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ADDITIONAL MATERIALS 

Part A: Study Population, Design, and Outcome Ascertainment 

1. Recruitment of Study Participants in WHIMS and WHIMS-MRI

Figure 1: Recruitment of WHIMS Population 

8094 Age-Eligible WHI Participants Solicited for Enrollment in WHIMS 
Estrogen-Alone and Estrogen + Progestin Trials

7479 Provided Consent and Enrolled in WHIMS Estrogen-Alone and 
Estrogen + Progestin Trials

7401 Assessed Prior to or on the Day of WHI Randomization
11 Assessed Within 6 Months after WHI Randomization

65 Assessed 6 to 18 Months after WHI Randomization
2 Assessed 18 to 24 Months After WHI Randomization

3693 Assigned to Receive Estrogen 
Alone or Estrogen + Progestin 3786 Assigned to Receive Placebo

7050 with 
PM2.5 data; 
6875 with 
diesel PM 

data

(adapted from Shumaker 2004)
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2. Statistical Power Analyses for Primary Study Aims

We provided the statistical power analyses for the two primary hypotheses (Specific Aims 1–2).   
In the following Figure, we reported our sample size and statistical power analyses relating MRI-

measured brain volume to ambient air
pollutants in multiple regression models 
(Cohen 1988).  With the WHIMS-MRI 
current sample size (N=1403), the proposed 
study will have the sufficient statistical 
power to detect the association between air 
pollution exposure and MRI-measured 
brain volume (Aim 1).  Our analyses were 
conditioned on a set of 20 covariates or 
potential confounders that have accounted 
for 50% of observed variation (the 
R2(C)=0.50) in brain volume, and we 
presented the varying statistical power as a 
function of sample size (N) and the 
variation in brain volume as explained by
the added continuous variable of air 

pollution (the R2(T)=0.01–0.05).  Our analyses show that a sample size as small as 1000 will provide 99% 
power to detect what we see to be clinically important associations with air pollution (i.e. that account for 
at least 1% or more in the conditional variability of MRI-based measures of neuropathological 
abnormalities), with adjustment for 20 potential confounders.   

The attached table summarized the results from our statistical power analyses (Hsieh and Lavori 2000) for 
the putative effects on incidence of MCI and all-cause dementia (Aim 2).  The proposed study will have a 
sufficient power to detect a hazard ratio (HR) ≥1.75 (per 10-μg/m3) for the PM2.5 effect (power ≥0.85) and 
HR ≥1.12 (per inter-quartile change) for the DEP effect (power ≥0.83).  These statistical power analyses 
were based on: (1) a presumed final sample size of 7000, which accounts for the possible missing data 
within the full WHIMS cohort (N=7479); (2) an event rate of 5%, as estimated from the published 
number of incident events (108 for probable dementia and 202 for MCI) during the on-trials period; (3) 
relative crude estimates of exposure gradients for annual PM2.5 and 1-year average DEP; and (4) a 
presumed explainable exposure R2=0.40 (i.e., the included covariates account for 40% of variability in air 
pollution exposure).  The exposure gradient for PM2.5 was based on reported data in a WHI-OS ancillary 
study which used the AQS data in 2000 (Miller et al. 2007).  For DPM, we use the estimated total diesel 
PM data in 1996.   

Table: Power analyses for the effects of PM2.5 and DPM on MCI/probable dementia 
PM2.5 effect (per 10-μg/m3 increase) DPM effect (per inter-quartile [IQR] increase) 

Annual PM2.5 
(Mean±SD) 

13.5±3.7 

HR=1.50 0.59 One-year DPM 
(Mean±SD) 
1.64±2.12 

(IQR=1.20 μg/m3) 

HR=1.12 0.83 
HR=1.75 0.85 HR=1.14 0.92 
HR=2.00 0.96 HR=1.16 0.97 
HR=2.25 >0.99 HR=1.18 0.99 

Power v.s. N by R2(T) with α=0.05, R2(C) = 0.50 
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Part B:  Estimation of Residential Exposures  

1. Residential location data 

Geocoded information of participants’ addresses was used to define the residential locations where PM 

exposures were estimated.  Because WHI address data since its inception (in 1993) were collected prospectively 

at each clinical visit and updated at least biannually, we were able to account for the varying exposure levels 

due to relocation.  For the current study, WHIMS participants would provide more frequent updates of their 

residential information as they came to the scheduled clinical visit (in 1996-2007), participated in the annual 

cognitive assessment (1996-2010), or involved in other research activities for the WHIMS Suite of Studies, 

including the WHIMS extension (2005-2008), the WHIMS Epidemiology of Cognitive Health Outcomes 

(WHIMS-ECHO; 2008-onward), WHI Study on Cognitive Aging (WHISCA; 1999-2010), (Resnick et al. 2004; 

