-
ized clinical trials of postmenopausal hormone
therapy. Both trials were terminated early because
of side effects, though follow-up continued. In to-
tal, 7,479 women were included in the current
study, all community dwellers (i.e., not living in
nursing or medical facilities), 65 to 80 years old,
and free of dementia at baseline (1996–1999). The
study assessed neurocognitive outcomes, namely,
mild cognitive impairment and dementia, and brain
volume measures. The report analyzed neurocogni-
tive outcomes measured annually by standardized
protocols including neurological tests until 2007.

Brain volume measures for certain brain regions
were obtained from a single structural magnetic reso-
nance imaging (MRI) assessment in a subset (~20%)
of participants during 2005–2006.

Two PM exposure metrics were assessed: ambi-
ent PM2.5 and diesel PM. Annual ambient PM2.5 ex-
posure was estimated at the residential address
using a nationwide spatiotemporal model and U.S.
EPA regulatory monitoring data for the years 1999–
2007. Annual on-road diesel PM was obtained at
the census-tract level from the U.S. EPA National-
Scale Air Toxics Assessment database. 

What This Study Adds
• Dr. Chen conducted a novel study 

examining the association between long-
term exposure to ambient particulate air 
pollution and neurocognitive outcomes and 
brain volumes of older women in the 
United States.

• A high-quality neurocognitive outcome 
assessment, the inclusion of brain imaging 
data, and the availability of detailed 
individual-level covariate information were 
strengths of the study.

• The investigators observed that exposure 
to neither ambient fine particulate matter 
(PM2.5) nor diesel particulate matter was 
associated with mild cognitive impairment 
and/or dementia in older women. Some 
positive and negative associations were 
reported between particulate air pollution 
and brain volumes, but the analyses were 
exploratory, their clinical significance 
remains unclear, and the findings differ 
from previous research.

• Evidence from the current study, along 
with results of previous studies, provides 
impetus for further research given the 
implications of the potential effects of 
ambient air pollution on dementia for our 
aging population.
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Neurocognitive and brain volume outcomes were
first compared across exposure quartiles and then
tested for significance using likelihood-ratio tests and
analysis of covariance. Only statistically significant
results were further investigated in Cox propor-
tional hazard models (neurocognitive outcomes)
and linear regression models (brain volumes) and
adjusted for important confounders such as age,
race, socioeconomic status, smoking, alcohol use,
physical activity, body mass index, and some clin-
ical characteristics.

MAIN RESULTS AND INTERPRETATION

In its independent review of the study, the HEI
Review Committee concluded that Dr. Chen and
colleagues conducted a novel study — one of the
few to evaluate a potential relationship between
long-term exposure to ambient particulate air pollu-
tion and neurocognitive outcomes and brain vol-
umes. A high-quality neurocognitive outcome
assessment, the inclusion of brain imaging data,
and the availability of detailed individual-level
covariate information were strengths of the study.

Chen and colleagues reported that exposure to nei-
ther ambient PM2.5 nor diesel PM was associated
with mild cognitive impairment and/or dementia in
older women (see Statement Figure). Some positive

and negative associations were reported between par-
ticulate air pollution and brain volumes, but the anal-
yses were exploratory, their clinical significance
remains unclear, and the findings differ from pre-
vious research. 

The Committee had less confidence in the results
for diesel PM than for ambient PM2.5 because the
exposure assessment was based on a screening tool
that was considered less suitable for epidemiologi-
cal studies and was likely prone to substantial mea-
surement error. In addition, the effect modification
analyses were hampered by lack of statistical pow-
er. Although the brain volume results were explor-
atory and the rationale for the statistical approach
clearly described, the Committee questioned the
emphasis on unadjusted findings in the report. Fur-
thermore, it would have been useful to take addi-
tional steps to increase consistency in the brain
volume analyses and reporting and to explore the
potential for selection bias further. It should be not-
ed that the number of air pollution studies on de-
mentia-related outcomes remains small, and such
studies are inherently difficult. Evidence from the
current study, along with previous results, provides
impetus for further research given the implications
of the potential effects of ambient air pollution on
dementia for our aging population.

Statement Figure. Association between neurocognitive outcomes and particulate air pollution in older women. Hazard ratio
expressed per interquartile exposure range (3.9 µg/m3 for PM2.5, 0.35 µg/m3 for diesel PM). 
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INVESTIGATORS’ REPORT

Particulate Air Pollutants, Brain Structure, and Neurocognitive Disorders 
in Older Women

Jiu-Chiuan Chen1,2, Xinhui Wang1, Marc Serre3, Steven Cen4,5, Meredith Franklin1, 
and Mark Espeland6

1Department of Preventive Medicine; 2Memory and Aging Center/Alzheimer’s Disease Research Center, Keck School of
Medicine, University of Southern California, Los Angeles, California, U.S.A.; 3Department of Environmental Sciences and
Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Car-
olina, U.S.A.; 4Department of Neurology, 5Department of Radiology, Keck School of Medicine, University of Southern Cal-
ifornia, Los Angeles, California, U.S.A.; 6Department of Biostatistical Sciences, Division of Public Health Sciences, Wake
Forest University School of Medicine, Winston–Salem, North Carolina, U.S.A.

ABSTRACT

An increasing number of studies have suggested that ex-
posure to particulate matter (PM*) may represent a novel —
and potentially amendable — environmental determinant of
brain aging. The current longitudinal environmental epide-
miological study addressed some important knowledge gaps
in this emerging field, which combines the study of air pol-
lution and neuroepidemiology. The investigators hypothe-
sized that long-term PM exposure adversely influences
global brain volume and brain regions (e.g., frontal lobe or
hippocampus) that are critical to memory and complex cog-
nitive processing or that are affected by neuropathological
changes in dementia. It was also hypothesized that long-
term PM exposure results in neurovascular damage and may
increase the risk of mild cognitive impairment (MCI) and
dementia. The investigators selected a well-characterized

and geographically diverse population of older women (N =
7,479; average age = 71.0 ± 3.8 years at baseline) in the
Women’s Health Initiative (WHI) Memory Study (WHIMS)
cohort (1996–2007), which included a subcohort (n = 1,403)
enrolled in the WHIMS–Magnetic Resonance Imaging
(WHIMS-MRI) study (2005–2006). Residence-specific
yearly exposures to PM � 2.5 µm in aerodynamic diameter
(PM2.5) were estimated using a Bayesian maximum entropy
spatiotemporal model of annual monitoring data (1999–
2007) recorded in the U.S. Environmental Protection
Agency (U.S. EPA) Air Quality System (AQS). Annual expo-
sures (1996–2005) to diesel PM (DPM) were assigned to
each residential census tract in a nationwide spatiotemporal
mapping, based on a generalized additive model (GAM), to
conduct census tract–specific temporal interpolation of
DPM on-road estimates given by the U.S. EPA National-Scale
Air Toxics Assessment Program. Multiple linear regression
and multicovariate-adjusted Cox models were used to exam-
ine the associations, with statistical adjustment for multiple
potential confounders. The investigators found that partici-
pants had smaller brain volumes, especially in the normal-
appearing white matter (WM), if they lived in locations with
higher levels of cumulative exposure (1999–2006) to PM2.5
before the brain MRI scans were performed. The associa-
tions were not explained by sociodemographic factors, so-
cioeconomic status, lifestyle factors, or other clinical
characteristics. Analyses showed that the adverse effect on
brain structure in the participants was driven primarily by
the smaller WM volumes associated with cumulative PM2.5
exposures, which were present in the WM divisions of the

This Investigators’ Report is one part of Health Effects Institute Research
Report 193, which also includes a Critique by the Review Committee and an
HEI Statement about the research project. Correspondence concerning the
Investigators’ Report may be addressed to Dr. Jiu-Chiuan Chen, Department
of Preventive Medicine, University of Southern California, Keck School of
Medicine, 2001 N. Soto Street, MC 9237, Los Angeles, CA 90089; e-mail:
jcchen@usc.edu.

Although this document was produced with partial funding by the United
States Environmental Protection Agency under Assistance Award CR–
83467701 to the Health Effects Institute, it has not been subjected to the
Agency’s peer and administrative review and therefore may not necessarily
reflect the views of the Agency, and no official endorsement by it should be
inferred. The contents of this document also have not been reviewed by pri-
vate party institutions, including those that support the Health Effects Insti-
tute; therefore, it may not reflect the views or policies of these parties, and
no endorsement by them should be inferred.

*A list of abbreviations and other terms appears at the end of this volume.
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association brain area (frontal, parietal, and temporal
lobes) and corpus callosum. Increased DPM exposures
were associated with larger ventricular volume, suggesting
an overall atrophic effect on the aging brains. The partici-
pants tended to have smaller gray matter (GM) volumes if
they lived in areas with the highest (i.e., fourth quartile)
estimated cumulative DPM exposure in the 10 years before
the brain MRI scans, compared with women in the first to
third quartiles. This observed association was present in
the total brain GM and in the association brain cortices.
The associations with normal-appearing WM varied by
DPM exposure range. For women with estimated cumula-
tive exposure below that of the fourth quartile, increased
DPM estimates were associated with smaller WM volumes.
However, for women with increased cumulative DPM ex-
posures estimates in the fourth quartile, WM volumes
were larger. This pattern of association was found consis-
tently in the association brain area; no measurable differ-
ence was found in the volume of the corpus callosum.
These observed adverse effects of cumulative exposure to
PM2.5 (linking exposure with smaller WM volumes) and to
DPM (linking exposure in the highest quartile with smaller
GM volumes) were not significantly modified by existing
cardiovascular diseases, diabetes mellitus, obesity, or mea-
sured white blood cell (WBC) count. MRI measurements of
the structural brain showed no differences in small-vessel
ischemic diseases (SVID) in participants with varying lev-
els of cumulative exposure to PM2.5 (1999–2006) or DPM
(1996–2005), and no associations between PM exposures
and SVID volumes were noted for total brain, association
brain area, GM, or WM. For neurocognitive outcomes fol-
lowed until 2007, the investigators found no evidence for
increased risk of MCI/dementia associated with long-term
PM exposures. Although exploratory secondary analyses
showed different patterns of associations linking PM ex-
posures separately with MCI and dementia, none of the
results was statistically significant. A similar lack of asso-
ciations between PM exposures and MCI/dementia was
found across the subgroups, with no strong indications for
effect modification by cardiovascular diseases, diabetes
mellitus, obesity, or WBC count. The investigators con-
cluded that their study findings support the hypothesized
brain-structure neurotoxicity associated with PM expo-
sures, a result that is in line with emerging neurotoxicolog-
ical data. However, the investigators found no evidence of
increased risk of MCI/dementia associated with long-term
PM exposures. 

To better test the neurovascular effect hypothesis in PM-
associated neurotoxic effects on the aging brain, the inves-
tigators recommend that future studies pay greater atten-
tion to selecting optimal populations with repeated
measurements of cerebrovascular damage and address the

possibility of selection biases accordingly. To further in-
vestigate the long-term consequence of brain-structure
neurotoxicity on pathological brain aging, future research-
ers should take the pathobiologically heterogeneous neu-
rocognitive outcomes into account and design adequately
powered prospective cohort studies with improved expo-
sure estimation and valid outcome ascertainment to assess
whether PM-associated neurotoxicity increases the risks of
pathological brain aging, including MCI and dementia. 

INTRODUCTION

Exposure to PM has been recognized as a pervasive
threat to cardiovascular health (Kaiser 2005; Nel 2005;
Peters and Pope 2002). Over the last two decades, epidemi-
ological studies have consistently shown that long-term
exposure to particulate air pollutants, especially the fine
particles (PM2.5) from ambient sources, increases cardio-
vascular disease (CVD) risk and mortality (Brook et al.
2004, 2010). Previous studies have found that older people
are more sensitive to these adverse health effects of partic-
ulate air pollutants (Shumake et al. 2013). Along with this
mounting evidence in the epidemiological literature are
intriguing findings from human exposure experiments and
in vivo animal models, all pointing to the possibility that
particulate air pollutants can induce systemic inflamma-
tion, perturb endothelial function, damage microvascula-
ture, and cause the progression of atherosclerosis
(Simkhovich et al. 2008). Although neuropathologic and
epidemiological data have demonstrated the pivotal role of
atherosclerosis and CVD risk factors in cognitive decline
and dementia (Bowler and Gorelick 2007; Gorelick 2005;
Hachinski 2007; Luchsinger et al. 2005; Mielke et al. 2007;
Mosley et al. 2005; Prati et al. 2006), little attention has
been directed to studying the adverse neurocognitive
effects of exposures to ambient air pollution. 

An increasing number of neurotoxicological studies have
demonstrated that exposures to airborne PM induce oxida-
tive stress, widespread neuroinflammation, and other neu-
rotoxic reactions affecting multiple brain regions in animals
(Block and Calderón-Garcidueñas 2009). Neuropathological
examinations following autopsies of children and young
adults living in urban areas with high levels of ambient air
pollutants also revealed an increase in a biomarker of
accelerated brain aging (Calderón-Garcidueñas et al. 2008).
In the last few years, several cross-sectional studies have
reported relatively low performance in various tests of cog-
nitive functions among older people living in neighbor-
hoods with higher levels of PM2.5 (Ailshire and Clarke
2015; Ailshire and Crimmins 2014; Gatto et al. 2014) or in
proximity to major roadways (Ranft et al. 2009; Wellenius
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et al. 2012). Adverse PM effects on cognitive decline were
reported in most longitudinal studies published so far,
including the Nurses’ Health Study Cognitive Cohort
(Weuve et al. 2012) of older women (age 70 to 81 years),
and more recently in older men and women (age 66 ±
6 years) of the Whitehall II subcohort living in Greater
London (Tonne et al. 2014), but with no associations found
in the Reasons for Geographic and Racial Differences in
Stroke (REGARDS) cohort (Loop et al. 2013).

Despite a growing body of data supporting the concept
that ambient air pollutants are novel — and potentially
amendable — environmental determinants of brain aging
(Block et al. 2012), there are substantial knowledge gaps in
the emerging field that studies the role of ambient air pol-
lution in the neuroepidemiology of neurocognitive impair-
ment in the elderly. First, the affected brain structures and
possible neuropathological damage underlying the PM-
associated neurotoxic effects on cognitive decline remain
unclear. Second, convincing cohort data linking PM expo-
sures with increased risks of clinically significant cogni-
tive impairment are still lacking. Third, there are very
limited epidemiological data from studying effect modifi-
cation by clinical characteristics, although such knowl-
edge of individual susceptibility to neurotoxic effects of
PM is essential both to help develop strategies for
informed risk communication with high-risk patients and
to inform toxicologists in selecting the appropriate animal
models for future mechanistic studies. 

SPECIFIC AIMS

The current study was proposed to address the above-
mentioned knowledge gaps regarding whether and how
exposure to ambient air pollution contributes to the neuro-
epidemiology of brain aging. Our research questions were
based on two overarching hypotheses. 

First, we hypothesized that long-term PM exposure ad-
versely affects global brain volume and results in structural
damage to brain regions (e.g., the association areas and hip-
pocampus) that are critical for memory and complex cogni-
tive processing or that are vulnerable to neuropathological
changes in cognitive aging and dementia. This hypothesis
was supported by numerous neurotoxicological studies re-
porting that exposures to airborne particles induce oxida-
tive stress, widespread neuroinflammation, and other
neurotoxic reactions affecting multiple brain regions (in-
cluding the hippocampus and frontal lobes) in animals
(Block and Calderón-Garcidueñas 2009). 

Second, we hypothesized that long-term PM exposure
results in neurovascular damages (e.g., cerebrovascular

atherosclerosis and disruption of the blood–brain barrier),
which may contribute both to cognitive aging (Gorelick and
Pantoni 2013; Rincon and Wright 2013) and to neurodegen-
eration (Zlokovic 2005). This hypothesis was supported by
the increasing amounts of evidence for neurovascular
effects of PM exposures, including the elevated risk for isch-
emic stroke (Shin et al. 2014; Yang et al. 2014), impaired
cerebrovascular perfusion (Wellenius et al. 2013), and
damage to the blood–brain barrier (Hartz et al. 2008; Oppen-
heim et al. 2013). 

These hypotheses were tested in a population of older
women (aged � 65 years). To test these hypotheses, we
developed three specific aims (each with an illustrative
hypothesized epidemiological association): 

1. To examine the anatomical measures of neuropa-
thology associated with PM exposure. (Exposure to
high levels of particulate air pollutants is associated
with smaller volumes of normal brain structures and
larger ischemic lesion volumes, after adjustment for
intracranial volume and multiple potential con-
founders.)

2. To investigate whether PM exposure increases the
risk for cognitive disorders. (Living in places with
high levels of particulate air pollutants is associated
with increased risks for MCI or all-cause dementia,
after adjustment for multiple potential confounders.) 

3. To identify the clinical determinants of susceptibility
to neurotoxic effects of PM. (Elderly women with
indicators of population susceptibility [such as histo-
ries of cardiovascular diseases, including stroke, dia-
betes mellitus, obesity, and high WBC count] are more
likely to be affected by the neurotoxic effects of
ambient air pollution than those respectively without
each indicated clinical characteristics.) 

METHODS AND STUDY DESIGN

HUMAN STUDY APPROVAL

This project was approved by the Institutional Review
Boards of the Keck School of Medicine of the University of
Southern California and the Gillings School of Global Public
Health of the University of North Carolina at Chapel Hill.

STUDY DESIGN AND POPULATION

We proposed a prospective study based in the geograph-
ically diverse and multiethnic WHIMS cohort. WHIMS
was an ancillary study to the WHI trials of hormone
therapy (WHI-HT) study, which consisted of two large,
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randomized, double-blind, placebo-controlled clinical
trials of conjugated equine estrogen treatment alone (E-
alone) for women with a prior hysterectomy or in combi-
nation with medroxyprogesterone acetate (E+P) for women
without a prior hysterectomy (Additional Materials 1,
Figure 1, available on the HEI website). The WHIMS study
design, eligibility criteria, and recruitment procedures
have been described elsewhere (Shumaker et al. 1998).
After the discovery of an unfavorable risk-to-benefit ratio for
its noncognitive endpoints, the E+P trial was discontinued
in July 2002. The E-alone trial also ended earlier than
planned, in February 2004, because of the discovery of a
greater risk of stroke and a lack of benefit for coronary heart
disease. These decisions also ended the WHIMS trial, but
annual follow-ups continued into the WHIMS extension
study (2005–2007). WHIMS included 7,479 participants
who were community-dwelling older women, aged 65 to 80
years at baseline (1996–1999), appropriate candidates for
hormonal therapy, enrolled from 38 (of 40) WHI clinical

centers (Figure 1) in 24 states and Washington, D.C., and free
of dementia as defined by WHIMS protocols (Espeland et al.
2004; Shumaker et al. 2003) at baseline. During the follow-
up (2005–2006), 1,403 WHIMS participants were enrolled
in the WHIMS-MRI study (Coker et al. 2009; Jaramillo et al.
2007), conducted at 14 WHIMS sites approximately 8 years
after WHIMS enrollment and 2 to 4 years after the trials
ended. The WHIMS-MRI study sites were selected to maxi-
mize geographic, racial, and ethnic diversity (Additional
Materials 1, Figure 2, available on the HEI website). 

STUDY OUTCOME DATA

The current study included two types of neurological
health data: MRI-measured brain volumes (for Aim 1 and
Aim 3), using data collected in the WHIMS-MRI study, and
clinically defined neurocognitive outcomes (for Aim 2 and
Aim 3), using data collected in the WHIMS main trials and
extension study. 

Figure 1. Geographic distributions of WHI Memory Study centers.
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Neurocognitive Outcomes

Our study outcome variable was the incidence of MCI or
probable dementia, as determined by the validated four-
phase WHIMS protocols (Shumaker et al. 1998, 2004). In
phase 1, trained, masked, and certified technicians admin-
istered the Modified Mini-Mental State Examination (Teng
and Chui 1987) test at baseline and then annually. Women
who screened positively for cognitive impairment,
according to education-adjusted cut-points, proceeded to
more extensive neuropsychological testing (phase 2),
including a modified Consortium to Establish a Registry
for Alzheimer’s Disease (CERAD) battery (Morris et al.
1989). Participants subsequently received a detailed clin-
ical neurological and neuropsychiatric evaluation by
physicians (i.e., neurologists, geriatricians, or geriatric
psychiatrists) with experience in diagnosing dementia
(phase 3). Each suspected case of dementia then under-
went cranial CAT scan and a series of laboratory tests to
rule out possible reversible causes of cognitive decline and
dementia (phase 4). Following the accepted criteria (Shu-
maker et al. 2003) at WHIMS baseline, MCI was defined as
poor performance (� tenth percentile in CERAD norms) on
at least one CERAD test, evidence of functional impair-
ment (but not severe enough to interfere with activities of
daily living), and absence of psychiatric or other medical
disorders (including probable dementia) that could
explain the cognitive impairment. All clinical and testing
data were then transmitted to the central adjudication
committee for final confirmation of dementia, based on
criteria in the Diagnostic and Statistical Manual of Mental
Disorders, Fourth Edition (American Psychiatric Associa-
tion 1994). 

Brain MRI Outcome Variables

The WHIMS-MRI Quality Control Center (Department of
Radiology, University of Pennsylvania, Philadelphia,
Pennsylvania) developed scan acquisition (using 1.5-T
scanners) and processing protocols for the WHIMS-MRI
study (Coker et al. 2009; Lao et al. 2008; Resnick et al. 2009).
Scanning pulse sequences were performed as follows: 

• Series one: three-plane gradient echo localizer for
positioning; 

• Series two: sagittal T1-weighted spin echo midslice
image to demonstrate anatomic location of the ante-
rior commissure/posterior commissure (AC/PC) for
slice angle and slice position; 

• Series three: oblique axial spin density/T2-weighted
spin echo (3200/0/30120/3) images from the vertex to
skull base parallel to the AC/PC plane; 

• Series four: oblique axial FLAIR T2-weighted spin
echo (8000/2000/100/3) images matching the slice
positions in series three; and

• Series five: oblique axial three-dimensional T1-
weighted gradient echo (flip angle 30; 21/0/8/1.5)
images from the vertex to the skull base parallel to the
AC/PC plane. The field of view was 22 cm, and the
acquisition matrix was 256 � 256 for series three,
four, and five.

Standard T1-, T2-, proton density–weighted, and fluid-
attenuated inversion recovery (FLAIR) scans were acquired.
T1-weighted volumetric MRI scans were preprocessed to a
standardized protocol for alignment, removal of extracra-
nial material, and segmentation of brain into gray and
white parenchyma and cerebrospinal fluid (CSF). Intracra-
nial volume (ICV) was estimated as the total cerebral hemi-
spheric volumes, including ventricular CSF and the CSF
within the sulcal spaces. Regional volumetric measure-
ments were obtained using an automated computer-based
template warping method (Shen and Davatzikos 2002) that
summed the number of respective voxels within each ana-
tomical region of interest. This technique is based on a
digital atlas labeled for brain lobes and individual struc-
tures, including the hippocampus. Atlas definitions were
transferred to MRI scans via an image-warping algorithm
performing pattern matching of anatomically corre-
sponding brain regions. Supratentorial brain tissue was
classified as GM or WM and assigned to one of 92 ana-
tomic regions of interest in the cerebrum. The volumes of
GM, WM, and CSF of each labeled brain region were
obtained by summing the number of respective voxels
within each region. Measures of regional volumes
obtained by this approach showed high test–retest stability
over time (Driscoll et al. 2009). The computer-assisted
methodology was validated against manual segmentation
used by other cohorts (Anbeek et al. 2004; Launer et al.
2011). In the current study, we performed region-of-
interest analyses focused on the hippocampus and multi-
modal association brain area (i.e., the frontal, parietal, and
temporal lobes), because these brain regions largely cover
the most vulnerable neural networks affected by both
aging and neurodegenerative disease (Jagust 2013; Squire
and Zola-Morgan 1991). The determination of WM lesions
was based on multimodal data, using the WM lesion seg-
mentation (WMLS) algorithm (Lao et al. 2008; Zacharaki et
al. 2008) to segment SVID on MRI images. After data pre-
processing via histogram standardization and coregistra-
tion, the lesion segmentation component of the algorithm
was applied to local features extracted from the coregis-
tered multiparametric MRI sequences, specifically T1, T2,
and FLAIR. The lesion segmentation component of WMLS
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was based on a support vector machine classifier, which
trains on expert-defined lesions and uses the training model
to classify unseen voxels from the test image as SVID or
normal tissue. By combining WMLS segmentation and
tissue segmentation, estimates of the SVID-affected tissues
(referred to as SVID volumes) in the total brain, GM, and
WM were obtained. 

ESTIMATION OF RESIDENTIAL PM EXPOSURES

Geocoded information about WHIMS participants’
addresses was used to define the residential locations
where exposures were estimated. Geocoding of the WHI
address database followed a standardized protocol by a
single geocoding vendor selected from four candidates on
the basis of its accuracy. The results of studies of the reli-
ability and validation of geocoding indicated a high level
of accuracy in the geocoding of WHI addresses (Whitsel et
al. 2004, 2006). Because WHI address data were collected
prospectively at each clinical visit and updated at least
biannually since WHI’s inception in 1993, we were able to
take into account residential mobility in the exposure
assessment. High-quality geocodes of WHI participants
have also been used in other environmental epidemiolog-
ical studies (Griffin et al. 2013; Whitsel and Avery 2010). 

Estimation of Annual PM2.5 Exposure

At each geocoded residential location, annual PM2.5
exposure was estimated using spatiotemporal modeling
based on the Bayesian maximum entropy (BME) of nation-
wide yearly PM2.5 monitoring data (1999 onward)
recorded at the U.S. EPA AQS. The yearly PM2.5 moni-
toring data were calculated based on hourly and daily
PM2.5 raw data downloaded from the AQS website and
restricted to parameter code 88101 and 88502 (see part B,
section 2.1, of Additional Materials 1, available on the HEI
website, for more details). We were unable to estimate the
PM2.5 exposure data before 1999, because sufficiently
extensive monitoring data were not available at that time. 

However, given the BME spatiotemporal modeling results
for yearly PM2.5 exposures assigned to the longitudinal data
on residential locations collected before and during WHIMS
follow-up, we were able to construct subject-specific annual
PM2.5 exposure series for 1999–2007. 

BME, a powerful stochastic modeling and mapping
method (Christakos and Serre 2000a,b; Christakos et al.
2001; Serre et al. 2003, 2004), has been applied to estimate
air pollution exposure in several epidemiological studies
(Yu et al. 2007a,b) because it has several desirable features
that better characterize environmental processes. First,
BME jointly models the spatiotemporal interdependence

of environmental data in terms of means structure and
covariance functions varying across the spatiotemporal
domains. Second, BME makes no distribution assump-
tions about the environmental processes, with the result
that non-Gaussian data are automatically integrated into
the estimation framework. Third, within its underlying
Bayesian epistemic framework, the BME method provides
the flexibility to overcome several analytic challenges
inherent in ambient air pollution modeling and estimation
(such as non-Gaussian distributions used to model the
uncertainties associated with missing data). The classical
spatial kriging method of linear geostatistics is obtained as
a limiting case of BME when the analysis is restricted to
the spatial domain and the uncertainty associated with the
data is assumed to follow a Gaussian distribution. Hence,
BME is a nonlinear estimation method that naturally
extends the widely used linear kriging method. The funda-
mental BME and kriging equations are shown in Equations
3 and 4, respectively, in Additional Materials 1 (available on
the website). Numerous previous works have already com-
pared BME with its linear kriging limiting case (Christakos
and Serre 2000a; Savelieva et al. 2004; Serre et al. 2004). 

