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A B O U T  H E I

 vii

The Health Effects Institute is a nonprofit corporation chartered in 1980 as an independent 
research organization to provide high-quality, impartial, and relevant science on the effects of air 
pollution on health. To accomplish its mission, the institute

• Identifies the highest-priority areas for health effects research;

• Competitively funds and oversees research projects;

• Provides intensive independent review of HEI-supported studies and related 
research;

• Integrates HEI’s research results with those of other institutions into broader 
evaluations; and

• Communicates the results of HEI’s research and analyses to public and private 
decision makers.

HEI typically receives balanced funding from the U.S. Environmental Protection Agency and the 
worldwide motor vehicle industry. Frequently, other public and private organizations in the 
United States and around the world also support major projects or research programs. HEI has 
funded more than 330 research projects in North America, Europe, Asia, and Latin America, the 
results of which have informed decisions regarding carbon monoxide, air toxics, nitrogen oxides, 
diesel exhaust, ozone, particulate matter, and other pollutants. These results have appeared in 
more than 260 comprehensive reports published by HEI, as well as in more than 1,000 articles in 
the peer-reviewed literature.

HEI’s independent Board of Directors consists of leaders in science and policy who are 
committed to fostering the public–private partnership that is central to the organization. The 
Research Committee solicits input from HEI sponsors and other stakeholders and works with 
scientific staff to develop a Five-Year Strategic Plan, select research projects for funding, and oversee 
their conduct. The Review Committee, which has no role in selecting or overseeing studies, works 
with staff to evaluate and interpret the results of funded studies and related research.

All project results and accompanying comments by the Review Committee are widely 
disseminated through HEI’s website (www.healtheffects.org), printed reports, newsletters and other 
publications, annual conferences, and presentations to legislative bodies and public agencies.
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Research Report 194, A Dynamic Three-Dimensional Air Pollution Exposure Model for Hong Kong, 
presents a research project funded by the Health Effects Institute and conducted by Dr. Benjamin 
Barratt of King’s College London, United Kingdom, and his colleagues. The report contains three 
main sections.

The HEI Statement, prepared by staff at HEI, is a brief, nontechnical summary of the 
study and its findings; it also briefly describes the Review Committee’s comments on 
the study.

The Investigators’ Report, prepared by Barratt and colleagues, describes the 
scientific background, aims, methods, results, and conclusions of the study.

The Critique, prepared by members of the Review Committee with the assistance 
of HEI staff, places the study in a broader scientific context, points out its strengths 
and limitations, and discusses remaining uncertainties and implications of the study’s 
findings for public health and future research.

This report has gone through HEI’s rigorous review process. When an HEI-funded study is 
completed, the investigators submit a draft final report presenting the background and results of 
the study. This draft report is first examined by outside technical reviewers and a biostatistician. 
The report and the reviewers’ comments are then evaluated by members of the Review 
Committee, an independent panel of distinguished scientists who have no involvement in 
selecting or overseeing HEI studies. During the review process, the investigators have an 
opportunity to exchange comments with the Review Committee and, as necessary, to revise 
their report. The Critique reflects the information provided in the final version of the report.
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HEI’s Research Program to Improve Assessment of 
Exposure to Traffic-Related Air Pollution

INTRODUCTION

Traffic emissions are an important source of urban
air pollution. Emissions from motor vehicles and ambi-
ent concentrations of most monitored traffic-related
pollutants have decreased steadily over the last several
decades in most high-income countries as a result of air
quality regulations and improvements in vehicular emis-
sion control technologies, and this trend is likely to con-
tinue. However, these positive developments have not
been able to fully compensate for the rapid growth of
the motor vehicle fleet due to growth in population
and economic activity, increasing vehicular congestion,
as well as the presence of older or malfunctioning vehi-
cles on the roads. 

In 2010, HEI published Special Report Number 17,
Traffic‐Related Air Pollution: A Critical Review of the Litera-
ture on Emissions, Exposure, and Health Effects. This re-
port, developed by the HEI Panel on the Health Effects
of Traffic‐Related Air Pollution (“Panel”), summarized
and synthesized research related to the health effects
from exposure to traffic emissions. The Panel in its con-
clusions “identified an exposure zone within a range of
up to 300 to 500 m from a major road as the area most
highly affected by traffic emissions (the range reflects
the variable influence of background pollution concen-
trations, meteorologic conditions, and season).” The
Panel estimated that 30% to 45% of people living in
large North American cities reside within these zones.
Based on a review of health studies, the Panel con-
cluded that exposure to traffic-related air pollution was
causally linked to worsening asthma symptoms. It also
found “suggestive evidence of a causal relationship with
onset of childhood asthma, nonasthma respiratory
symptoms, impaired lung function, total and cardiovas-
cular mor tality, and cardiovascular morbidity” (HEI

Panel on the Health Effects of Traffic-Related Air Pollu-
tion 2010). 

The report also noted that exposure assessment of
traffic-related air pollution is challenging; it is a complex
mixture of particulate and many gaseous pollutants,
many of which are also emitted by other sources, and is
characterized by high spatial and temporal variability
with the highest traffic-related air pollution concentra-
tions occurring at or close to major roads. Therefore,
identifying an appropriate exposure metric that uniquely
indicates traffic-related air pollution and modeling the
distribution of exposure at a sufficiently high degree of
spatial and temporal resolution have been difficult.

The most commonly used exposure metrics are
measured or modeled concentrations of individual pol-
lutants considered to be indicators of traffic-related air
pollution (such as nitrogen dioxide [NO2] or black car-
bon [BC]) and simple indicators of traffic (such as dis-
tance of the residence from busy roads or traffic
density near the residence). 

A range of models, such as dispersion, land-use re-
gression, and hybrid models, have been developed to
estimate exposure. Some attempts to account for in-
door infiltration and time–activity patterns have been
made to refine such estimates. Although many im-
provements in these exposure models have occurred
over time (especially the use of geographic information
system approaches and the application of more sophis-
ticated statistical methods), their usefulness still de-
pends on the model assumptions and data quality. Few
studies have compared the performance of different
models and evaluated exposure measurement error
and possible bias in health estimations. 

To start addressing these concerns, HEI issued a Re-
quest for Applications in 2013. In order to inform the
development of the RFA, the HEI Research Committee
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held a workshop in April 2012 with experts in the ar-
eas of atmospheric chemistry, pollutant measurements,
exposure models, epidemiology, and health assess-
ment to discuss and identify the highest priority re-
search questions.

OBJECTIVES OF RFA 13-1

RFA 13-1, Improving Assessment of Near-Road Expo-
sure to Traffic Related Pollution, aimed to solicit studies to
improve exposure assessment for use in future work
on the health effects of traffic-related air pollution. The
RFA had three major objectives:

• Demonstrate novel surrogates of near-road traffic-
related pollution, taking advantage of new sensors
and/or existing monitoring data. 

• Determine the most important variables that
explain spatial and temporal variance of near‐road
traffic-related pollutant concentrations at the per-
sonal, residential, and/or community levels, and
explain the implications of these for future monitor-
ing, modeling, exposure, and health effects studies. 

• Improve inputs for exposure models for traffic‐
related health studies; evaluate and compare the
performance of alternative models to existing
models and actual measurements to quantify ex-
posure measurement error. 

DESCRIPTION OF THE PROGRAM

Five studies were funded under RFA 13-1 to repre-
sent a variety of geographical locations and cover the
various RFA objectives. The study by Barratt and col-
leagues described in this report (Research Report 194)
is the first to be published. All five studies are summa-
rized below.

“The Hong Kong D3D Study: A Dynamic Three-Dimensional
Exposure Model for Hong Kong,” Benjamin Barratt, King’s
College London, United Kingdom (Principal Investigator) In
the study presented in this repor t, Barratt and col-
leagues estimated exposure to traffic-related air pol-
lution using a dynamic three-dimensional land-use
regression model for Hong Kong, which has many
high-r ise bui ldings, resulting in street canyons.

Different exposure models were developed with
increasing complexity (e.g., incorporating infiltration
indoors, vertical gradients, and time–activity patterns)
and applied in an epidemiological study to evaluate the
potential impact of exposure measurement error in
mortality estimates.

Enhancing Models and Measurements of Traffic-Related 
Air Pollutants for Health Studies Using Bayesian Melding,” 
Stuart Batterman, University of Michigan, Ann Arbor, 
Michigan (Principal Investigator)    Bat te r man and
colleagues estimated exposure of traffic-related air pol-
lution using a variety of methods and models, including
air pollution dispersion models and novel data fusion
methods that would be able to propagate uncertainty
more fully into the exposure estimates. The study made
extensive use of data collected in the Near-road EXpo-
sures and effects of Urban air pollutants Study
(NEXUS), a cohort study designed to examine the re-
lationship between near-roadway pollutant exposures
and respiratory outcomes in children with asthma who
live close to major roadways in Detroit. The study has
been completed and is currently in review.

“Characterizing the Determinants of Vehicle Traffic Emis-
sions Exposure: Measurement and Modeling of Land-
Use, Traffic, Transformation, and Transport,” Christopher 
Frey, North Carolina State University, Raleigh, North Car-
olina (Principal Investigator) Frey and colleagues inves-
tigated key factors that influence exposure to traffic-
related air pollution: traffic and its composition; built en-
vironment including road characteristics and land use;
and dispersion, transpor t, and transformation pro-
cesses. The study collected extensive measurements of
fine par ticulate matter (PM2.5), ultrafine par ticles
(UFPs), oxides of nitrogen (NOx), and semi-volatile or-
ganic compounds (SVOCs) in various near-road loca-
tions in the Raleigh–Durham area. This study was
completed at the end of 2017.