Espeland et al. 2006; Resnick et al. 2009b) and the WHIMS-MRI-1 (2005-6) (Jaramillo et al. 2007; Espeland et 

al. 2009) and MRI-2 Studies (2010-11) (Espeland et al. 2013).  According to the geocoded information 

processed for this project, no WHIMS subjects moved out of the geographic regions covered by the exposure 

estimation described below.  The annual exposure (PM2.5 in 1999-2007; DPM in 1996-2005) was assigned to 

each residential location.  Given the longitudinal information on residence-year, cumulative exposures were 

then derived as time-weighted average pertinent to the study outcome measures (e.g., cumulative PM2.5 from 

1999 to the WHIMS-MRI inception in 2005-6; cumulative DPM from 1996 to the WHIMS-MRI inception in 

2005-6).   

 

2. BME estimates of residential exposures to PM2.5 

BME Database Development and Spatiotemporal Modeling of Annual PM2.5 Exposure  

2.1. Obtaining air PM2.5 monitoring raw data 

We followed the HEI’s requirement and had maintained a documentation of the procedure conducted to create 

and quality assure/quality control this database of the raw data. The data documentation included the description 

of procedures used to download data from the US Environmental Protection Agency Air Quality System (AQS), 

as well as documentation of the code used to create results of the comparison between BME estimates and 

inverse distance weighted estimates (see below in #4).  

 

2.2. Cleaning/Reconstructing annual PM data 

Based on the downloaded daily PM2.5 data, we calculated the annual PM values, and that we validated these 

values by achieving a perfect match between an arbitrary subset of our values and those obtained from an 

independent source.  

 

2.3 Developing BME soft data for annual PM2.5 concentrations 

In Table 1, we summarized the AQS dataset used for developing the nationwide BME model (#4), which 

integrated the hard data and soft data, as defined below. ). The numbers of hard data in Table 1 are the number 

of annual PM values obtained at all AQS stations from 1999 to 2007 for which sampling frequency is not 

missing, and for which at least 75% of intended samples were collected in each quarter. 
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Table 1: Number of hard data, soft data, and their fraction in the contiguous US and Hawaii from 1999 to 2007. 

Year Hard data (*) Soft data (
**

) Fraction 

1999 331 369 0.527 

2000 676 315 0.317 

2001 858 195 0.185 

2002 970 145 0.130 

2003 910 177 0.162 

2004 1004 127 0.112 

2005 1005 141 0.123 

2006 989 142 0.125 

2007 989 168 0.14 

Total 7732 1779  
 

(*)  Number of site/years for which the sampling frequency is not missing,  

and for which at least 75% of intended samples were collected in each quarter  

(**)  Number of site/years for which the sampling frequency is not missing, and for which the number of 

samples in each quarter was at least equal to one and less than 75% of  intended samples 

 

 

 

2.4 Developing national-scale BME estimation for yearly PM concentration and comparing them with 

inverse distance-weighted estimates  

We completed this task by implementing of the BME method, and comparing it with inverse distance weighted 

method. The results of this work are described here, and they were presented in April 2013 at a poster session of 

the 2013 HEI conference. 

 

Material and Methods 

Data 

The data used in this work consist in the reconstructed annual average data (see #2), but restricted to AQS 

stations located in the contiguous US and Hawaii. This removed stations in areas such as Puerto Rica, Alaska, 

etc., which reduced the total number of hard data to 7732 and soft data to 1779. 

 

Inverse Distance Weighting Method 

Inverse Distance Weighting (IDW) method is one of the most commonly used deterministic 

interpolation methods in exposure assignment and has been applied in many air pollution epidemiological 

studies. The IDW estimate  s
IDWẐ  of yearly PM2.5 at an unmonitored location s is estimated as the weighted 

average of the values Z(si) observed at surrounding data points si, i=1,…n, which is mathematically expressed 

as 
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where wi is a weight based on the distance di between the estimation point s and the data point si, p is a positive 

real number called the power parameter and n is the number of data points surrounding s that are used in the 

estimation. 

In order to determine the value of the power parameter p and the number of the data points n, we 

reviewed previous studies that estimated the concentration of particulate matter using the IDW method. From 

the 17 relevant studies published that also described nationwide/large-scale exposure interpolation, more than 

half of these studies did not provide the value of the power parameter p used, however the default value is 2 in 

the IDW tool of ArcGIS
TM

, the most commonly used GIS software, and four studies clearly stated that the 

power parameter used was p=2. Thus we used p=2 in this work. The number of data points n varied by study 

and ranged from 3 to 15, or was equal to all data points in the study region or within a certain radius (20km - 

100km). In this work, we used two implementations of the IDW method, one which used all the data points 

within a 30 miles radius of the estimation, and the other which used all data points in the study region. 