For our epidemiological study of the effects of air pollu-
tion, the implementation of BME-based spatiotemporal
modeling followed three main stages. At the structural
stage, a prior probability density function (PDF) for the
distribution of PM2.5 was constructed on the basis of its
spatiotemporal covariance function (Equation 6 of Addi-
tional Materials 1, available on the website). At the specifi-
catory stage, site-specific knowledge was organized by
combining the data from the ambient monitoring system
(which contained either hard data [complete observations]
or soft data [incomplete observations; Equation 5 of Addi-
tional Materials 1, available on the website]). For each
AQS monitoring site, we calculated the annual average
concentration as the arithmetic mean of the recorded daily
concentrations obtained from the AQS, which were classi-
fied as hard data if more than 75% of the intended daily
samples were present for each quarter of the year or as soft
data if otherwise. The selection of 75% data completeness
as the cutoff was consistent with similar BME work pub-
lished earlier (Akita et al. 2012; Reyes and Serre 2014); the
resulting complete data were also used to determine the
cross-validation data comparing the predicted exposures
against the observed values. At the integration stage, an
operational Bayesian conditionalization rule was used to
assimilate the total knowledge base by updating the prior
PDF with the combined data information from the second
stage, leading to a posterior PDF that provided a statistical
summary of air pollution concentrations at any space/time
point of interest. In order to evaluate the implementation
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of the BME approach, we compared its performance with
that of two conventional approaches, the spatial nearest-
neighbor approach (NNA) and the spatial inverse distance
weighting (IDW) method, as well as with a third method
consisting of BME’s spatial linear limiting case, the spatial
kriging method. We expected that a correct implementation
of BME would result in model performance statistics
exceeding those of the performance of either NNA or IDW
but that would be similar to those of spatial kriging. A
detailed description of this comparison is provided in Addi-
tional Materials 1 (available on the HEI website), where we
showed that BME had better model performance statistics
than NNA, IDW, and spatial kriging, indicating that our BME
produces better predictions than the compared models. The
better performance of BME over more naïve approaches is
an expected result that is in line with all previous BME
works. Therefore the fact that we obtained an expected
result with BME provides evidence supporting that BME
was correctly implemented. This comparison result was
part of the QA/QC checks of our quality assurance plan.

Our empirical data showed that BME estimates of
annual exposures were highly correlated (cross-validation
Spearman’s R = 0.90) with the yearly PM2.5 concentrations
recorded at the AQS monitoring sites (see Additional
Materials 1, available on the HEI website). After we
obtained the yearly exposure estimates, cumulative PM2.5
exposures were calculated as time-weighted averages from
1999 to the WHIMS-MRI inception in 2005–2006. 

Estimation of Annual DPM Exposure

The DPM exposure estimates came from the U.S. EPA
National-Scale Air Toxics Assessment (NATA) Program
(U.S. EPA 2011a,b), which was the only publicly acces-
sible national database with information on traffic-related
PM exposure at the time the current study was proposed. 

Listed by U.S. EPA as a mobile-source air toxic, DPM is
considered to best represent diesel exhaust in terms of its
potential health risks. Previous applications of NATA-
based exposure models to epidemiological research have
included studies on autism in California (Windham et al.
2006), reproductive outcomes (Vassilev et al. 2001), mor-
tality (Fox 2002), and pediatric cancer (Reynolds et al.
2003), all showing positive associations with modest effect
sizes for selected hazardous air pollutants. Validation of
NATA-based estimates for population exposures in health
risk comparisons has also been published (Rosenbaum et
al. 1999). The U.S. EPA’s NATA program had estimated
annual average DPM ambient concentrations (in µg/m3) at
the census-tract level for 1996, 1999, 2002, and 2005.
These estimates are based on mobile-source spatial
dispersion modeling of diesel emissions estimated from

the National Mobile Inventory Model (U.S. EPA 2011c).
This spatial dispersion model also takes into account both
census-based demographics and meteorological measures.
The specific DPM exposure estimates decomposed into
on-road sources (e.g., cars and trucks) were extracted to
represent the aggregated DPM estimates, which we consid-
ered to be proxy indicators of exposure to PM from
roadway traffic. We did not consider the off-road DPM esti-
mates also available in NATA. In order to estimate the
ambient DPM concentrations in 1996–2005, which covered
the intervening years with no validated models, we used the
four-year wealth of NATA DPM data to conduct a nation-
wide census tract–specific (i = 1, …, 65,141) multiyear
interpolation using the GAMs. This analytic approach was
justified by our earlier analyses (see Additional Materials
1, available on the website), based on a nationwide four-
level hierarchical model to examine both temporal (64%)
and spatial (36%) exposure variability, the latter of which
was further decomposed into between-census-tract differ-
ence (43%) versus between-county/within-state (28%) or
between-state difference (29%). Given the longitudinal
data on residential geocodes, the resulting spatiotempo-
rally interpolated GAM estimates without extrapolation
allowed us to derive the annual DPM exposure from the
inception of WHIMS (1996–1998) to 2005. 

COVARIATES DATA

The comprehensive WHI covariates data offered a
unique opportunity to assess the potential confounding of,
and individual susceptibility to, PM neurotoxic effects. 

Measurement of Covariates

Participants completed questionnaires to provide base-
line information on demographics (age and race or eth-
nicity), socioeconomic status (SES; including education in
years, family income, and employment status), lifestyle
factors (smoking, alcohol consumption, and physical
activity), and relevant clinical characteristics (use of
menopausal HT, prior depression, and CVD and related
risk factors). The women were grouped according to three
body mass index (BMI, in kg/m2) categories (<25.0 vs.
25.0–29.9 vs. �30.0). Hypertension was defined as taking
an antihypertensive medication or having elevated blood
pressure (systolic �140 or diastolic � 90 mm Hg). Treated
diabetes mellitus was defined as a physician diagnosis
plus oral medications or insulin therapy. History of CVD
included previous coronary heart disease (myocardial
infarction, coronary angioplasty, or coronary artery bypass
graft), stroke, or transient ischemic attack. Good reliability
and validity of both the self-reported medical histories and
the physical measures have been documented (Heckbert et
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al. 2004; Langer et al. 2003). The Burnam screening algo-
rithm (Burnam et al. 1988) was used to characterize the
presence of prior depressive disorders, which increased
the risk of MCI/dementia (Goveas et al. 2011) in WHIMS. 

In our data analyses plan for the final analyses of brain
MRI data and clinical endpoints (i.e., MCI or dementia),
definition of these covariates followed the categorical
specifications as described in the respective descriptive
tables. The WHI’s standard categorical age variables were
used in our earlier analyses on both MRI data and incident
MCI or dementia. In our subsequent work on the brain
MRI data analyses, we computed a continuous age vari-
able aligned to the individual age at the brain MRI scan.
Because there were no major differences in the statistical
results on brain MRI data analyses using the categorical
age variable versus continuous age variable, we carried the
final analyses on brain MRI data using the continuous age
variable, which allowed us to construct more parsimo-
nious models, in the relatively smaller WHIMS MRI sub-
cohort.

Clinical Indicators of Increased Susceptibility

The proposed hypotheses about population suscepti-
bility are consistent with the notion of disproportionately
adverse health effects of PM exposure observed among
vulnerable subpopulations with CVD (Bateson and
Schwartz 2004; Chen 2007; Liao et al. 2004, 2005; Park et
al. 2005; Pekkanen et al. 2002; Zeka et al. 2006), diabetes
mellitus (Bateson and Schwartz 2004; Goldberg et al. 2000;
Liao et al. 2005; O’Neill et al. 2005; Zanobetti and
Schwartz 2002), obesity (Chen et al. 2007; Dubowsky et al.
2006; Miller et al. 2007), and the baseline level of WBC–
neutrophil count (Dubowsky et al. 2006; Schwartz et al.
2005). 

We used baseline data from medical histories and phys-
ical and laboratory measures to characterize each woman’s
susceptibility. These potential effect modifiers include his-
tories of CVD (including stroke), diabetes mellitus, degree
of obesity as defined by BMI (normal [<25.0], overweight
[25.0–29.9], obese [�30]), and WBC count. Previous
studies have shown that information on these selected
CVD entities reported by WHI participants agreed substan-
tially (kappa = 0.64–0.84) with reviews by study physi-
cians at clinical centers (Heckbert et al. 2004). At baseline,
those women with physician-diagnosed non-pregnancy-
related diabetes and receiving either oral medications or
insulin were defined as having treated diabetes mellitus.
Good test–retest reliability (as measured by intraclass cor-
relation coefficient = 0.82) of this classification was previ-
ously documented (Langer et al.  2003). A similar
definition for diabetes mellitus has been used in other

WHI main analyses (Hsia et al. 2005; Margolis et al. 2004).
The WBC count was derived from the hemogram testing
sample collected in a tube containing the anticoagulant
edetic acid. These samples were analyzed at local laborato-
ries at each of the WHI clinical centers following standard-
ized methods. 

STATISTICAL METHODS AND DATA ANALYSIS

DESCRIPTIVE ANALYSES OF EXPOSURE 
DISTRIBUTION BY COVARIATES 

We compared the distributions of estimated PM expo-
sures across various population characteristics. For time-
varying exposures, the distributions were based on the
individual-specific summary measure aggregated from all
relevant exposure estimates during the study follow-up.
The exposure distributions were then given as the quar-
tiles of the summarized PM exposure, stratified by various
categories of population characteristics. Chi-square tests or
Fisher’s exact tests were used to compare the exposure dis-
tributions by population characteristics. 

DISTRIBUTIONS OF BRAIN VOLUMES BY EXPOSURE 
CATEGORIES

The MRI-measured brain volumes were compared
among subgroups defined by the quartiles of cumulative
PM exposures before the WHIMS-MRI baseline in 2005–
2006. Statistical significance was predetermined at the
level of 0.01. Because volumetric measures may be partly
attributable to individual differences in brain sizes, it is
important to correct for ICV when analyzing the differ-
ences in regional brain volumes (O’Brien et al. 2006, 2011).
Using analysis of covariance (ANCOVA) adjusting for ICV,
the empirical associations were first explored by com-
paring brain volumes (normal brain and SVID volumes
with log-transformation) across the exposure categories.
Any observed differences in brain volumes were further
tested for the presence of linear trend if indicated by the
empirical comparison. 

MULTIPLE LINEAR REGRESSION MODELS

Outcome variables with statistically significant associa-
tions in the ICV-adjusted ANCOVA were then further
examined using multiple linear regression models to
adjust for potential confounding by sociodemographic fac-
tors, SES, lifestyles, and clinical characteristics related to
brain volume. In addition, we conducted two sets of sensi-
tivity analyses. To evaluate possible residual confounding
by race or ethnicity, the adjusted analyses were restricted
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to non-Hispanic whites. To evaluate whether the results
were sensitive to a missing-at-random (MAR) assumption
in calculating the cumulative PM exposures before brain
MRI scans, we also restricted the analyses to participants
who had more complete yearly exposure estimates (with
more than 60% complete data over the averaging period).
To evaluate effect measure modification, we stratified the
effect estimates by examining whether the putative neuro-
toxic effects differed by the presence of a prior history of
CVD or diabetes mellitus, by BMI category, or by WBC
count (dichotomized at median = 5,700/µL), using the like-
lihood-ratio test to evaluate the interaction. Statistical
analyses (e.g., proc glm for ANCOVA and multiple linear
regression) were performed using SAS System for Win-
dows, Version 9.3 (SAS Institute, Cary, NC). 

DISTRIBUTIONS OF MCI/DEMENTIA INCIDENCE BY 
EXPOSURE CATEGORIES

The associations of incident MCI/dementia with esti-
mated long-term residential exposures to PM (Aim 2) were
examined using the time-to-event analyses. Follow-up
time for each woman was calculated from WHI randomiza-
tion to the annual examination date that triggered the ulti-
mate classification of defined cognitive impairment (MCI
or dementia), or to the last date of the completion of an
annual cognitive assessment, whichever came first. Statis-
tical comparisons of the incidence rates across the defined
PM exposure categories were conducted in robust Poisson
regression, based on likelihood ratio tests. 

COX PROPORTIONAL HAZARD MODELS

Cox models were used to estimate hazard ratios (HRs)
for the neurocognitive outcomes associated with estimated
PM exposures, adjusting for potential confounders. In our
primary analyses, we pooled the data on the incidence of
MCI and dementia in order to achieve sufficient statistical
power (see Additional Materials 1, available on the HEI
website). We used time on study as the time scale in the
constructed Cox models because simulation studies have
suggested that such an approach was less subject to poten-
tial biases in estimating the effects of environmental fac-
tors (e.g., PM exposures) with prominent secular trends
(Griffin et al. 2012) compared with the alternatives (e.g.,
attained age and calendar time). Our secondary analyses
also explored the putative adverse PM effects on MCI and
on dementia, separately. For the MCI analyses, partici-
pants classified as having dementia without being classi-
fied as having MCI during the earlier follow-up were
excluded, because MCI is considered a pre-dementia state
and conceptually these dementia cases could not be at risk
for developing MCI. The assumed proportional hazard was
supported by the proportionality test. 

To evaluate effect measure modification, we further strat-
ified the effect estimates by examining whether neurocogni-
tive outcomes differed by the presence of prior histories of
CVD or diabetes mellitus, by BMI categories, or by WBC
count (dichotomized at median = 5,500/µL), using the Wald
test for evaluating interaction. Statistical analyses (e.g., proc
phreg for the Cox proportional hazard model) were per-
formed using the SAS System for Windows, Version 9.3
(SAS Institute).

RESULTS

PM2.5 EXPOSURES

Population Characteristics and PM2.5 Exposures in 
WHIMS-MRI Cohort

Table 1 shows the WHIMS-MRI population distribution
of cumulative PM2.5 exposures (1999–2006) in relation to
selected baseline personal and clinical characteristics. Con-
sider older women with cumulative exposures estimated in
the upper two quartiles (>12.24 µg/m3) as those residing in
areas with relatively high PM2.5 levels. A larger prevalence
of living in high exposure categories was found in older
women who were more likely to be a member of an ethnic
minority (black or Hispanic white), to be less physically
active (with no moderate or strenuous activity period
� 20 minutes/week), to currently smoke, or to have diabetes
mellitus. WHIMS-MRI participants recruited from the South
were the least likely to experience high exposure levels.

MRI-Measured Brain Volumes in Relation to PM2.5 
Exposures in WHIMS-MRI Cohort

ICV-adjusted ANCOVA comparing normal and ischemic
brain volumes across the cumulative PM2.5 exposures
quartiles are summarized in Table 2. Participants in the
lowest PM2.5 exposure quartile (<10.67 µg/m3) had the
largest normal brain volume compared with those in the
second to fourth exposure quartiles; this pattern persisted
in the association brain areas. Differences in normal brain
volumes associated with PM2.5 exposures were largely
limited to the normal-appearing WM; no statistically sig-
nificant differences were observed in GM volumes. Across
the quartile distribution of cumulative PM2.5 exposures,
the measured total WM volumes (mean ± SD in cm3)
decreased by 3.5% (from 410.71 ± 50.44 to 396.55 ± 49.30).
Ventricular sizes and volumes of hippocampus or basal
ganglia did not differ by PM2.5 exposures. A consistent
monotonic pattern of associations with decrements in WM
volume across the PM2.5 exposure quartiles was found in
the association brain area and its three lobar divisions.
SVID volumes did not differ by PM2.5 exposures. 
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Table 1. Sociodemographic Factors, Lifestyle Factors, and Clinical Characteristics by PM2.5 Exposure Quartiles in the 
WHIMS-MRI Cohort (1999–2006)

Population
Characteristicsa N b

Cumulative Average Annual PM2.5 (µg/m3) (quartile) 

P valuec

5.75–
10.67

10.67–
12.24

12.24–
14.16

14.16–
22.18

(N = 351) (N = 351) (N = 351) (N = 350)

U.S. Region  <0.0001
Northeast 329 57 (17.3%) 74 (22.5%) 98 (29.8%) 100 (30.4%)
South 207 64 (30.9%) 59 (28.5%) 69 (33.3%) 15 (7.2%)
Midwest 486 137 (28.2%) 126 (25.9%) 84 (17.3%) 139 (28.6%)
West 381 93 (24.4%) 92 (24.1%) 100 (26.2%) 96 (25.2%)

Age at baseline (yr) 0.24
65–69 712 197 (27.7%) 169 (23.7%) 164 (23%) 182 (25.6%)
70–74 495 111 (22.4%) 132 (26.7%) 135 (27.3%) 117 (23.6%)
�75 196 43 (21.9%) 50 (25.5%) 52 (26.5%) 51 (26%)

Ethnicity <0.0001
Black or African-American 64 7 (10.9%) 4 (6.3%) 27 (42.2%) 26 (40.6%)
Hispanic White 21 1 (4.8%) 2 (9.5%) 10 (47.6%) 8 (38.1%)
Non-Hispanic White 1,276 336 (26.3%) 336 (26.3%) 301 (23.6%) 303 (23.7%)
Other or missing 42 7 (16.7%) 9 (21.4%) 13 (31%) 13 (31%)

Participant’s education level 0.79
<High school 63 20 (31.7%) 12 (19%) 15 (23.8%) 16 (25.4%)
High school/GED 325 79 (24.3%) 86 (26.5%) 76 (23.4%) 84 (25.8%)
>High school 1,012 252 (24.9%) 252 (24.9%) 260 (25.7%) 248 (24.5%)

Family income 0.23
<$10,000 50 14 (28%) 13 (26%) 12 (24%) 11 (22%)
$10,000 to $34,999 671 184 (27.4%) 158 (23.5%) 168 (25%) 161 (24%)
$35,000 to $74,999 501 111 (22.2%) 133 (26.5%) 131 (26.1%) 126 (25.1%)
�$75,000 136 25 (18.4%) 40 (29.4%) 32 (23.5%) 39 (28.7%)
Missing 45 17 (37.8%) 7 (15.6%) 8 (17.8%) 13 (28.9%)

Employment 0.18
Currently employed 255 75 (29.4%) 60 (23.5%) 64 (25.1%) 56 (22%)
Not working 146 29 (19.9%) 31 (21.2%) 40 (27.4%) 46 (31.5%)
Retired 1,000 247 (24.7%) 260 (26%) 246 (24.6%) 247 (24.7%)

Smoking status 0.0065
Never smoked 806 200 (24.8%) 199 (24.7%) 195 (24.2%) 212 (26.3%)
Past smoker 526 136 (25.9%) 134 (25.5%) 145 (27.6%) 111 (21.1%)
Current smoker 59 13 (22%) 12 (20.3%) 8 (13.6%) 26 (44.1%)

Alcohol intake 0.10
Non-drinker 180 47 (26.1%) 30 (16.7%) 46 (25.6%) 57 (31.7%)
Past drinker 232 62 (26.7%) 55 (23.7%) 53 (22.8%) 62 (26.7%)
<1 drink per day 822 208 (25.3%) 218 (26.5%) 206 (25.1%) 190 (23.1%)
>1 drink per day 158 31 (19.6%) 46 (29.1%) 43 (27.2%) 38 (24.1%)

Table continues next page

a Shown as N (%) for each exposure quartile for the indicated subcategory of population characteristics. See Figure 1 for map showing regions of the United 
States.

b The total number of subjects summed up across each subcategory varies slightly because of missing values.

c Calculated by comparing the distribution of exposure quartiles across subcategories for each personal characteristic by chi-square or Fishers exact test.

d E-alone: conjugated equine estrogen alone; E+P: estrogen plus progestin (medroxyprogesterone acetate).
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Table 1 (continued). Sociodemographic Factors, Lifestyle Factors, and Clinical Characteristics by PM2.5 Exposure 
Quartiles in the WHIMS-MRI Cohort (1999–2006)

Population
Characteristicsa N b

Cumulative Average Annual PM2.5 (µg/m3) (quartile) 

P valuec

5.75–
10.67

10.67–
12.24

12.24–
14.16

14.16–
22.18

(N = 351) (N = 351) (N = 351) (N = 350)

Moderate or strenuous activity (�20 min) 0.07
No activity 799 196 (24.5%) 188 (23.5%) 199 (24.9%) 216 (27%)
Some activity 78 21 (26.9%) 17 (21.8%) 16 (20.5%) 24 (30.8%)
2–4 episodes/wk 280 61 (21.8%) 78 (27.9%) 72 (25.7%) 69 (24.6%)
�4 episodes/wk 244 73 (29.9%) 67 (27.5%) 63 (25.8%) 41 (16.8%)

BMI (kg/m2) 0.90
<25 417 109 (26.1%) 106 (25.4%) 101 (24.2%) 101 (24.2%)
25–29 527 130 (24.7%) 134 (25.4%) 138 (26.2%) 125 (23.7%)
�30 454 112 (24.7%) 109 (24%) 110 (24.2%) 123 (27.1%)

HT ever 0.06
No 752 181 (24.1%) 201 (26.7%) 171 (22.7%) 199 (26.5%)
Yes 651 170 (26.1%) 150 (23%) 180 (27.6%) 151 (23.2%)

History of depression 0.79
No 1,291 321 (24.9%) 326 (25.3%) 320 (24.8%) 324 (25.1%)
Yes 91 24 (26.4%) 20 (22%) 26 (28.6%) 21 (23.1%)

Hypertension ever 0.23
No 889 229 (25.8%) 233 (26.2%) 209 (23.5%) 218 (24.5%)
Yes 505 121 (24%) 115 (22.8%) 140 (27.7%) 129 (25.5%)

Diabetes treated ever (pills or injections) 0.06
No 1,356 347 (25.6%) 338 (24.9%) 335 (24.7%) 336 (24.8%)
Yes 46 4 (8.7%) 12 (26.1%) 16 (34.8%) 14 (30.4%)

High cholesterol requiring pills ever 0.18
No 1,153 302 (26.2%) 284 (24.6%) 280 (24.3%) 287 (24.9%)
Yes 223 43 (19.3%) 62 (27.8%) 60 (26.9%) 58 (26%)

Cardiovascular disease ever 0.44
No 1,193 302 (25.3%) 307 (25.7%) 294 (24.6%) 290 (24.3%)
Yes 193 45 (23.3%) 42 (21.8%) 51 (26.4%) 55 (28.5%)

Subcohort membershipd 0.97
E-alone control 263 69 (26.2%) 63 (24%) 64 (24.3%) 67 (25.5%)
E-alone intervention 260 65 (25%) 62 (23.8%) 62 (23.8%) 71 (27.3%)

0.85
E+P control 447 113 (25.3%) 111 (24.8%) 118 (26.4%) 105 (23.5%)
E+P intervention 433 104 (24%) 115 (26.6%) 107 (24.7%) 107 (24.7%)

a Shown as N (%) for each exposure quartile for the indicated subcategory of population characteristics. See Figure 1 for map showing regions of the United 
States.

b The total number of subjects summed up across each subcategory varies slightly because of missing values.

c Calculated by comparing the distribution of exposure quartiles across subcategories for each personal characteristic by chi-square or Fishers exact test.

d E-alone: conjugated equine estrogen alone; E+P: estrogen plus progestin (medroxyprogesterone acetate).
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Multiple Linear Regression Models

Main Effects of PM2.5 Exposures Results of the linear re-
gression models are summarized in Table 3, with adjustment
for multiple potential confounders to estimate the putative
adverse PM2.5 effects on total WM and association brain area
WM volumes. The volume of the corpus callosum, the largest
WM tract that facilitates interhemispheric communication,

was included as post hoc analyses. In order to estimate the
PM2.5 effect on each hierarchically organized WM volume
while rigorously accounting for possible confounding by
the other factors, we followed the step-by-step addition of
multiple covariates (models I to VI in Table 3). PM2.5 was
analyzed as a continuous variable. Consistent with the pat-
terns revealed by the ICV-adjusted ANCOVA, adverse
PM2.5 effects on WM volumes were present in the total

Table 2. Brain Volume Outcomes by PM2.5 Exposure Quartiles in the WHIMS-MRI Cohort (1999–2006)

MRI-Measured Brain 
Volume (mean ± SD [cm3])

Cumulative Average Annual PM2.5 (µg/m3) (quartile)

P valuea

5.75–10.67 10.67–12.24 12.24–14.16 14.16–22.18

(N = 351) (N = 351) (N = 351) (N = 350)

Total brain volume 808.00 ± 74.17 799.41 ± 73.6 792.39 ± 78.68 799.22 ± 71.78 <0.0001b

Normal-Appearing Brain Structure

Normal brain volume 798.99 ± 73.69 790.93 ± 73.06 783.51 ± 77.85 791.21 ± 71.1 <0.0001b

Association area 620.06 ± 58.65 613.20 ± 57.51 607.71 ± 60.9 614.54 ± 56.92 <0.0001b

Frontal lobe 284.25 ± 28.68 279.13 ± 27.75 277.94 ± 30.17 280.44 ± 27.72 <0.0001b

Parietal lobe 151.97 ± 15.79 151.11 ± 16.08 149.08 ± 16 151.33 ± 15.54 0.02b

Temporal lobe 183.84 ± 18.62 182.96 ± 18.45 180.68 ± 19.34 182.77 ± 17.77 0.009b

Ventricle 35.62 ± 15.02 37.73 ± 17.52 37.30 ± 15.73 37.80 ± 16.8 0.16b

GM
Total GM 353.37 ± 40.06 350.72 ± 40.59 346.68 ± 45.49 359.64 ± 42.48 0.19b

Association cortex 268.40 ± 31.03 265.68 ± 32.31 261.96 ± 37.03 273.30 ± 34.57 0.24b

Frontal GM 118.61 ± 14.69 117.67 ± 15.17 116.53 ± 16.98 120.55 ± 16.56 0.30b

Parietal GM 62.43 ± 8.32 62.03 ± 9.15 60.56 ± 10.32 63.90 ± 9.25 0.25b

Temporal GM 87.36 ± 10.68 85.98 ± 10.61 84.87 ± 11.95 88.85 ± 10.96 0.28b

WM
Total WM 410.71 ± 50.44 405.28 ± 54.38 402.03 ± 56.37 396.55 ± 49.3 <0.0001b

Association brain areas 351.65 ± 44.07 347.52 ± 46.81 345.75 ± 48.9 341.25 ± 42.73 <0.0001b

Frontal WM 165.64 ± 22.74 161.45 ± 22.7 161.41 ± 24.63 159.90 ± 21.68 <0.0001b

Parietal WM 89.54 ± 12.32 89.08 ± 13.24 88.52 ± 13.16 87.44 ± 12.24 0.0005b

Temporal WM 96.48 ± 12.13 96.98 ± 13.7 95.81 ± 13.47 93.92 ± 11.43 <0.0001b

Corpus callosum 9.21 ± 1.28 9.20 ± 1.3 9.14 ± 1.28 9.08 ± 1.37 0.03b

Hippocampus 5.68 ± 1.01 5.77 ± 1.04 5.77 ± 1.14 5.72 ± 1.03 0.76b

Basal ganglia 34.90 ± 3.41 34.93 ± 3.51 34.80 ± 3.58 35.02 ± 3.26 0.91b

Small-Vessel Ischemic Disease (SVID)  

Total brain SVID volume 9.01 ± 11.68 8.49 ± 10.16 8.88 ± 12.47 8.01 ± 10.35 0.06c

Association brain 7.25 ± 10.25 6.72 ± 8.84 7.32 ± 11.15 6.54 ± 9.08 0.22c

GM SVID 0.50 ± 1.43 0.36 ± 1.00 0.43 ± 1.23 0.34 ± 1.00 0.18c

WM SVID 7.63 ± 9.83 7.09 ± 8.56 7.55 ± 10.71 6.89 ± 8.87 0.14c

a P values calculated from ICV-adjusted ANCOVA, testing the difference or presence of linear trend in the indicated brain volumes or log-transformed SVID 
volumes across the exposure quartiles.

b P values from a linear trend test. 

c P values from between-group comparisons by exposure categories.
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brain and also in the association brain area and across its
divisions, although the precision in some effect estimates
was lost for parietal WM. Multiple-covariate adjustment
did not substantially change the effect estimates, suggest-
ing that there was no strong evidence for significant con-
founding. Note that the number of observations differ in
various adjusted models due to missing covariate data. For
each interquartile (3.49 µg/m3) increment of cumulative
PM2.5 exposure in the full models (model VI: including
ICV, geographic region, sociodemographics, SES, lifestyles,
HT use, depressive symptoms, BMI, and CVD and associated
risk factors), WM volume (in cm3) was lower by 4.47 ± 1.12
in the association brain area and by 6.23 ± 1.28 in the total
brain. Except for the parietal lobe, the multiple-covariate-
adjusted differences in WM volume all reached the predeter-
mined level of significance (P < 0.01) for the comparisons in
the frontal lobe (lower by 2.04 ± 0.59), temporal lobe (lower
by 1.70 ± 0.33), and corpus callosum (lower by 0.12 ± 0.04)
per interquartile increase of PM2.5 exposure.