“Developing Multipollutant Exposure Indicators of Traffic 
Pollution: The Dorm Room Inhalation to Vehicle Emis-
sions (DRIVE) Study,” Jeremy Sarnat, Emory University, 
Atlanta, Georgia (Principal Investigator) Sa r na t  and
colleagues evaluated novel multipollutant traffic surro-
gates by collecting measurements in and around two
student dormitories in Atlanta and explored the use of
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metabolomics to identify possible exposure-related
metabolites. The DRIVE study made use of a unique
emission-exposure setting in Atlanta, on the Georgia
Institute of Technology campus, with one dorm immedi-
ately adjacent to the busiest and most congested high-
way artery in the city (with more than 300,000 vehicles
per day), and another dorm located farther away. This
study has been completed and is currently in review.

“Evaluation of Alternative Sensor-Based Exposure Assess-
ment Methods,” Edmund Seto, University of Washington, 
Seattle, Washington (Principal Investigator) Seto and
colleagues performed an evaluation of novel low-cost
air pollution sensors to characterize traffic-related air
pollution in the San Francisco Bay area. They have de-
ployed various low-cost air pollution sensors — includ-
ing Shinyei particulate matter sensors and Alphasense
electrochemical sensors — for an extended period of
time. Sensors were colocated with reference monitors
to evaluate sensor performance. This study has been
completed and is currently in review.

NEXT STEPS

As these studies near completion, valuable lessons
learned may be integrated into new research. Continu-
ing its commitment to research on traffic-related air
pollution, in January 2017 HEI issued RFA 17-1, Assess-
ing Adverse Health Effects of Exposure to Traffic-Related
Air Pollution, Noise, and Their Interactions with Socio-
economic Status, seeking studies to assess adverse
health effects of short- and/or long-term exposure to
traffic-related air pollution. The applicants were asked
to consider spatially correlated factors that may either
confound or modify the health effects of traffic-related
air pollution, most notably, traffic noise, socioeconomic

status, and factors related to the built environment,
such as presence of green space. 

At the time of publication of this report, three stud-
ies have been selected for funding and are expected to
start in 2018. Payam Dadvand and Jordi Sunyer from
the Barcelona Institute for Global Health will set up a
new cohort of healthy pregnant women in Barcelona
to examine the effects of traffic-related pollution and
other factors on birth weight, fetal growth, and placen-
tal function. Ole Raaschou-Nielsen from the Danish
Cancer Society Research Center, Copenhagen, Den-
mark, will make use of very large administrative data-
bases to evaluate effects of traffic-related air pollution
and other factors on myocardial infarction, stroke, and
diabetes in Denmark. Meredith Franklin from the Uni-
versity of Southern California, Los Angeles, will build on
the Children’s Health Study in Southern California to
evaluate the adverse effects of non-tailpipe emissions
and of noise on children’s respiratory health. 

In addition, since the release of HEI’s critical review
of the traffic literature in 2010, many additional studies
about traffic-related air pollution have been published,
and regulations and vehicular technology have ad-
vanced significantly. Therefore, HEI is currently in the
process of conducting a new literature review of the
health effects of traffic-related air pollution. Further in-
formation on these activities can be obtained at the HEI
website, www.healtheffects.org/air-pollution/traffic-related-
air-pollution.

REFERENCES

HEI Panel on the Health Effects of Traffic-Related Air
Pollution. 2010. Traffic-Related Air Pollution: A Critical
Review of the Literature on Emissions, Exposure, and
Health Effects. HEI Special Repor t 17. Boston, MA:
Health Effects Institute.
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This Statement, prepared by the Health Effects Institute, summarizes a research project funded by HEI and conducted by Dr. Benjamin
Barratt at King’s College London, UK, and colleagues. Research Report 194 contains both the detailed Investigators’ Report and a Critique of
the study prepared by the Institute’s Review Committee.

 1

INTRODUCTION

Exposure to traffic-related air pollution has been
associated with various adverse health effects. How-
ever, exposure assessment is challenging because
traffic-related air pollution is a complex mixture of
many particulate and gaseous pollutants and is char-
acterized by high spatial and temporal variability. A
range of models, such as dispersion, land-use regres-
sion, and hybrid models, have been developed to
estimate exposure to traffic-related air pollution, and
these have been largely two-dimensional so far. Dr.
Benjamin Barratt from King’s College London and his
team proposed to estimate exposure to traffic-related
air pollution using a dynamic three-dimensional
land-use regression (LUR) model for Hong Kong.
Such a model would potentially have a wide applica-
tion given that high-density, high-rise megacities
have become more prominent globally. High-rise
buildings, which can house hundreds or even a few
thousand people, are therefore of great interest and
have risen rapidly in most megacities; such buildings
can also create urban street canyons, which are the
focus of the current study.

APPROACH

The investigators conducted street-level outdoor
monitoring campaigns to measure particulate matter
� 2.5 µm in aerodynamic diameter (PM2.5), black
carbon (BC), nitrogen monoxide (NO), and nitrogen
dioxide (NO2) concentrations at about 100 locations
during two weeks in the warm season and two weeks
in the cold season of 2014. The investigators then
constructed exposure models of increasing com-
plexity. First, the measurements were used to develop
two-dimensional land-use regression models to esti-
mate long-term exposure for Hong Kong. Among the
many predictor variables considered in the models

What This Study Adds
• High-density high-rise megacities have 

become more prominent globally. This is 
one of the first studies to integrate vertical 
gradients and time–activity patterns into an 
air pollution exposure model.

• Strong aspects of the study include the 
extensive air quality measurements, the 
development of exposure models using 
state-of-the-art approaches, and the 
application of those models to an existing 
Hong Kong elderly cohort for epidemio-
logical analyses.

• Associations were fairly similar when 
comparing results from the complex 
models to the two-dimensional models for 
PM2.5, BC, NO, and NO2. Neither the 
incorporation of vertical gradients nor that 
of dynamic components, including indoor 
pollutant infiltration, into the exposure 
estimates resulted in meaningful or 
consistent changes in the associations with 
all-natural-cause, cardiovascular, and 
respiratory mortality in the cohort.

• Based on this and other work, it appears 
that the addition of a vertical gradient 
improves exposure model performance, 
although the added value may be modest, 
depending on pollutant and study area.

were conventional variables, such as traffic inten-
sity, land-use variables, and distance to sources
(e.g., ports or airports), as well as some more com-
plex urban development predictors, such as aspect
ratio (the ratio of building height to street width) to
capture street canyons.

A Dynamic Three-Dimensional Exposure Model 
for Hong Kong
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Additionally, the investigators carried out ver-
tical outdoor and indoor air pollution monitoring of
PM2.5 and BC at four heights at both sides of six
streets — four canyon streets and two open streets.
The mean sampling heights of the lowest sampling
points across the streets was 10 meters above street
level (1st residential floor). The maximum sampling
height was 60 meters (21st residential floor). Subse-
quently, outdoor PM2.5 and BC data were used to
develop three-dimensional land-use regression
models. Indoor sampling was included to assess
infiltration rates, which were integrated into the
dynamic land-use regression model described later.

Next, the investigators developed what they
termed dynamic models to incorporate time–
activity patterns into the land-use regression expo-
sure models, using aggregated data from a large
travel behavior survey of Hong Kong residents. This
information was combined with results from pre-
vious monitoring studies in different modes of
transport in Hong Kong to predict exposure in dif-
ferent transport microenvironments.

Finally, Barratt and colleagues applied the expo-
sure models with increasing complexity in an epide-
miological study using an existing elderly cohort of
66,000 Hong Kong residents to evaluate the potential
impact of exposure measurement error in mortality
estimates. The cohort was recruited in 1998–2001,
and mortality data were collected until the end of
2011. The average residential height above street
level was 39 meters (~11th floor). Exposure was esti-
mated at the recruitment residential address using
the 2014 exposure estimates, and back-extrapolated
to the recruitment period using data from regulatory
monitoring sites. The investigators ran standard Cox
proportional hazard models that were adjusted for
important individual-level confounder variables,
such as age, sex, body mass index, physical activity,
smoking, and socioeconomic status.

MAIN RESULTS AND INTERPRETATION

In its independent review of the study, the HEI
Review Committee concluded that Barratt and col-
leagues conducted a novel study — one of the first
to integrate vertical gradients and time–activity pat-
terns into an air pollution exposure model. Strong
aspects of the study include the extensive air
quality measurements, the development of expo-
sure models using state-of-the art approaches, and
the application of those models to an existing Hong
Kong elderly cohort for epidemiological analyses.

The Committee concluded that Barratt and col-
leagues have found fairly similar associations when
comparing results from the complex models to the
two-dimensional models for PM2.5, BC, NO, and
NO2. Neither the incorporation of vertical gradients
nor that of dynamic components, including indoor
pollutant infiltration, into the exposure estimates
resulted in meaningful or consistent changes in the
associations with all-natural-cause (see Statement
Figure), cardiovascular, and respiratory mortality in
the Hong Kong elderly cohort.

The Committee noted that the investigators
encountered many challenges in the study and had
developed approaches to compensate for those
challenges in a variety of ways, but thought that the
impacts of the various workarounds on the results
had not been fully explored. For example, in the
three-dimensional NO2 and NO models, the investi-
gators used the decay rate of BC to fill the gap in
vertical measurements, but the impact was not fur-
ther explored. Additionally, the Committee thought
that the prediction accuracy of the two-dimensional
LUR models was rather modest, which may suggest
that alternative modeling strategies and decisions
may be necessary for further improvements.

The investigators’ further exploration of the verti-
cal gradient component of the model at the Commit-
tee’s request was revealing because it showed that
results were sensitive to the choice of the model. Sen-
sitivity analyses revealed the influence of substitut-
ing the modeled two-dimensional LUR estimates for
missing measurements at lower floors and assuming
that the air was well mixed at heights above 20 me-
ters. The Committee thought more insights were
gained from the vertical gradient model than from
the dynamic component of the model because the
latter was based on aggregated survey data, which
makes interpretation difficult.