 

Bayesian Maximum Entropy Method 

The BME method introduced by Christakos (1990; 2000) provides a mathematically rigorous framework 

that integrates a variety of available knowledge bases (e.g., spatial dependency model, empirical relationships, 

scientific model, physical laws etc.) with data having varying levels of epistemic uncertainty. These data are 

categorized in hard data corresponding to exact measurements of the process, and soft data, which may have an 

uncertainty characterized by a PDF of any type (e.g., Gaussian, Uniform). A full description of the epistemic 

underpinnings of the BME method and its numerical implementation can be found elsewhere (Serre and 

Christakos; 1999 Christakos et al., 2002). In brief the BME method can be viewed as a two-stage knowledge 

processing procedure: At the prior stage, maximum entropy theory is used to process the general knowledge 

base at hand and produces a prior PDF describing the spatial process. Then at the posterior stage, an epistemic 

Bayesian conditionalization rule is used to update this prior PDF with respect to the site specific hard and soft 

data available, which produces a BME posterior PDF describing the value of the spatial process at any 

estimation point of interest. 

We denote as Zi the annual average concentration of PM2.5 measured at space/time point pi=(si,ti), where 

si and ti are the spatial coordinate and time of the annual measurement. Let o(p) be a deterministic global 

space/time offset chosen such that it captures consistent patterns in the space/time distribution of the annual 

PM2.5 data. The word “global” emphasizes that this offset is defined for any space/time coordinate p=(s,t) within 

the study domain encompassing all the available data. Let’s define X(p) as a space/time random field (S/TRF) 

with a homogenous/stationary covariance function, and such that a realization of this S/TRF be the values Zi–

o(pi) observed at data points pi. The uncertainty and space/time variability of the annual average concentration 

of PM2.5 across the study domain can then be described as in terms of the S/TRF 

 

Z(p)= X(p)+o(p), (2) 
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where o(p) is the global offset chosen deterministically to offset consistent patterns in the annual PM2.5 

concentration, and X(p) is a residual S/TRF with homogenous/stationary covariance determined by the data Zi 

and the choice of the offset o(p). The global offset model used in this work is that presented for similar previous 

air pollution studies (Serre et al. 2004; Akita et al. 2007, 2012; De Nazelle et al. 2010), which corresponds to an 

additive space-time model o(s,t)=os(s)+ot(t), where the spatial component os(s) is obtained using an exponential 

kernel smoothing of the time-averaged data, and the temporal component ot(t) is obtained using an exponential 

kernel smoothing of the spatially-averaged data. Following the procedure described in these previous works, the 

parameters of the kernel smoothing are chosen so as to smooth out small area/time variability in the data while 

capturing regional space/time trends. Operationally this was achieved by selecting smoothing parameters that 

produced the smallest residual variability while displaying the highest degree of autocorrelation. 

 

In order to describe the BME fundamental equation we will use subscript k (i.e., Xk) to denote the 

random variable representing the S/TRF at estimation point pk (i.e., Xk = X(pk)). Similarly subscripts h and s are 

used to represents vectors of random variables corresponding to the S/TRF at the hard data points {ph} and the 

soft data points {ps}, respectively. By convention, lower case variables (e.g. xh, xs, or xk) will denote realizations 

or deterministic values taken by their corresponding upper case random variables (e.g. Xh, Xs or Xk). 

 

In the case that the general knowledge base G about the S/TRF of the residual concentration X(p) 

consists in its mean trend mX(p) = E[X(p)] and covariance function cX(p, p’), then the BME fundamental 

equation reduces to 

 

     sSkshGsKK xfxxxfdxAxf ,,1


  (3) 

 

where A is a normalization constant, the prior PDF fG obtained from entropy maximization on G is multivariate 

normal with mean and covariance given by mX(.) and cX(.), respectively, the vector of deterministic values xh 

corresponds to the hard data, and fS is a PDF characterizing the epistemic uncertainty of the soft data. The BME 

posterior PDF fK is denoted with a subscript K = G∪S representing the union of the general knowledge G = 

{mX(.),cX(.)} and site specific knowledge S = {xh, fS(.)}. The expected value of the BME posterior PDF provides 

an estimate of the residual concentration X(p) at the estimation point, and the corresponding BME posterior 

standard deviation provides a useful characterization of the associated estimation uncertainty.  