The adverse effects of long-term PM2.5 exposures on WM
volume remained in the sensitivity analyses (Table B.1 and
Table B.2 in Appendix B, available on the HEI website). In
these analyses, which were restricted to non-Hispanic white
women, a consistent pattern of associations was found be-
tween PM2.5 and smaller volumes of WM across the exam-
ined brain regions, with effect estimates comparable with
those found in the full cohort. Despite a modest reduction
in effect sizes among participants with more than 60%
complete data on the yearly exposure estimates, the pre-
sumed association between PM2.5 and associated neuro-
toxic effects with WM atrophy remained statistically
significant (P < 0.01) for total WM, association brain area
WM, temporal WM, and the corpus callosum. 

Modification of PM2.5 Effects on WM Volumes The rela-
tionship between PM2.5 and WM volumes was fairly con-
sistent across the subgroups defined by BMI, CVD history,
diabetes mellitus, and WBC count (Table 4). Almost all tests
of interactions did not reach statistical significance in the

Table 3. Linear Regression Modeling Results of PM2.5 Exposure and Normal-Appearing WM Volumesa in the WHIMS-MRI 
Cohort (1999–2006)

Statistical 
Modelsb

WM Volume
Corpus

CallosumTotal Association Brain Frontal Parietal Temporal

Crude
(N = 1,403)

�4.95 ± 1.22
(P < 0.01)

�3.34 ± 1.08
(P < 0.01)

�1.37 ± 0.56 
(P = 0.01)

�0.46 ± 0.33 
(P = 0.17)

�1.51 ± 0.32 
(P < 0.01)

�0.103 ± 0.037 
(P < 0.01)

Model I
(N = 1,403)

�5.52 ± 1.22 
(P < 0.01)

�3.90 ± 1.08 
(P < 0.01)

�1.74 ± 0.56 
(P < 0.01)

�0.56 ± 0.33 
(P = 0.09)

�1.60 ± 0.32 
(P < 0.01)

�0.110 ± 0.037 
(P < 0.01)

Model II
(N = 1,399)

�5.52 ± 1.22 
(P < 0.01)

�3.93 ± 1.08 
(P < 0.01)

�1.75 ± 0.56 
(P < 0.01)

�0.60 ± 0.33 
(P = 0.07)

�1.57 ± 0.32 
(P < 0.01)

�0.113 ± 0.038 
(P < 0.01)

Model III
(N = 1,377)

�5.90 ± 1.23 
(P < 0.01)

�4.24 ± 1.08 
(P < 0.01)

�1.90 ± 0.56 
(P < 0.01)

�0.68 ± 0.33 
(P = 0.04)

�1.66 ± 0.32 
(P < 0.01)

�0.121 ± 0.038 
(P < 0.01)

Model IV
(N = 1,310)

�5.79 ± 1.25 
(P < 0.01)

�4.13 ± 1.1 
(P < 0.01)

�1.83 ± 0.57 
(P < 0.01)

�0.68 ± 0.34 
(P = 0.04)

�1.62 ± 0.33 
(P < 0.01)

�0.113 ± 0.039 
(P < 0.01)

Model V
(N = 1,279)

�5.94 ± 1.27 
(P < 0.01)

�4.26 ± 1.12 
(P < 0.01)

�1.93 ± 0.58 
(P < 0.01)

�0.70 ± 0.34 
(P = 0.04)

�1.64 ± 0.33 
(P < 0.01)

�0.110 ± 0.04 
(P < 0.01)

Model VI
(N = 1,272)

�6.23 ± 1.28 
(P < 0.01)

�4.47 ± 1.12 
(P < 0.01)

�2.04 ± 0.59 
(P < 0.01)

�0.73 ± 0.34 
(P = 0.03)

�1.70 ± 0.33 
(P < 0.01)

�0.117 ± 0.04 
(P < 0.01)

a Expressed as the regression coefficients (± standard error) per interquartile (3.49 µg/m3) increase in cumulative yearly PM2.5 (1999–2006). All analyses were 
adjusted for ICV.

b Model I: adjusted for geographic region, age, and race. Model II: adjusted for Model I covariates and SES (education, income, and employment status). 
Model III: adjusted for Model II covariates and lifestyle factors (smoking, alcohol use, and physical activity). Model IV: adjusted for Model III covariates, HT, 
depressive symptoms, and BMI. Model V: adjusted for Model IV covariates and conventional CVD risk factors (hypertension, diabetes mellitus, and hyper-
cholesterolemia). Model VI: adjusted for Model V covariates and CVD histories.
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Table 4. Linear Regression Modeling Results of PM2.5 Exposure and Normal-Appearing WM Volumesa in the WHIMS-
MRI Cohort (1999–2006) by BMI, CVD, Diabetes Mellitus, and WBC Count

Statistical
Models

WM Volume

Corpus 
CallosumTotal 

 Association 
Brain Frontal Parietal Temporal

Models by BMI

Crude
All

(N = 1,398)
�4.89 ± 1.22

(P < 0.01)
�3.28 ± 1.08

(P < 0.01)
�1.32 ± 0.56

(P = 0.02)
�0.42 ± 0.33

(P = 0.20)
�1.54 ± 0.32

(P < 0.01)
�0.101 ± 0.037

(P < 0.01)

BMI < 25
(n = 417)

�1.79 ± 2.22 
(P = 0.42)

�0.59 ± 1.96 
(P = 0.76)

�0.08 ± 1.02 
(P = 0.94)

0.89 ± 0.6 
(P = 0.14)

�1.41 ± 0.57
(P = 0.01)

�0.054 ± 0.067
(P = 0.42)

BMI 25–29
(n = 527)

�5.39 ± 1.99
(P < 0.01)

�3.7 ± 1.75
(P = 0.03)

�1.73 ± 0.91
(P = 0.06)

�0.52 ± 0.53
(P = 0.33)

�1.45 ± 0.51
(P < 0.01)

�0.106 ± 0.06
(P = 0.08)

BMI � 30
(n = 454)

�7.48 ± 2.14
(P < 0.01)

�5.56 ± 1.89
(P < 0.01)

�2.15 ± 0.98
(P = 0.03)

�1.64 ± 0.58
(P < 0.01)

�1.77 ± 0.55
(P < 0.01)

�0.143 ± 0.064
(P = 0.03)

Interaction test P = 0.18 P = 0.18 P = 0.3 P < 0.01 P = 0.88 P = 0.63

Adjustedb

All
(N = 1,272)

�6.11 ± 1.28
(P < 0.01)

�4.35 ± 1.13
(P < 0.01)

�1.96 ± 0.59
(P < 0.01)

�0.69 ± 0.35 
(P = 0.05)

�1.7 ± 0.34
(P < 0.01)

�0.114 ± 0.04
(P < 0.01)

BMI < 25
(n = 378)

�2.86 ± 2.32 
(P = 0.22)

�1.39 ± 2.04 
(P = 0.50)

�0.34 ± 1.06 
(P = 0.75)

0.61 ± 0.63 
(P = 0.33)

�1.66 ± 0.61
(P < 0.01)

�0.076 ± 0.073 
(P = 0.3)

BMI 25–29 
(n = 478)

�6.11 ± 2.04
(P < 0.01)

�4.49 ± 1.8
(P = 0.01)

�2.49 ± 0.94
(P < 0.01)

�0.47 ± 0.55
(P = 0.39)

�1.53 ± 0.53
(P < 0.01)

�0.153 ± 0.064
(P = 0.02)

BMI � 30 
(n = 416)

�9.35 ± 2.18
(P < 0.01)

�7.18 ± 1.92
(P < 0.01)

�3.04 ± 1
(P < 0.01)

�2.21 ± 0.59
(P < 0.01)

�1.92 ± 0.57
(P < 0.01)

�0.114 ± 0.068
(P = 0.09)

Interaction test P = 0.12 P = 0.12 P = 0.15 P < 0.01 P = 0.87 P = 0.72

Models by CVD

Crude
All 

(N = 1,386)
�4.83 ± 1.8
(P < 0.01)

�3.44 ± 1.59
(P = 0.03)

�1.67 ± 0.82
(P = 0.04)

�0.44 ± 0.49 
(P = 0.37)

�1.33 ± 0.47
(P < 0.01)

�0.134 ± 0.054
(P = 0.01)

No 
(n = 1,193)

�5.21 ± 1.33
(P < 0.01)

�3.44 ± 1.17
(P < 0.01)

�1.34 ± 0.61
(P = 0.03)

�0.48 ± 0.36 
(P = 0.18)

�1.62 ± 0.34
(P < 0.01)

�0.097 ± 0.04
(P = 0.01)

Yes
(n = 193)

�4.45 ± 3.35 
(P = 0.18)

�3.44 ± 2.95 
(P = 0.25)

�1.99 ± 1.53 
(P = 0.19)

�0.39 ± 0.9
(P = 0.66)

�1.05 ± 0.87 
(P = 0.23)

�0.171 ± 0.1 
(P = 0.09)

Interaction test P = 0.83 P = 1 P = 0.69 P = 0.93 P = 0.54 P = 0.49

Adjustedb

All
(N = 1,272)

�7.12 ± 1.85
(P < 0.01)

�5.45 ± 1.63
(P < 0.01)

�2.61 ± 0.85
(P < 0.01)

�1.06 ± 0.5
(P = 0.03)

�1.78 ± 0.48
(P < 0.01)

�0.165 ± 0.058
(P < 0.01)

No 
(n = 1,098)

�5.9 ± 1.37
(P < 0.01)

�4.11 ± 1.2
(P < 0.01)

�1.83 ± 0.63
(P < 0.01)

�0.61 ± 0.37 
(P = 0.1)

�1.67 ± 0.36
(P < 0.01)

�0.1 ± 0.043
(P = 0.02)

Yes
(n = 174)

�8.35 ± 3.42
(P = 0.01)

�6.8 ± 3.01
(P = 0.02)

�3.4 ± 1.57
(P = 0.03)

�1.51 ± 0.92
(P = 0.1)

�1.9 ± 0.89
(P = 0.03)

�0.23 ± 0.107
(P = 0.03)

Interaction test P = 0.5 P = 0.4 P = 0.35 P = 0.36 P = 0.81 P = 0.26

Table continues next page

a Expressed as the regression coefficients per 3.49 µg/m3 increase in cumulative yearly PM2.5 (1999–2006); all analyses adjusted for the ICV.

b Using Model VI: adjusted for geographic region; age, race, or ethnicity; SES (education, income, and employment status); lifestyle factors (smoking, alcohol 
use, and physical activity); HT; depressive symptoms; BMI; conventional CVD risk factors (diabetes mellitus and hypercholesterolemia); and CVD 
histories.
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Table 4 (continued). Linear Regression Modeling Results of PM2.5 Exposure and Normal-Appearing WM Volumesa in the 
WHIMS-MRI Cohort (1999–2006) by BMI, CVD, Diabetes Mellitus, and WBC Count

Statistical
Models

WM Volume

Corpus 
CallosumTotal 

 Association 
Brain Frontal Parietal Temporal

Models by Diabetes Mellitus

Crude
All 

(N = 1,402)
�1.55 ± 4.89 

(P = 0.75)
�0.57 ± 4.31 

(P = 0.89)
�0.06 ± 2.24 

(P = 0.98)
�0.33 ± 1.32 

(P = 0.08)
�0.18 ± 1.26 

(P = 0.88)
�0.157 ± 0.146}

(P = 0.28)

No 
(n = 1,356)

�5.09 ± 1.23
(P < 0.01)

�3.46 ± 1.09
(P < 0.01)

�1.41 ± 0.57
(P = 0.01)

�0.47 ± 0.33 
(P = 0.16)

�1.58 ± 0.32
(P < 0.01)

�0.1 ± 0.037
(P < 0.01)

Yes 
(n = 46)

1.99 ± 9.7
(P = 0.84)

2.32 ± 8.55
(P = 0.79)

1.3 ± 4.44
(P = 0.77)

�0.19 ± 2.61
(P = 0.94)

1.21 ± 2.5
(P = 0.63)

�0.214 ± 0.29
(P = 0.46)

Interaction test P = 0.47 P = 0.5 P = 0.55 P = 0.92 P = 0.27 P = 0.7

Adjustedb

All 
(N = 1,272)

�5.07 ± 5.58 
(P = 0.36)

�4.21 ± 4.91 
(P = 0.39)

�1.65 ± 2.56 
(P = 0.52)

�1.7 ± 1.51
(P = 0.26)

�0.86 ± 1.46 
(P = 0.56)

�0.136 ± 0.174
(P = 0.44)

No 
(n = 1,232)

�6.25 ± 1.28
(P < 0.01)

�4.47 ± 1.13
(P < 0.01)

�2.05 ± 0.59
(P < 0.01)

�0.71 ± 0.35
(P = 0.04)

�1.72 ± 0.34
(P < 0.01)

�0.117 ± 0.04
(P < 0.01)

Yes
(n = 40)

�3.89 ± 11.07
(P = 0.73)

�3.94 ± 9.75
(P = 0.69)

�1.25 ± 5.08
(P = 0.81)

�2.69 ± 2.99
(P = 0.37)

0.01 ± 2.89
(P = 1)

�0.155 ± 0.346
(P = 0.65)

Interaction Test P = 0.83 P = 0.96 P = 0.88 P = 0.51 P = 0.55 P = 0.91

Models by WBC Count

Crude
All

(N = 1,403)
�4.82 ± 1.23

(P < 0.01)
�3.23 ± 1.09

(P < 0.01)
�1.36 ± 0.56

(P = 0.02)
�0.43 ± 0.33 

(P = 0.2)
�1.44 ± 0.32

(P < 0.01)
�0.108 ± 0.037

(P < 0.01)

� Median
(n = 670)

�4.44 ± 1.86
(P = 0.02)

�2.95 ± 1.64 
(P = 0.07)

�1.57 ± 0.85 
(P = 0.06)

�0.34 ± 0.5
(P = 0.5)

�1.04 ± 0.48
(P = 0.03)

�0.134 ± 0.056
(P = 0.02)

< Median 
(n = 733)

�5.19 ± 1.63
(P < 0.01)

�3.51 ± 1.44
(P = 0.01)

�1.16 ± 0.75
(P = 0.12)

�0.52 ± 0.44
(P = 0.24)

�1.84 ± 0.42
(P < 0.01)

�0.082 ± 0.049
(P = 0.09)

Interaction test P = 0.76 P = 0.8 P = 0.71 P = 0.79 P = 0.21 P = 0.49

Adjustedb

All 
(N = 1,272)

�6.21 ± 1.29
(P < 0.01)

�4.46 ± 1.13
(P < 0.01)

�2.06 ± 0.59
(P < 0.01)

�0.75 ± 0.35
(P = 0.03)

�1.65 ± 0.34
(P < 0.01)

�0.123 ± 0.04
(P < 0.01)

� Median 
(n = 614)

�6.44 ± 1.89
(P < 0.01)

�4.68 ± 1.67
(P < 0.01)

�2.39 ± 0.87
(P < 0.01)

�0.95 ± 0.51 
(P = 0.06)

�1.35 ± 0.49
(P < 0.01)

�0.154 ± 0.059
(P < 0.01)

< Median
(n = 658)

�5.99 ± 1.69
(P < 0.01)

�4.23 ± 1.49
(P < 0.01)

�1.73 ± 0.78
(P = 0.03)

�0.55 ± 0.46
(P = 0.23)

�1.95 ± 0.44
(P < 0.01)

�0.091 ± 0.053
(P = 0.08)

Interaction test P = 0.86 P = 0.84 P = 0.57 P = 0.56 P = 0.36 P = 0.42

a Expressed as the regression coefficients per 3.49 µg/m3 increase in cumulative yearly PM2.5 (1999–2006); all analyses adjusted for the ICV.

b Using Model VI: adjusted for geographic region; age, race, or ethnicity; SES (education, income, and employment status); lifestyle factors (smoking, alcohol 
use, and physical activity); HT; depressive symptoms; BMI; conventional CVD risk factors (diabetes mellitus and hypercholesterolemia); and CVD histories.

WM regions we examined, except for stronger associations of
parietal WM among participants who were obese (BMI > 30).
For instance, the association of frontal WM atrophy with
PM2.5 was strongest (�3.04 ± 1.00) in obese participants, less
strong (�2.49 ± 0.94) in the overweight group, and apparently

null (�0.34 ± 1.06) in the normal group. When comparing
participants with CVD with those without it, stronger associa-
tions of smaller WM volumes with PM2.5 in the total brain
(�8.35 ± 3.42 vs. �5.90 ± 1.37) and in the frontal lobe (�3.40
± 1.57 vs. �1.83 ± 0.63) were noted. 
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DPM EXPOSURES

Population Characteristics and DPM Exposures in the 
WHIMS-MRI Cohort

Table 5 shows the population characteristics in relation
to the quartiles of cumulative exposures (1996–2005) to

on-road DPM in the WHIMS-MRI cohort. We found that
older participants (�70 years) tended to live in the census
tracts with the higher DPM exposure categories. WHIMS-
MRI participants recruited from the South were the least
likely to live in census tracts with the highest exposure
levels. Participants of racial/ethnic minorities (black or

Table 5. Sociodemographic Factors, Lifestyle Factors, and Clinical Characteristics by On-Road DPM Exposurea Quartiles 
in the WHIMS–MRI Cohort (1999–2006) 

Population
Characteristics N b

On-Road DPM (µg/m3) (quartile)

P valuec

0.01–0.24 0.24–0.35 0.35–0.55 0.55–3.93
Median = 0.17

(N = 350)
Median = 0.29

(N = 351)
Median = 0.43

(N = 351)
Median = 0.78

(N = 351)

U. S. Region <0.0001
Northeast 329 35 (10.6%) 109 (33.1%) 77 (23.4%) 108 (32.8%)
South 207 101 (48.8%) 68 (32.9%) 32 (15.5%) 6 (2.9%)
Midwest 486 122 (25.1%) 97 (20%) 139 (28.6%) 128 (26.3%)
West 381 92 (24.1%) 77 (20.2%) 103 (27%) 109 (28.6%)

Age at screening (yr)      <0.001
63–69 712 215 (30.2%) 171 (24%) 166 (23.3%) 160 (22.5%)
70–74 495 103 (20.8%) 123 (24.8%) 125 (25.3%) 144 (29.1%)
�75 196 32 (16.3%) 57 (29.1%) 60 (30.6%) 47 (24%)  

Ethnicity      <0.0001
Black or African-American 64 3 (4.7%) 12 (18.8%) 8 (12.5%) 41 (64.1%)
Hispanic White 21 1 (4.8%) 4 (19%) 6 (28.6%) 10 (47.6%)
Non-Hispanic White 1,276 337 (26.4%) 328 (25.7%) 327 (25.6%) 284 (22.3%)
Other or missing 42 9 (21.4%) 7 (16.7%) 10 (23.8%) 16 (38.1%)  

Participant’s education level 0.02
< High school 63 15 (23.8%) 17 (27%) 10 (15.9%) 21 (33.3%)
High school/GED 325 85 (26.2%) 94 (28.9%) 87 (26.8%) 58 (18.2%)
> High school 1,012 250 (24.7%) 240 (23.7%) 251 (24.8%) 271 (26.8%)  

Family income 0.06
<$10,000 50 12 (24%) 11 (22%) 12 (24%) 15 (30%)
$10,000 to $34,999 671 178 (26.5%) 188 (28%) 143 (21.3%) 162 (24.1%)
$35,000 to $74,999 501 115 (23%) 116 (23.2%) 149 (29.7%) 121 (24.2%)
 �$75,000 136 32 (23.5%) 30 (22.1%) 32 (23.5%) 42 (30.9%)
Missing 45 13 (28.9%) 6 (13.3%) 15 (33.3%) 11 (24.4%)

Employment      0.89
Currently employed 255 65 (25.5%) 61 (23.9%) 60 (23.5%) 69 (27.1%)
Not working 146 40 (27.4%) 39 (26.7%) 36 (24.7%) 31 (21.2%)
Retired 1,000 245 (24.5%) 251 (25.1%) 253 (25.3%) 251 (25.1%)  

Smoking status 0.18
Never smoked 806 213 (26.4%) 208 (25.8%) 199 (24.7%) 186 (23.1%)
Past smoker 526 121 (23%) 126 (24%) 137 (26%) 142 (27%)
Current smoker 59 12 (20.3%) 13 (22%) 12 (20.3%) 22 (37.3%)

Table continues next page

a Shown as N (%) for each exposure quartile for the indicated subcategory of population characteristics.

b The total number of subjects summed up across each subcategory varies slightly because of missing values.

c Calculated by comparing the distribution of exposure quartiles across subcategories for each personal characteristic by chi-square or Fishers exact test.

d E-alone: conjugated equine estrogen alone; E+P: estrogen plus progestin (medroxyprogesterone acetate).
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Table 5 (continued). Sociodemographic Factors, Lifestyle Factors, and Clinical Characteristics by On-Road DPM 
Exposurea Quartiles in the WHIMS–MRI Cohort (1999–2006)  

Population
Characteristics N b

On-Road DPM (µg/m3) (quartile)

P valuec

0.01–0.24 0.24–0.35 0.35–0.55 0.55–3.93

Median = 0.17
(N = 350)

Median = 0.29
(N = 351)

Median = 0.43
(N = 351)

Median = 0.78
(N = 351)

Alcohol intake      0.01
Non drinker 180 61 (33.9%) 53 (29.4%) 37 (20.6%) 29 (16.1%)
Past drinker 232 60 (25.9%) 57 (24.6%) 58 (25%) 57 (24.6%)
<1 drink per day 822 182 (22.1%) 211 (25.7%) 207 (25.2%) 222 (27%)
>1 drink per day 158 43 (27.2%) 28 (17.7%) 46 (29.1%) 41 (25.9%)  

Moderate or strenuous activity (�20 min) 0.68
No activity 799 204 (25.5%) 192 (24%) 197 (24.7%) 206 (25.8%)
Some activity 78 19 (24.4%) 23 (29.5%) 14 (17.9%) 22 (28.2%)
2–4 episodes/wk 280 63 (22.5%) 69 (24.6%) 77 (27.5%) 71 (25.4%)
>4 episodes/wk 244 64 (26.2%) 67 (27.5%) 61 (25%) 52 (21.3%)  

BMI (kg/m2) 0.27
<25 417 102 (24.5%) 87 (20.9%) 116 (27.8%) 112 (26.9%)
25–29 527 131 (24.9%) 138 (26.2%) 126 (23.9%) 132 (25%)
�30 454 115 (25.3%) 126 (27.8%) 107 (23.6%) 106 (23.3%)  

HT use ever      0.43
No 752 177 (23.5%) 190 (25.3%) 186 (24.7%) 199 (26.5%)
Yes 651 173 (26.6%) 161 (24.7%) 165 (25.3%) 152 (23.3%)  

History of depression      0.60
No 1,291 318 (24.6%) 330 (25.6%) 326 (25.3%) 317 (24.6%)
Yes 91 27 (29.7%) 19 (20.9%) 21 (23.1%) 24 (26.4%)  

Hypertension ever      0.01
No 889 244 (27.4%) 229 (25.8%) 216 (24.3%) 200 (22.5%)
Yes 505 105 (20.8%) 121 (24%) 131 (25.9%) 148 (29.3%)  

Diabetes treated ever (pills or injections) 0.02
No 1,356 345 (25.4%) 340 (25.1%) 340 (25.1%) 331 (24.4%)
Yes 46 5 (10.9%) 11 (23.9%) 10 (21.7%) 20 (43.5%)  

High cholesterol requiring pills ever 0.01
No 1,153 306 (26.5%) 285 (24.7%) 286 (24.8%) 276 (23.9%)
Yes 223 38 (17%) 63 (28.3%) 54 (24.2%) 68 (30.5%)  

Cardiovascular disease ever 0.25
No 1,193 294 (24.6%) 312 (26.2%) 296 (24.8%) 291 (24.4%)
Yes 193 51 (26.4%) 38 (19.7%) 49 (25.4%) 55 (28.5%)  

Subcohort membershipd 0.56
E-alone control 263 75 (28.5%) 63 (24%) 62 (23.6%) 63 (24%)
E-alone intervention 260 67 (25.8%) 74 (28.5%) 65 (25%) 54 (20.8%)

0.19
E+P control 447 102 (22.8%) 122 (27.3%) 106 (23.7%) 117 (26.2%)
E+P intervention 433 106 (24.5%) 92 (21.2%) 118 (27.3%) 117 (27%)

a Shown as N (%) for each exposure quartile for the indicated subcategory of population characteristics.

b The total number of subjects summed up across each subcategory varies slightly because of missing values.

c Calculated by comparing the distribution of exposure quartiles across subcategories for each personal characteristic by chi-square or Fishers exact test.

d E-alone: conjugated equine estrogen alone; E+P: estrogen plus progestin (medroxyprogesterone acetate).
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Hispanic white) and those who received less than a high
school education or never used alcohol, compared with
their counterparts, were more likely to live in census tracts
of the highest DPM exposure category. Participants who
suffered from hypertension, high cholesterol, or diabetes
were also more likely to live in these polluted neighbor-
hoods compared with their counterparts. 