Based on the current study as well as findings from
earlier studies, the addition of a vertical gradient — or
more generally street configuration and building
height to capture exposure on canyon streets — ap-
pears to improve exposure model performance, al-
though the added value may be modest, depending
on pollutant and study area. It should be realized that
relationships between floor of residence in high-rise
buildings and health are complex and highly contex-
tual, and that floor of residence may also act as a con-
founding factor in air pollution health studies.
Although appropriate steps were taken throughout
the study to increase generalizability of results, it
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remains unclear to what extent the vertical gradient
model is applicable to the entire city of Hong Kong
and to other Asian megacities with large populations
living in high-rise buildings. Finally, the use of a ver-
tical gradient component in exposure models for

future epidemiological studies that make use of ad-
ministrative databases is likely to be limited, partly
because administrative data do not typically con-
tain residential floor information.

Statement Figure. Association between air pollution and all-natural-cause mortality using different exposure models (two-dimensional
versus three-dimensional models; dynamic model not shown).
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INVESTIGATORS’ REPORT

A Dynamic Three-Dimensional Air Pollution Exposure Model for Hong Kong

Benjamin Barratt1, Martha Lee4, Paulina Wong2, Robert Tang2, Tsz Him Tsui2, Wei Cheng2, Yang 
Yang2, Poh-Chin Lai2, Linwei Tian2, Thuan-Quoc Thach2, Ryan Allen3, and Michael Brauer4

1King’s College London, UK; 2The University of Hong Kong, Hong Kong SAR; 3Simon Fraser University, Canada;
4University of British Columbia, Canada

ABSTRACT

INTRODUCTION

High-density high-rise cities have become a more prom-
inent feature globally. Air quality is a significant public
health risk in many of these cities. There is a need to better
understand the extent to which vertical variation in air
pollution and population mobility in such cities affect
exposure and exposure–response relationships in epide-
miological studies.

METHODS

We used a novel strategy to execute a staged model
development that incorporated horizontal and vertical
pollutant dispersion, building infiltration, and population
mobility patterns in estimating traffic-related air pollution
(TRAP*) exposures in the Hong Kong Special Administra-
tive Region (HK SAR).

Two street-level spatial monitoring campaigns were
undertaken to facilitate the creation of a two-dimensional

land-use regression (LUR) model. A network of approxi-
mately 100 passive nitric oxide–nitrogen dioxide (NO–
NO2) monitors was deployed for two-week periods during
the cool and warm seasons. Sampling locations were
selected based on population and road network density
with a range of physical and geographical characteristics
represented. Eight sets of portable monitors for black
carbon (BC) and particulate matter �2.5 µm in aerody-
namic diameter (PM2.5) were rotated so as to be deployed
at 80 locations for a 24-hour period. Land-use, geograph-
ical, and emissions layers were combined with the spatial
monitoring campaign results to create spatiotemporal
exposure models.

Vertical air pollution monitoring was carried out at six
strategic locations for two weeks in the warm season and
two weeks in the cool season. Continuous measurements
were carried out at four different heights of a residential
building and on both sides of a street canyon. The heights
ranged from as close to street level as practically possible
up to a maximum of 50 meters (i.e., below the 20th floor).
Paired indoor monitoring was included to allow the calcu-
lation of infiltration coefficients to feed into the dynamic
component of the exposure model.

The final phase of model development addressed popu-
lation mobility. A population-representative travel behav-
ior survey (n = 89,358) was used to produce the dynamic
component of the model, with time-weighted exposure es-
timates split between home and work or school. Transport
microenvironment exposures were taken from published
literature. Time–activity exposure estimates were split by
age, sex, and employment status.

Development of the exposure model in distinct pack-
ages allowed the application of a staged approach to an
existing cohort data set. Mortality risk estimates for an
elderly cohort of 66,000 Hong Kong residents were calcu-
lated using increasing exposure model complexity.

This Investigators’ Report is one part of Health Effects Institute Research
Report 194, which also includes a Critique by the Review Committee and an
HEI Statement about the research project. Correspondence concerning the
Investigators’ Report may be addressed to Dr. Benjamin Barratt, MRC-PHE
Centre for Environment and Health & NIHR GSTFT/KCL Biomedical
Research Centre, Analytical and Environmental Sciences Division, Faculty
of Life Sciences & Medicine, King's College London, 150 Stamford Street,
London, UK SE1 9NH; e-mail: benjamin.barratt@kcl.ac.uk.

Although this document was produced with partial funding by the United
States Environmental Protection Agency under Assistance Award CR–
83467701 to the Health Effects Institute, it has not been subjected to the
Agency’s peer and administrative review and therefore may not necessarily
reflect the views of the Agency, and no official endorsement by it should be
inferred. The contents of this document also have not been reviewed by pri-
vate party institutions, including those that support the Health Effects Insti-
tute; therefore, it may not reflect the views or policies of these parties, and
no endorsement by them should be inferred.

* A list of abbreviations and other terms appears at the end of this volume.
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RESULTS

The street-level (2-dimensional [2D]) LUR modeling
captured important spatial parameters and represented
spatial patterns of air quality in Hong Kong that were con-
sistent with the literature. Higher concentrations of gaseous
pollutants were centered in Kowloon and the northern re-
gion of Hong Kong Island. PM2.5 and BC predictions exhib-
ited a north–south/west–east gradient, with higher
concentrations in the northwest due to regional transport
of particulate pollutants from Mainland China. While the
degree of explained variance of the models was in line
with other LUR modeling efforts in Asia, R2 values ranged
from 0.46 (NO2) to 0.59 (PM2.5).

Exponential decay rates (k) were calculated at each
monitoring location. While it was clear that k values were
higher during the warm season than the cool season, no
robust patterns were identified relating to the canyon
physical parameters. Therefore, a single decay rate was
used for each pollutant across the whole region for deriva-
tion of the 3-dimensional (3D) exposure layer (k = 0.004
and 0.012 for PM2.5 and BC, respectively). An alternative
decay profile that capped decay at 20 meters above street
level was proposed and evaluated. The electrochemical
sensors deployed during the canyon campaigns did not
exhibit the degree of interunit precision necessary to
detect vertical variations in gaseous pollutants, and these
results were excluded from the study.

We found that values of the median infiltration efficien-
cies (Finf) for both BC and PM2.5 were especially high
during the cool season (91%). Finf values were somewhat
lower during the warm season (81% and 88% for PM2.5
and BC, respectively), and we found a significant negative
correlation between air conditioning use and Finf. The Finf
for a mechanically ventilated office building was 45% and
40% during the cool and warm seasons, respectively.

Dynamic exposure estimates were compared against
home outdoor estimates. As expected, the addition of an
indoor component decreased time-weighted exposure esti-
mates, which were balanced out to some extent by the
inclusion of transport microenvironments. Overall, mean
time-weighted exposures for the full dynamic model were
around 20% lower than home outdoor estimates.

Higher levels of exposures were found with working
adults and students than for those neither in work nor
study. This was due to the increased mobility of people
going to work or school. The exposures to PM2.5, BC, and
NO2 were, respectively, 13%, 39%, and 14% higher for
people who were under age 18, compared with people
who were 65 or older. Exposure estimates for the female
population were approximately 4% lower.

The availability of an existing cohort data set of elderly
Hong Kong residents (n = 66,820) facilitated the calcula-
tion and comparison of mortality risk estimates for the dif-
ferent exposure models.

Overall, results indicated that the application of expo-
sure estimates that incorporated infiltration, vertical, and
to a lesser extent, dynamic components resulted in higher
hazard ratios (HRs) than the standard street-level model
and increased the number of significant associations with
all-natural-cause, cardiovascular, and respiratory mor-
tality outcomes.

CONCLUSIONS

The results from the study provided the first evidence
that considering air pollution exposure in a dynamic 3D
landscape would benefit epidemiological studies. Higher
HRs and a greater number of significant associations were
found between mortality and pollutant exposures that
would not have been found had standard 2D exposure
models been used. Dynamic models can also identify differ-
ential exposures between population subtypes (e.g., stu-
dents and working adults; those neither in work nor study).

Improved urban building design appears to be stimu-
lating the dispersion of local TRAP in street canyons. Con-
versely, Finf values found in naturally ventilated buildings
were high, and residences provided little protection from
ambient air pollution.

We have demonstrated that the creation of effective
advanced exposure models is possible in Asian cities
without an undue burden on resources. We recommend
that vertical exposure patterns be incorporated in future
epidemiological studies in high-rise cities where the floor
of residence is recorded in health record data.

INTRODUCTION

An increasing proportion of the world’s population lives
in densely populated urban landscapes. Further, cities in
developing countries are projected to absorb nearly all of
the future global population growth (United Nations
2015). Many of the world’s megacities identified as having
the most severe air pollution problems are characterized as
high-rise cities with large numbers of people living in tall,
densely clustered buildings. Despite this, current TRAP
exposure estimates are strictly two-dimensional; neither
LUR nor dispersion modeling methods are currently able
to account for vertical profiles in air pollution and pol-
lutant behavior. Given this limitation, epidemiological
studies of TRAP suffer from exposure misclassification,
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and there is a lack of information on exposures to inform
risk assessment for land-use and transportation planning.

Most epidemiological studies of the health effects of
TRAP estimate exposure based on 2D residential location
and do not consider population mobility or time–activity
patterns during the day (Smith et al. 2016). In fact, the very
actions that lead to TRAP require population mobility and
suggest interactions between movement patterns and air
pollution levels (Khreis and Nieuwenhuijsen 2017; Spalt
et al. 2016). Recent advances in the use of travel smart cards
and data mining approaches have facilitated detailed spa-
tiotemporal analysis of individual travel behaviors, provid-
ing a much richer and more precise level of detail than is
typically available from routine travel surveys (Jensen et al.
2010). For example, a recent analysis of London mobility
patterns, based on the aggregation of individual-level
Oyster travel smart card data, indicates dramatic popula-
tion movement into the city core during morning rush
hour; lesser, but highly complex movement within the
core during the normal workday; and movement back to
the periphery at the end of the workday (Gordon 2012).
Similar patterns occur in most large cities and can lead to
exposure misclassification if not considered (Nyhan et al.
2016; Smith et al. 2016). Simulations based on a travel sur-
vey and a regional air quality model (which would not in-
corporate TRAP exposure gradients) suggest that the
incorporation of mobility can affect exposure estimates by
as much as 30% (Marshall et al. 2006). Further simula-
tions, including those applied to epidemiological effect es-
timates derived from LUR models that incorporate
mobility, indicate a bias of effect estimates toward the null
when mobility is not considered (Setton et al. 2008).