 

In the limiting case where only hard data are included in the estimation process, the BME estimator is 

simply the kriging estimator (Christakos, 1990; 2000). Indeed, if we remove the soft data from Equation (3), we 

obtain    khGKK xxfAxf ,1 , where the normalization constant needs to be equal to 

    

hGkhGk xfxxfdxA ,1
. Hence the posterior pdf can be re-written as 

       hkGhGkhGKK xxfxfxxfxf |/,   which is nothing more than the conditional pdf under knowledge 

base G. If G is restricted to only including the spatial mean trend mX(s) and spatial covariance function cX(s, s’), 

then under maximum entropy maximization  khG xxf ,  is multivariate Gaussian with mean and covariance 

specified by mX(s) and cX(s, s’) (Christakos 1990; 2000, Serre and Christakos; 1999, Christakos et al., 2002), 

and it follows that the posterior pdf is also Gaussian with a conditional mean equal to  

 

  )(| 1

,, hhhhhkkhk mxCCmxXE  
 (4) 
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where )( kXk mm s , )( hXh mm s , ),(, hkXhk cC ss  and ),(, hhXhh cC ss . This Gaussian conditional 

mean is a linear combination of the hard data values, with weights equal to those of the classical kriging 

methods. This demonstrates that BME is consistent with the widely used spatial kriging estimator since it 

reduces to linear kriging when the mean and covariance is restricted to the spatial domain and the data only 

include the hard data. This makes BME a consistent extension of the widely used kriging estimator when one 

needs to (a) extend spatial kriging to the space/time domain and (b) integrate non-Gaussian soft data. 

 

The uncertainty associated with annual PM2.5 averages calculated from an incomplete set of daily PM2.5 

concentrations is characterized by a probability density function (PDF). We assume that an adequate 

approximation for the PDF at monitoring station i in year t (1999-2007) is a normal distribution with mean μs,i 

and standard deviation σs,i truncated below zero, since the annual average concentrations cannot be negative. 

The mean μs,i is simply set to the sample mean of the ni daily concentrations measured at station i in year t. The 

epistemic uncertainty associated with a soft datum arises from the fact that the number of measurements ni 

taken over a year may be less than the intended number of measurements ni* (i.e. the number of measurement 

that would have been collected if the station had operated as intended). Hence this uncertainty relates to the 

difference between the true mean of all ni* intended daily measurements, and the sample mean μs,i calculated 

from an incomplete sample of size ni selected from a finite population of size ni*. Therefore, a reasonable value 

for the standard deviation σs,i is  
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where the first term of this equation is the standard deviation of the sample mean and the second term is a finite 

population correction factor to account for the finite population size. 

The BME framework presented above was implemented in the MATLAB programming language by 

using or extending MATLAB functions available in the BMElib (version 2.0) numerical library (Serre and 

Christakos; 1999 Christakos et al., 2002). 

 

 

Cross-validation Analysis 

In order to evaluate the model performance of the proposed and the conventional approaches, a leave-

one-out cross-validation analysis was conducted for the following three spatial interpolation and one space/time 

interpolation methods: (1) the spatial nearest-neighbor approach (NNA), (2) the spatial IDW method, (3) the 

spatial kriging method, and (4) the space/time BME method. All the annual average concentrations during study 

period (1999-2007) that met the completeness criterion were used as the validation points. The first three 

methods are purely spatial interpolation methods, so if annual PM2.5 is estimated for a given year of interest, 

then only the hard data for that year of interest is used. On the other hand the space/time BME estimation differs 

in two ways. First it accounts for both the hard and soft data available. Second, for a given year of interest, the 

hard and soft data used comes from that year as well as the adjacent years.  
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Model performance was evaluated using the following cross-validation statistics: the root mean square 

error (RMSE), the Pearson correlation coefficient, and the Spearman’s rank correlation. In addition to the cross-

validation analysis, maps of the estimated PM2.5 annual concentration were produced over the contiguous US 

and California to visually inspect the estimation results. 

 

Results 

Global offset and covariance function  

The global offset o(p)=os(s)+ot(t) used in this work to model the regional space/time trend in the data 

(Figure 2) was obtained using the BMElib (version 2.0) numerical library. Using BMElib, the time-average of 

annual concentrations are first calculated for each monitoring sites (Fig. 2a), and then a spatial exponential filter 

is applied to these raw time-averages to obtain the smoothed spatial component os(s) shown in Fig 2(b).  The 

spatial offset os(s) clearly smoothed out differences in near-stations, while retaining regional trends displaying 

relatively high concentrations in the East Coast and in California compared to the lower concentrations 

observed in the Midwest. Likewise, in BMElib, the spatial-average of annual concentrations are calculated for 

each year (dashed line, Fig. 2c), and an temporal exponential filter is used to obtain the smoothed temporal 

component ot(t) shown as a plain line in Fig 1(c). This figure clearly exhibits a decreasing trend in the annual 

PM2.5 average concentrations over the study period. 

 

 

 
Figure 2: Maps of (a) the time-averaged PM2.5 concentration (μg/m

3
) calculated for each site as the average of 

the annual PM2.5 concentrations from 1999 to 2007, (b) the corresponding spatial offset os(s) (μg/m
3
), and (c) 

time series of annual PM2.5 concentrations averaged for each year over all monitoring sites (dotted line) and 

corresponding temporal offset ot(t) (solid line). 