MRI-Measured Brain Volumes in Relation to DPM 
Exposures in WHIMS-MRI Cohort

ICV-adjusted ANCOVA comparing normal and ischemic
brain volumes across the cumulative DPM exposures quar-
tiles are summarized in Table 6. We found no measurable
differences in the normal brain volumes (total brain and
association brain area). ICV-adjusted ANCOVA showed a

Table 6. Brain Volume Outcomes by On-Road DPM Exposure Quartiles in the WHIMS-MRI Cohort (1999–2006)

MRI-Measured 
Brain Volume 
(mean ± SD [cm3])

DPM (µg/m3) (quartile)

P valuea0.01–0.24 0.24–0.35 0.35–0.55 0.55–3.93

Median = 0.17
(N = 350)

Median = 0.29
(N = 351)

Median = 0.43
(N = 351)

Median = 0.78
(N = 351) ANCOVA GLM

Total brain volume 813.42 ± 74.16 801.70 ± 69.59 792.55 ± 75.92 791.39 ± 77.29 0.39 N/A

Normal-Appearing Brain Structure

Normal brain volume 805.25 ± 73.44 793.05 ± 69.02 783.09 ± 75.03 783.29 ± 76.73 0.26 N/A
Association area 624.88 ± 58.18 615.93 ± 54.71 608.07 ± 59.39 606.66 ± 60.46 0.48 N/A

Frontal lobe 285.56 ± 28.22 281.51 ± 27.12 277.56 ± 29.36 277.13 ± 29.21 0.63 N/A
Parietal lobe 153.22 ± 15.81 152.31 ± 15.05 149.54 ± 15.96 149.44 ± 16.41 0.80 N/A
Temporal lobe 186.09 ± 18.46 183.11 ± 17.37 180.96 ± 18.5 180.09 ± 19.4 0.32 N/A

Ventricle 35.36 ± 15.22 36.97 ± 15.75 38.26 ± 17.45 37.86 ± 16.62 < 0.01 < 0.01b

GM
Total GM 356.54 ± 39.68 362.83 ± 37.15 353.46 ± 41.97 337.58 ± 46.39 < 0.01 < 0.01c

Association cortex 270.49 ± 30.99 276.84 ± 28.83 268.65 ± 33.69 253.35 ± 37.63 < 0.01 < 0.01c

Frontal GM 119.68 ± 14.42 123.24 ± 13.77 119.70 ± 15.62 111.26 ± 17.27 < 0.01 < 0.01c

Parietal GM 62.79 ± 8.5 64.78 ± 8.02 62.83 ± 9.32 58.51 ± 10.30 < 0.01 < 0.01c

Temporal GM 88.01 ± 10.69 88.81 ± 9.7 86.66 ± 11.11 83.58 ± 12.28 < 0.01 < 0.01c

WM
Total WM 413.64 ± 52.12 395.26 ± 49.3 394.81 ± 54.61 410.91 ± 52.78 < 0.01 < 0.01d

Association brain areas 354.39 ± 45.3 339.09 ± 42.57 339.41 ± 47.19 353.31 ± 45.85 < 0.01 < 0.01d

Frontal WM 165.88 ± 22.77 158.27 ± 21.43 158.40 ± 23.99 165.87 ± 22.76 < 0.01 < 0.01d

Parietal WM 90.43 ± 12.66 86.52 ± 12.04 86.71 ± 12.8 90.93 ± 12.93 < 0.01 < 0.01d

Temporal WM 98.08 ± 12.69 94.30 ± 11.83 94.31 ± 12.87 96.51 ± 13.24 < 0.01 < 0.01d

Corpus callosum 9.20 ± 1.33 9.23 ± 1.26 9.11 ± 1.26 9.10 ± 1.36 0.35 N/A
Hippocampus 5.81 ± 1.09 5.74 ± 0.99 5.62 ± 1.08 5.76 ± 1.06 0.25 N/A
Basal ganglia 35.07 ± 3.44 34.95 ± 3.34 34.83 ± 3.48 34.80 ± 3.50 0.30 N/A

Small-Vessel Ischemic Disease (SVID) Volumes

Total Brain SVID 8.17 ± 10.30 8.65 ± 12.09 9.46 ± 12.45 8.10 ± 9.71 0.48 N/A
Association brain 6.55 ± 8.98 7.05 ± 10.74 7.68 ± 11.08 6.55 ± 8.41 0.45 N/A
GM SVID 0.42 ± 0.99 0.43 ± 1.52 0.40 ± 1.06 0.37 ± 1.08 0.86 N/A
WM SVID 6.90 ± 8.83 7.34 ± 10.15 8.03 ± 10.66 6.89 ± 8.25 0.41 N/A

a P values calculated from ICV-adjusted ANCOVA models with brain volumes or log-transformed SVID volumes.

b P < 0.01 calculated from ICV-adjusted linear trend models in GLM.

c P values < 0.01 calculated from ICV-adjusted brain volumes comparing the 4th quartile to the 1st–3rd quartiles in GLM.

d P values calculated from bivariate analyses comparing GLM with product term of both continuous and dichotomized exposure variables versus GLM with 
only dichotomized DPM variables (the 4th vs. the 1st–3rd quartiles).
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linear increase in ventricular volume across the first three
quartiles of DPM exposure (35 to 38 cm3; ~ 9% increase)
and no appreciable difference between the third and
fourth quartiles. We also observed a consistent pattern of
associations between DPM and normal GM volumes. Com-
paring participants in the fourth quartile of DPM exposure
with those in the first to third quartiles, the MRI-measured
association cortex was smaller (P < 0.01); this pattern was
present in the GM of the three multi-modal association
brain regions (all P values < 0.01). Normal-appearing total
WM volume also differed significantly (P < 0.01) across the
DPM exposure quartiles, but the pattern of associations
appeared to be nonlinear. The ICV-adjusted average vol-
umes of total WM decreased modestly from the first to the
third exposure quartiles, followed by a noticeable increase
in WM volume in the highest (fourth) exposure quartile,
suggesting a reverse J-shaped association. These nonlinear
associations were confirmed in a bivariate general linear
model with statistically significant (P < 0.01) product
terms of continuous exposure and dichotomized DPM cat-
egories (fourth vs. first to third quartiles), with better sta-
tistical fit than each exposure variable alone. Similar
patterns with nonlinear effects of DPM across exposure
quartiles were also present in the WM volumes of the asso-
ciation brain regions (frontal, parietal, and temporal), but
not in the corpus callosum. 

In the ICV-adjusted ANCOVA, we found no statistically
significant differences in the volumes of basal ganglia or
hippocampus across DPM exposure quartiles. In addition,
no differences in the SVID volumes measured for, total
brain, association brain, GM, and WM were found across
the DPM exposure quartiles.

Multiple Linear Regression Models

Main Effects of DPM Exposures Linear regression mod-
eling results are summarized in Table 7, with further
adjustments for multiple potential confounders to
examine the main effects of DPM exposures on ventricular
sizes and GM volumes in the association cortices (Part A)
and normal-appearing WM volumes in the association
brain regions (Part B). Note that DPM exposure was ana-
lyzed as a continuous variable for the ventricle size anal-
yses, as a dichotomous variable (the fourth quartile vs. first
to third quartile) in the GM analyses, and as a continuous
variable in the normal appearing WM, but stratified by
exposure range (first to third quartile and fourth quartile).

In order to account rigorously for the influences of the
listed covariates, we followed the step-by-step addition of
multiple covariates (models I to model VI in Part A of
Table 7). Consistent with the pattern revealed by the

ICV-adjusted ANCOVA, smaller GM volumes associated
with higher cumulative DPM exposures (fourth quartile vs.
first to third quartiles) were found in all three association
cortices (frontal, parietal, and temporal). The resulting
effect estimates were reduced, but all remained statisti-
cally significant (P < 0.01), with multiple-covariate adjust-
ment, suggesting that the associations could not be
explained by the covariates included in the multiple linear
regression models. For instance, comparing participants in
the fourth quartile exposure with participants in the first
to third quartiles of DPM exposures, the ICV-adjusted
average volume of temporal GM (in cm3) decreased by
3.24 ± 0.60. This decrease fell to �2.90 ± 0.60 after adjusting
for geographic region, age, and race or ethnicity, but
diminished only slightly (model VI: �2.23 ± 0.63) with
further adjustment for the other covariates (SES, lifestyle,
BMI, prior depression, and CVD-related clinical character-
istics). The assumed linear increment of ventricular
volume associated with increased DPM exposure
remained robust in the multiple linear regression. For each
interquartile (0.31 µg/m3) increment of cumulative DPM
exposure in the full models (model VI: including ICV, geo-
graphic region, sociodemographics, SES, lifestyle factors,
HT use, prior depression, BMI, CVD and associated risk
factors), the adjusted mean of ventricular size (in cm3)
increased by 0.96 ± 0.43 (P = 0.03). 

The multiple-covariate-adjusted effects of DPM expo-
sures on normal-appearing WM (part B of Table 7) varied
by the estimated exposure range, as reflected by the statis-
tically significant (P < 0.01) interaction term between the
continuous exposure and the dichotomized DPM catego-
ries (fourth quartile vs. first to third quartiles). For women
with estimated cumulative exposures between the first
and third quartiles, increased DPM estimates were associ-
ated with smaller WM volumes in the association brain
areas (frontal and temporal). However, association brain
area WM volumes (frontal and parietal) became larger with
increased cumulative DPM exposures when the exposure
estimates were in the fourth quartile. Our sensitivity anal-
yses revealed fairly consistent patterns of associations
between DPM exposures and larger ventricles and smaller
GM volumes. In the analyses restricted to non-Hispanic
whites (Table B.3 in Appendix B, available on the HEI
website) or to participants with more than 60% complete
data on the yearly exposure estimates (Table B.4 in
Appendix B), DPM exposure was associated with a modest
increase in the ventricular volume. Likewise, we found
that the association of smaller GM volumes with higher
cumulative DPM exposures (fourth quartile vs. first to
third DPM quartiles) remained in the sensitivity analyses. 
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Modification of DPM Effects on Ventricles and GM 
Volumes The relationships between DPM exposures and
brain volume were fairly consistent across the subgroups
defined by BMI, CVD history, or WBC count (Table 8). The
associations between DPM and smaller GM volumes were
stronger in diabetic participants (vs. non-diabetic partici-
pants), with two- to threefold differences in the adjusted
effect size, reaching statistical significance (interaction P =
0.03) for parietal GM only. The observed linear increment
of ventricular volume associated with increased DPM did
not vary substantially by CVD history, diabetes mellitus, or
WBC count. Interestingly, increased ventricular size (2.41
± 0.70 cm3) associated with DPM was primarily observed
in the overweight participants (BMI = 25–29), but the cor-
responding effect was not notable in the obese participants
(0.02 ± 0.66 cm3) or in those participants with BMI < 25
(0.54 ± 0.78 cm3) in the fully adjusted model (interaction
P value = 0.03; adjusting for ICV, geographic region,

sociodemographics, SES, lifestyle factors, HT use, prior
depression, CVD risk factors and CVD histories). 

POPULATION CHARACTERISTICS AND PM2.5 
EXPOSURES IN WHIMS COHORT

Table 9 shows the results of WHIMS population charac-
teristics in relation to the PM2.5 exposure quartiles in
1999–2007. Participants who were recruited from the Mid-
west, self-identified as African-American, reported low
household income (<$10,000) and low education attain-
ment (< high school), less engaged in physical activities
(with no moderate or strenuous activities �20 min-
utes/week), consumed less alcohol (non-drinker or past
drinker), or were overweight/obese, were more likely to
reside in locations where the cumulative PM2.5 exposures
were estimated in the highest quartile (15.01–27.08;
median = 16.57 µg/m3), compared with their counterparts
(all P values < 0.05). 

Table 7. Linear Regression Modeling Results of On-Road DPM Exposure and Brain Volume Outcomes in the WHIMS-MRI
Cohort (1999–2006)

Part A. Ventricle and GMc

Statistical
Modelsa Ventricleb

Association Brain 
GM

Frontal 
GM

Parietal 
GM

Temporal 
GM

Crude
(N = 1,403)

1.67 ± 0.38
(P < 0.01)

�15.56 ± 1.79
(P < 0.01)

�8.05 ± 0.84
(P < 0.01)

�4.27 ± 0.52 
(P < 0.01)

�3.24 ± 0.60 
(P < 0.01)

Model I
(N = 1,403)

1.28 ± 0.40 
(P < 0.01)

�15.38 ± 1.78 
(P < 0.01)

�8.04 ± 0.85 
(P < 0.01)

�4.44 ± 0.51 
(P < 0.01)

�2.90 ± 0.60 
(P < 0.01)

Model II
(N = 1,399)

1.28 ± 0.40 
(P < 0.01)

�14.96 ± 1.79 
(P < 0.01)

�7.84 ± 0.86 
(P < 0.01)

�4.31 ± 0.52 
(P < 0.01)

�2.81 ± 0.60 
(P < 0.01)

Model III
(N = 1,377)

1.33 ± 0.41 
(P < 0.01)

�14.57 ± 1.8 
(P < 0.01)

�7.60 ± 0.86 
(P < 0.01)

�4.28 ± 0.52 
(P < 0.01)

�2.7 ± 0.60 
(P < 0.01)

Model IV
(N = 1,310)

1.04 ± 0.42
(P = 0.01)

�13.51 ± 1.84 
(P < 0.01)

�7.02 ± 0.89 
(P < 0.01)

�4.07 ± 0.53 
(P < 0.01)

�2.41 ± 0.62 
(P < 0.01)

Model V
(N = 1,279)

0.99 ± 0.43
(P = 0.02)

�12.96 ± 1.87 
(P < 0.01)

�6.74 ± 0.91 
(P < 0.01)

�3.93 ± 0.54 
(P < 0.01)

�2.30 ± 0.63 
(P < 0.01)

Model VI
(N = 1,272)

0.96 ± 0.43 
(P = 0.03)

�12.72 ± 1.88 
(P < 0.01)

�6.64 ± 0.91 
(P < 0.01)

�3.85 ± 0.55 
(P < 0.01)

�2.23 ± 0.63 
(P < 0.01)

Table continues next page

a Model I: adjusted for geographic region, age and race; Model II: adjusted for Model I covariates and SES (education, income, and employment status); 
Model III: adjusted for Model II covariates and lifestyle factors (smoking, alcohol use, and physical activity); Model IV: adjusted for Model III covariates, 
HT, depressive symptoms, and BMI; Model V: adjusted for Model IV covariates and conventional CVD risk factors (hypertension, diabetes mellitus, and 
hypercholesterolemia); Model VI: adjusted for Model V covariates and CVD histories.

b Difference in ventricular volume per DPM interquartile change (0.31 µg/m3).

c Difference in brain volume comparing fourth quartile (median = 0.78 µg/m3) versus first to third quartiles for DPM (median = 0.29 µg/m3). All analyses 
were adjusted for ICV.

d Difference in WM volume per DPM interquartile change (0.31 µg/m3), stratified by exposure range (first to third quartiles versus fourth quartile). All 
analyses were adjusted for ICV.
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Table 7 (continued). Linear Regression Modeling Results of On-Road DPM Exposure and Brain Volume Outcomes in the 
WHIMS-MRI Cohort (1999–2006)

Part B. Normal-Appearing WMd

Statistical 
Modelsa

First–Third Quartiles of DPM
(median = 0.29 µg/m3)

Fourth Quartile of DPM
(median = 0.78 µg/m3)

Interaction 
Association 
Brain WM

Frontal
WM

Parietal
WM

Temporal 
WM

Association 
Brain WM

Frontal
WM

Parietal
WM

Temporal
WM

Crude
(N = 1,403)

�6.32
(�10.97 to 

�1.67)
P < 0.01

�3.22
(�5.62 to 

�0.81) 
P < 0.01

�1.22
(�2.64 to

0.2) 
P = 0.09

�1.88
(�3.27 to

�0.48)
P < 0.01

5.71
(2.88 to

8.55) 
P < 0.01

3.08
(1.62 to

4.55)
P < 0.01

1.76
(0.9 to
2.63)

P < 0.01

0.87
(0.02 to

1.72)
P = 0.05

P < 0.01

Model I
(N = 1,403)

�4.69
(�9.34 to

�0.04)
P = 0.05

�2.51
(�4.93 to

�0.09)
P = 0.04

�0.64
(�2.06 to

0.77)
P = 0.37

�1.53
(�2.94 to

�0.13)
P = 0.03

5.29
(2.42 to

8.16)
P < 0.01

2.77
(1.28 to

4.26)
P < 0.01

1.60
(0.73 to

2.48)
P < 0.01

0.92
(0.05 to

1.78)
P = 0.04

P < 0.01

Model II
(N = 1,399)

�5.18
(�9.85 to

�0.52)
P = 0.03

�2.75
(�5.18 to

�0.32)
P = 0.03

�0.86
(�2.28 to

0.56) 
P = 0.24

�1.57
(�2.98 to

�0.16)
P = 0.03

5.40
(2.54 to

8.27)
P < 0.01

2.84
(1.35 to

4.33) 
P < 0.01

1.64
(0.76 to

2.51)
P < 0.01

0.93
(0.06 to

1.79)
P = 0.04

P < 0.01

Model III
(N = 1,377)

�5.42
(�10.08 to

�0.75) 
P = 0.02

�2.76
(�5.18 to

�0.34) 
P = 0.03

�0.97
(�2.41 to

0.46)
P = 0.18

�1.68
(�3.09 to

�0.27) 
P = 0.02

5.43
(2.56 to

8.31) 
P < 0.01

2.93
(1.44 to

4.43) 
P < 0.01

1.62
(0.74 to

2.50) 
P < 0.01

0.88
(0.01 to

1.75) 
P = 0.05

P < 0.01

Model IV
(N = 1,310)

�5.3
(�10.04 to

�0.55)
P = 0.03

�2.67
(�5.14 to

�0.20) 
P = 0.03

�1.01 
(�2.47 to

0.44) 
P = 0.17

�1.62
(�3.06 to

�0.18) 
P = 0.03

5.92
(2.95 to

8.89) 
P < 0.01

3.21
(1.66 to

4.76) 
P < 0.01

1.84
(0.93 to

2.75) 
P < 0.01

0.86
(�0.04 to

1.76) 
P = 0.06

P < 0.01

Model V
(N = 1,279)

�5.04
(�9.85 to

�0.22)
P = 0.04

�2.58
(�5.08 to

�0.07)
P = 0.04

�0.86
(�2.33 to

0.61) 
P = 0.25

�1.59
(�3.05 to

�0.14) 
P = 0.03

5.70
(2.70 to

8.71) 
P < 0.01

3.13
(1.56 to

4.69) 
P < 0.01

1.78
(0.86 to

2.70) 
P < 0.01

0.79
(�0.12 to

1.7) 
P = 0.09

P < 0.01

Model VI
(N = 1,272)

�5.16
(�9.99 to

�0.33)
P = 0.04

�2.60
(�5.11 to

�0.08) 
P = 0.04

�0.91
(�2.38 to

0.57) 
P = 0.23

�1.66
(�3.12 to

�0.19)
P = 0.03

5.74
(2.73 to

8.75)
P < 0.01

3.15
(1.59 to

4.72) 
P < 0.01

1.78
(0.86 to

2.70)
P < 0.01

0.81
(�0.1 to

1.72) 
P = 0.08

P < 0.01

a Model I: adjusted for geographic region, age and race; Model II: adjusted for Model I covariates and SES (education, income, and employment status); 
Model III: adjusted for Model II covariates and lifestyle factors (smoking, alcohol use, and physical activity); Model IV: adjusted for Model III covariates, 
HT, depressive symptoms, and BMI; Model V: adjusted for Model IV covariates and conventional CVD risk factors (hypertension, diabetes mellitus, and 
hypercholesterolemia); Model VI: adjusted for Model V covariates and CVD histories.

b Difference in ventricular volume per DPM interquartile change (0.31 µg/m3).

c Difference in brain volume comparing fourth quartile (median = 0.78 µg/m3) versus first to third quartiles for DPM (median = 0.29 µg/m3). All analyses 
were adjusted for ICV.

d Difference in WM volume per DPM interquartile change (0.31 µg/m3), stratified by exposure range (first to third quartiles versus fourth quartile). All 
analyses were adjusted for ICV.
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Table 8. Linear Regression Modeling Results of On-Road DPM Exposure and Brain Volume Outcomes in the WHIMS–MRI 
Cohort (1999–2006) by BMI, CVD, Diabetes Mellitus, and WBC Count

Statistical Models Ventricleb

GM Volumea

Association Brain Frontal Parietal Temporal

Models by BMI

Crude
All

(N = 1,398)
1.69 ± 0.38 
(P < 0.01)

�15.6 ± 1.80 
(P < 0.01)

�8.09 ± 0.85 
(P < 0.01)

�4.28 ± 0.52 
(P < 0.01)

�3.26 ± 0.6 
(P < 0.01)

BMI < 25
(n = 417)

1.15 ± 0.70 
(P = 0.10)

�9.48 ± 3.21 
(P < 0.01)

�4.97 ± 1.51 
(P < 0.01)

�2.96 ± 0.93 
(P < 0.01)

�1.55 ± 1.07 
(P = 0.15)

BMI 25–29 
(n = 527)

3.43 ± 0.65 
(P < 0.01)

�18.70 ± 2.91 
(P < 0.01)

�9.13 ± 1.37 
(P < 0.01)

�5.50 ± 0.84 
(P < 0.01)

�4.07 ± 0.97 
(P < 0.01)

BMI � 30 
(n = 454)

0.50 ± 0.62 
(P = 0.42)

�17.95 ± 3.22 
(P < 0.01)

�9.83 ± 1.51 
(P < 0.01)

�4.14 ± 0.93 
(P < 0.01)

�3.99 ± 1.08 
(P < 0.01)

Interaction test P < 0.01 P = 0.07 P = 0.05 P = 0.13 P = 0.16

Adjustedc

All 
(N = 1,272)

0.96 ± 0.43 
(P = 0.03)

�12.72 ± 1.88 
(P < 0.01)

�6.64 ± 0.91 
(P < 0.01)

�3.85 ± 0.55 
(P < 0.01)

�2.23 ± 0.63 
(P < 0.01)

BMI < 25 
(n = 378)

0.54 ± 0.78 
(P = 0.48)

�8.69 ± 3.25 
(P < 0.01)

�4.31 ± 1.57 
(P < 0.01)

�2.95 ± 0.94 
(P < 0.01)

�1.43 ± 1.09 
(P = 0.19)

BMI 25–29 
(n = 478)

2.41 ± 0.70 
(P < 0.01)

�15.61 ± 2.97 
(P < 0.01)

�7.68 ± 1.44 
(P < 0.01)

�4.97 ± 0.86 
(P < 0.01)

�2.96 ± 1.00 
(P < 0.01)

BMI � 30 
(n = 416)

0.02 ± 0.66 
(P = 0.97)

�13.33 ± 3.24 
(P < 0.01)

�7.77 ± 1.57 
(P < 0.01)

�3.42 ± 0.94 
(P < 0.01)

�2.15 ± 1.08 
(P = 0.05)

Interaction test P = 0.03 P = 0.27 P = 0.19 P = 0.23 P = 0.58

Models by CVD

Crude
All 

(N = 1,386)
1.56 ± 0.38 
(P < 0.01)

�15.58 ± 1.80 
(P < 0.01)

�8.05 ± 0.85 
(P < 0.01)

�4.28 ± 0.52 
(P < 0.01)

�3.24 ± 0.60 
(P < 0.01)

No 
(n = 1,193)

1.43 ± 0.42 
(P < 0.01)

�14.98 ± 1.95 
(P < 0.01)

�7.66 ± 0.92 
(P < 0.01)

�4.10 ± 0.56 
(P < 0.01)

�3.21 ± 0.65 
(P < 0.01)

Yes 
(n = 193)

2.14 ± 0.88 
(P = 0.01)

�18.95 ± 4.62 
(P < 0.01)

�10.26 ± 2.18 
(P < 0.01)

�5.26 ± 1.33 
(P < 0.01)

�3.43 ± 1.55 
(P = 0.03)

Interaction test P = 0.46 P = 0.43 P = 0.27 P = 0.42 P = 0.90

Adjustedc

All 
(N = 1,272)

0.96 ± 0.43 
(P = 0.03)

�12.72 ± 1.88 
(P < 0.01)

�6.64 ± 0.91 
(P < 0.01)

�3.85 ± 0.55 
(P < 0.01)

�2.23 ± 0.63 
(P < 0.01)

No 
(n = 1,098)

0.91 ± 0.47 
(P = 0.05)

�12.56 ± 2.01 
(P < 0.01)

�6.47 ± 0.97 
(P < 0.01)

�3.81 ± 0.58 
(P < 0.01)

�2.28 ± 0.67 
(P < 0.01)

Yes 
(n = 174)

1.22 ± 0.98 
(P = 0.21)

�13.69 ± 4.77 
(P < 0.01)

�7.66 ± 2.26 
(P < 0.01)

�4.08 ± 1.35 
(P < 0.01)

�1.94 ± 1.56 
(P = 0.21)

Interaction test P = 0.77 P = 0.82 P = 0.62 P = 0.85 P = 0.84

Table continues next page

a Difference in brain volume comparing fourth quartile (median = 0.78 µg/m3) versus first to third quartiles for DPM (median = 
0.29 µg/m3). All analyses were adjusted for ICV.

b Difference in ventricular volume per DPM interquartile change (0.31 µg/m3).
c Using Model VI: adjusted for geographic region; age, race, or ethnicity; SES (education, income, and employment status); 

lifestyle factors (smoking, alcohol use, and physical activity); HT; depressive symptoms; BMI; conventional CVD risk factors 
(hypertension, diabetes mellitus, and hypercholesterolemia); and CVD histories.
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Table 8 (continued). Linear Regression Modeling Results of On-Road DPM Exposure and Brain Volume Outcomes in the 
WHIMS–MRI Cohort (1999–2006) by BMI, CVD, Diabetes Mellitus, and WBC Count

Statistical Models

GM Volumea

Ventricleb Association Brain Frontal Parietal Temporal

Models by Diabetes Mellitus

Crude
All 

(N = 1,402)
1.58 ± 0.38 
(P < 0.01)

�14.89 ± 1.78 
(P < 0.01)

�7.78 ± 0.84 
(P < 0.01)

�4.08 ± 0.52 
(P < 0.01)

�3.03 ± 0.60 
(P < 0.01)

No 
(n = 1,356)

1.60 ± 0.39 
(P < 0.01)

�14.50 ± 1.82 
(P < 0.01)

�7.66 ± 0.86 
(P < 0.01)

�3.93 ± 0.53 
(P < 0.01)

�2.91 ± 0.61 
(P < 0.01)

Yes 
(n = 46)

1.21 ± 1.58 
(P = 0.44)

�23.76 ± 8.57 
(P < 0.01)

�10.34 ± 4.05 
(P = 0.01)

�7.59 ± 2.48 
(P < 0.01)

�5.84 ± 2.87 
(P = 0.04)

Interaction test P = 0.81 P = 0.29 P = 0.52 P = 0.15 P = 0.32

Adjustedc

All
(N = 1,272)

0.96 ± 0.43 
(P = 0.03)

�12.72 ± 1.88 
(P < 0.01)

�6.64 ± 0.91 
(P < 0.01)

�3.85 ± 0.55 
(P < 0.01)

�2.23 ± 0.63 
(P < 0.01)

No 
(n = 1,232)

1.03 ± 0.44 
(P = 0.02)

�12.09 ± 1.91 
(P < 0.01)

�6.40 ± 0.93 
(P < 0.01)

�3.63 ± 0.55 
(P < 0.01)

�2.05 ± 0.64 
(P < 0.01)

Yes 
(n = 40)

�0.28 ± 1.65 
(P = 0.87)

�28.16 ± 8.79 
(P < 0.01)

�12.48 ± 4.26 
(P < 0.01)

�9.20 ± 2.55 
(P < 0.01)

�6.49 ± 2.94 
(P = 0.03)

Interaction test P = 0.44 P = 0.07 P = 0.16 P = 0.03 P = 0.14

Models by WBC Count

Crude
All

(N = 1,364)
1.76 ± 0.39 
(P < 0.01)

�15.51 ± 1.81 
(P < 0.01)

�7.99 ± 0.85 
(P < 0.01)

�4.24 ± 0.52 
(P < 0.01)

�3.29 ± 0.61 
(P < 0.01)

� Median 
(n = 706)

1.90 ± 0.57 
(P < 0.01)

�15.45 ± 2.47 
(P < 0.01)

�7.67 ± 1.16 
(P < 0.01)

�4.24 ± 0.71 
(P < 0.01)

�3.54 ± 0.83 
(P < 0.01)

 < Median 
(n = 658)

1.64 ± 0.53 
(P < 0.01)

�15.58 ± 2.66 
(P < 0.01)