Thus, the development of exposure models that include
3D variability in TRAP and that incorporate population
mobility could dramatically reduce exposure misclassifi-
cation. Further, such models would allow for scenario
analysis to assess the impact of changes in transportation
patterns and land use on exposure.

A number of published studies have investigated pollut-
ant behavior within street canyons in Asian cities. Chan
and Kwok (2000) investigated vertical dispersion of partic-
ulate matter in an open street and a street canyon in Hong
Kong. An exponential decay function was used to describe
vertical dispersion in PM. Vardoulakis and colleagues (2002)
also proposed an exponential decay to describe variation in
gaseous pollutants within a street canyon in Paris. Li and
colleagues (2007) carried out monitoring at four heights
within a canyon in Shanghai, China, to study particle size
distributions, which they found varied significantly with
height. The investigators in these studies were primarily
interested in pollutant behavior and did not attempt to apply

their results to health studies or population exposure esti-
mates. Wu and colleagues (2014) investigated the impact of
residential height above street level on population exposure
in Boston, Massachusetts, U.S.A., downwind of a highway
using a mobile monitoring platform and hoist. They found
very little variation in PM2.5 concentration with height.

As high-density, high-rise cities become increasingly
common in Asia, it is important to understand how model-
ing spatial variation and exposure may differ from European
and North American cities where most LUR modeling has
been focused (Hoek et al. 2008). European and North Amer-
ican cities have lower pollution and building densities and
are likely to have fewer small-scale dispersed pollution
sources than the high-density, high-rise cities (Cohen 2004).

Hong Kong, a coastal city in southern China, is one of
the most advanced examples of a high-density, high-rise
city with significant air quality issues. Being one of the
most densely populated regions in the world, Hong Kong
has an average population density of 6,690 people/km2

with a total population of 7,240,000 as of mid-2014 (Govern-
ment of Hong Kong Information Services Department 2015).
Because of the clustering of developments and mountainous
terrain, less than 25% of the total territory of 1,104 km2 is
developed, leading to extremely high population densities
in some areas (Government of Hong Kong 2015; Govern-
ment of Hong Kong Information Services Department 2015).
The clustering effect is further enhanced by the prevalence
of high-rise buildings in Hong Kong.

Because of a well-developed network of vehicle flow
and pollution monitoring sites, an established public
transport system used by 98% of the population, and a cur-
rent government administration keen on supporting
research into their air quality issues, Hong Kong represents
an ideal development site for TRAP modeling in high-den-
sity, high-rise Asian cities. Such methodology can then be
used to inform future modeling in other Asian cities whose
information networks are not as well developed.

The study benefitted from an existing cohort of 66,000
elderly residents, with residential floor number recorded
as part of the address and a detailed health record database
(Schooling et al. 2016). This cohort allowed the study
methodology to be evaluated.

The study was a multidisciplinary collaboration be-
tween research groups in Hong Kong, the United Kingdom,
and Canada with international reputations for air pollu-
tion exposure and health assessment research. The team
had demonstrable knowledge and experience in each of
the study’s main themes — LUR modeling, TRAP monitor-
ing and characterization, population mobility, statistical
evaluation for population studies, and high-density urban
landscapes.
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SPECIFIC AIMS

The present study had the overarching aim of creating a
dynamic 3D (D3D) TRAP exposure model for Hong Kong,
with a fully evaluated methodology that could be applied
to other large cities, especially Asian megacities. We
hypothesized that the inclusion of dynamic and vertical
components in TRAP exposure models applied to Asian
cities would lead to increased confidence in associated
health outcomes.

The study had three main objectives:

1. to investigate the behavior and distribution of air pol-
lution in a 3D urban landscape with high residential
and traffic density;

2. to develop, evaluate, and demonstrate a detailed air
pollution exposure model for Hong Kong that would
incorporate population mobility and vertical gradi-
ents; and

3. to create an incremental exposure assessment meth-
odology that balanced exposure error with input data
availability that would be applicable to other megaci-
ties across Asia and the developing world.

METHODS AND STUDY DESIGN

PROTECTION OF HUMAN SUBJECTS

The study was approved in the United Kingdom by King’s
College London College Research Ethics Committee on No-
vember 29, 2013, reference BDM/13/14-35. The use of the
Hong Kong Elderly Cohort in Work Package 4 (WP4) was ap-
proved by the Institutional Review Board of the University
of Hong Kong as an amendment to a linked approval, refer-
ence UW 11-239. The approved recruitment flyer, informa-
tion sheet, consent form, and questionnaire documents are
included in Additional Materials 1, available on the HEI
website. All cohort participants provided informed consent,
with ethics approval obtained from the Ethics Committee of
the Faculty of Medicine, The University of Hong Kong.

STUDY DESIGN

The study incorporated four work packages (WP1–4):

1. 2D LUR Model Development

2. 3D LUR Model Development

3. D3D LUR Model Development

4. Model Evaluation and Translation

WP1: 2D LUR Model Development

Two street-level spatial monitoring campaigns were
undertaken to facilitate the creation of a two-dimensional
LUR model following sampling methodologies demon-
strated to be effective in state-of-the-art exposure studies
such as the Multi-Ethnic Study of Atherosclerosis and Air
Pollution (MESA–Air) (Kaufman et al. 2012) and the Euro-
pean Study of Cohorts for Air Pollution Effects (ESCAPE)
(Wang et al. 2013). BC, PM2.5, NO, and NO2 concentrations
were measured at approximately 100 locations using a mix
of active and passive methods. Land-use, geographical,
and emissions layers were combined with the spatial mon-
itoring campaign results to create spatiotemporal models
using an approach based on Szpiro and colleagues (2010).
Univariate correlations were calculated between pollutant
concentrations and each geographical predictor variable.
Model performance was evaluated by a leave-one-out cross
validation (LOOCV) (Kohavi 1995).

WP2: 3D LUR Model Development

Creation of a LUR capable of assessing exposure in high-
rise buildings required an estimation of street-level emis-
sion vertical decay rates in a mix of high-density street
configurations and meteorological conditions. A compre-
hensive monitoring campaign was designed to provide the
measurements for derivation of a street canyon typology.
These decay rates could then be extrapolated across the
city and coupled with the 2D LUR model to form a 3D LUR
model. Paired indoor monitoring was included to allow
the calculation of infiltration coefficients to feed into the
dynamic component of the exposure model. The study had
pragmatic issues of budget constraints and the number of
measuring instruments, which restricted the number of
survey sites. Vertical air pollution monitoring was carried
out at six strategic locations for two weeks in the warm
season and two weeks in the cool season. Continuous mea-
surements were carried out at four different heights of a
residential building and on both sides of a street canyon.
The heights ranged from as close to street level as practi-
cally possible up to a maximum of 50 meters (i.e., below
the 20th floor).

WP3: D3D LUR Model Development

The final phase of model development addressed popu-
lation mobility. Travel behavior questionnaires carried out
by the Hong Kong Government were used to produce the
dynamic component of the model, with time-weighted
exposure estimates split between two locations. Transport
microenvironment exposures were taken from published
literature. Time–activity exposure estimates were split by
age, sex, and employment status.
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WP4: Model Evaluation and Translation

Development of the Hong Kong D3D LUR exposure
model in distinct packages allowed the application of a
staged approach to derive epidemiological effect estimates
as applied to an existing cohort data set. Risk estimates for
an elderly cohort of 66,000 Hong Kong residents were calcu-
lated using the different exposure models with increasing
complexity. This modular structure enabled a quantitative
and qualitative evaluation of TRAP exposure model design
for translation to other developing megacities where data
sets may be more limited.

WP1: DEVELOPMENT OF A 2D LAND-USE 
REGRESSION MODEL FOR HONG KONG

The aim of WP1 was to create a 2D LUR model for Hong
Kong as a foundation for future work packages and to
allow estimates of exposure in comparison with more
detailed LUR models.

Field Sampling

Two sampling campaigns (henceforth referred to as HK2D
SC1 and SC2), corresponding to the warm and cool seasons,
were conducted in Hong Kong to measure roadside NO2,
NO, PM2.5, and BC concentrations. Sampling of multiple
pollutants over different seasons provided a more complete
understanding of long-term air quality patterns. NO2 and
NO were collected together using Ogawa badges (Ogawa U.
S.A., Pompano Beach, Florida, U.S.A.), while PM2.5 and BC
were sampled using TSI SidePak AM510 Personal Aerosol
Monitors (TSI Inc., Shoreview, MN, U.S.A.), and microAeth
AE51 (AethLabs, San Francisco, CA, U.S.A.) monitors,
respectively, with both deployed in the same monitoring
housing. HK2D sampling was coordinated with an NO2
sampling campaign conducted by the Environmental Pro-
tection Department (EPD) of Hong Kong using Gradko
(Gradko International Limited, Winchester, England) diffu-
sion tube samplers. HK2D and EPD sampling occurred
during the same periods at many of the same locations.
EPD NO2 data were used to supplement the HK2D NO2 data.

The first sampling campaign (SC1) ran from April 24,
2014, to May 30, 2014 (37 days), with EPD sampling also
conducted within this period. The second campaign (SC2)
was split into two periods. PM2.5 and BC sampling ran
from November 18, 2014 to January 6, 2015 (50 days).
Because of civil protests in Hong Kong at the end of 2014,
which affected traffic patterns, the EPD delayed their sam-
pling from November 2014 to January 2015 (January 3,
2015, to January 26, 2015, 24 days); the HK2D NO2 and NO
sampling was similarly delayed.