 

Based on the global offset o(p) described above, we obtained the covariance function of the residual 

PM2.5 annual concentrations X(p) shown in Figure 3. First we computed the sample covariance values from the 

residual concentrations, which are shown as red circle in Figure 3. Then, the sample covariance values were 

used to fit the positive definite covariance model shown with a green line in Figure 3. Since the sample 

covariance values exhibit both short and long range variability, we used a two components exponential 

covariance model (Serre et al, 2004), which is given by the following equation. 
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where ci is the sill, ari is the spatial range and aτi is the temporal range of the ith component (i = 1 or 2). The 

model parameters (Table 2) were estimated using an automated weighted least square procedure. In the case of 

the spatial kriging method, we only need to model the spatial autocorrelation in the data. This is done by setting 
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=0 in Eq. (6) to obtain the spatial covariance model      2211 /3exp/3exp rr arcarcrC  , where the 

parameters ci and ari (i = 1 or 2) take the values listed in Table 2. 

 

 

Table 2: Estimated covariance model parameters 

Parameter  Value 

Sill c1 5.71 (μg/m
3
)

2
 

Spatial Range ar1 156 (Km) 

Temporal Range aτ1 148 (Yr) 

Sill c2 0.825 (μg/m
3
)

2
 

Spatial Range ar2 1446 (Km) 

Temporal Range aτ2 178 (Yr) 

 

 

 
Figure 3: (a) Spatial and (b) temporal component of the covariance function of residual PM2.5 annual 

concentrations 

 

Cross-validation Analysis 

Table 3 shows the root mean square error (RMSE), Pearson correlation coefficient (CORR) and 

Spearman’s rank correlation (RANK) obtained from cross validation. First we compared NNA and IDW when 

these methods are restricted to only using data within a 30 miles radius (upper panel of Table 3). In that case the 

validation set is reduced to the 5674 PM2.5 annual average concentrations observed at monitoring sites in the 
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contiguous US and Hawaii having at least one monitoring site within a 30 miles radius. In that case NNA (<30 

miles) produces a larger RMSE than IDW (<30 miles).   

We then compared the four estimation methods when they are not limited to a 30 miles radius (lower 

panel of Table 3). In this case the cross validation set consists of all 7732 PM2.5 annual average concentrations 

observed at monitoring sites in the contiguous US and Hawaii. We find that NNA produces the largest RMSE 

among all approaches. The IDW method reduced the RMSE by 9% relative to NNA. Kriging further reduced 

the RMSE by 18% relative to NNA. Moreover, BME achieved the smallest RMSE amongst all methods, 

corresponding to a 24% reduction relative to NNA. The improvement of the Pearson correlation coefficient and 

Spearman’s ranks correlation were also the largest for the BME method.  The reduction in RMSE and the 

corresponding increase in CORR can be seen in the scatter plots (Figure 3). 

 

 

Table 3: Cross-validation error statistics of four interpolation methods 

Method
1
 

(1)  

spatial 

NNA 

(2)  

spatial 

IDW  

(3)
4  

spatial 

kriging 

(4)
5
 

space/time 

BME 

RMSE
2
 2.20 2.07 N/A N/A 

CORR
2
 0.833 0.848 N/A N/A 

RANK
2
 0.864 0.879 N/A N/A 

RMSE
3
 2.52 2.29 2.01 1.92 

CORR
3
 0.811 0.845 0.872 0.884 

RANK
3
 0.846 0.873 0.891 0.902 

1
 For a given estimation point, the spatial NNA, IDW and kriging methods only use hard data for the year of 

estimation, while the space/time BME method uses both hard and soft data for the estimation year as well as 

adjacent years.  
2
 Cross-validation error statistics based on 5674 PM2.5 annual average concentrations observed at monitoring 

sites in the contiguous US and Hawaii having at least one monitoring site within a 30 miles radius. 
3
 Cross-validation error statistics based on 7732 PM2.5 annual average concentrations observed at the all 

monitoring sites in the contiguous US and Hawaii. 
4
 Spatial kriging uses the spatial covariance      2211 /3exp/3exp rr arcarcrC  , where the parameters ci 

and ari (i = 1 or 2) take the values listed in Table 2. 
5
 Space/time BME uses the space/time covariance model described in equation (6). 
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 (spatial NNA) (spatial IDW) 

 
 (spatial kriging) (space/time BME) 

 
Figure 4: Scatter plots of estimated versus observed annual PM2.5 based on 7732 PM2.5 annual average 

concentrations values observed in 1999-2007. 

 

Since PM2.5 fluctuates from year to year, we furthermore calculate the performance statistics by years for 

the RMSE (Table 4) and the CORR (Table 5). We find that for each year the order of performance (from worse 

to best) is maintained as being spatial NNA, spatial IDW, spatial kriging and space/time BME. The 

improvement of performance between methods can be seen in the scatter plots for 1999 (Figure 4). The same 

patterns can be seen in the scatter plots for other years (plots not shown). 