�8.36 ± 1.25 
(P < 0.01)

�4.23 ± 0.77 
(P < 0.01)

�3.00 ± 0.89 
(P < 0.01)

Interaction test P = 0.74 P = 0.97 P = 0.69 P = 0.99 P = 0.66

Adjustedc

All 
(N = 1,239)

1.02 ± 0.44 
(P = 0.02)

�12.99 ± 1.92 
(P < 0.01)

�6.69 ± 0.93 
(P < 0.01)

�3.93 ± 0.56 
(P < 0.01)

�2.36 ± 0.64 
(P < 0.01)

� Median 
(n = 635)

1.04 ± 0.63 
(P = 0.10)

�11.97 ± 2.59 
(P < 0.01)

�5.83 ± 1.25 
(P < 0.01)

�3.73 ± 0.75 
(P < 0.01)

�2.41 ± 0.87 
(P < 0.01)

 < Median 
(n = 604)

1.00 ± 0.58 
(P = 0.08)

�14.11 ± 2.71 
(P < 0.01)

�7.64 ± 1.31 
(P < 0.01)

�7.64 ± 1.31 
(P < 0.01)

�2.31 ± 0.91 
(P = 0.01)

Interaction test P = 0.96 P = 0.56 P = 0.31 P = 0.68 P = 0.94

a Difference in brain volume comparing fourth quartile (median = 0.78 µg/m3) versus first to third quartiles for DPM (median = 
0.29 µg/m3). All analyses were adjusted for ICV.

b Difference in ventricular volume per DPM interquartile change (0.31 µg/m3).
c Using Model VI: adjusted for geographic region; age, race, or ethnicity; SES (education, income, and employment status); 

lifestyle factors (smoking, alcohol use, and physical activity); HT; depressive symptoms; BMI; conventional CVD risk factors 
(hypertension, diabetes mellitus, and hypercholesterolemia); and CVD histories.
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Table 9. Sociodemographic Factors, Lifestyle Factors, and Clinical Characteristics by PM2.5 Exposure Quartiles in the 
WHIMS Cohort (1999–2007)

Population
Characteristics  

 Mean ± SD 
(µg/m3)

Cumulative Annual Average PM2.5 (µg/m3) (quartile)

 P value
3.71–11.11 11.11–12.94 12.94–15.01 15.01–27.08

Median = 10.03 Median = 12.11 Median = 14.01 Median = 16.57

All
N = 

7,050 13.15 ± 3.22 N = 1,763 N = 1,762 N = 1,762 N = 1,763

U.S. Region    <0.0001
 Northeast 1,908 12.43 ± 1.70 385 (20.2%) 909 (47.6%) 432 (22.6%) 182 (9.5%)
 South 1,480 14.03 ± 2.29 235 (15.9%) 215 (14.5%) 596 (40.3%) 434 (29.3%)
 Midwest 1,705 13.65 ± 2.47 369 (21.6%) 397 (23.3%) 321 (18.9%) 618 (36.2%)
 West 1,957 12.74 ± 4.88 774 (39.6%) 241 (12.3%) 413 (21.1%) 529 (27%)

Age at baseline (yr)     0.14
 65–69 3,272 13.08 ± 3.17 839 (25.6%) 827 (25.3%) 794 (24.3%) 812 (24.8%)
 70–74 2,529 13.12 ± 3.23 644 (25.5%) 637 (25.2%) 633 (25.0%) 615 (24.3%)
 � 75 1,249 13.37 ± 3.32 280 (22.4%) 298 (23.9%) 335 (26.8%) 336 (26.9%)  

Ethnicity       <0.0001
Black or African-

American
488 15 ± 2.51 31 (6.4%) 55 (11.3%) 161 (33%) 241 (49.4%)

Hispanic White 159 13.16 ± 4.14 60 (37.7%) 25 (15.7%) 37 (23.3%) 37 (23.3%)
Non-Hispanic 

White
6,147 13.05 ± 3.06 1,575 (25.6%) 1,646 (26.8%) 1,508 (24.5%) 1,418 (23.1%)

Other or missing 256 11.78 ± 5.54 97 (37.9%) 36 (14.1%) 56 (21.9%) 67 (26.2%)  

Family income <0.0001
< $10,000 380 13.21 ± 3.39 98 (25.8%) 68 (17.9%) 99 (26.1%) 115 (30.3%)
 $10,000–$34,999 3,405 13 ± 3.22 946 (27.8%) 822 (24.1%) 764 (22.4%) 873 (25.6%)
 $35,000–$74,999 2,307 13.28 ± 3.2 504 (21.8%) 630 (27.3%) 622 (27%) 551 (23.9%)
�$75,000 710 13.45 ± 3.29 146 (20.6%) 175 (24.6%) 215 (30.3%) 174 (24.5%)
 Missing 248 12.87 ± 2.91 69 (27.8%) 67 (27%) 62 (25%) 50 (20.2%)

Participant’s education level    0.0002
 < High school 516 13.18 ± 3.32 123 (23.8%) 116 (22.5%) 121 (23.4%) 156 (30.2%)
 High school/GED 1,554 12.92 ± 3.16 432 (27.8%) 402 (25.9%) 331 (21.3%) 389 (25%)
 > High school 4,960 13.21 ± 3.23 1,202 (24.2%) 1,243 (25.1%) 1,304 (26.3%) 1,211 (24.4%)  

Employment 0.25
 Currently 

employed
1,254 13.3 ± 3.17 301 (24%) 317 (25.3%) 317 (25.3%) 319 (25.4%)

 Not working 768 13.21 ± 3.37 193 (25.1%) 165 (21.5%) 200 (26%) 210 (27.3%)
 Retired 5,005 13.09 ± 3.21 1,265 (25.3%) 1,276 (25.5%) 1,238 (24.7%) 1,226 (24.5%)  

Table continues next page
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Table 9 (continued). Population Distribution of Cumulative PM2.5 Exposures in Relation to Sociodemographics, Lifestyle 
Factors, and Clinical Characteristics in the WHIMS Cohort (1999–2007)

Population
Characteristics  

 Mean ± SD 
(µg/m3)

Cumulative Annual Average PM2.5 (µg/m3) (quartile)

 P value
3.71–11.11 11.11–12.94 12.94–15.01 15.01–27.08

Median = 10.03 Median = 12.11 Median = 14.01 Median = 16.57

Moderate or strenuous activity (�20 min)    <0.0001
No activity 4,078 13.23 ± 3.22 988 (24.2%) 997 (24.4%) 992 (24.3%) 1101 (27%)
Some activity 343 13.49 ± 3.22 73 (21.3%) 88 (25.7%) 88 (25.7%) 94 (27.4%)
2–4 episodes 1,387 13.00 ± 3.26 355 (25.6%) 379 (27.3%) 350 (25.2%) 304 (21.9%)
> 4 episodes 1,226 12.93 ± 3.18 345 (28.1%) 293 (23.9%) 328 (26.8%) 260 (21.2%)  

Smoking status 0.02
 Never smoked 3,722 13.22 ± 3.3 929 (25%) 873 (23.5%) 943 (25.3%) 977 (26.2%)
 Past smoker 2,762 13.05 ± 3.12 695 (25.2%) 751 (27.2%) 670 (24.3%) 646 (23.4%)
 Current smoker 468 13.02 ± 3.16 118 (25.2%) 117 (25.0%) 115 (24.6%) 118 (25.2%)

Alcohol intake       <0.0001
 Non drinker 911 13.49 ± 3.64 227 (24.9%) 135 (14.8%) 237 (26%) 312 (34.2%)
 Past drinker 1,370 13.2 ± 3.27 371 (27.1%) 307 (22.4%) 296 (21.6%) 396 (28.9%)
 <1 drink/ day 3,857 13.07 ± 3.12 942 (24.4%) 1083 (28.1%) 971 (25.2%) 861 (22.3%)
 >1 drink/ day 847 13 ± 3.09 207 (24.4%) 227 (26.8%) 240 (28.3%) 173 (20.4%)  

HT use ever <0.0001
 No 3,834 13.18 ± 3.01 877 (22.9%) 1045 (27.3%) 965 (25.2%) 947 (24.7%)
 Yes 3,214 13.11 ± 3.46 885 (27.5%) 716 (22.3%) 797 (24.8%) 816 (25.4%)

BMI (kg/m2) 0.04
 <25 2,048 13.07 ± 3.24 536 (26.2%) 505 (24.7%) 542 (26.5%) 465 (22.7%)
 25–29 2,546 13.15 ± 3.29 632 (24.8%) 648 (25.5%) 632 (24.8%) 634 (24.9%)
� 30 2,418 13.20 ± 3.14 590 (24.4%) 598 (24.7%) 577 (23.9%) 653 (27%)

History of depression     0.22
 No 6,322 13.15 ± 3.21 1567 (24.8%) 1601 (25.3%) 1587 (25.1%) 1567 (24.8%)
 Yes 557 13.16 ± 3.3 144 (25.9%) 125 (22.4%) 133 (23.7%) 156 (28%)  

Diabetes treated ever (pills or injections) 0.23
 No 6,604 13.15 ± 3.23 1659 (25.1%) 1659 (25.1%) 1633 (24.7%) 1653 (25%)
 Yes 434 13.12 ± 3.16 102 (23.5%) 99 (22.8%) 126 (29%) 107 (24.7%)

High cholesterol requiring pills ever    0.49
 No 5,692 13.11 ± 3.2 1433 (25.2%) 1440 (25.3%) 1417 (24.9%) 1402 (24.6%)
 Yes 1,264 13.25 ± 3.28 308 (24.4%) 305 (24.1%) 317 (25.1%) 335 (26.5%)  

Hypertension ever       0.05
 No 4,257 13.11 ± 3.2 1070 (25.1%) 1089 (25.6%) 1082 (25.4%) 1016 (23.9%)
 Yes 2,714 13.2 ± 3.26 675 (24.9%) 660 (24.3%) 653 (24.1%) 726 (26.8%)  

Cardiovascular disease ever 0.17
 No 5,746 13.13 ± 3.23 1440 (25.1%) 1458 (25.4%) 1442 (25.1%) 1406 (24.5%)
 Yes 1,197 13.19 ± 3.16 298 (24.9%) 284 (23.7%) 287 (24%) 328 (27.4%)
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POPULATION CHARACTERISTICS AND DPM 
EXPOSURES IN WHIMS COHORT

Table 10 shows the results of comparing the distribu-
tions of selected baseline personal and clinical characteris-
tics with the exposure categories defined by the quartiles
of cumulative yearly DPM exposures (1996–2005) in the
WHIMS cohort. Participants recruited from the Northeast,
were �70 years old, belonged to a minority group (black or
Hispanic white), were current or past smokers, had current
or past consumption of alcohol and did not use HT were

more likely to live in a census tract with the highest (fourth
quartile) DPM exposures compared with their counterparts
(all P values < 0.05). The associations between DPM expo-
sures and family income or education appeared to be non-
linear, with higher estimates of cumulative DPM exposures
among participants with low income (<$10,000) and low
educational attainment (<high school) or reporting high
income (�$75,000) and higher educational attainment
(>high school). 

Table 10. Sociodemographic Factors, Lifestyle Factors, and Clinical Characteristics by On-Road DPM Exposure Quartiles 
in the WHIMS Cohort (1996–2005)

Population 
Characteristics  

 Mean ± SD
(µg/m3)

Cumulative Annual Average DPM (µg/m3) (quartile)

 P value
0–0.271 0.271–0.429 0.429–0.621 0.621–5.122

Median = 0.177 Median = 0.350 Median = 0.518 Median = 0.794

All N =
7,447

0.48 ± 0.3 N = 1,861 N = 1,862 N = 1,863 N = 1,861  

U.S. Region <0.0001
 Northeast 2,005 0.57 ± 0.4 255 (12.7%) 590 (29.4%) 541 (27%) 619 (30.9%)
 South 1,573 0.44 ± 0.2 416 (26.4%) 456 (29%) 384 (24.4%) 317 (20.2%)
 Midwest 1,787 0.44 ± 0.2 487 (27.3%) 438 (24.5%) 501 (28%) 361 (20.2%)
 West 2,082 0.47 ± 0.4 703 (33.8%) 378 (18.2%) 437 (21%) 564 (27.1%)

Age at screening (yr) 0.0165
 65–69 3,418 0.47 ± 0.3 894 (26.2%) 875 (25.6%) 842 (24.6%) 807 (23.6%)
 70–74 2,673 0.48 ± 0.3 664 (24.8%) 668 (25%) 664 (24.8%) 667 (25.3%)
� 75 1,356 0.50 ± 0.3 303 (22.3%) 319 (23.5%) 357 (26.3%) 377 (27.8%)

Ethnicity <0.0001
Black or African-

American
527 0.70 ± 0.4 35 (6.6%) 72 (13.7%) 150 (28.5%) 270 (51.2%)

Hispanic White 177 0.60 ± 0.4 36 (20.3%) 26 (14.7%) 49 (27.7%) 66 (37.3%)
Non-Hispanic 

White
6,472 0.46 ± 0.3 1,697 (26.2%) 1,726 (26.7%) 1,601 (24.7%) 1,448 (22.4%)

Other or missing 271 0.47 ± 0.4 93 (34.3%) 38 (14%) 63 (23.2%) 77 (28.4%)

Family income <0.0001
< $10,000 418 0.52 ± 0.3 98 (23.4%) 87 (20.8%) 108 (25.8%) 125 (29.9%)
$10,000–$34,999 3,619 0.46 ± 0.3 983 (27.2%) 958 (26.5%) 852 (23.5%) 826 (22.8%)
 $35,000–$74,999 2,406 0.49 ± 0.3 566 (23.5%) 583 (24.2%) 615 (25.6%) 642 (26.7%)
�$75,000 742 0.52 ± 0.3 150 (20.2%) 167 (22.5%) 221 (29.8%) 204 (27.5%)
 Missing 262 0.48 ± 0.3 64 (24.4%) 67 (25.6%) 67 (25.6%) 64 (24.4%)

Participant’s education level 0.0056
 < High school 574 0.5 ± 0.4 144 (25.1%) 133 (23.2%) 143 (24.9%) 154 (26.8%)
 High school/GED 1,639 0.45 ± 0.3 442 (27%) 442 (27%) 405 (24.7%) 350 (21.4%)
 > High school 5,212 0.49 ± 0.3 1,271 (24.4%) 1,283 (24.6%) 1,307 (25.1%) 1,351 (25.9%)

Table continues next page



29

J-C. Chen et al.

29

Table 10 (continued). Sociodemographic Factors, Lifestyle Factors, and Clinical Characteristics by On-Road DPM 
Exposure Quartiles in the WHIMS Cohort (1996–2005)

Population 
Characteristics  

 Mean ± SD
(µg/m3)

Cumulative Annual Average DPM (µg/m3) (quartile)

 P value
0–0.271 0.271–0.429 0.429–0.621 0.621–5.122

Median = 0.177 Median = 0.350 Median = 0.518 Median = 0.794

Employment 0.094
 Currently 

employed
1,317 0.49 ± 0.3 295 (22.4%) 311 (23.6%) 381 (28.9%) 330 (25.1%)

 Not working 815 0.49 ± 0.3 199 (24.4%) 202 (24.8%) 201 (24.7%) 213 (26.1%)
 Retired 5,290 0.48 ± 0.3 1,364 (25.8%) 1,341 (25.3%) 1,270 (24%) 1,315 (24.9%)  

Moderate or strenuous activity (�20 min)   0.4708
No activity 4,338 0.49 ± 0.3 1,054 (24.3%) 1,079 (24.9%) 1,115 (25.7%) 1,090 (25.1%)
Some activity 360 0.50 ± 0.4 81 (22.5%) 90 (25%) 93 (25.8%) 96 (26.7%)
2–4 episodes 1,445 0.48 ± 0.3 382 (26.4%) 357 (24.7%) 341 (23.6%) 365 (25.3%)
> 4 episodes 1,287 0.47 ± 0.3 342 (26.6%) 332 (25.8%) 308 (23.9%) 305 (23.7%)  

Smoking status 0.0054
 Never smoked 3,893 0.46 ± 0.3 1,039 (26.7%) 977 (25.1%) 972 (25%) 905 (23.2%)
 Past smoker 2,915 0.50 ± 0.3 681 (23.4%) 724 (24.8%) 724 (24.8%) 786 (27%)
 Current smoker 528 0.51 ± 0.4 122 (23.1%) 129 (24.4%) 138 (26.1%) 139 (26.3%)

Alcohol intake 0.0005
 Non drinker 971 0.44 ± 0.3 287 (29.6%) 257 (26.5%) 239 (24.6%) 188 (19.4%)
 Past drinker 1,463 0.48 ± 0.3 382 (26.1%) 362 (24.7%) 357 (24.4%) 362 (24.7%)
 <1 drink/day 4,053 0.49 ± 0.3 964 (23.8%) 1,021 (25.2%) 1,005 (24.8%) 1,063 (26.2%)
 >1 drink/day 890 0.49 ± 0.3 212 (23.8%) 211 (23.7%) 237 (26.6%) 230 (25.8%)

HT use ever 0.0053
 No 4,056 0.48 ± 0.3 976 (24.1%) 987 (24.3%) 1,018 (25.1%) 1,075 (26.5%)
 Yes 3,389 0.47 ± 0.3 884 (26.1%) 874 (25.8%) 845 (24.9%) 786 (23.2%)

BMI (kg/m2) 0.5452
 < 25 2,159 0.48 ± 0.3 564 (26.1%) 531 (24.6%) 540 (25%) 524 (24.3%)
 25–29 2,697 0.48 ± 0.3 679 (25.2%) 687 (25.5%) 673 (25%) 658 (24.4%)
�30 2,550 0.49 ± 0.3 607 (23.8%) 639 (25.1%) 639 (25.1%) 665 (26.1%)

History of depression     0.9766
 No 6,662 0.48 ± 0.3 1,664 (25%) 1,674 (25.1%) 1,676 (25.2%) 1,648 (24.7%)
 Yes 605 0.49 ± 0.4 150 (24.8%) 154 (25.5%) 148 (24.5%) 153 (25.3%)  

Diabetes treated ever (pills or injections) 0.1992
 No 6,951 0.48 ± 0.3 1,733 (24.9%) 1,755 (25.2%) 1,741 (25%) 1,722 (24.8%)
 Yes 482 0.51 ± 0.3 123 (25.5%) 104 (21.6%) 119 (24.7%) 136 (28.2%)

High cholesterol requiring pills ever    0.3797
 No 6,010 0.48 ± 0.3 1,506 (25.1%) 1,512 (25.2%) 1,521 (25.3%) 1,471 (24.5%)
 Yes 1,336 0.50 ± 0.3 330 (24.7%) 326 (24.4%) 323 (24.2%) 357 (26.7%)  

Hypertension ever 0.3035
 No 4,459 0.47 ± 0.3 1,129 (25.3%) 1,119 (25.1%) 1,131 (25.4%) 1,080 (24.2%)
 Yes 2,903 0.49 ± 0.3 715 (24.6%) 724 (24.9%) 706 (24.3%) 758 (26.1%)  

Cardiovascular disease ever 0.6988
 No 6,049 0.48 ± 0.3 1,502 (24.8%) 1,528 (25.3%) 1,507 (24.9%) 1,512 (25%)
 Yes 1,283 0.48 ± 0.3 333 (26%) 307 (23.9%) 326 (25.4%) 317 (24.7%)
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FREQUENCIES OF MCI AND DEMENTIA BY PM2.5 AND 
DPM EXPOSURES 

In Table 11, we present the distribution of MCI and
dementia incidence according to the population categories
defined by the quartiles of exposures to PM2.5 and DPM. 

There were 232 subjects classified as having incident
probable dementia and 360 as having incident MCI during
an average of 7.7 years of follow-up, equivalent to esti-
mated incidence rates of 4.00 per 1,000 person–years for

dementia and 6.41 per 1,000 person–years for MCI. Among
those with PM2.5 exposure data, estimated incidence rates
(3.72 and 6.34 per 1,000 person–years for dementia and
MCI, respectively) were not substantially different from
those of the entire WHIMS cohort. The total number of
dementia and MCI cases available for the PM2.5 analyses
was 214 and 354, respectively. The observed overall differ-
ences in the frequency of dementia by PM2.5 exposure cat-
egories reached marginal significance (P = 0.05), and there

Table 11. MCI and Dementia by PM2.5 and On-Road DPM Exposure Quartiles in the WHIMS Cohort (1999–2007) 

 All

Subjects
with 

Exposures
Not 

Missing

Cumulative Annual Average PM2.5 (µg/m3) (quartile)

P 
Valuea3.71–11.11 11.11–12.95 12.94–15.01 15.01–27.08

PM2.5 (µg/m3)

MCI (N) 7,327 6,915 1,735 1,731 1,721 1,728
Total person–year at risk 56,146.25 55,794.97 14,202.21 14,408.08 13,943.38 13,241.30
Number of incident cases 360 354 91 61 102 100
Event rate (cases per 1,000 

person–year)
6.41 6.34 6.41 4.23 7.32 7.55 0.001

Dementia (N) 7,479 7,050 1,763 1,762 1,762 1,763
Total person–year at risk 57,940.56 57,897.45 14,609.33 14,766.65 14,487.39 13,696.02
Number of incident cases 232 214 43 46 62 63
Event rate (cases per 1,000 

person–years)
4.00 3.72 2.94 3.12 4.28 4.60 0.05

 All

Subjects
with 

Exposures 
Not 

Missing

Cumulative Annual Average DPM (µg/m3) (quartile)

P 
Valuea0–0.271 0.271–0.429 0.429–0.621 0.621–5.122 

DPM (µg/m3)

MCI (N) 7,327 7,298 1,820 1,835 1,830 1,813
Total person–year at risk 56,142 56,104 14,101 14,628 14,216 13,159
Number of incident cases 360 358 69 92 99 98
Event rate (cases per 1,000 

person–years)
6.41 6.38 4.89 6.29 6.96 7.45 0.04 

Dementia (N) 7,479 7,447 1,861 1,862 1,863 1,861
Total person–year at risk 57,941 57,897 14,502 15,039 14,679 13,677
Number of incident cases 232 229 61 45 61 62
Event rate (cases per 1,000 

person–year)
4.00 3.96 4.21 2.99 4.16 4.53  0.37

a Global P value testing the difference in incidence rate based on likelihood ratio tests in robust Poisson regression. 
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was a tendency for increased dementia incidence across
the exposure quartiles (P = 0.01 for a linear trend test, data
not shown), with an approximately 1.5-fold increase in the
dementia incidence rate comparing the highest quartile
(4.60 per 1,000 person–years) with the lowest quartile
(2.94 per 1,000 person–years). The overall difference in
MCI incidence rates by PM2.5 exposure categories was
greater (P = 0.001 by the likelihood-ratio test with robust
Poisson regression), but the revealed association was non-
linear, with the lowest incidence rate found in the second
exposure quartile (4.23 per 1,000 person–years) and the
highest incidence rate found in the fourth quartile (7.55
per 1,000 person–years). Among participants with DPM
exposure data, estimated incidence rates (3.96 and 6.38
per 1,000 person–years for dementia and MCI, respec-
tively) were also very comparable to those estimated for
the entire WHIMS cohort. Although the observed overall
difference in the event rate of MCI by exposure categories
was modest (P = 0.04), there was a gradual increase in the
estimated MCI incidence rate across the quartiles of
increased cumulative DPM exposure (P = 0.03 for a trend
test). The event rate of dementia did not differ across the
cumulative DPM exposure categories (P = 0.37). 

COX MODELS FOR ADJUSTED ASSOCIATIONS WITH 
PM2.5 EXPOSURES

In the crude Cox model, the HR for MCI/dementia
increased modestly (crude HR = 1.05; 95% CI: 0.94–1.18,
per interquartile increase [3.9-µg/m3] in cumulative PM2.5
exposures). Slightly increased HRs were also found in the
secondary analyses separately for MCI (crude HR = 1.06;
95% CI: 0.93–1.21) and probable dementia (crude HR =
1.09; 95% CI: 0.92–1.29). However, none of these associa-
tions reached statistical significance. In subsequent Cox
proportional hazard models (Table 12), no associations
were reported between PM2.5 and MCI and dementia. 