Ninety of the 100 HK2D sites were selected from the 173
EPD campaign sites. The remaining 73 EPD sites were
excluded because of proximity to overpasses. The sites
were selected to capture maximum variation in concentra-
tions within districts and were all roadside sites, mainly in
developed areas. Ten additional sites were identified to
expand spatial coverage and capture variation in land use
where perceived gaps occurred in the EPD’s site distribu-
tion. Because of logistics limitations, not all pollutants
were sampled at all 100 sites; NO2 diffusion tube samplers
were deployed at 97 sites, Ogawa NO/NO2 badges were
deployed at 43 and 63 sites (SC1 and SC2, respectively),
PM2.5 and BC samplers were deployed at 84 sites. Subset
site selection was based on geographic location, annual
average daily traffic (AADT), land use, and population
density — aiming to capture a full range of values for these
factors. Also, because of logistics and equipment limita-
tions, not all sites were simultaneously sampled.

Sampling campaign study sites are detailed in Appen-
dix A, Table A.1 and Figures A.1 and A.2, available on the
HEI website.

Samplers were preferentially deployed on lampposts,
approximately 2.5 meters off the ground. Traffic signs,
trees, and portable posts were used in a limited number of
cases when a lamppost was not available. Diffusion sam-
plers (Ogawa badges and diffusion tubes) were deployed
for durations of 15 to 21 days. Ogawa badges were outfitted
with two filters (one to capture NO2 and one to capture ox-
ides of nitrogen [NOx] with the difference used to calculate
NO concentrations) and hung within a white shelter to pro-
tect them from sunlight and rain. The EPD deployed three
diffusion tubes per site during each campaign. SidePak and
microAeth sensors were deployed for 24 hours, except for
four two-week sampling sites, which were used for quality
control and to develop temporal correction factors. Each
pair of PM2.5 and BC sensors was housed in a waterproof
box with sampling lines run through a downward facing
hole; it was protected from rain ingress by a funnel.

Ogawa badges and HK2D diffusion tubes were colocated
at ten of the rooftop air quality monitoring stations (AQMS).
A SidePak and microAeth were deployed at one of these
sites in SC2 for two weeks. Ogawa badges, diffusion tubes,
SidePaks, and microAeths were also colocated at each of the
three roadside AQMS sites. Duplicate Ogawa badges were
used in each campaign along with field and lab blanks.

Pollutant Concentrations

Ogawa badges with NO2 and NO were analyzed using ion
chromatography in the Occupational and Environmental
Hygiene Laboratory of the University of British Columbia.
Diffusion tubes were analyzed by Gradko Environmental
using UV spectrophotometry (Gradko 2012).
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A blank correction factor, the average of the appropriate
diffusion samplers’ field blanks deployed during the sam-
pling campaign, was subtracted from the raw NO2 and NO
concentrations. The diffusion tubes were then adjusted
toward the Ogawa badges to normalize NO2 and NO concen-
trations for modeling. This correction factor was calculated
by linear regression with a zero intercept (no data provided).

The first and last five minutes of each continuous moni-
toring period (PM2.5 and BC) were removed to account for
setup and collection of samplers. The data were also
cleaned to remove periods of negative values: after filter
changes, when sensors were dislodged, or during periods
of significant signal noise. PM2.5 data were scaled to the
reference filter dynamic measurement system (FDMS)
monitors housed in the AQMS using a correction factor de-
rived from linear regression based on the two-week coloca-
tion runs. This bias correction factor was individually
scaled to account for between-SidePak monitor differences
using pre- and post-campaign colocation precision tests.
BC was not bias adjusted, as the reference monitors were
not operating during the colocation period, and therefore
no comparison data were available. Filter loading of the
microAeths, which causes under-sampling of the BC level
as BC mass builds up on the filter, was corrected for using
the Virkkula method (Virkkula et al. 2007), where cor-
rected BC = (1 + � � attenuation) � uncorrected BC. The
seasonal mean attenuation factor � was derived by com-
paring changes in readings immediately before and after
the microAeth’s filter change during the colocation peri-
ods at the AQMS sites. After adjustments, samples with
less than 18 hours of PM2.5 and BC data were removed, as
capture rates of less than 75% were deemed inadequate to
represent the 24-hour concentration. Sites with 36 hours
or more of capture (such as the two-week sites) were split
evenly into subsets (18 to 35 hours), and one subset was
randomly chosen to represent the site.

A temporal adjustment was then applied to all concen-
tration data to remove the effects of temporal variation on
captured concentrations, due to fluctuations in the base-
line concentrations when the exposure periods varied
between sampling sites. This adjustment was created by
calculating the baseline concentrations for the sampling
period using the average daily concentrations from all
urban rooftop AQMS and then dividing by the baseline
concentration for the whole sampling period:

where u is the AQMS; MeanSP,u is the average concentra-
tion for the full sampling period for each AQMS; MeanR,u
is the average concentration for the sampler’s exposure
period for each AQMS; and CFT is the temporal correction
factor.

Uncorrected PM2.5 and BC data and more details
regarding the temporal correction factors for each location
and pollutant are provided in Additional Materials 1
(available on the HEI website).

Predictors

Candidate spatial metrics were selected based on those
used in other LUR models (Allen et al. 2013; Brauer et al.
2006; Chen et al. 2010; Saraswat et al. 2013; Tang et al.
2013; Wang et al. 2013); Hong Kong’s public policies on
growth, development, and public health; and regulations
on air quality. Potential predictor variables (spatial met-
rics) were divided into two groups: (1) variables repre-
senting a point value; and (2) variables representing the
cumulative values of an area (buffer variables). Buffered
variables were either represented as a density value (stan-
dardized by buffer area) or a total value, based on usage in
the literature. ArcGIS (ESRI, Redlands, CA, v10.1 and 10.2)
and R (R Foundation for Statistical Computing, Vienna,
Austria, v3.3.2) were used to evaluate, modify, extract, and
aggregate potential predictor variables. In total, 373 spatial
predictor variables were calculated — 364 from spatial
data layers and 9 (predicted NO2) from the NO2 LUR
models, which were used solely for NO modeling. All pos-
sible predictor variables are listed in Appendix Table A.2
(available on the HEI website).

Model Building

For each pollutant, a model was built using SC1 data,
SC2 data, and the average of SC1 and SC2 data (combined)
for sites that were sampled in both campaigns. Three
additional models were built for each of the three traffic
predictor types (road length, AADT, and traffic loading) for
a total of 36 models (4 pollutants � 3 SC data sets �
3 traffic predictors).

To be offered to models, each variable had to have at
least two nonzero values. Within each of the buffered vari-
able groups (e.g., industrial land use), buffer radii were
ranked by Pearson correlation. The pollutant with the top-
ranked buffer radius was selected, and any variables in
that group that were highly correlated with the selected
variable were dropped (r > 0.6). Next, the second- and
third-ranked of the remaining buffer radii were also
offered to models. For distance variables, either the
Euclidean or natural log variable was selected based on
correlation with the pollutant. All selected variables were
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then offered to an exhaustive automated selection process
(regsubset function in the leaps package in R [Lumley
2009]) with maximum adjusted R2 used for selection. The
maximum number of predictors selected was set to one for
every ten observations. Predictors were removed if their
sign was inconsistent with a priori hypotheses or if not sta-
tistically significant (P � 0.10), and the automated selec-
tion process was then repeated until no more variables
were dropped. If any model included variables with two
buffer radii within 1,500 meters and coefficients with
opposite signs, the variable with the lower P value was
dropped, and the variable selection process was rerun.

Evaluation

Models were evaluated using LOOCV, and for NO2
models where more sampling sites were available, 20 sites
were selected randomly for hold-out evaluation (HEV)
prior to modeling (Hoek et al. 2008).

Model assumptions were tested using diagnostic plots,
variance inflation factor (VIF, a measure of multicol-
linearity), and the Moran I (a measure of spatial autocor-
rection). VIF cutoff was set at three, based on the available
literature (Aguilera et al. 2008; Amini et al. 2014; Clough-
erty et al. 2013; Gulliver et al. 2013; O’Brien 2007).

WP2: VERTICAL MONITORING FIELD CAMPAIGN 
AND DEVELOPMENT OF A 3D LUR MODEL

The aim of WP2 was to augment the 2D LUR created in
WP1 with a vertical and horizontal TRAP rate of decay lay-
er to create a citywide 3D LUR model. This was achieved
through seasonal vertical monitoring campaigns in six se-
lected sites across the region.

Selection of Sampling Sites

Because of practical and budgetary limitations, vertical
sampling was initially restricted to four canyon locations
and two open locations. Sampling sites were selected in a
range of locations representative of population exposure.
A series of classification screening tests was first carried
out to identify candidate locations, followed by field visits
to establish suitability from a practical perspective.

First, paper land-use maps were obtained from the Hong
Kong Government Planning Department. These maps were
converted into digital format and updated using digital
orothophotos from the Hong Kong Government Lands
Department. This allowed neighborhoods to be classified
into three categories:

• Class 1 — Tall high-rise buildings in residential areas;
mostly recently built, with large empty spaces with
green areas between buildings. Represented by

communities in the New Territories, parts of Kowloon,
and North Point on the Hong Kong Island.

• Class 2 — A mix of recent and old high-rise buildings
with a high floor occupation. Represented by densely
populated parts of the Hong Kong Island, such as Cen-
tral and Wan Chai districts.

• Class 3 — Chinese style buildings; thin buildings of
three to six stories. Represented by old settlement
areas of Hong Kong.

Second, candidate sampling locations within selected
neighborhoods were identified by considering population
density, traffic flows, canyon aspect ratio, canyon length,
and prevailing winds. A more detailed description of the
selection process is contained in Appendix Table A.4
(available on the HEI website).

Third, a field visit was conducted to inspect the phys-
ical layout and alignment of candidate sites, discuss access
with building managers, and identify strong confounding
local non-TRAP sources, such as building works. During
this process, it became clear that, while Class 3 buildings
often represented the worst case scenario of very narrow
canyons coupled with high local traffic flows, access to
these buildings was very complex and of unacceptably
high risk to researchers. However, this class of residential
building is becoming increasingly rare as government
clearance and reconstruction initiatives replace them with
newer Class 1 or Class 2 buildings.