Altogether, the cross validation analysis provides evidence supporting that the BME method was 

correctly implemented since it produced results with lower RMSE and higher CORR than the other methods. 

The difference in performance statistics is most noticeable when comparing the two non-statistical methods 

(spatial NNA and spatial IDW) with the two geostatistical methods (spatial kriging and space-time BME). By 

contrast, the difference between the two geostatistical methods is small. Our cross-validation results showed the 

performance of BME approach vs. spatial kriging in modeling yearly PM2.5 exposure 1999-2007 was only 

modest, likely reflecting the fact that PM2.5 data were fairly complete and we only had 8-9 years of longitudinal 

data. However, even though the difference is small, the results of this comparison analysis supports that one 

should use space-time BME, since it produces better performance statistics. 
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Table 4: RMSE cross-validation error statistics by year 
Year n RMSE 

spatial 

NNA 

RMSE 

spatial 

IDW 

RMSE 

spatial 

kriging 

RMSE 

space/time 

BME 

1999 331 3.687 3.363 2.956 2.833 

2000 676 2.7 2.367 2.031 1.919 

2001 858 2.626 2.419 2.13 1.954 

2002 970 2.488 2.276 1.961 1.913 

2003 910 2.361 2.193 1.929 1.891 

2004 1004 2.427 2.191 1.955 1.859 

2005 1005 2.454 2.268 1.95 1.879 

2006 989 2.357 2.074 1.866 1.813 

2007 989 2.269 2.093 1.846 1.768 

1999-2007 7732 2.517 2.289 2.008 1.923 

 

Table 5: CORR cross-validation error statistics by year 
Year n CORR 

spatial 

NNA 

CORR 

spatial 

IDW 

CORR 

spatial 

kriging 

CORR 

space/time 

BME 

1999 331 0.767 0.794 0.832 0.847 

2000 676 0.806 0.852 0.883 0.896 

2001 858 0.813 0.847 0.868 0.892 

2002 970 0.811 0.842 0.873 0.882 

2003 910 0.824 0.853 0.876 0.885 

2004 1004 0.785 0.826 0.851 0.871 

2005 1005 0.834 0.866 0.89 0.899 

2006 989 0.787 0.835 0.858 0.867 

2007 989 0.813 0.841 0.868 0.881 

1999-2007 7732 0.811 0.845 0.872 0.884 
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Figure 5: Scatter plots of estimated versus observed annual PM2.5 based on 331 PM2.5 annual average 

concentrations values observed in 1999 

 

 

Estimation map 

Figure 6 shows maps of the PM2.5 annual average concentration estimated in 2002 over the contiguous 

US and California by the NNA based on the all the monitoring sites (left), the IDW method based on all the 

monitoring sites (center), and the BME method (right). The circles show the hard data points, whereas the 

triangles indicate soft data points used in the BME method. As expected, NNA produced a map showing a 

patchy distribution of concentrations, since the estimated concentrations were simply assigned the value at the 

nearest data point. The IDW method resulted in a map with a more realistic and smoother spatial distribution of 

concentrations. However, since the concentration estimated by the IDW method simply depends on the distance 

from the data points, the map produced disconnected islands of high and low concentrations centered on data 

points. The BME method accounts for the autocorrelation of the data and the additional information provided 

by the soft data shown as triangles, which results in a more realistic map that is less patchy and better describes 

contiguous areas of high versus low concentrations, such as those displayed along the central valley of 

California.  
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Figure 6: Maps of the PM2.5 annual average concentration estimated in 2002 over the contiguous US (top row) 

and California (bottom row), as obtained by NNA based on the all the monitoring sites (left), the IDW method 

with all the monitoring sites (middle), and the BME method (right). 
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3. NATA estimates of ambient concentrations at census tract-level of DPM exposures 

NATA DPM Estimates: Hierarchical Spatiotemporal Analyses, Census Tract-Specific Interpolation, and 

Nationwide Mapping in 1996-2005  

 

Introduction 

The Environmental Protection Agency’s (EPA) National-scale Air Toxics Assessment (NATA) is an ongoing 

project that involves a comprehensive evaluation of air toxics in the US. Four assessments have been completed 

(1996, 1999, 2002 and 2005), each providing an annual estimate of outdoor hazardous air pollutants (HAPs) 

plus diesel particulate matter (DPM) concentrations (in µg/m
3
) at the census tract level. Emissions data are the 

key input to the NATA modeling framework, and the ambient concentrations of DPM and other HAPs were 

among the primary outputs of NATA models.   The output concentrations were split into two on-road and non-

road sources.  For this study, we chose the on-road DPM exposure as the proxy indicator of exposure to PM 

from roadway traffics. 

The main purpose of conducting the hierarchical spatiotemporal analyses of nationwide DPM estimates was to 

better understand the potential variability of our assumed exposure variable both over time and within the 3 

levels of spatial nesting (census tract within county, county within state).   The resulting knowledge would 

inform us of how best to go about making DPM interpolations for the intervening years (1997; 1998; 2000; 

2001; 2003; 2004) when NATA model-based estimates were not generated by the EPA.   