MODIFICATIONS OF HYPOTHESIZED ADVERSE 
NEUROCOGNITIVE EFFECTS OF PM2.5 EXPOSURES

Table 13 summarizes the results of Cox proportional
hazard models assessing effect modifications by BMI cate-
gories, CVD histories, diabetes mellitus, or WBC count. No
statistically significant associations were found between
cumulative PM2.5 exposures and the incidence of neuro-
cognitive outcomes; a similar lack of statistically signifi-
cant associations was found in the primary analyses for the

Table 12. Cox Proportional Hazard Modeling Results of PM2.5 Exposurea and MCI and Dementia in the WHIMS Cohort 
(1999–2007)

Exposure
Variable Modelsb MCI Dementia MCI/Dementia

Cumulative 
annual 
average
PM2.5 (lag0)

Crude N = 6,883, n = 322
1.06 (0.93 to 1.21), P = 0.38

N = 7,050, n = 214
1.09 (0.92 to 1.29), P = 0.32

N = 7,012, n = 451 
1.05 (0.94 to 1.18), P = 0.38

Model I
N = 6,883, n = 32
0.95 (0.82 to 1.09), P = 0.42

N = 7,050, n = 214
1.01 (0.85 to 1.20), P = 0.92

N = 7,012, n = 451 
0.95 (0.85 to 1.07), P = 0.41

Model II
N = 6,845, n = 317
0.95 (0.82 to 1.09), P = 0.44

N = 7,011, n = 211
0.99 (0.83 to 1.18), P = 0.92

N = 6,973, n = 445
0.95 (0.85 to 1.07), P = 0.42

Model III
N = 6,702, n = 306
0.94 (0.82 to 1.08), P = 0.39

N = 6,862, n = 202
1.00 (0.83 to 1.20), P = 1.00

N = 6,824, n = 428
0.96 (0.85 to 1.08), P = 0.47

Model IV
N = 6,308, n = 267
0.96 (0.82 to 1.12), P = 0.59

N = 6,447, n = 171
1.00 (0.81 to 1.22), P = 0.96

N = 6,413, n = 372
0.96 (0.84 to 1.10), P = 0.56

Model V
N = 6,185, n = 261
0.94 (0.80 to 1.11), P = 0.47

N = 6,317, n = 168 
1.00 (0.81 to 1.23), P = 0.98

N = 6,287, n = 363
0.95 (0.83 to 1.09), P = 0.46

Model VI
N = 6,126, n = 256
0.93 (0.79 to 1.09), P = 0.39

N = 6,258, n = 167 
0.99 (0.81 to 1.22), P = 0.95

N = 6,228, n = 358
0.94 (0.82 to 1.08), P = 0.38

a Expressed as the hazard ratios (95% confidence interval) associated with each interquartile increment (3.9 µg/m3) of time-varying cumulative annual 
PM2.5 exposures. 

b Model I: adjusted for geographic region, age, and race or ethnicity. Model II: adjusted for Model I covariates and SES (education, income, and employment 
status). Model III: adjusted for Model II covariates and lifestyle factors (smoking, alcohol use, and physical activity). Model IV: adjusted for Model III 
covariates, HT, depressive symptoms, and BMI. Model V: adjusted for Model IV covariates and conventional CVD risk factors (hypertension, diabetes 
mellitus, and hypercholesterolemia). Model VI: adjusted for Model V covariates and CVD histories.
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Table 13. Cox Proportional Hazard Modeling Results for PM2.5 Exposurea and MCI and Dementia in the WHIMS Cohort 
(1999–2007) by BMI, CVD, Diabetes Mellitus, and WBC Count

Models MCI Dementia Incident MCI or Dementia

Models by BMI

Crude

Main N = 6,845, n = 320
1.06 (0.93 to 1.21), P = 0.38

N = 7,012, n = 213
1.09 (0.92 to 1.29), P = 0.31

N = 6,974, n = 449
1.05 (0.94 to 1.18), P = 0.38

BMI < 25 kg/m2 N = 1,990, n = 110 
1.02 (0.81 to 1.27), P = 0.90

N = 2,048, n = 80 
1.13 (0.86 to 1.47), P = 0.37

N = 2,036, n = 156
1.02 (0.85 to 1.24), P = 0.81

BMI 25–29 kg/m2 N = 2,482, n = 100
 0.92 (0.73 to 1.16), P = 0.47

N = 2,546, n = 72
1.22 (0.92 to 1.6), P = 0.16

N = 2,532, n = 150
1.02 (0.84 to 1.24), P = 0.82

BMI � 30 kg/m2 N = 2,373, n = 110 
1.28 (1.02 to 1.60), P = 0.03

N = 2,418, n = 61
0.89 (0.64 to 1.24), P = 0.49

N = 2,406, n = 143
1.12 (0.92 to 1.38), P = 0.26

Interaction P value 0.12 0.34 0.74

Adjustedb

Main N = 6,126, n = 256
0.94 (0.80 to 1.10), P = 0.43

N = 6,258, n = 167
1.00 (0.81 to 1.23), P = 0.98

N = 6,228, n = 358
0.95 (0.83 to 1.08), P = 0.43

BMI < 25 kg/m2 N = 1,788, n = 86
0.93 (0.71 to 1.22), P = 0.61

N = 1,830, n = 55 
1.06 (0.75 to 1.49), P = 0.74

N = 1,819, n = 117 
0.96 (0.76 to 1.20), P = 0.70

BMI 25–29 kg/m2 N = 2,225, n = 81 
0.78 (0.60 to 1.03), P = 0.08

N = 2,277, n = 58 
1.07 (0.77 to 1.48), P = 0.70

N = 2,267, n = 123 
0.89 (0.71 to 1.10), P = 0.27

BMI � 30 kg/m2 N = 2,113, n = 89 
1.12 (0.86 to 1.46), P = 0.38

N = 2,151, n = 54 
0.85 (0.59 to 1.24), P = 0.40

N = 2,142, n = 118 
1.01 (0.80 to 1.28), P = 0.91

Interaction P value 0.16 0.60 0.69

Models by CVD

Crude

Main N = 6,778, n = 313
1.06 (0.93 to 1.21), P = 0.40

N = 6,943, n = 211
1.09 (0.92 to 1.29), P = 0.32

N = 6,906, n = 441,
1.05 (0.94 to 1.18), P = 0.41

No N = 5,613, n = 243 
1.03 (0.89 to 1.20), P = 0.69

N = 5,746, n = 167 
1.09 (0.91 to 1.32), P = 0.34

N = 5,720, n = 350 
1.04 (0.91 to 1.18), P = 0.58

Yes N = 1,165, n = 70
1.17 (0.88 to 1.55), P = 0.29

N = 1,197, n = 44
1.06 (0.73 to 1.55), P = 0.75

N = 1,186, n = 91
1.10 (0.85 to 1.42), P = 0.46

Interaction P value 0.46 0.89 0.68

Adjustedb

Main N = 6,126, n = 256
0.94 (0.80 to 1.10), P = 0.43

N = 6,258, n = 167
1.00 (0.81 to 1.23), P = 0.98

N = 6,228, n = 358
0.95 (0.83 to 1.08), P = 0.43

No N = 5,084, n = 194
0.92 (0.77 to 1.10), P = 0.36

N = 5,191, n = 130
1.02 (0.82 to 1.28), P = 0.84

N = 5,169, n = 279
0.94 (0.81 to 1.09), P = 0.43

Yes N = 1,042, n = 62
1.00 (0.73 to 1.37), P = 0.99

N = 1,067, n = 37
0.90 (0.58 to 1.40), P = 0.64

N = 1,059, n = 79
0.97 (0.73 to 1.29), P = 0.83

Interaction P value 0.63 0.60 0.85

Table continues next page

a Expressed as the hazard ratios (95% confidence interval) associated with each interquartile increment (3.9 µg/m3) of time-varying cumulative annual 
PM2.5 exposures. 

b Using Model VI: adjusted for geographic region, age, and race, or ethnicity; SES (education, income, and employment status); lifestyle factors (smoking, 
alcohol use, and physical activity); HT; depressive symptoms; BMI; conventional CVD risk factors (hypertension, diabetes mellitus, and 
hypercholesterolemia); and CVD histories.
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Table 13 (continued). Cox Proportional Hazard Modeling Results for PM2.5 Exposurea and MCI and Dementia in the 
WHIMS Cohort (1999–2007) by BMI, CVD, Diabetes Mellitus, and WBC Count

Models MCI Dementia Incident MCI or Dementia

Models by Diabetes Mellitus

Crude

Main N = 6,872, n = 321, 1.07
(0.94 to 1.22), P = 0.33

N = 7,038, n = 213
1.09 (0.93 to 1.29), P = 0.29

N = 7,001, n = 450
1.06 (0.94 to 1.18), P = 0.35

No N = 6,448, n = 278
1.06 (0.92 to 1.22), P = 0.42

N = 6,604, n = 202
1.08 (0.91 to 1.28), P = 0.39

N = 6,574, n = 404
1.06 (0.94 to 1.19), P = 0.38

Yes N = 424, n = 43
1.13 (0.78 to 1.64), P = 0.52

N = 434, n = 11
1.46 (0.70 to 3.02), P = 0.31

N = 427, n = 46
1.06 (0.74 to 1.53), P = 0.74

Interaction P value 0.75 0.43 0.97

Adjustedb

Main N = 6,126, n = 256
0.94 (0.80 to 1.10), P = 0.43

N = 6,258, n = 167
1.00 (0.81 to 1.23), P = 0.98

N = 6,228, n = 358
0.95 (0.83 to 1.08), P = 0.43

No N = 5,763, n = 220
0.94 (0.79 to 1.11), P = 0.47

N = 5,887, n = 159
1.00 (0.81 to 1.23), P = 0.99

N = 5,863, n = 320
0.95 (0.83 to 1.10), P = 0.52

Yes N = 363, n = 36
0.92 (0.60 to 1.41), P = 0.71

N = 371, n = 8
0.99 (0.39 to 2.53), P = 0.98

N = 365, n = 38
0.87 (0.58 to 1.31), P = 0.51

Interaction P value 0.94 0.98 0.67

Models by WBC Count

Crude
Main N = 6,654, n = 303

1.05 (0.92 to 1.21), P = 0.47
N = 6,813, n = 203
1.06 (0.90 to 1.26), P = 0.48

N = 6,777, n = 426
1.04 (0.92 to 1.16), P = 0.55

WBC �5,000/µL N = 3,233, n = 139
1.06 (0.87 to 1.30), P = 0.54

N = 3,318, n = 97
1.12 (0.87 to 1.42), P = 0.38

N = 3,296, n = 202 
1.07 (0.90 to 1.26), P = 0.45

WBC < 5,000/µL N = 3,421, n = 164
1.04 (0.86 to 1.25), P = 0.67

N = 3,495, n = 106
1.02 (0.80 to 1.29), P = 0.89

N = 3,481, n = 224
1.01 (0.86 to 1.19), P = 0.92

Interaction P value 0.88 0.60 0.63

Adjustedb

Main N = 5,929, n = 242
0.92 (0.78 to 1.08), P = 0.30

N = 6,053, n = 157
0.96 (0.78 to 1.19), P = 0.73

N = 6,025, n = 338
0.92 (0.80 to 1.06), P = 0.23

WBC �5,000/µL N = 2,888, n = 109 
0.94 (0.74 to 1.18), P = 0.57

N = 2,957, n = 80
1.01 (0.76 to 1.33), P = 0.96

N = 2,941, n = 162 
0.94 (0.78 to 1.14), P = 0.52

WBC < 5,000/µL N = 3,041, n = 133
0.90 (0.72 to 1.12), P = 0.34

N = 3,096, n = 77 
0.91 (0.67 to 1.24), P = 0.56

N = 3,084, n = 176
0.89 (0.74 to 1.09), P = 0.26

Interaction P value 0.80 0.63 0.71

a Expressed as the hazard ratios (95% confidence interval) associated with each interquartile increment (3.9 µg/m3) of time-varying cumulative annual 
PM2.5 exposures. 

b Using Model VI: adjusted for geographic region, age, and race, or ethnicity; SES (education, income, and employment status); lifestyle factors (smoking, 
alcohol use, and physical activity); HT; depressive symptoms; BMI; conventional CVD risk factors (hypertension, diabetes mellitus, and 
hypercholesterolemia); and CVD histories.

MCI/dementia outcome as well as in the secondary anal-
yses for the specific incidence of MCI and dementia sepa-
rately. Although the increased crude HR for MCI was
statistically significant (crude HR = 1.28; 95% CI: 1.02–
1.60) among participants who were obese (BMI �30 kg/m2),

this association became statistically nonsignificant
(adjusted HR = 1.12; 95% CI: 0.86–1.46) after adjusting fur-
ther for geographic region, age, race or ethnicity, SES, life-
style factors, HT use, depressive symptoms, BMI, CVD risk
factors, and CVD histories. 
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COX MODELS FOR ADJUSTED ASSOCIATIONS WITH 
DPM EXPOSURES

Table 14 presents the results of Cox proportional hazard
models examining DPM exposure effects with statistical
adjustment for multiple potential confounders. For cumu-
lative average DPM (upper panel) in the crude Cox model,
the HR for MCI or dementia was modestly elevated (crude
HR = 1.07; 95% CI: 0.98–1.17, per interquartile increase
[0.35 µg/m3] in cumulative DPM exposures). A very
modest increase in HR was also found in the secondary
analyses separately for MCI (crude HR = 1.09; 95% CI:
0.98–1.2) and for dementia (crude HR = 1.03; 95% CI:
0.89–1.19); none of these differences reached the predeter-
mined level of statistical significance (P = 0.05). The
observed association between increased cumulative DPM
exposure and elevated HR for MCI or dementia in the
crude analyses went away after adjusting for geographic
region, age, and race or ethnicity (adjusted HR = 0.96; 95%
CI: 0.86–1.06; model I of Table 14, upper panel); the same
lack of associations was found in the other Cox models
after adjusting for the various potential confounders. Sim-
ilarly, in the secondary analyses separately for MCI and
dementia, our crude estimates with slightly increased HRs
were greatly attenuated in the multiple-covariate-adjusted
Cox models. 

The HR for MCI or dementia associated with estimated
DPM exposures at baseline (lower panel of Table 14) was
modestly elevated (crude HR = 1.07; 95% CI: 0.96–1.2, per
interquartile increase [0.35-µg/m3] in baseline DPM expo-
sures), but this association was not statistically significant
(P = 0.20). In the secondary analyses, baseline DPM expo-

sure was only associated with a modest increase in HR for
MCI (crude HR = 1.08; 95% CI: 0.95–1.23); the association
was not statistically significant (P = 0.22). Similar to the
differences between the crude and adjusted analyses for
cumulative DPM exposures, the observed modest associa-
tions between baseline DPM exposure and MCI/dementia
and between baseline DPM exposure and MCI separately
disappeared after adjusting for geographic region, age, and
race or ethnicity (model I). In the multiple-covariate-
adjusted Cox models for combined MCI/dementia or for
MCI and dementia separately, no evidence was found for
the hypothesized adverse effects of baseline DPM exposure
on neurocognitive disorders. We found very similar results
in the sensitivity analyses restricted to non-Hispanic whites
or not adjusted for geographic region (Table B.5 in
Appendix B, available on the HEI website). Note that the
correlation between baseline DPM and cumulative DPM
was very high (0.93) (Table A.1, Appendix A).

MODIFICATION OF HYPOTHESIZED ADVERSE 
NEUROCOGNITIVE EFFECTS OF DPM EXPOSURES

Table 15 summarizes the results from multiple-
covariate-adjusted Cox models assessing effect modifica-
tions by BMI categories, CVD histories, diabetes mellitus,
or WBC count. These effect-modification analyses
revealed no statistically significant associations between
cumulative DPM exposures and the incidence of neuro-
cognitive outcomes. No statistical interactions were found
in either the primary analyses with MCI/dementia com-
bined or in the secondary analyses on the incidence of MCI
and dementia separately. 
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Table 14. Cox Proportional Hazard Modeling Results of On-Road DPM Exposurea and MCI and Dementia in the WHIMS 
Cohort (1999–2007)

Exposure Variable 
/Modelsb MCI Dementia

Incident MCI 
or Dementia

DPM Cumulative Average (lag0)

Crude N = 7,295, n = 355
1.09 (0.98, 1.2), P = 0.12

N = 7,447, n = 229
1.03 (0.89, 1.19), P = 0.69

N = 7,437, n = 497
1.07 (0.98, 1.17), P = 0.12

Model I N = 7,295, n = 355
0.94 (0.84, 1.07), P = 0.36

N = 7,447, n = 229
0.95 (0.81, 1.11), P = 0.53

N = 7,437, n = 497
0.96 (0.86, 1.06), P = 0.39

Model II N = 7,253, n = 350
0.96 (0.85, 1.08), P = 0.47

N = 7,404, n = 226
0.96 (0.82, 1.13), P = 0.62

N = 7,394, n = 491
0.97 (0.87, 1.07), P = 0.53

Model III N = 7,096, n = 339
0.96 (0.84, 1.09), P = 0.5

N = 7,239, n = 215
0.97 (0.82, 1.14), P = 0.69

N = 7,229, n = 472
0.97 (0.87, 1.08), P = 0.57

Model IV N = 6,680, n = 298
0.98 (0.86, 1.11), P = 0.72

N = 6,803, n = 183
0.98 (0.81, 1.17), P = 0.79

N = 6,795, n = 413
0.99 (0.88, 1.1), P = 0.81

Model V N = 6,546, n = 289
0.96 (0.84, 1.1), P = 0.57

N = 6,663, n = 178
1.00 (0.83, 1.20), P = 0.98

N = 6,656, n = 399
0.98 (0.87, 1.11), P = 0.78

Model VI N = 6,485, n = 284
0.96 (0.84, 1.11), P = 0.60

N = 6,602, n = 177
1.01 (0.84, 1.2), P = 0.95

N = 6,595, n = 394
0.99 (0.88, 1.11), P = 0.81

DPM Baseline Average (lag0)

Crude N = 6,969, n = 340
1.08 (0.95, 1.23), P = 0.22

N = 7,112, n = 220
1.03 (0.87, 1.21), P = 0.75

N = 7,106, n = 477
1.07 (0.96, 1.2), P = 0.20

Model I N = 6,969, n = 340
0.93 (0.81, 1.07), P = 0.33

N = 7,112, n = 220
0.95 (0.8, 1.14), P = 0.59

N = 7,106, n = 477
0.95 (0.85, 1.07), P = 0.40

Model II N = 6,928, n = 335
0.96 (0.83, 1.10), P = 0.52

N = 7,071, n = 217
0.97 (0.82, 1.16), P = 0.77

N = 7,065, n = 471
0.97 (0.86, 1.09), P = 0.60

Model III N = 6,780, n = 326
0.96 (0.83, 1.10), P = 0.53

N = 6,914, n = 206
0.98 (0.82, 1.18), P = 0.84

N = 6,908, n = 454
0.97 (0.86, 1.11), P = 0.64

Model IV N = 6,387, n = 288
0.97 (0.84, 1.13), P = 0.73

N = 6,502, n = 174
0.97 (0.79, 1.18), P = 0.74

N = 6,497, n = 398
0.98 (0.86, 1.11), P = 0.71

Model V N = 6,265, n = 279
0.95 (0.82, 1.11), P = 0.55

N = 6,366, n = 169
1.01 (0.83, 1.23), P = 0.93

N = 6,362, n = 384
0.98 (0.86, 1.11), P = 0.72

Model VI
N = 6,201, n = 274
0.95 (0.82, 1.11), P = 0.55

N = 6,310, n = 168
1.02 (0.83, 1.25), P = 0.84

N = 6,306, n = 379
0.98 (0.86, 1.12), P = 0.75

a Expressed as the hazard ratios (95% confidence interval) associated with each interquartile increment (0.35 µg/m3) of time-varying cumulative annual or 
baseline exposures to DPM from on-road sources. 

b Model I: adjusted for geographic region, age, and race or ethnicity. Model II: adjusted for Model I covariates and SES (education, income, and employment 
status). Model III: adjusted for Model II covariates and lifestyle factors (smoking, alcohol use, and physical activity). Model IV: adjusted for Model III 
covariates, HT, depressive symptoms, and BMI. Model V: adjusted for Model IV covariates and conventional CVD risk factors (hypertension, diabetes 
mellitus, and hypercholesterolemia). Model VI: adjusted for Model V covariates and CVD histories.
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Table 15. Cox Proportional Hazard Modeling Results of On-Road DPM Exposurea and MCI and Dementia in the WHIMS 
Cohort (1999–2007) by BMI, CVD, Diabetes Mellitus, and WBC Count

Models MCI Dementia Incident MCI or Dementia

Models by BMI

Crude

Main N = 7,254, n = 353
1.08 (0.98, 1.20), P = 0.13

N = 7,406, n = 228
1.03 (0.89, 1.19), P = 0.72

N = 7,396, n = 495
1.07 (0.98, 1.17), P = 0.13

BMI < 25 kg/m2 N = 2,100, n = 121
0.96 (0.78, 1.18), P = 0.69

N = 2,159, n = 90
1.08 (0.87, 1.34), P = 0.49

N = 2,155, n = 176
1.00 (0.84, 1.18), P = 0.96

BMI = 25–29 kg/m2 N = 2,644, n = 112
1.15 (0.97, 1.36), P = 0.10

N = 2,697, n = 73
1.06 (0.83, 1.35), P = 0.64

N = 2,695, n = 163
1.15 (1.00, 1.32), P = 0.06

BMI � 30 kg/m2 N = 2,510, n = 120
1.12 (0.96, 1.31), P = 0.15

N = 2,550, n = 65
0.91 (0.67, 1.23), P = 0.55

N = 2,546, n = 156
1.07 (0.92, 1.25), P = 0.39

Interaction P value 0.37 0.65 0.45

Adjustedb

Main N = 6,485, n = 284
0.96 (0.84, 1.11), P = 0.58

N = 6,602, n = 177
1.01 (0.84, 1.20), P = 0.95

N = 6,595, n = 394
0.99 (0.88, 1.11), P = 0.82

BMI < 25 kg/m2 N = 1,888, n = 96
0.86 (0.67, 1.11), P = 0.26

N = 1,928, n = 61
1.19 (0.90, 1.56), P = 0.22

N = 1,924, n = 132
0.95 (0.77, 1.17), P = 0.61

BMI = 25–29 kg/m2 N = 2,365, n = 90
1.03 (0.85, 1.26), P = 0.74

N = 2,409, n = 59
0.96 (0.71, 1.29), P = 0.79

N = 2,408, n = 133
1.05 (0.89, 1.24), P = 0.59

BMI � 30 kg/m2 N = 2,232, n = 98
0.97 (0.78, 1.21), P = 0.79

N = 2,265, n = 57
0.87 (0.61, 1.24), P = 0.43

N = 2,263, n = 129
0.95 (0.77, 1.16), P = 0.60

Interaction P value 0.53 0.33 0.66

Models by CVD

Crude

Main N = 7,182, n = 345
1.08 (0.97, 1.20), P = 0.15

N = 7,332, n = 225
1.04 (0.91, 1.20), P = 0.54

N = 7,322, n = 485
1.07 (0.98, 1.17), P = 0.13

No N = 5,924, n = 266
1.06 (0.94, 1.20), P = 0.35

N = 6,049, n = 179
1.08 (0.93, 1.25), P = 0.32

N = 6,042, n = 384
1.06 (0.96, 1.18), P = 0.24

Yes N = 1,258, n = 79
1.15 (0.93, 1.41), P = 0.19

N = 1,283, n = 46
0.90 (0.63, 1.29), P = 0.57

N = 1,280, n = 101
1.10 (0.91, 1.34), P = 0.31

Interaction P value 0.52 0.37 0.74

Adjustedb

Main N = 6,485, n = 284
0.96 (0.84, 1.11), P = 0.58

N = 6,602, n = 177
1.01 (0.84, 1.20), P = 0.95

N = 6,595, n = 394
0.99 (0.88, 1.11), P = 0.82

No N = 5,358, n = 215
0.98 (0.84, 1.14), P = 0.80

N = 5,455, n = 138
1.06 (0.88, 1.27), P = 0.56

N = 5,450, n = 307
1.00 (0.88, 1.14), P = 0.94

Yes N = 1,127, n = 69
0.91 (0.69, 1.19), P = 0.47

N = 1,147, n = 39
0.77 (0.49, 1.22), P = 0.27

N = 1,145, n = 87
0.92 (0.71, 1.18), P = 0.50

Interaction P value 0.60 0.21 0.51

Table continues next page

a Expressed as the hazard ratios (95% confidence intervals) for each interquartile increment (0.35 µg/m3) of time-varying cumulative annual exposure to 
DPM from on-road sources.

b Using Model VI: adjusted for geographic region, age, race, or ethnicity; SES (education, income, and employment status); lifestyle factors (smoking, alcohol 
use, and physical activity); HT; depressive symptoms; BMI; conventional CVD risk factors (hypertension, diabetes mellitus, and hypercholesterolemia); 
and CVD histories.
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Table 15 (continued). Cox Proportional Hazard Modeling Results of On-Road DPM Exposurea and MCI and Dementia in 
the WHIMS Cohort (1999–2007) by BMI, CVD, Diabetes Mellitus, and WBC Count

Models MCI Dementia Incident MCI or Dementia

Models by Diabetes Mellitus

Crude

Main N = 7,282, n = 353
1.09 (0.98, 1.20), P = 0.12

N = 7,433, n = 227,
1.04 (0.90, 1.19), P = 0.62

N = 7,423, n = 494
1.08 (0.98, 1.18), v = 0.11

No N = 6,808, n = 306
1.08 (0.97, 1.21), P = 0.18

N = 6,951, n = 214
1.04 (0.90, 1.20), P = 0.58

N = 6,944, n = 442
1.08 (0.98, 1.18), P = 0.13

Yes N = 474, n = 47
1.13 (0.85, 1.50), P = 0.41

N = 482, n = 13
0.94 (0.48, 1.84), P = 0.86

N = 479, n = 52
1.08 (0.81, 1.44), P = 0.58

Interaction P value 0.78 0.77 0.96

Adjustedb

Main N = 6,485, n = 284
0.96 (0.84, 1.11), P = 0.58

N = 6,602, n = 177
1.01 (0.84, 1.20), P = 0.95

N = 6,595, n = 394
0.99 (0.88, 1.11), P = 0.82

No N = 6,079, n = 245
0.99 (0.86, 1.14), P = 0.87

N = 6,189, n = 167
1.03 (0.86, 1.23), P = 0.76

N = 6,185, n = 351
1.01 (0.90, 1.14), P = 0.88

Yes N = 406, n = 39
0.80 (0.55, 1.16), P = 0.23

N = 413, n = 10
0.58 (0.23, 1.50), P = 0.26

N = 410, n = 43
0.79 (0.55, 1.15), P = 0.22

Interaction P value 0.28 0.24 0.21

Models by WBC Count

Crude

Main N = 7,045, n = 334
1.08 (0.97, 1.20), P = 0.18

N = 7,191, n = 218
1.03 (0.89, 1.19), P = 0.72

N = 7,181, n = 470
1.07 (0.97, 1.17), P = 0.16

WBC � 5,000/µL N = 3,666, n = 179
1.05 (0.91, 1.21), P = 0.52

N = 3,737, n = 116
1.06 (0.89, 1.26), P = 0.50

N = 3,734, n = 247
1.05 (0.93, 1.18), P = 0.46

WBC < 5,000/µL N = 3,379, n = 155
1.12 (0.95, 1.33), P = 0.18

N = 3,454, n = 102
0.97 (0.76, 1.24), P = 0.80

N = 3,447, n = 223
1.10 (0.95, 1.28), P = 0.19

Interaction P value 0.54 0.55 0.59

Adjustedb

Main N = 6,271, n = 268
0.97 (0.84, 1.11), P = 0.63

N = 6,382, n = 167
1.01 (0.84, 1.22), P = 0.91

N = 6,375, n = 372
0.99 (0.88, 1.12), P = 0.91

WBC � 5,000/µL N = 3,267, n = 146
0.96 (0.80, 1.15), P = 0.65

N = 3,318, n = 84
1.07 (0.85, 1.34), P = 0.57

N = 3,315, n = 194
1.00 (0.86, 1.17), P = 0.98

WBC < 5,000/µL N = 3,004, n = 122
0.97 (0.79, 1.20), P = 0.81

N = 3,064, n = 83
0.94 (0.70, 1.25), P = 0.65

N = 3,060, n = 178
0.98 (0.83, 1.17), P = 0.85

Interaction P value 0.90 0.47 0.87

a Expressed as the hazard ratios (95% confidence intervals) for each interquartile increment (0.35 µg/m3) of time-varying cumulative annual exposure to 
DPM from on-road sources.

b Using Model VI: adjusted for geographic region, age, race, or ethnicity; SES (education, income, and employment status); lifestyle factors (smoking, alcohol 
use, and physical activity); HT; depressive symptoms; BMI; conventional CVD risk factors (hypertension, diabetes mellitus, and hypercholesterolemia); 
and CVD histories.
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DISCUSSION

NEUROTOXIC EFFECTS 

Effects of PM2.5 Exposure on Brain Structure

In this large-scale epidemiological study on residential
exposure to fine particles and human brain structure, we
found that healthy, cognitively intact participants had
smaller brain volumes, especially in the normal-appearing
WM, if they lived in locations with higher levels of long-
term exposure to PM2.5 before the brain MRI scans were
performed. The observed associations were not explained
by sociodemographic factors, SES, lifestyle factors, or
other clinical characteristics. Our study findings add to the
growing epidemiological evidence supporting the
emerging concept that late-in-life exposures to ambient
particulate air pollutants are a novel environmental deter-
minant of brain aging. 

Our analyses showed that the putative adverse effect on
brain structure in participants was driven primarily by the
smaller WM volumes associated with cumulative PM2.5
exposures, which were present in the WM of association
brain regions (frontal, parietal, and temporal) and the
corpus callosum. In contrast, the brain volumes of normal
GM tissues and the hippocampus did not differ by expo-
sures. Although our observed lack of associations between
GM volume and PM2.5 exposures was consistent with cur-
rent toxicology literature showing no strong evidence for
neuronal death or synaptic loss in animals with inhaled
exposures to fine particles, we could not exclude the pos-
sibility that smaller GM volumes might be found in the
elderly exposed to other PM with different neurotoxic
characteristics (e.g., ultrafine particles). 

Our study did not provide evidence for the modification
of adverse effects on smaller WM volume by cardiovas-
cular risk factors. Although one can argue that stronger
associations in participants with prior CVD suggested pos-
sible interactions of CVD-related neurovascular damage
with an underlying neuropathology of smaller WM vol-
umes associated with PM2.5 exposures, the putative
adverse effects on WM were still present in participants
without CVD or diabetes mellitus. 