Recruitment Process

As the study design required access to multiple residen-
tial homes, significant effort was required to recruit house-
holds to the study. Initial contact was by mail. At each
potential sampling location, recruitment letters were sent
to all flats and apartments below the 20th floor that had
openable windows facing the target street side. Recruit-
ment of a total of 40 homes was required in the study de-
sign (approximately 1% recruitment rate); however, these
homes had to be distributed on or close to specified floors.
A total of 3,500 recruitment letters were mailed across
eight potential sampling locations, with an overall re-
sponse rate of 4%. Recruitment at lower floors was partic-
ularly challenging, resulting in the rejection of some
potential sampling sites. Telephone interviews followed
by flat visits were conducted with all respondents to assess
compliance with recruitment criteria: (1) residents must be
nonsmokers, (2) suitable space must be available facing the
street for placement of monitoring equipment, and (3) at
least one household member must be available during the
daytime over the two-week period in both the summer and
winter campaigns to allow researcher access into the flat to



1212

A Dynamic Three-Dimensional Air Pollution Exposure Model for Hong Kong

replace filters and check equipment. One resident of each
participating home unit was also asked to maintain a record
of their daily activities inside the premises. The participat-
ing resident of a home unit fully engaged in both campaigns
was compensated an amount of 800 HKD (~100 USD).

All recruitment information and questionnaire tem-
plates are available in Additional Materials 1.

Vertical Sampling Campaign

TRAP monitoring equipment had to be portable enough
for installation inside a residential flat and be sufficiently
quiet to be situated in a living area without inconve-
niencing the residents. PM2.5 and BC were sampled at a
one-minute time resolution using TSI SidePak AM510
(TSI Inc., Shoreview, MN, U.S.A.) and microAeth AE51
(AethLabs, San Francisco, CA, U.S.A.) monitors, housed in
a soundproof box. AQMesh (Environmental Instruments
Ltd, Stratford-upon-Avon, UK) electrochemical moni-
toring pods were used to record carbon monoxide (CO),
NO, NO2, ozone, temperature, and humidity at a
15-minute time resolution.

The ideal distribution of monitoring units is shown in
Figure 1. However, the screening process revealed that
very few candidate sites had residences at the ground
floor. The typical layout of high-rise buildings in Hong
Kong is to have commercial, retail, or restaurant concerns
on the lower two or three floors. Consequently, the mean
height above street level of the lowest monitoring point
was 10.2 meters across the six canyons.

Once suitable flats had been identified and recruited to
the study, eight sets of monitoring units were installed out-
doors, up both sides of the canyons (positions A and B in
Figure 1). After seven days of continuous monitoring, the
monitors on the windward side of the canyon were moved
indoors to the same location as the leeward side monitors
to monitor indoor concentrations (position C in Figure 1)
for a further seven days. After prior arrangement with the
resident, the equipment was connected to a power supply
and set near a window facing the street away from the
kitchen. Where residences had suitable balconies, the out-
door unit was placed outside. Otherwise, sample lines
were passed out of windows, which were then taped shut
unless the resident routinely left that window open. A
fanned manifold system was used for the passive electro-
chemical AQMesh unit. MicroAeth filters were changed
by a researcher every two to three days.

After two weeks of continuous sampling, all equipment
was removed and installed at the next sampling site.

In collaboration with the Hong Kong EPD, additional
canyon monitoring was carried out during the warm
season of 2015 to extend the range of canyon sampling
sites. The surrounding building topography at each AQMS
monitoring site was inspected, and five of these were
found to be suitable for canyon monitoring. Sampling
units were placed alongside AQMS equipment and at
street level (for rooftop sites) or rooftop level (for roadside
sites) for seven days. Measurements taken at the five
paired roadside–rooftop locations were used as indepen-
dent data sets to evaluate the application of calculated
decay rates.

Figure 1. Spatial distribution of monitoring devices: (1) a street canyon and (2) an open street. A = leeward side (outdoor); B = windward side (outdoor); 
C = leeward side (indoor).
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The warm season vertical monitoring campaign ran
from August 7, 2014, to September 25, 2014 (first four
sites), and from May 5, 2015, to June 23, 2015 (remaining
sites). The cool season vertical monitoring campaign ran
from October 31, 2014, to March 26, 2015 (all sites).

Data Quality Control

Interunit precision was particularly important to this
study because of the potentially small vertical gradients in
pollutants. Before and after each seasonal campaign, all
monitoring units were operated for a period of at least 48
hours in the same location to test precision. Throughout
the measurement period of each monitoring campaign, one
set of monitoring equipment was colocated at the nearest
AQMS reference monitoring site to allow reference scaling
and subsequent temporal correction. However, no refer-
ence BC monitors were available for scaling of the micro-
Aeth units. Reference correction of Sidepak and AQMesh
monitors was calculated separately for each campaign to
allow for variable atmospheric conditions. Sidepak units
were flow checked and zero calibrated with HEPA filters
prior to each canyon deployment.

Previous studies have shown that the default aethalom-
eter algorithm underestimates BC concentration as the BC
mass on the filter increases (Kirchstetter and Novakov
2007; Park et al. 2010). A number of different methods
were tested to correct this effect, resulting in a method that
followed Virkkula and colleagues (2007), with attenuation
correction factors (�) derived for each canyon and season.

After precision and reference scaling, data were cleaned
to remove outliers, defined as concentrations lying outside
of three standard deviations (SDs) from the mean of the
combined concurrent canyon measurements. These out-
liers represented either short-lived local sources that were
not relevant for decay-rate calculation or instrument noise
or malfunction. Measurements taken during the first and
last five minutes of each deployment were excluded to
allow for instrument stabilization, set up, and take down.

Calculation of Decay Rates

Only data where valid measurements were available
from all outdoor vertical sampling points on side A were
used for decay rate calculation. Data sets from individual
outdoor monitors returning less than 50% valid capture
for the two-week deployment were removed. The thresh-
old was initially set at 75%, but this resulted in too few
sampling heights becoming available for decay rate calcu-
lation, an indication of the impact of the harsh operating
environments causing frequent equipment faults.

The exponential relationship between pollutant concen-
tration and height is expressed as:

where Ch is the concentration at height h, C0 is the concen-
tration at the ground level, h is the height in meters from
the emission source (street level), and k is the decay rate
constant (Capannelli et al. 1977; Chan and Kwok 2000).

Decay rate constants were calculated for each canyon
and each season by averaging all log-transformed outdoor
measurements at each height, and then deriving loglinear
gradients. Data were further split by hour of day to investi-
gate diurnal variations in decay rate constants.

This process revealed a shortcoming in the field cam-
paign design caused by practical constraints of instrument
siting. As described above, the mean lowest sampling
point across the canyons was 10.2 meters, leaving an
important gap in the decay rate curve from street level to
this first sampling point. Evidence from the supplemen-
tary monitoring carried out at street and rooftop level
alongside AQMS sites indicated that the majority of the
dispersion of local TRAP emissions occurred over this ini-
tial distance. To fill this gap, we extracted the modeled
concentrations from the 2D LUR relating to the latitude
and longitude of each canyon campaign site. This
approach was based on the ultimate goal of merging the 2D
model with the vertical decay measurements to create the
3D model. We then applied temporal correction using
measurements from the nearest roadside AQMS to create
warm and cool season means matched to each campaign’s
sampling dates. These points were added to each decay
rate calculation at a height of 2 meters (the height at which
street-level roadside sampling was carried out). As BC
monitoring was not routinely carried out at the AQMS
sites, temporal correction factors for BC were derived from
NOx concentrations; therefore, there is a greater uncer-
tainty in street-level BC estimates in the canyon decay cal-
culations.

Calculation of Infiltration Efficiencies

The infiltration efficiency (given by Finf) for each resi-
dence where paired in–out sampling was undertaken was
derived for PM2.5 and BC using procedures described by Al-
len and colleagues (2012). Finf is a unitless quantity defined
as the equilibrium concentration of outdoor pollution that
penetrates indoors and remains suspended. The derivation
model states that the average indoor concentration during
time period t (Cin

t) is equal to the sum of a fraction of the av-
erage outdoor concentration during the same time period
(Cout

t), a fraction of the average indoor concentration from

C Ch
kh   e ,                                              0 �             (2)  
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the previous time period (Cin
t�1), and the contribution

from indoor sources (Sin
t):

Parameter a1 describes the fate of ambient particles once
they penetrate indoors; a2 describes the decay of indoor
particles. We applied a censoring algorithm to identify
periods impacted by indoor sources. Typically, only the
rising edge (and not the decay) of the indoor peak was cen-
sored because at the time (t) when an indoor source is shut
off and the indoor concentration begins to decay, the Sin

t
term in Equation 3 becomes zero, and the particles gener-
ated by the indoor source become part of the Cin

t�1 term (i.
e., part of the indoor concentration during the previous
time step). Retaining the decay of indoor peaks provides
information from which to estimate the total particle loss
rate, which is a key component of a building’s infiltration
efficiency.

The censoring method does not identify constant indoor
sources. Unidentified (constant) indoor sources would be
incorrectly considered to be outdoor particles that have
infiltrated, thus causing an overestimation of Finf. This is
unlikely to cause a major bias in the estimates of infiltra-
tion efficiency because pollution resulting from indoor
sources generally occurs as spikes relating to resident
activities, displaying a rapid increase and subsequent
decay (Abt et al. 2000). Thus, constant indoor sources may
account for a very small percentage of the total indoor con-
tribution in most residences.

After censoring, Finf was estimated using a linear regres-
sion (forcing the intercept to zero) of Equation 4 to solve
for a1 and a2. Finf was then calculated from

Basic diary cards (English version) were kept by resi-
dents during the campaigns, an example of which is
shown in Additional Materials 1 (available on the HEI
website). Information on cooking, window opening, and
air conditioning use during the warm and cool seasons
was used to investigate variations in Finf and incidences of
indoor spikes for censoring. Participants were not allowed
to smoke inside.