Below we detail the procedure taken to investigate the components of variability in NATA DPM and 

subsequently to interpolate the concentrations 1996-2005 using the 4-year wealth of NATA model-based 

estimates. 

Methods 

Assessment of Variability 

We used the HLM7 software
1
 to model the 4-level data, estimating the variability at each level. The level-1 

model provides an estimate of the variability in DPM concentrations attributed to the repeated measures at the 

tract level. Specifically, Ymijk=ψ0ijk + εmijk  for m=1,…,4 repeated measures (1996, 1999, 2002, 2005) within 

each census tract, i=1,…,65141 census tracts, j=1,…,3112 counties and k=1,…,51 states (including Washington 

DC). The DPM concentration is Ymijk , ψ0ijk is the intercept representing the census tract and εmijk is the residual 

error representing the repeated measures in time at the census tract level. As εmijk ~N(0, σ
2

mijk),  the residual 

error provides us with an estimate of the variance in the census tracts over the repeated measures. The level-2 

model provides an estimate of the variability in the census tracts. Specifically, the intercept from the level-1 

model is used to construct ψ0ijk = π00jk + e0ijk  where e0ijk ~N(0, σ
2

ijk).   Following the same nested structure the 

level-3 and level-4 models provide estimates of the variance in counties and states. The models are π00jk = υ000k 

+ r00jk where r00jk~N(0, σ
2

jk) and υ000k = γ0000+ u000k where u000k~N(0, σ
2

k). No structure was placed on any of the 

variance-covariance matrices during estimation (i.e. the covariance structure was unrestricted). 

Table 4 outlines the specific variance components (as a percent of the total variance) for ambient DPM on-road 

concentration.   We found that time accounted for the largest proportion of the overall variability.  For the 

remaining spatial components, between-census tract accounted for the largest spatial variability (15.48%), with 

the further partitioning of variance for county and state with almost equal contribution.   
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Table 6: 4-Level Hierarchical Model Variance Components (% of total variance) 

Nesting Level Ambient On-road 

Time (1) 63.87 

Between-Census Tract (2) 15.48 

Between-County (3) 10.26 

Between-State (4) 10.39 

 

These results showed that, for ambient estimates from on-road sources, the remaining spatial variability was 

largely determined by between-census tract difference as opposed to between-county/within-state or between-

state difference in the NATA-modeled annual exposures to diesel PM.  The significant proportion (~ 43%) of 

the spatial variance attributable to the variation at the census-tract level supported the analytical decision using 

ambient on-read DPM estimate as a traffic-related PM exposure surrogate with reasonable spatial resolution and 

intra-community variation.  In contrast, our earlier analyses (presented at the HEI annual conference 2013; 

discussed with HEI Research Committee in the 2014 interim review) showed that only 3.65% of the ambient 

non-road DPM exposure variance would be attributable to the census-tract level, and the overall spatial variance 

(including all 3 levels) only account for 12% of the overall exposure contrast in 1996-2005.  

 

1Raudenbush, S.W., Bryk, A.S, & Congdon, R. (2013). HLM 7.01 for Windows [Computer software]. Skokie, IL: 

Scientific Software International, Inc. 

 

Interpolation 

The first step involved converting the 1996 and 1999 data from 1990 census tracts to 2000 census tracts. We 

used census tract relationship files available from the US Census Bureau 

(http://www.census.gov/geo/www/relate/rel_tract.html) for this purpose.  

Given the results of the assessment of variability (see Table 6) we proceeded with a strictly temporal 

interpolation at the census tract level. On examination of the temporal trends in a sample of the census tracts, 

we found that a linear fit between the years was not ideal. To account for possible non-linearity in 

concentrations over the 4 years of NATA data, we chose to fit smooth functions using cubic regression splines 

with a generalized additive model (GAM) for each census tract and DPM concentration type. In addition to 

being able to account for non-linearity in time, this method allowed for the estimation of standard errors of 

prediction.  

The general model formulation is  where yi is the DPM on-road concentration in µg/m
3
 at time 

i=1,…,t (1996, 1999, 2000, 2005); f(xi) is function of DPM at year xi and i are random iid errors. The function 

f(xi) is described by basis functions, which for the cubic regression basis are: 



yi  f (xi)i
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

f (x i)  b j (x) j
j1

4

  where b1=1, b2(x)=x, b3(x)=x
2
 b4(x)=x

3
.  