Although we did not find that PM2.5 exposure affected
hippocampal volume, the consistent pattern of adverse
effects on WM volumes in association brain regions (espe-
cially the frontal and temporal WM) points to the possible
impairment of higher cortical control functions and
memory with long-term PM2.5 exposures. This projected
memory loss was seen in two longitudinal studies (Tonne
et al. 2014; Weuve et al. 2012). Using data from the Nurses’

Health Study Cognitive Cohort, Weuve and colleagues
reported that memory function declined in older women
(70 to 81 years) living in locations with higher PM2.5 expo-
sures. Tonne and colleagues found an adverse PM2.5 effect
on memory decline among older men and women (N =
2,687; 66 ± 6 years old) in the Whitehall II cohort and
living in Greater London. If our observed associations
reflect some of the structural brain substrates linking
PM2.5 with cognitive aging, greater declines in executive
functions, episodic memory, and information processing
speed would be expected in the elderly with higher expo-
sure. Although one longitudinal study of older women
(Weuve et al. 2012) suggested that PM exposures adversely
affected executive functions, such putatively neurotoxic
effects on cognitive aging were not found in a longitudinal
study of older men (Power et al. 2011) or in three cross-sec-
tional analyses (Gatto et al. 2014; Ranft et al. 2009; Welle-
nius et al. 2012) that included men and women. Two
studies, one cross-sectional (Ailshire and Crimmins 2014)
and one longitudinal (Tonne et al. 2014), found associa-
tions between PM2.5 exposure and diminished perfor-
mance of episodic memory (Ailshire and Crimmins 2014),
but two longitudinal studies (Power et al. 2011; Weuve et
al. 2012) with instruments assessing episodic memory did
not report such findings. We found no published data on
PM2.5 and information processing speed. This important
knowledge gap in the emerging field that combines the
study of air pollution and neuroepidemiology may be
addressed by comprehensive analyses with longitudinal
data on subdomain cognitive declines. 

Our study findings add further evidence to the emerging
field of environmental neurosciences by suggesting that
WM architecture is a novel target of PM neurotoxicity. In
an earlier study comparing regional brain volumes as mea-
sured by MRI, Calderón-Garcidueñas and colleagues
(2011) found smaller WM volumes in the right parietal and
bilateral temporal lobes of healthy children in Mexico City
(n = 20) versus controls (n = 10). A recent cross-sectional
study also showed that early-life PM2.5 exposure may
affect age-related WM maturation (Peterson et al. 2015). In
a sample of 40 minority urban-dwelling school-age chil-
dren, prenatal exposures to polycyclic aromatic hydrocar-
bons (measured from personal air samples of PM2.5 during
pregnancy) were associated with smaller local WM
volume, as indicated by the reduction of surface areas.
Neuroepidemiological studies have also linked ambient
air pollution with the occurrence and relapse of multiple
sclerosis (Oikonen et al. 2003), the most common WM dis-
ease characterized by extensive neuroinflammation. In
mice exposed to concentrated particles (Allen et al.
2014b), more recent toxicological data showed persistent
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glial activation in the corpus callosum. In addition to vol-
umetric measures, future studies should use diffusion
tensor imaging (Madden et al. 2009) to examine whether
cerebral WM integrity is disrupted by PM exposure. To
elucidate the neuropathology and mechanisms underlying
the observed adverse PM2.5 effects on WM volumes, we
also need to understand whether exposures to airborne
particles may cause myelination disturbance (Kohama et
al. 2012) and age-related decrease of the oligodendrocytes
in subcortical WM (Chen et al. 2011). 

Effects of DPM Exposure on Brain Structure

In our analyses using aggregated DPM estimates at the
census-tract level as a proxy indicator of exposure to PM
from traffic sources in this nationwide cohort of older
women, we found an association between increasing DPM
exposure and larger ventricular volume, suggesting an
overall atrophic effect on the aging brains. This association
could not be explained by sociodemographic factors, SES,
lifestyle, or other clinical characteristics. An overall atro-
phic effect on brain structure was also found in a recent
toxicological study reporting ventriculomegaly (i.e.,
dilated lateral ventricle) following exposure to ultrafine
(<100 nm) concentrated ambient particles (Allen et al.
2014a).

We also found that participants tended to have smaller
GM volumes if they lived in areas with the highest esti-
mate (i.e., in the fourth quartile) of cumulative DPM expo-
sure in the 10 years prior to the brain MRI scans compared
with the other women with lower estimates (i.e., in the
first to third quartiles of exposures). This observed associ-
ation was present for the total brain GM and in the associ-
ation cortices (frontal, parietal, and temporal) and
remained robust in the analyses adjusting for multiple
potential confounders, including geographic region,
sociodemographic features, SES, lifestyle factors, and
other clinical characteristics. Under the assumptions
(1) that NATA-derived DPM estimates were a reasonable
ecological measure of PM exposure from traffic sources
and (2) that there were no other major confounding in the
association observed in this cohort of mostly cognitively
intact older women, our study findings implied that the
neuropathological changes underlying the neurotoxic
effects in elderly women exposed to traffic-related air pol-
lutants might involve damage to synapses. To the best of
our knowledge, our study findings likely provide the first
air pollution–epidemiological evidence for GM neurotox-
icity associated with DPM, which is in line with previous
reports demonstrating in vivo (Fonken et al. 2011) and in
vitro (Davis et al. 2013) evidence for reduced synaptic
plasticity in response to airborne particle exposures. 

Unlike the fairly linear and consistent associations
between PM2.5 exposure and smaller WM volumes in the
association brain and corpus callosum in the current
study, our analyses suggested that the differences in WM
volumes appeared to be nonlinear in participants with
varying levels of DPM exposure, though such an associa-
tion was not found for the corpus callosum. Although we
rigorously adjusted for multiple potential confounders, we
could not completely rule out the possibility that the non-
linear pattern of associations between DPM exposures and
WM volumes might still be subject to other residual or
unmeasured confounding. If any such confounding exists,
it would suggest that the confounders would have to be
more prevalent in the midrange of cumulative DPM expo-
sure and that they would affect WM but not GM volumes.
Alternatively, the nonlinear associations may imply the
possibility of different pathological processes between
participants who mostly lived in census tracts with lower
exposure levels (the first to third quartiles) and those who
lived with the highest exposure (the fourth quartile). How-
ever, it is unclear why the presumed exposure-associated
complex pathological changes did not occur in the corpus
callosum. Another possibility is that the observed nonlinear
associations might be driven largely by the highly skewed
exposure distribution (see Appendix A for the exposure dis-
tribution). In the high-exposure group (Table 7, Part B, right
panel), the larger WM volumes associated with increased
DPM were found in the association brain regions, where the
corresponding comparisons revealed smaller GM volumes
(Table 7, Part A), with no statistically significant influence
on the volume of the corpus callosum (Table 6). Though
results are surprising and interpretation of the DPM effects
on both GM and WM in the high-exposure group is difficult,
one speculated possibility is the presence of putative GM
structural neurotoxicity with local compensatory WM
hypertrophy. In a recent neuroimaging study (Yu et al.
2011), investigators used the support vector machine
learning method to conduct a whole brain analysis with
multivariate pattern classification between heavy smokers
and controls. Regional brain-structure abnormalities with
smaller GM volumes associated with larger volumes in
adjacent WM were reported in the heavy smokers com-
pared with the control subjects. Future studies may seek to
apply similar approaches to replicate the observed smaller
GM volumes with companion larger WM volumes associ-
ated with PM exposures from traffic sources. 

NEUROVASCULAR EFFECTS OF LONG-TERM PM 
EXPOSURES

The hypothesized neurovascular effects of long-term PM
exposures predict positive associations between structural
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brain MRI-measured SVID volumes and greater PM expo-
sure. However, our analyses did not reveal major differ-
ences in SVID volumes in participants with varying levels
of cumulative exposure to PM2.5 (1999–2006) or DPM
(1996–2005), nor were statistically significant associations
between PM exposures and SVID volumes found in our
analyses for total brain, association brain areas, GM, or
WM. Previous neuroimaging studies have not provided
strong support for this hypothesized neurovascular link
between air pollution and brain aging, although the
hypothesized link is receiving great attention (Weuve
2014). For instance, structural-brain MRI data from two
community-based cohorts (the Cardiovascular Health
Study and the Framingham Offspring Study) showed
inconsistent associations between PM exposure and WM
hyperintensities versus silent cerebral infarcts (Semmens
2012; Wilker et al. 2015). One recent study (Wilker et al.
2016) in a clinical population (with concerns about
memory loss) even reported negative associations between
PM2.5 exposure and cerebrovascular damage (with
reduced WM hyperintensities and fewer cerebral micro-
bleeds). 

Long-term exposure to PM has been recognized as a per-
vasive threat to cardiovascular health (Kaiser 2005; Nel
2005; Peters and Pope 2002); resulting increases in both
morbidities and mortalities associated with PM exposures
(Brook et al. 2004, 2010) are present before age 65 or ear-
lier. In the WHI Observational Study (Miller et al. 2007),
increased incidence of CVD (including stroke) was found
in postmenopausal women with higher PM2.5 exposure
during the follow-up, with much greater estimates of expo-
sure-associated increases in CVD and cerebrovascular
deaths than reported previously (Chen 2010; Dockery and
Stone 2007). After the WHIMS enrollment in 1996–1998,
at age 65 or older, all WHIMS-MRI participants had to sur-
vive and continue the follow-up through 2005–2006 for
the brain MRI scans. Therefore, the lack of associations
with SVID volumes in our study may reflect possible
healthy survivor bias in the WHIMS and WHIMS-MRI
cohorts. Longitudinal cohort studies with repeated brain
MRI scans (e.g., starting in midlife) and well characterized
for CVD and associated morbidities may be better posi-
tioned to address this potential bias. 

NEURODEGENERATIVE EFFECTS OF PM EXPOSURES 
ON MCI/DEMENTIA RISK

In our large cohort of older women, we did not find evi-
dence for increased MCI/dementia risks associated with
PM exposures, although such putative neurodegenerative
effects were suggested by previous reports of low perfor-
mance in memory tests (Ailshire and Clarke 2015; Ailshire

and Crimmins 2014; Ranft et al. 2009) or of declines in cog-
nitive functions (Power et al. 2011; Tonne et al. 2014;
Weuve et al. 2012; Weuve 2014). A large number of toxico-
logical studies with inhalation exposures to concentrated
airborne particles (Block and Calderón-Garcidueñas 2009)
have documented widespread neuroinflammation and
oxidative stress, which are implicated in the pathogenesis
of dementia, including Alzheimer’s disease (Block et al.
2012; Genc et al. 2012; Moulton and Yang 2012). However,
whether such PM-induced neural responses translate to
pathological brain aging (e.g., MCI or dementia) has not
been convincingly demonstrated with high-quality data
from prospective cohorts. Four studies have been pub-
lished since 2014 (Chang et al. 2014; Jung et al. 2015; Kiou-
mourtzoglou et al. 2016; Wu et al. 2015) that suggested a
possible increase in dementia risk associated with PM
exposure. Methodologic limitations of those studies
include using claims data of uncertain validity to deter-
mine incident Alzheimer’s disease and related disorders
(Taylor et al. 2002), the inclusion of aggregated exposure
estimates prone to ecological biases (Sheppard 2003), and
the use of retrospective design subject to selection biases
(Hayden and Farmer 2015).

Reflecting the growing interest in studying the effects of
ultrafine particles from traffic sources, more recent experi-
ments have reported evidence of hippocampal neurotox-
icity (Win-Shwe et al. 2008, 2011), the elevated presence of
early markers of neurodegeneration (Levesque et al. 2011),
and compromised blood–brain barriers in animals
exposed to nanoparticles and diesel-engine exhaust. Using
aggregated DPM estimates at the census-tract level as a
proxy indicator of exposure to PM from traffic sources for
the nationwide WHIMS cohort of older women, we did not
find statistically significant increases in the incidence of
MCI or dementia associated with DPM exposure (Tables 14
and 15). In the only prospective cohort study to date
(Oudin et al. 2015) of the neurodegenerative effects of
exposure to gaseous pollutants from traffic, estimates of
exposure were based on a spatial model toward the end of
study follow-up, which obscured the temporality of the
reported association. We are not aware of any published
studies investigating the neurodegenerative effects of
traffic-related PM exposure on MCI or dementia. Pub-
lished studies attempting to link traffic-related PM with
cognitive aging also yielded mixed results. Although an
earlier report (Power et al. 2011) that used Normative
Aging Study data suggested that exposure to black carbon
was associated with decreased cognitive function in older
men, such neurotoxic effects were not evident in the
current analyses, which included more extended longitu-
dinal data to investigate differential susceptibility to
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cognitive effects of long-term exposure. Previously, two
cross-sectional studies found low performance in cogni-
tive function tests among older people living in close prox-
imity to road traffic, but corresponding associations with
the estimated PM exposure from the traffic sources were
not apparent (Ranft et al. 2009; Wellenius et al. 2012).
Findings from a recent longitudinal study on the White-
hall II cohort participants, who were residents of Greater
London, did not support the hypothesis that particles from
traffic sources are more strongly associated with cognitive
function than are particles from all sources (Tonne et al.
2014).

In our main analyses, which combined MCI and
dementia, the incidence rates of neurocognitive disorders
did not differ significantly by the estimated level of cumu-
lative exposure to PM2.5 after adjusting for potential con-
founders. Our earlier decision to combine MCI and
dementia in the proposed main analyses followed the
same analytic strategy used by the WHIMS investigators
(Espeland et al. 2004; Shumaker et al. 2003) in which MCI
was considered to be a preclinical state of dementia. Our
main analyses, which combined MCI and dementia, also
assumed that PM exposures would increase the risk of MCI
and dementia in a similar manner and that these neurocog-
nitive disorders were perhaps derived from similar neuro-
pathological processes. The calculated analytic gain in
statistical power supported this earlier decision to use
incident MCI or dementia as a composite outcome in our
main analyses. However, we also conducted secondary
analyses to explore the neurotoxic effects of PM on MCI
and dementia separately (Tables 12 and 14). Our explor-
atory analyses showed that the PM exposure–response
relationships with MCI and dementia differed (Table 11),
which did not provide statistical support for a common
neuropathology, as had been assumed in the main anal-
yses. Because the neurobiological heterogeneity of MCI
has increasingly been recognized, even among subjects
who were clinically similar (Nettiksimmons et al. 2014),
future studies on the neurodegenerative effects of PM
exposure should separate MCI and dementia. In the
present study, however, neither of the post hoc secondary
analyses was adequately powered to examine the adverse
PM2.5 effects on MCI or dementia separately. 

LIMITATIONS AND STRENGTHS 

We recognize several limitations to our study. First, our
analyses only included a one-time assessment of brain vol-
umes, raising the possibility of reverse causation. How-
ever, given that our analyses already adjusted for SES and
measured lifestyle and various health factors, it was
unclear what the unmeasured factors could be that might

have made participants with smaller WM volumes live
and stay in locations with higher PM2.5 exposures. It was
also difficult to speculate on other factors that would make
participants with smaller GM volumes live and stay in
census-tract-level areas with the highest DPM concentra-
tions in 1996–2005. Longitudinal studies with repeated
brain MRI scans will be needed to address this limitation. 

Second, because we only studied older women who had
volunteered and were eligible for a clinical trial of HT, the
reported findings may not be generalizable to other women
or older men. However, it has been shown that sex has neg-
ligible effects on age-related changes in brain volume in a
healthy population (Fjell et al. 2009). 

Third, constrained by limited resources, we were only
able to use geostatistical modeling for PM2.5 and relied on
the NATA dispersion modeling results for DPM. Given the
results from our BME models, which were exclusively
based on AQS data, our analyses only captured the expo-
sure effects of PM2.5 as a regional pollutant, with no infor-
mation on emission sources, particle constituents, or
interactions with other pollutant mixtures. One simulation
study (Alexeeff et al. 2015) also showed that spatiotem-
poral models accounting for small-scale variation in air
pollution (e.g., by using land-use regression models or
incorporating numerical air quality models) would pro-
duce less biased estimates of chronic health effects com-
pared with geostatistical approaches. For instance, a more
advanced BME method has been developed by combining
AQS data and chemical transportation model output to
estimate the daily PM2.5 exposures (Reyes et al. 2017).
Applying this new method to a WHIMS subcohort of non-
Hispanic whites with ApoE genetic data and extended
follow-up to 2010, investigators recently reported an
increased risk for all-cause dementia among older women
historically residing in locations with high PM2.5 levels
exceeding the current EPA standard (Cacciottolo et al. 2017).

Although we considered the NATA-derived estimates to
be reasonable surrogates for population exposure to PM
from on-road sources, the DPM exposure data used in our
analyses were still prone to substantial measurement
errors that may explain some of the null associations
observed (e.g., with MCI/dementia or SVID volumes) in
this study. On the other hand, we could not rule out the
possibility that the observed associations might be attrib-
uted to other constituents of neurotoxic pollutants also
from traffic sources. Although researchers have begun to
investigate these complexities of PM exposures in the con-
text of cardiopulmonary endpoints, such data sources are
both costly and limited for nationwide cohorts. 

Fourth, our analyses did not include genetic determi-
nants of brain structure and dementia. Although ApoE
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allele frequencies vary by geographic region (Ward et al.
2012), there is no clear link between WM volume and
ApoE polymorphism that determine hippocampal volume
(Fouquet et al. 2014; Taylor et al. 2014) or GM atrophy
(Wishart et al. 2006). Because our analyses did not reveal
significant associations with hippocampal volumes, it was
unlikely that the observed adverse PM2.5 effects on smaller
WM volumes were the result of confounding by ApoE. On
the other hand, the ApoE allele may interact with PM
exposure to increase the risk of MCI/dementia (Cacciottolo
et al. 2017) or SVID volumes; this was not investigated in
our analyses. 

Fifth, as is the case for all community-based observa-
tional studies, our study was based on a selective sample
(i.e., older women who were enrolled in the original
WHIMS cohort). Therefore, we could not rule out the argu-
able possibility of selective attrition as the reason for not
observing  the  associa t ion  o f  increased  r isk  o f
MCI/dementia with air pollution exposure in the current
study. Had selective attrition played a major role in
explaining our findings, a similar lack of associations
would be expected from the results of studying other
common risk factors for increased mortality and dementia
risks in a cohort of elderly people. However, empirical
data from WHIMS might suggest otherwise because
common risk factors, such as sleep loss (Chen et al. 2015),
symptoms of depressive disorders (Goveas et al. 2011),
type 2 diabetes (Espeland et al. 2015), and CVD (Haring et
al. 2013), all had increased risks for clinically significant
cognitive decline or dementia. 

Sixth, for this study, which focused on brain structures
using anatomical MRI, we only conducted region-of-interest
analyses, which aggregated the volumetric measures
within predefined neuroanatomic regions but discarded
local variations. Future research with more fine-grained
analyses, such as voxel-based morphometric methods
(Davatzikos et al. 2001), may provide a more powerful
approach to uncovering local targets with small-area varia-
tions in other brain structures that may be associated with
long-term PM exposure (Casanova et al. 2016). 

Seventh, our sample sizes might not have been suffi-
cient to detect statistically significant interactions between
the PM exposure and the potential effect modifiers
included in the study. 

There were several notable strengths in our study. It
included the largest neuroimaging study to examine the
association between long-term PM exposures and the in
vivo endophenotype of the aging brain. Our analyses
included dementia cases that were ascertained by the well-
validated WHIMS protocols. The WHIMS and WHIMS-MRI
cohorts were geographically diverse and well characterized.

The comprehensive and high-quality WHI covariate data
enabled rigorous adjustment for multiple potential con-
founders in studying air pollution and brain aging. 

CONCLUSIONS

Long-term exposure to PM2.5 may contribute to WM loss
in healthy older women. Our study findings, in line with
emerging neurotoxicological data, suggest that WM archi-
tecture is an important target of PM-induced neurotoxicity
in regions of the brain. Future studies are needed to deter-
mine whether PM exposures result in myelination distur-
bance, disruption of axonal integrity, damage to oligo-
dendrocytes, or other WM neuropathologies. Findings from
our cross-sectional analyses also support the hypothesized
neurotoxic effects of traffic-related PM on association cor-
tices. The observed smaller GM volume associated with
DPM exposure was supported by the emerging data on
synaptic neurotoxicity in animals with PM exposures near
roadways. Our analyses did not provide evidence for an
increased risk for MCI or dementia associated with either
PM2.5 or DPM exposures. Whether the neural responses to
PM (both documented in the extensive neurotoxicological
literature and supported by the adverse effects on brain
structure shown in our study) translate to pathological
brain aging remains to be demonstrated or refuted by high-
quality prospective cohort studies with adequate statis-
tical power, improved exposure estimation, and valid out-
come ascertainment. 

IMPLICATIONS OF FINDINGS

Our study findings suggest an association between long-
term exposure to PM and WM loss in healthy older women
and are in line with emerging neurotoxicological data. To
better test the neurovascular-effect hypothesis in PM-
associated neurotoxic effects on the aging brain, future
studies may need to pay greater attention to selecting
optimal populations with repeated measurements of cere-
brovascular damage and to address the possibility of selec-
tion biases. Our analyses did not provide evidence for an
increased risk for MCI or dementia associated with either
PM2.5 or DPM exposures. An adequately powered prospec-
tive cohort study with improved exposure estimation and
high-quality outcome ascertainment will be needed to
investigate whether long-term PM exposures increase the
risk of pathobiologically heterogeneous neurocognitive
outcomes, including MCI and dementia. 
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These staff members are experienced in quality assurance
oversight for air quality monitoring and related epidemio-
logical studies. Other participants on the RTI QA oversight
team included Dr. Breda Munoz, a biostatistician who
reviewed the statistical aspects. 

The QA oversight program consisted of on-site audits at
the University of North Carolina (UNC), Department of
Environmental Sciences and Engineering, Chapel Hill, NC,
and at the University of Southern California (USC), Depart-
ment of Preventive Medicine, Keck School of Medicine of
USC, Los Angeles, California; and a final review of the
draft final report of the study. The UNC on-site audit was

performed by Mr. Michael and Dr. Doraiswamy. The USC
on-site audit was performed by Dr. Brown and Mr.
Michael. The review of the draft final report was per-
formed by Drs. Brown, Doraiswamy and Munoz, followed
by a review of the revised final report by Drs. Munoz and
Doraiswamy with feedback from Dr. Brown. Mr. Michael
was no longer with RTI at the time the draft and revised
final study reports were reviewed. The audits included
review of study documentation and reports, and discus-
sions with key project staff of study activities for confor-
mance to the study protocol and standard operating
procedures. The dates of the audits and reviews are listed
below, along with a description of what was reviewed.

May 21, 2013 (Audit Phase 1, UNC)

The auditors conducted an on-site audit at the Univer-
sity of North Carolina, Department of Environmental Sci-
ences and Engineering, Chapel Hill, NC, to verify data
acquisition and processing procedures for the PM2.5 data.
The audit reviewed the following study components: prog-
ress reports; personnel and staff; adequacy of data security
and storage; internal quality assurance procedures; and
documentation of data processing procedures. A demon-
stration of system login and data processing was observed
to verify that the described procedures had been followed.
No significant errors were noted. Recommendations were
made to (1) document use of method code in analysis, (2)
include administrative signatures to the QA document,
and (3) implement formal data archiving procedures.

June 24–25, 2013 (Audit Phase 1, USC)

The auditors conducted an on-site audit at the Univer-
sity of Southern California (USC) by the Department of
Preventive Medicine, Keck School of Medicine of USC,
Los Angeles, California. The audit reviewed the following
study components: progress reports; personnel and staff;
adequacy of equipment and facilities; internal quality
assurance procedures; air quality sampling methodology;
data processing procedures. Original and recoded data and
program code for the WHIMS data were reviewed to verify
the integrity of the database and that the described proce-
dures had been followed. The audit also included review
of the QA procedures for the exposure data, programming
code, data storage, and data security procedures. No errors
were noted, but more formal documentation of corrective
actions was recommended. 

March–April 2015 (Review of Draft Final Report)

The auditors reviewed the draft final report for the
project. This audit of the report included reviewing the
detailed description of procedures, the findings, and their
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interpretation, and all the appendices. The review checked
for detailed documentation of the methodology followed
and the assumptions made, such that it allows for a third
party to repeat the analysis. The review also ensured that
the reported conclusions were consistent with the data
presented in the tables and figures. No serious quality-
related issues were identified during the review. A list of
technical and editorial comments was provided to HEI.

November 2016–June 2017 (Review of Revised Final 
Report)

The auditors reviewed the revised final report for the
project. The audit focused on similar aspects followed in
the audit of the draft final report. Technical and editorial
comments were provided, which were addressed by the
authors. The responses were satisfactory. No serious
quality-related issues were identified during the review.
Minor recommendation was made to rephrase wording of
descriptions of population characteristics.

Written reports of each activity were provided to HEI.
These quality assurance oversight audits demonstrated
that the study was conducted by a well-coordinated, expe-
rienced team according to the study protocol and standard
operating procedures. Interviews with study personnel
revealed a consistently high concern for data quality. The

revised final report appears to be an accurate representa-
tion of the study.

Linda Morris Brown, M.P.H., Dr.P.H., Epidemiologist,
Quality Assurance auditor

Breda Munoz, Ph.D., Statistician, 
Quality Assurance auditor

Prakash Doraiswamy, Ph.D., Air Quality Specialist,
Quality Assurance auditor
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APPENDIX A. 

Appendix Table A.1. Distributions and Correlations of PM Exposure Variables 

Exposure
Variables N

Exposure Distributions

Mean
Standard
Deviation

Mini-
mum

Percentiles
Maxi-
mum10th 25th Median 75th 90th 

Fixed Cumulative Exposures in WHIMS–MRI
Cumulative exposure 
to PM2.5 (1999–2006)

1,403 12.64 2.78 5.75 10.11 10.67 12.24 14.16 16.22 22.2

Cumulative exposure 
to DPM (1996–2005)

1,403 0.44 0.33 0.01 0.14 0.24 0.35 0.55 0.83 3.93

Fixed Baseline Exposures in WHIMS
Exposure to DPM at 
WHIMS baseline 
(1996–1998)

7,112 0.54 0.38 0 0.11 0.26 0.49 0.74 1 5.42

Time-Varying Exposures in WHIMS during Follow-up
Time-varying 
cumulative PM2.5 
exposure (1999–2007)

7,050 13.15 3.22 3.71 9.45 11.11 12.95 15.01 16.93 27.1

Time-varying 
cumulative DPM 
exposure (1996–2005)

7,447 0.48 0.31 0 0.16 0.27 0.43 0.62 0.84 5.12

Pearsons Correlations among PM Exposure Variables

(1) (2) (3) (4) (5)

 Exposures Used in WHIMS–MRI
(1) Baseline 
cumulative exposure 
to PM2.5 

1 0.45 0.42 0.99 0.45

(2) Baseline 
cumulative exposure 
to DPM 

0.45 1 0.83 0.45 0.95

Exposures Used in WHIMS
(3) Baseline exposure 
to DPM

0.42 0.83 1 0.4 0.93

(4) Summarized time-
varying cumulative 
PM2.5 exposurea 

0.99 0.45 0.4 1 0.42

(5) Summarized time-
varying cumulative 
DPM exposurea 

0.45 0.95 0.93 0.42 1

a Individually summarized exposure aggregating all time-varying annual exposures before censoring for the analyses on dementia.
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MATERIALS AVAILABLE ON THE HEI WEBSITE

Appendix B and Additional Materials 1 contain supple-
mental material not included in the printed report. They
are available on the HEI website, www.healtheffects.org/
publications. 