Additional monitoring was carried out inside and out-
side of an administrative building within the University of
Hong Kong, Pok Fu Lam district, for seven days in the
warm season using the same methodology to establish
infiltration efficiencies for mechanical ventilation and air
conditioning (MVAC) system buildings for use in the
dynamic model (WP3).

WP3: INTEGRATION OF POPULATION MOVEMENTS 
TO CREATE A DYNAMIC 3D LUR MODEL

The aim of WP3 was to assimilate, characterize, and
integrate population movement to create a dynamic LUR
model layer for the population of Hong Kong, utilizing the
2D LUR created in WP1 and the Hong Kong Government’s
Travel Characteristics Survey.

Population Mobility Data

For this project, we used a large population-representative
survey to characterize travel behavior and population
movement patterns in Hong Kong. The Travel Characteris-
tics Survey 2011, published by the Transport Department
of Hong Kong, polled 50,000 randomly chosen house-
holds, with each household member providing detailed
trip information, including time and duration of journey to
place of work or study (Transport Department 2014). The
number of subjects totaled 101,385, with self-reported
mode, route, and frequency of travel recorded during the
sample day. The survey did not capture weekend travel
patterns. Individual data on age, sex, and occupation were
available for each subject, but no information on residen-
tial or work/school addresses. The survey allowed general-
ized patterns in territory-wide weekday travel movement to
be derived. In addition, we also used the Hong Kong 2011
Census to validate results (Census and Statistics Depart-
ment 2011). The use of a smart payment card for travel is
widespread in Hong Kong; however, these data were not
accessible for this study because of privacy and data protec-
tion concerns.

Deriving Population Movement Patterns

From the original number of subjects (N = 101,385), we
established some assumptions to exclude subjects who
may not represent the general population travel pattern, or
may not represent the population typically studied in air
pollution cohorts. We excluded subjects who (1) were pro-
fessional drivers; (2) were mobile residents and domestic
helpers; and (3) had made cross-boundary trips and trips
to airports, as they were assumed to travel outside the
study area. After these exclusion criteria were applied, the
total number of subjects included in model development
was 89,358. The impact of application of exclusion criteria
on subject numbers is shown in Appendix Table A.11.

Next, we constructed time–activity patterns for each
survey subject, based on information on the travel time,
location, and purpose of the trips they made during the
survey day. We assembled this information on population
mobility from the survey data in detail, including move-
ments between tertiary planning units (TPUs) per hour of
the day. TPUs are the smallest spatial administrative units

C a C a C Sin
t

out
t

in
t

in
t      1 2  .                         1    (3)

F
a

ainf  
1

21
.                                                                     (4)
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in Hong Kong (N = 289, TPU map shown in Appendix
Figure A.21), devised for population census and town
planning purposes. Data from the Hong Kong 2011 Census
were also available at the TPU level.

Subjects with Missing Trip Information

Because of the questionnaire design of the Travel Charac-
teristics Survey, only trips made on mechanized modes of
transport were recorded in detail. There were around 34,071
subjects who had trips with walking as their mode of travel,
and therefore had missing time–activity information
between trips. To resolve this, we developed a systematic
method to replace gaps in trip information. First, we esti-
mated each walking trip to last for 15 minutes, the popula-
tion average duration as suggested by local walkability
studies (Cerin et al. 2011). The subjects were then classified
into population subgroups, assuming they commuted to
school and work locations on foot in the same TPU. This as-
sumption is consistent with the 2011 Census, which sug-
gested a large proportion of students commute on foot to
schools located in the same district. For those who were nei-
ther in work nor study, a review of population time–activity
patterns (Chau et al. 2002) indicated that these people
spend about 86% of the time in a day indoors in Hong Kong.
The same assumptions were applied for subjects with a
combination of mechanized and walking trips who had
missing hours.

Time-Weighted Air Pollution Exposure

Time–activity patterns were derived for each survey
subject. We then combined these with predicted air pollu-
tion concentrations in outdoor, indoor, and transport
microenvironments and accounted for diurnal pollution
patterns to calculate the time-weighted air pollution expo-
sure for each survey subject.

The general form of the equation used to calculate time-
weighted exposure was

where Ei is the time-weighted integrated exposure for each
subject i; Cj is the pollutant concentration in microenvironment
j; tij is the aggregate time that subject i spends in microenvi-
ronment j; and J is the total number of microenvironments
that subject i moves through during the sample day.

Exposure in Different Microenvironments

We defined the microenvironments where subjects were
exposed to TRAP as (1) home indoor; (2) commercial
indoor; (3) school indoor; (4) other indoor; (5) outdoor; and

(6) in transit. Examples of building types for each classifi-
cation are described in Appendix Table A.12.

A staged modeling approach was used to assess the
impact of dynamic model components on estimated TRAP
exposure, starting with static, then moving to more sophis-
ticated dynamic components representing different out-
door, indoor, and transport microenvironments in a series
of stages. The modeling stages and associated time-
weighted exposure equations were as follows:

1. Static outdoor

2. Static indoor

3. Dynamic indoor

4. Dynamic indoor + in transit

5. Dynamic indoor + in transit + diurnal variation

6. Dynamic outdoor + in transit + diurnal variation

Stage 6 was included as a sensitivity test to separate the
impacts of mobility and infiltration efficiencies.

We calculated the time-weighted exposure for each sub-
ject for each stage. The total exposure to TRAP in each
model component was calculated by multiplying the time
each individual spent in each microenvironment by the
pollutant concentration at the specific microenvironment,
considering the spatial (i.e., movement between TPUs)
and, where relevant, the pollutant diurnal profile. Each
component estimate was then summed and divided by the
total time T. For example, to calculate the time-weighted
exposure for a subject at Stage 4, we used

where Ch, Cw, Cs, Coi, Co, and Ct are the pollutant concen-
trations at home indoor, commercial indoor, school indoor,
other indoor, outdoor, and in transit microenvironments,
respectively; th, tw, ts, toi, to, and tt are the time spent each
in the respective microenvironment; and T is the total
duration of time–activity pattern in hours, based on the
subject’s movement data.

Air Pollution Data

There were four components to the air pollution expo-
sure estimates: (1) mean predicted ambient concentra-
tions for each TPU; (2) indoor microenvironment factors;
(3) transport microenvironment exposure concentrations;
and (4) diurnal profile factors. Dynamic model estimates
were produced for BC, NO2, and PM2.5.

Outdoor exposure concentrations were extracted from
the 2D LUR model and averaged across the TPU bound-
aries, using the Zonal Statistics function in ArcMap (ESRI;
ver 10.2). We could not use 3D exposure estimates in this

E C ti j ij
j

J
 ,                                                                      (5)
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component as the floor of residence was not available in
the travel survey database.

We estimated pollutant concentrations in indoor micro-
environments with the use of infiltration efficiencies
derived in WP2 from the canyon monitoring campaign.
Indoor–outdoor relationships obtained from local studies
were used for NO2 (Lee and Chang 2000; Lee et al. 2002).
Air conditioning systems are used extensively in nonresi-
dential buildings in Hong Kong; therefore different infil-
tration efficiencies were used for indoor microen-
vironments with natural ventilation or with the use of
MVAC systems (Table 1).

School buildings were assumed to be naturally venti-
lated, as the use of ceiling fans is common (Lee and Chang
1999). Window-type air conditioners are installed in class-
rooms; however, infiltration would differ from offices with
central MVAC systems, and students do not spend time at
schools during summer holidays when air conditioning
use is most common.

For transport microenvironments, we reclassified 23
modes of travel used in the survey and matched data with
monitored concentrations in transport microenvironments
from local studies. For PM2.5, we used the PM10 (PM �10 µm
in aerodynamic diameter) concentrations reported in Chau
and colleagues (2002), with guideline PM10/PM2.5 conversion
factors from the Hong Kong EPD (Environmental Protection
Department 2016). As only a few studies have investigated
transit levels of BC and NO2 in the study area, we estimated
pollution levels from personal monitoring studies (Chan et al.
1999; Yang et al. 2015) and used PM ratios to predict concen-
trations in transport modes that were unavailable (Table 1).

Diurnal adjustment factors were derived by calculating
the mean ratio of hour-of-day mean concentration by annual
mean concentration across the government network moni-
toring sites between January 1, 2013, and January 1, 2015.
Factors ranged from 0.86 to 1.13 for PM2.5, 0.46 to 1.37 for
BC, and 0.55 to 1.37 for NO2. Minima for all three pollutants
occurred at 04:00. Maxima occurred at 20:00, 08:00,

Table 1. Infiltration Efficiency of Building Microenvironments and Concentration in Different Transport 
Microenvironments Used in the Dynamic Model Components

Indoor
Microenvironments

Infiltration Efficiency (Finf)

PM2.5 BC NO2 

Home indoor 0.82 0.89 0.79

Commercial indoor 0.40 0.45 0.72

School indoor 0.92 0.88 0.71

Other indoor 0.92 natural
0.40 MVAC

0.88 natural
0.45 MVAC

0.70 natural
0.72 MVAC

Transport
Microenvironmentsa Number of Trips

Concentration (µg/m3)

PM2.5 BC NO2 

Private/car 10,505 71 21 130

Bus 51,071 103 31 130

Minibus 19,104 103 31 109

Truck/van 212 90 27 130

Mass transit rail (underground) 48,333 69 21 47

Mass transit rail (surface) 1,549 71 21 66

Tram 784 88 26 147

Ferry 244,326 64 19 96

Walking 585 44 13 139

Bicycle 318 44 13 139

Motorcycle 10,505 44 13 139

a The air pollution values from the transport microenvironments were derived from local studies (Chan et al. 1999, Chau et al. 2002, Yang et al. 2015).
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and 18:00 for PM2.5, BC, and NO2, respectively. Factors are
shown in Appendix Table A.13.