The spline essentially connects successive cubic polynomial regressions by knots that are placed at locations 

where the data are to be connected. The available NATA data for each census tract were fit using this method 

and then the resultant model was applied to predict concentrations for the missing years (1997, 1998, 2000, 

2001, 2003, 2004). These predictions were merged in with the original data, giving a complete yearly time-

series of DPM for 1996 to 2005.  Using these yearly exposure estimates, we developed nationwide census tract-

level maps of diesel PM. The maps for 1996, 1999, 2000, 2005 were NATA estimates, while maps for the 

intervening years (1997, 1998, 2000, 2001, 2003, 2004) were based on interpolated NATA concentrations from 

the cubic regression as described before. 
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ADDITIONAL MATERIALS 
 
Part C: Statistical Analyses 
 
1. Conceptualization of potential confounding and statistical adjustment 

When deciding whether a variable is a confounder that should be adjusted for in the statistical 

analyses, many researchers still use automated variable selection (e.g., backward elimination for 

covariates with p>0.05 in the final statistical models) or rely on statistical criteria, such as 

Akaike information criterion (AIC) or Bayesian information criterion (BIC).  Analytic 

approaches based on automated variable selection have known limitations and resulting biases 

have been reported in the literature (Austin and Tu 2004; Sauer et al. 2013), including case 

studies for environmental epidemiology (Budtz-Jorgensen et al. 2007).  Although the use of AIC 

and BIC offers practical solutions to select candidate models with optimal statistical fit to the 

data drawn from population studies on health outcomes with largely known causal structure (e.g., 

for obtaining the estimates of short air pollution effects on increased mortalities and/or 

morbidities while controlling for meteorological variables), such approaches often yields analytic 

results with very little insights about the identification of potential confounders as well as the 

causal structure where the consequence of (e.g., directionality; magnitude) of resulting 

confounding occurs.   

Following the empirical approach with prior causal knowledge as recommended by modern 

epidemiologic literature (Greenland and Brumback 2002; Hernan et al. 2002), in this project we 

used the directed acyclic graph (DAG) to identify a list of important covariates a priori as 

potential confounders for the putative neurotoxic effects of PM exposures. Conceptually, these 

covariates would have established causal relationships both with the studied outcomes (structural 
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brain volumes; risk of MCI or dementia), and also with the PM exposures.  Because we relied on 

residential locations to define the primary exposure variables, any population characteristics or 

personal attributes that determine where the people live (and thus the estimated exposure levels) 

in late life could be considered as potential confounders if they are also known to affect the 

studied outcomes.  For epidemiologic studies on brain health and outdoor air pollutants that 

relied on location-based exposure estimation, rigorous accounting for such potential confounding 

had been advocated by experts participating in an NIEHS Workshop (Block et al. 2012).   

In this regard, age, race/ethnicity, socioeconomic status, and lifestyle factors (including 

smoking, alcohol consumption, and physical activities) should be conceptualized as potential 

confounders a priori and included in the fully adjusted analyses.   Also, to control for possible 

spatial confounding, our statistical adjustment included the US census-defined geographic 

region, because there is increasing evidence of geographic differences in dementia incidences 

(Russ et al. 2012).  Finally, we considered other individual-level health-related factors that may 

contribute to personal decision regarding where to live in late life.  In this regard, the possible 

candidates included physical attributes (e.g., BMI), care seeking behaviors (e.g., use of HT), 

mental health (e.g., prior depression), and CVD related clinical risk factors (e.g., histories of 

hypertension, diabetes mellitus, hypercholesterolemia, and CVD).   By comparing the results 

before and after statistical adjustment for CVD related clinical risk factors, one may examine the 

their potential contribution to the associations, if any revealed between neurocognitive 

outcomes/brains structural volumes and PM exposures, considering the growing evidence for the 

cardiometabolic abnormalities associated with PM exposure.   
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2. Operational definition of time-varying long-term exposure variables 

The spatiotemporal BME-derived yearly PM2.5 exposures were assigned to each time point when 

WHIMS participants came to the scheduled clinical visits (in 1996-2007) for various 

assessments, including the annul cognitive screening (1996-2007) during the on-trial and post-

trial periods or participate in WHI Study on Cognitive Aging (WHISCA; 1999-2010), (Resnick 

et al. 2004; Espeland et al. 2006; Resnick et al. 2009) or the WHIMS-MRI-1 (Jaramillo et al. 

2007).  These exposure estimates were then used to reconstruct the yearly exposure time-series.  

Given the reconstructed yearly exposure time-series, we derived the time-varying cumulative 

yearly exposure along the study time scale (and entered as time-varying covariates in the Cox 

models).  This time-varying cumulative exposure variable was defined as the moving average of 

all yearly exposures aggregated from the WHI inception year to the index year when an incident 

event (MCI or probable dementia) was classified or the corresponding risk set was defined), 

assuming all data elements of the reconstructed yearly exposure time-series were missing at 

random.  In order to reduce the statistical ties of event times and also minimize the influence of 

temporal misalignment in the exposure contrast, all the risk sets were defined on a daily basis 

whenever an index event occurred along the study time scale.   
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