Appendix B. Additional Sensitivity Analyses

Additional Materials 1. Part A: Study Population, Design,
and Outcome Ascertainment; Part B: Estimation of Resi-
dential Exposures; and Part C: Statistical Analyses
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INTRODUCTION

Dementia, a decline in memory and other cognitive
functions severe enough to interfere with daily life, is rela-
tively common in elderly people and has a large social and
economic impact on patients, families, and government
programs (Hurd et al. 2013). The number of people with
dementia in the United States and around the world is
expected to triple by 2050, owing to the large increase in
the elderly population (Prince et al. 2013). Little progress
has been made to date in identifying effective treatments
for most forms of dementia, and researchers have increas-
ingly focused attention on prevention and identification of
modifiable risk factors (Friedrich 2014). Research on risk
factors for dementia has emphasized the potential contri-
bution of individual behaviors, lifestyle factors, and other
health conditions, such as subclinical and clinical cardio-
vascular disease. More recently, epidemiological studies
have begun to explore the etiological role of exposures to
common environmental pollutants, including air pollu-
tion (Power et al. 2016). Given its ubiquity, if exposure to
air pollution is causally related to dementia, reductions in
air pollution may reduce the population-level burden of
dementia substantially.

To date, the associations of short-term and long-term air
pollution exposure with cardiovascular and cerebrovas-
cular morbidity and mortality have been well documented
(Hoek et al. 2013; World Health Organization 2013). These
associations may suggest a harmful impact on the brain
and cognitive processes through vascular, inflammatory,
and other mechanisms that have been implicated in car-
diovascular disease (Langrish et al. 2012). Though poorly
understood at present, several potential mechanisms in-
volving oxidative stress, neuroinflammation, and direct

neuronal and white matter injury have been postulated.
Animal studies have shown deposition of engineered ul-
trafine particles containing metals in the olfactory bulb
(from which the particles may travel directly to the brain)
and in frontal cortical and subcortical areas, bypassing, for
example, the so-called blood–brain barrier (Allen et al.
2016; Block et al. 2012). Yet to date, few epidemiological
studies have investigated the neurocognitive effects of
long-term exposure to air pollution in adults and the el-
derly (Power et al. 2016). There are many methodological
challenges involved in conducting such research, including
the potential for selection bias and/or limited generaliz-
ability (because study participants are typically healthier
than nonparticipants), heterogeneity in the pathogenesis,
misclassification of outcomes, and uncertainties in the ex-
posure estimation; many challenges also stem from the na-
ture of dementia, which can have a decades-long incipient
phase (Weuve et al. 2015).

In response to HEI’s RFA 08-2, the Walter A. Rosenblith
New Investigator Award, Dr. Jiu-Chiuan Chen, then of the
University of North Carolina, Chapel Hill, submitted an
application for a three-year study, “Particulate Air Pollut-
ants, Risk of Cognitive Disorders, and Neuropathology in
the Elderly.” Chen’s study was designed to investigate the
association between long-term outdoor particulate air pol-
lution exposure and neurocognitive outcomes and brain
volumes of older women. He also planned to investigate
whether the health effects were modified by factors that
may increase susceptibility, such as a history of cardiovas-
cular disease, diabetes mellitus, or obesity (i.e., effect mod-
ification). The HEI Research Committee recommended
Chen’s application for funding because there had been few
studies of air pollution and neurocognitive outcomes at
that time and because they appreciated the proposed
approach, which included standardized outcome ascer-
tainment, assessment of mild cognitive impairment, and
use of magnetic resonance imaging (MRI*) data.

This Critique provides the HEI Review Committee’s
evaluation of the study. It is intended to aid the sponsors
of HEI and the public by highlighting both the strengths
and the limitations of the study and by placing the Investi-
gators’ Report into scientific and regulatory perspective.

Dr. Chen’s 3-year study, “Particulate Air Pollutants, Risk of Cognitive Disor-
ders, and Neuropathology in the Elderly,” began in December 2011. Total
expenditures were $303,378. The draft Investigators’ Report from Chen and
colleagues was received for review in January 2015. A revised report,
received in August 2016, was accepted for publication in October 2016.
During the review process, the HEI Review Committee and the investigators
had the opportunity to exchange comments and to clarify issues in both the
Investigators’ Report and the Review Committee’s Critique. 

This document has not been reviewed by public or private party institu-
tions, including those that support the Health Effects Institute; therefore, it
may not reflect the views of these parties, and no endorsements by them
should be inferred. * A list of abbreviations and other terms appears at the end of this volume.
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APPROACH

SPECIFIC AIMS

The study’s specific aims were twofold:

• To investigate the association between long-term out-
door particulate air pollution exposure and adverse
neurocognitive outcomes and brain volumes of older
women in the United States; and

• To examine effect modification by factors that may
increase susceptibility, such as a history of cardiovas-
cular disease, diabetes mellitus, or obesity. 

Chen used data from women enrolled in the U.S.-based
Women’s Health Initiative Memory Study (WHIMS),
which consisted of two randomized clinical trials of post-
menopausal hormone therapy. The trials were terminated
early due to side effects — not related to neurocognitive
outcomes — but follow-up continued. At WHIMS baseline
(1996–1999), all women were community dwelling (i.e.,
not living in nursing or medical facilities), aged 65 to 80
years, and free of dementia. In total, 8,094 participants
were approached at 38 WHI clinical centers for enrollment
in the trials, and 7,479 (92%) women were eventually
included in the current study. Shumaker and colleagues
(1998) published details of the WHIMS study design, eligi-
bility criteria, and recruitment procedures. 

Chen investigated two types of outcomes — neurocogni-
tive outcomes and brain volume — using standardized neu-
rological tests and structural MRI from the WHIMS cohort.
He collaborated with Dr. Marc Serre at the University of
North Carolina to develop exposure estimates for ambient
PM2.5 (particulate matter �2.5 µm in aerodynamic diam-
eter) and diesel PM, and subsequently evaluated associa-
tions between the PM exposure estimates and the cognitive
outcomes and brain volumes, respectively. The period cov-
ered by the current study was 1996–2007, though the exact
study period differed per exposure–outcome pair.

METHODS

Neurocognitive outcomes, specifically mild cognitive
impairment and dementia with clinically significant
impairment, were measured yearly using standardized
WHIMS protocols. Mild cognitive impairment is charac-
terized by measurable cognitive deficits that do not inter-
fere with everyday activities. Typically, people with mild
cognitive impairment have an increased risk of developing
dementia, though not all of them get worse and some even-
tually get better (Albert et al. 2011). In the current study,
women who screened positively for cognitive impairment

on the basis of an education-adjusted Modified Mini-
Mental State Examination proceeded to more extensive
neuropsychological testing and neurological evaluation.
Moreover, each woman suspected to have dementia then
underwent a series of laboratory tests to confirm the clin-
ical diagnosis of dementia. A total of 167 women were
classified as having incident dementia and 256 as having
mild cognitive impairment.

Brain volume measures were obtained from a single
structural MRI assessment in a subset (n = 1,403) of the
WHIMS participants (N = 7,479) obtained in the period
2005–2006. Only women from 14 of the 38 WHI clinical
centers were eligible, and some exclusion criteria were for-
mulated that would preclude an MRI, such as claustro-
phobia. Jamarillo and colleagues (2007) have provided
additional details about the selection process. Brain vol-
umes were only assessed in certain brain regions (specifi-
cally the hippocampus) and the multimodal association
brain regions (frontal, parietal, and temporal lobes)
because those brain regions were thought to be the most
vulnerable to brain aging and neurodegenerative disease
(see Critique Sidebar for description of brain structures).
MRI data were analyzed centrally at the University of
Pennsylvania to make sure the readings and interpretation
were consistent.

Two PM exposure metrics were assessed: ambient PM2.5
and diesel PM. Annual ambient PM2.5 exposure was esti-
mated at the residential address level with a nationwide
Bayesian maximum entropy spatiotemporal model using
U.S. Environmental Protection Agency (U.S. EPA) regula-
tory monitoring data for the years 1999–2007. The expo-
sure assessment took changes in residence into account.
The model was compared with other models including the
nearest-neighbor approach, inverse distance weighting,
and spatial kriging (see Additional Materials 1, available
on the HEI website). In addition, annual on-road diesel PM
was assessed at the census-tract level, using the U.S. EPA
National-Scale Air Toxics Assessment (NATA) model for
the years 1996, 1999, 2002, and 2005. A nonlinear interpo-
lation approach was developed to fill in data for the
missing years in order to obtain annual estimates for the
full period (1996–2005). 

Neurocognitive and brain volume outcomes were first
compared across exposure quartiles and tested for signifi-
cance using likelihood-ratio tests and analysis of covari-
ance. Results for brain volume outcomes were adjusted for
intracranial volume to account for individual differences
in brain sizes but not for other important confounder vari-
ables. Only when statistically significant, results were fur-
ther investigated in Cox proportional hazard models
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The brain can be divided into three basic structural units: the 
forebrain, the midbrain, and the hindbrain (see Critique 
Sidebar figure for details). The hindbrain includes the upper 

part of the spinal cord, the brainstem, and the cerebellum. 
The hindbrain controls the body’s vital functions such as res-
piration and heart rate. The cerebellum coordinates move-
ment, posture, and balance. The uppermost part of the 
brainstem is the midbrain, which controls some reflex actions 
and is part of the circuit involved in the control of eye move-
ments and other voluntary movements. The forebrain is the 
largest part of the human brain and consists primarily of the 
cerebrum, the hypothalamus, thalamus, and hippocampus.

Cerebrum. The cerebrum is the largest brain structure in 
humans and accounts for about two-thirds of the brain’s mass. 
It is divided into the left and right hemispheres. These two 
halves are connected by long neuron branches called the 
corpus callosum. The outer 3 millimeters of grey matter form 
the cerebral cortex, which consists of closely packed neurons 
that control most of the body functions, including the state of 
consciousness, the senses, motor skills, reasoning, and lan-
guage. The cerebral cortex is grey because nerves in this area 
lack the insulation that makes most other parts of the brain 
appear to be white. The cerebrum is positioned over and 
around most other brain structures. The four lobes (frontal, 

Critique Sidebar Figure. A diagram of the brain. Source: Wikimedia 
Commons 2017.

temporal, parietal, and occipital) of the cerebrum are special-
ized by function but are richly interconnected:

1. The frontal lobe organizes responses to
complex problems,  p lans  s teps to
achieve an objective, searches memory
for relevant experience, adapts strategies
to accommodate new data, guides
behavior with verbal skills, and houses
working memory. It also controls emo-
tional responses.

2. The temporal lobe controls long-term
memory, emotions, hearing, and language.

3. The parietal lobe integrates sensory infor-
mation and is the location for visual
attention, touch perception, and manip-
ulation of objects. 

4. The occipital lobe processes visual data
and routes it to other parts of the brain
for identification and storage. The frontal,
parietal and temporal lobes are some-
times called the “association brain area.” 

Thalamus. Located at the top of the brain stem, the thalamus 
acts as a two-way relay station, sorting, processing, and 
directing signals from the spinal cord and midbrain structures 
up to the cerebrum and, conversely, from the cerebrum down 
the spinal cord to the nervous system.

Basal ganglia.The basal ganglia are clusters of nerve cells sur-
rounding the thalamus. They are responsible for initiating and 
integrating movements.

Hypothalamus.Located at the base of the brain where signals 
from the brain and the body’s hormonal system interact, the 
hypothalamus maintains the body’s status quo. It monitors 
numerous bodily functions, such as blood pressure and body 
temperature, and controls body weight and appetite.

Hippocampus.Located deep within the brain, the hippo-
campus processes new memories for long-term storage. 

Ventricles.The ventricles of the brain are a communicating net-
work of cavities filled with cerebrospinal fluid, which is formed 
there, and located in the core of the forebrain and brainstem.

CRITIQUE SIDEBAR: THE STRUCTURE OF THE HUMAN BRAIN
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(neurocognitive outcomes) and linear regression models
(brain volumes) and adjusted for important confounders.
In those analyses, results were adjusted for geographical
region, age, race, socioeconomic status, smoking, alcohol
use, physical activity, body mass index, and some clinical
characteristics (including a history of cardiovascular dis-
ease, diabetes mellitus, obesity, depressive symptoms, and
use of menopausal hormone therapy). Most covariate
information was obtained from questionnaire data at base-
line. The main estimates were expressed as hazard ratios
and regression coefficients per interquartile range increase
in exposure. In the adjusted analyses, ambient PM2.5 was
analyzed as a continuous variable; diesel PM was in some
instances analyzed as a dichotomous outcome (for
example, in the gray matter analyses) or as a continuous
variable (in the white matter analyses) but stratified by
exposure range (first–third quartile and fourth quartile). 

The influence of potential effect modifiers (e.g., history
of cardiovascular disease) was investigated in subgroup
analyses and tested for statistical significance.

SUMMARY OF RESULTS

• Exposure to neither ambient PM2.5 nor diesel PM was
associated with mild cognitive impairment and/or
dementia in older women (Critique Figure 1). Some
positive and negative associations were reported
between particulate air pollution and brain volumes.

• Associations of ambient PM2.5 and brain volumes dif-
fered across brain regions and for white versus gray
matter structures. An increase in ambient PM2.5 was
associated with a decrease in white matter volume in
normal-appearing brain structures (Critique Figure 2).
However, no such associations were reported for
ambient PM2.5 and gray matter volumes, ventricular
volumes, hippocampal volumes, or volumes of the
basal ganglia in models adjusted only for intracranial
volume. To date, the investigators have published the
PM2.5 and brain volume results (Chen et al. 2015).

• In contrast, an increase in diesel PM was associated
with a decrease in gray matter volumes. A puzzling
nonlinear pattern was reported for white matter vol-
umes, namely, a decrease in white matter volume at
lower diesel PM exposure and an increase in white
matter volume at higher exposures.

• For both types of outcomes, no significant effect mod-
ification was found of factors that may increase sus-
ceptibility.

• Results summarized are from fully adjusted models
unless specified otherwise.

REVIEW COMMITTEE EVALUATION

In its independent review of the study, the HEI Review
Committee concluded that Chen and colleagues conducted
a novel study — one of the few to evaluate a potential rela-
tionship between long-term exposure to ambient particu-
late air pollution and neurocognitive outcomes and brain
volumes. The Committee noted several strengths of the
study: a high-quality assessment of neurocognitive out-
comes, the inclusion of brain imaging data, and the avail-
ability of detailed individual-level covariate information.
The neurocognitive outcome data were considered high
quality because annual diagnostic assessments for
dementia as well as mild cognitive impairment used stan-
dardized protocols and were available for all participants.
Such data are more precise and accurate than dementia
data from hospital records and/or death certificates, which
are often hampered by substantial underreporting (Taylor
et al. 2009). The inclusion of brain MRI data was consid-
ered another strength and a useful new resource for infor-
mation that may provide insight into the underlying
pathological processes. In addition, the availability of
detailed individual covariate information at baseline, such
as age, socioeconomic status, and smoking, allowed the
results to be rigorously controlled for various important
confounder variables. 

Chen and colleagues report that exposure to neither
ambient PM2.5 nor diesel PM was associated with mild
cognitive impairment and/or dementia in older women.
Some positive and negative associations were reported
between particulate air pollution and brain volumes; these
results differed across brain areas, for white versus gray
matter structures and for ambient PM2.5 versus diesel PM.
The results of the current study differ from those in pre-
vious research. A recent systematic review documented
that almost all previous studies observed an association
between at least one air pollutant and one dementia-
related outcome (Power et al. 2016). However, only three
studies to date have investigated dementia in relation to
long-term exposure to air pollution. All three studies
found an association with exposure to PM2.5, ozone, and
oxides of nitrogen as well as with living near major roads
(Chen et al. 2017; Jung et al. 2015; Oudin et al. 2016).
These results contrast with the current study’s lack of asso-
ciations with neurocognitive outcomes and its puzzling
findings in brain volumes. Only one previous study exam-
ined long-term exposure to air pollution and brain vol-
umes in older adults; it reported that higher PM2.5
exposure was associated with smaller total cerebral brain
volume and higher odds of covert brain infarcts but not
with white matter hyperintensity volume or hippocampal
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Critique Figure 1. Association between neurocognitive outcomes and particulate air pollution in older women. Hazard ratio expressed per interquartile
exposure range (3.9 µg/m3 for PM2.5, 0.35 µg/m3 for diesel PM). 

Critique Figure 2. Associations between white matter brain volumes and ambient PM2.5 exposure in older women. Regression coefficient expressed per
interquartile exposure range (3.5 µg/m3 for PM2.5). 
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volume (Wilker et al. 2015). Also in the current study, no
association was found between PM2.5 and either hippo-
campal volume or small-vessel ischemic-disease–affected
volume (the latter being a measure of cerebrovascular neu-
ropathology equivalent to white matter hyperintensity
volume).

It should be noted that the number of air pollution
studies on dementia-related outcomes remains small. Evi-
dence from the current study, along with previous results,
provides impetus for further research, given the implica-
tions of the potential effects of ambient air pollution on
dementia for our aging population. Below, the Review
Committee summarizes several important analytical issues
that should be considered when interpreting the results of
this study.

The Committee had less confidence in the results for
diesel PM than for ambient PM2.5 because the exposure
assessment was likely prone to substantial exposure mea-
surement error. The impact of exposure measurement error
on health effect estimations can be substantial, potentially
distorting associations, reducing the power to detect
effects, and leading to invalid inferences, depending on
the context (Sheppard et al. 2012). The investigators
obtained on-road diesel PM estimates at the census-tract
level from the U.S. EPA NATA database, which is typically
used as a screening tool to prioritize pollutants, emission
sources, and locations of interest for further study (U.S.
EPA 2011); NATA is less suitable for use in an epidemio-
logical study. Moreover, the NATA methodology has been
substantially updated over the years, which would prevent
comparing absolute estimates across different model years.
In addition to concerns about the use of NATA, the Com-
mittee thought that the diesel PM analyses were also ham-
pered by a lack of contrast (an interquartile range of
0.31 µg/m3 for diesel PM, compared with 3.9 µg/m3 for
ambient PM2.5), and therefore some results were difficult to
interpret. Diesel PM exposure contrast would likely have
increased if off-road diesel PM, which is also available in
the NATA database, had been assessed as well. However,
this increase in exposure contrast would only be modest
according to earlier analyses shown in Additional Materials
1, Part B (available on the HEI website, www.healtheffects
.org/publications). The exposure assessment for ambient
PM2.5 was more sophisticated in that it used a nationwide
Bayesian maximum entropy spatiotemporal model, which
provided estimates at the residential address level. In addi-
tion, the PM2.5 model was compared with other approaches
and showed rather good performance (see Additional Mate-
rials 1, Part B). Yet the ambient PM2.5 model did not include
small-scale characteristics, such as land-use variables.
Hence, both exposure approaches lack the level of detail

needed to capture small-scale spatial variations in air pol-
lution, which is especially important for an assessment of
diesel PM because it exhibits higher spatial variation,
largely related to traffic emissions (HEI 2010), than does
ambient PM2.5, which tends to have more uniform levels
across large areas. 

The Review Committee was also concerned that there
may have been a lack of statistical power for the effect
modification analyses in which none of the identified fac-
tors that may have increased susceptibility reached statis-
tical significance. For the main analyses, the statistical
power of the study was larger for neurocognitive out-
comes, which were assessed yearly, than for brain volume
measures, which were only assessed at one point in time
and only in a subset (about 20%) of participants. Although
this is understandable given the high cost of performing
MRI, it was somewhat counterintuitive that some positive
and negative associations were reported for brain volumes
and no associations were found for the neurocognitive out-
comes. The investigators did not evaluate whether partici-
pants with smaller white and gray matter volumes also
showed higher incidence of mild cognitive impairment
and/or dementia, in part because of the lack of statistical
power. It would have been interesting to know whether
this was the case, as it would have shed light on whether
the puzzling brain volume findings are clinically relevant,
which so far is not clear. From a clinical perspective,
dementia is arguably the most important outcome of all the
outcomes included in the current study. Therefore, it is
noteworthy that the current study did not find associations
between exposure to PM2.5 and diesel PM and mild cogni-
tive impairment and/or dementia. It is possible, however,
that slight decrements in neurocognitive function may
have been missed. In future analyses, the investigators
may want to probe this issue further by, for example, ana-
lyzing actual test scores from the Modified Mini-Mental
State Examination instead of deriving a dichotomous mild
cognitive impairment outcome based on prespecified cut-
offs. In general, the Committee had more confidence in the
neurocognitive results than in the brain volume results
because of the larger sample size, annual assessments, and
standardized protocols.

Though the inclusion of MRI data to investigate brain
volume outcomes was considered a strength and a novel
contribution, the Review Committee noted several other
issues in the statistical analyses of the brain volume out-
comes that should be considered when interpreting the
results. First, the Committee questioned the emphasis on
unadjusted findings in the report. Typically, unadjusted
estimates are a stepping stone to the more informative
adjusted estimates. For example, the Committee felt that
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all analyses should have been rigorously corrected for age,
because age is a known risk factor for dementia-related
outcomes, and the investigators alluded to a relation
between age and exposure. Other research has shown that
brain volume decreases by 0.5–1% per year after age 60,
even in healthy (i.e., cognitively intact) people. Thus, a
reduction in brain volume is a general feature of normal
aging as well (Fjell et al. 2013), whether or not it is affected
by air pollution exposure. Second, adjusted analyses for
several brain volume measures, such as PM2.5 and gray
matter volumes, may have been revealing. The investiga-
tors conducted adjusted analyses only when an outcome
was significantly different across exposure quartiles. The
Committee noted, however, that this decision was based
on crude unadjusted models and that this approach pre-
vented a direct comparison of adjusted estimates across
the outcomes. Third, the investigators analyzed ambient
PM2.5 as a continuous variable and diesel PM as a dichoto-
mous variable in some of the brain volume analyses,
which was also based on crude unadjusted models, and
again, did not allow for a direct comparison in the adjusted
analyses. The investigators did clearly lay out the rationale
for the statistical approach that resulted in the brain
volume outcomes; for example, they described how there
may be differential vulnerability to brain aging and neuro-
degeneration across brain areas. In addition, they noted
that the exposure–response functions across different
brain volume outcomes and brain areas may vary. Finally,
they discussed how the toxicity of PM2.5 versus diesel PM
may be different across brain areas. The Committee took
note of these considerations and realized that this study
was exploratory in many aspects, without much prior
knowledge to build on. However, they thought that addi-
tional steps could have been taken in the brain volume
analyses to allow for increased consistency in the analyses
and reporting and for a direct comparison across different
outcomes, brain areas, and pollutants.

In the discussion of the report, Chen and colleagues
acknowledged the potential for selection bias, but it would
have been useful to explore this further. Shumaker and
colleagues (2008) and Jamarillo and colleagues (2007) have
provided additional details regarding the selection process
for including participants in the cohort and subcohort.
Selection bias is a potential threat in any epidemiological
study, but particularly in studies investigating dementia
and related outcomes. Individuals who meet the eligibility
criteria for a study of air pollution and a dementia-related
outcome, enroll in that study, continue in it, and partici-
pate in additional substudies may differ in important ways
from nonparticipants (Weuve et al. 2015). For example,
studies with participants recruited at older ages may
disproportionately represent “healthy survivors” because

the probability of surviving and being free of severe dis-
ability — outcomes that may be associated with air pollu-
tion and cognitive status — diminishes with older age. As
a result, associations of air pollution and dementia-related
outcomes may be muted. The Committee thought that
selection bias may have been likely, especially for brain
volume measures, because those were only available in a
subset (n = 1,403) of the WHIMS participants (N = 7,479).
Moreover, of the 2,345 WHIMS participants who were
approached for enrollment, the 61% who agreed to an MRI
scan had significantly better cognitive function and less
previous cognitive decline, on average, compared with
those who did not receive an MRI for the study, high-
lighting that there may be sample and selection issues at
play. In addition, the participants who received an MRI
tended to be younger and more highly educated than those
who did not (Jaramillo et al. 2007) — both characteristics
that have been linked to exposure. The investigators could
have explored the potential for selection bias further and
could possibly have accounted for it using, for example,
instrumental variables or inverse probability weighting
methods (Weisskopf et al. 2015; Weuve et al. 2015). 

The current study and air pollution–dementia research
in general confront numerous other methodological and
conceptual challenges, and such studies are inherently dif-
ficult. For example, dementia can have a decades-long
incipient phase, and there are large uncertainties as to the
timing of the exposure relative to when the disease mani-
fests itself. Thus, the most relevant exposure period may
be years to decades before the onset of the dementia, or the
entire stretch of air pollution exposures from the distant
past to the time of diagnosis may be relevant. There is an
implicit assumption that “current” or “recent” exposure
levels are adequate surrogates for past exposure levels. This
may be reasonable if the induction time between exposure
and health outcomes is relatively short, but its validity is
unknown over longer intervals (Power et al. 2016). 

SUMMARY AND CONCLUSION

Chen and colleagues have conducted a novel study, one
of the few to evaluate a potential relationship between
long-term exposure to particulate air pollution and neuro-
cognitive outcomes and brain volumes. A high-quality
neurocognitive outcomes assessment, the inclusion of
brain imaging data, and the availability of detailed
individual-level covariate information were considered to
be the strengths of this study. The study found that expo-
sure to neither ambient PM2.5 nor diesel PM was associ-
ated with mild cognitive impairment and/or dementia in
older women. Some positive and negative associations
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were reported between particulate air pollution and brain
volumes, but the analyses were exploratory, their clinical
significance remains unclear, and the findings differ from
previous research. The HEI Review Committee identified
several important analytical issues that should be consid-
ered when interpreting the results. The Committee had
less confidence in the results for diesel PM than those for
ambient PM2.5 because the exposure assessment was based
on a screening tool that was considered less suitable for
epidemiological studies and was likely prone to substan-
tial measurement error. In addition, the effect modification
analyses were hampered by a lack of statistical power.
Although the brain volume results were exploratory and the
rationale for the statistical approach was clearly described,
the Committee questioned the emphasis on unadjusted
findings in the report. Furthermore, it would have been
useful to take additional steps to increase consistency in the
brain volume analyses and reporting and to explore the
potential for selection bias further. It should be noted again
that the number of air pollution studies on dementia-related
outcomes remains small, and such studies are inherently
difficult. Evidence from the current study, along with pre-
vious results, provides impetus for further research given
the implications of the potential effects of ambient air pollu-
tion on dementia for our aging population.
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AC/PC anterior commissure/
posterior commissure

ANCOVA analysis of covariance

AQS Air Quality System (U.S. EPA)

BME Bayesian maximum entropy

BMI body mass index

CERAD Consortium to Establish a Registry for 
Alzheimer’s Disease

CI confidence interval

CSF cerebrospinal fluid

CVD cardiovascular disease

DPM diesel particulate matter

E-alone estrogen treatment alone

E+P medroxyprogesterone acetate

FLAIR fluid-attenuated inversion recovery

GAM generalized additive model

GM gray matter

HR hazard ratio

HT hormone therapy

ICV intracranial volume

IDW inverse distance weighting

MAR missing at random

MCI mild cognitive impairment

MRI magnetic resonance imaging

NNA nearest-neighbor approach

NATA National-Scale Air Toxics Assessment

PDF probability density function

PM particulate matter

PM2.5 particulate matter � 2.5 µm in 
aerodynamic diameter

REGARDS Reasons for Geographic and Racial 
Differences in Stroke (cohort)

SES socioeconomic status

SVID small vessel ischemic disease

U.S. EPA United States Environmental
Protection Agency

WBC white blood cell

WHI Women’s Health Initiative

WHI-HT WHI trials of hormone therapy

WHIMS Women’s Health Initiative Memory 
Study

WHIMS-MRI WHIMS magnetic resonance imaging

WM white matter

WMLS white matter lesion segmentation
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