Data Analysis

After calculation for staged exposure estimates for all
89,358 subjects, we examined how the time-weighted
exposures varied across the population. Stratified analyses
on age, sex, and population subgroups were carried out.
The survey subjects were categorized into three age groups:
<18, 18–65, 65 and older; and into three population sub-
groups according to their occupations: students, working
adults, and those who are neither in work nor study. These
age categories were derived based on the range and distri-
bution of the youngest and oldest individuals. All statis-
tical analyses were carried out using R software.

WP4: MODEL EVALUATION AND TRANSLATION FOR 
APPLICATION IN OTHER MEGACITIES

The aim of WP4 was to contrast epidemiological effect
estimates based on an existing cohort of 66,000 Hong Kong
residents above the age of 65. Risk estimates and confi-
dence intervals (CIs) were calculated for a range of health
outcomes using increasing exposure model complexity:
2D, 3D, and D3D.

Cohort Data

This study utilized data from the Elderly Health Service
of the Hong Kong Department of Health, as described in
detail by Schooling and colleagues (2016). In brief, the
study includes 66,820 participants, 65 years or older, who
enrolled in the Elderly Health Centers from July 1998 to
December 2001. Elderly Health Centers located in each of
the 18 districts in Hong Kong provided health assessments,
using standardized and structured interviews and compre-
hensive clinical examinations. Information on sociodemo-
graphic, lifestyle, and disease history was collected by
doctors and registered nurses (Lam et al. 2004b). The
cohort was set up to promote understanding of aging in
this developed non-Western setting where the patterns of
common chronic diseases and their determinants may
differ from those in the West. Hong Kong is an ideal place
to study the association between long-term air pollution
exposure and health, because of its low levels of smoking
and alcohol use but relatively high levels of air pollution
exposure.

All enrollees were recruited on a voluntary basis,
accounting for 9% of the 65 or older population at the base-
line year (the sampling fractions ranging from 6.6%–17.5%
of the population older than 65 years of age in each district;
Census and Statistics Department 2002). The participants
were self-selected for enrollment and were enrolled at a

preventive service, so they may be more health conscious
and less likely to be missing in the follow-up, which may
lead to a selection bias. Detailed characteristics of the study
cohort are provided in Table 2.

The recruited subjects were followed up for mortality
outcomes until the end of 2011. Death records were the
primary follow-up source in this study (with an average of
10.3 years and a range of 1–13 years of follow up). Vital
status and causes of death were ascertained by record
linkage to death registration in Hong Kong using a unique
identity card number. Most of the Hong Kong residents
died in the hospital, ensuring accurate ascertainment

Table 2. Descriptive Statistics for Health and Covariate 
Variables in the Analysis

Variable
Percent or Mean ± SD

N = 60,548

Individual Level
Age at entry 70.2 ± 5.5
Sex

Male (%) 19,739 (32.6)
Female (%) 40,809 (67.4)

BMI quartiles:
1st [<21.6] (%) 31,001 (51.2)
2nd – 3rd [21.6–26.3] (%) 13,260 (21.9)
4th [>26.3] (%) 16,227 (26.8)

Smoking status
Never (%) 44,079 (72.8)
Former (%) 11,020 (18.2)
Current (%) 5,389 (8.9)

Exercise in days per week
Never [0] (%) 9,082 (15.0)
Medium [1–6](%) 7,811 (12.9)
High [7](%) 43,655 (72.1)

Education 
Below primary (%) 27,792 (45.9)
Primary (%) 22,342 (36.9)
Secondary or above (%) 10,475 (17.3)

Expenses/month in USD
Low [<128] (%) 10,051 (16.6)
Medium [128–384] (%) 41,536 (68.6)
High [�385] (%) 8,961 (14.8)

TPUa Level
Age �65 12.1 ± 4.2
> Secondary education 13.1 ± 8.0
Income �1,923 USD/month 60.0 ± 11.6

District Level
Smoking rate 11.0 ± 0.9

a TPU = tertiary planning unit. 
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of the cause of death. Those whose vital status could not
be determined were assumed to be alive. The exact resi-
dential address at baseline and changes of address during
follow-up were available for all subjects.

Health Outcomes

The health outcomes were defined on the basis of the un-
derlying cause of death recorded on the death registration.
Deaths from all natural causes and from cardiovascular and
respiratory diseases were assessed. The cause of death was
coded as per the International Classification of Diseases,
10th Revision (ICD-10; World Health Organization 2016b)
with the following categories: natural causes (codes A00–
R99); cardiovascular diseases (I00–99) with subcategories of
ischemic heart disease (IHD; I20–25) and cerebrovascular dis-
ease (I60–69); respiratory diseases (J00–47, 80–99) with sub-
categories of pneumonia (J12–18) and chronic-obstructive
pulmonary disease (COPD; J40–44, 47); and external causes
(S00–T99). Study participants were excluded from analysis
if they died within one year of enrollment or from a cause
other than the categories above.

Exposure Data

Exposure to Air Pollutants We used the modeled pollutant
concentrations from the cross-validated LUR models cre-
ated in earlier work packages. Predicted annual concentra-
tions of PM2.5, BC, NO, and NO2 for 2014 were available as
raster layers for the study area. The predicted concentra-
tions were truncated to the measurement range recorded
from monitoring campaigns. In addition, for NO the pre-
diction surface was smoothed to 500 meters to improve the
distribution of exposure estimates. A geographical layer
was constructed to combine the geocoded baseline
addresses of participants and the pollution surface. The
2014 exposure estimates of subjects were extracted, and
then back-extrapolated to the cohort baseline period
(1998–2001). These estimates were adjusted for vertical
and dynamic components, based on the floor of the resi-
dential address and generalized population exposure char-
acteristics, respectively. Overall air pollution exposure
estimates (i.e., 2D, 3D, and D3D) for all pollutants (i.e.,
PM2.5, BC, NO, and NO2) were produced and assigned to
all participants based on their residential addresses at
baseline periods. The distributions of the predicted expo-
sures were evaluated and checked for extreme values.

Back-Extrapolation of Exposure Estimates To estimate
historical exposures, we used measurements from the
eight rooftop government network stations that had been
in operation during the entire study period (1998–2014).
The data were used to calculate trends in pollutant con-
centrations over time and correlations between pollutant

concentrations of different years. These factors were
then applied to the LUR modeled concentrations to esti-
mate baseline air pollution exposure. Elemental carbon
measurements were used to calculate BC trends, as BC
measurements were unavailable for the majority of the
study period, under the assumption that the elemental
carbon:BC ratio would not have changed significantly dur-
ing the study period.

We considered two methods to extrapolate pollutant con-
centrations back in time, as suggested in the ESCAPE
manual (ESCAPE 2012): (1) the absolute difference method;
and (2) the ratio method. Regional pollutant concentrations
in Hong Kong have followed distinctly different trends from
those of local pollutants in recent decades, as most originate
from the Pearl River Delta in Mainland China, which has
experienced very different economic, industrial, and policy
development. Therefore, the ratio method was applied to
pollutants dominated by local emissions (NO and NO2), and
the absolute difference method was applied to pollutants
dominated by regional emissions (PM2.5 and BC). This
method assumes that the spatial distribution of pollutant
concentration remains constant over the study period, as
has been observed by others (Eeftens et al. 2011; Wang et al.
2013). We felt that this was a reasonable assumption as there
were no large geographical changes in road network and
point emission sources within Hong Kong between 1998
and 2014.

For the absolute difference method, we used the AQMS
data to calculate, for each study subject, the absolute dif-
ference between the average one year before and one year
after the recruitment date and the annual average covering
the modeled measurement period. The back-extrapolated
concentration was estimated by adding the difference to the
modeled annual mean concentration. Whereas for the ratio
method, we calculated the back-extrapolated concentra-
tions by multiplying the modeled annual mean concentra-
tion with the ratio between the average one year before and
one year after the recruitment date and the annual average
covering the measurement period for each study subject.
The baseline exposure was characterized based on the exact
recruitment date and a year before and after to avoid
weather influences in back-extrapolation calculations,
which may be important as the cohort was recruited over
three consecutive years.

Air Pollution Exposure Estimates (2D, 3D, and D3D)

To apply vertical and dynamic components to back-ex-
trapolated results, we first geocoded subjects according to
the floor level of their residential addresses. To calculate 3D
exposure, we matched the subject’s floor level with the pol-
lutant’s vertical decay rate derived in WP2. The 3D expo-
sure estimates thus accounted for both spatial and vertical
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variation in pollutants across the study area. BC decay rates
were used for NO and NO2, as these pollutants showed
higher correlation than PM2.5 in AQMS measurements.

The generalized population mobility pattern and the
related air pollution levels in microenvironments derived
in WP3 were used to adjust for dynamic air pollution
exposure. We compared the exposure of different age, sex,
and population subgroups relative to the population mean
concentrations (Table 3) and applied these ratios to pre-
dicted 3D results. These estimates thus accounted for
exposure in various indoor, outdoor, and transport micro-
environments. For NO, BC factors were used as surrogates
as these pollutants showed the highest correlation in
AQMS measurements. When applying these factors, we
assumed all study subjects to be in the “neither at work nor
study” population subgroup, as questions on occupation
were not asked in the cohort questionnaires, coupled with
the fact that the cohort was beyond the typical Hong Kong
retirement age of 65.

Statistical analyses are described in the Statistical
Methods and Data Analysis section.

Visualization of 3D Dispersion Patterns for Public 
Engagement

We hypothesized that 3D visualization methods would
provide an engaging and intuitive method of presenting

complex TRAP dispersion information to the public. To vi-
sualize air pollutants’ dispersion within whole street can-
yons, interpolation methods (Kriging) were required to
derive continuous concentration fields between monitoring
points, both vertically and horizontally. Ambient measure-
ments of PM2.5 and BC taken during the canyon campaigns
were used to produce visualizations for the JDC1 site can-
yon using the Environmental Visualization System (EVS-
Pro) software (C Tech Development Corporation, Las Vegas,
Nevada, U.S.A.) by the following processing stages:

1. Multilevel ambient canyon measurements were aggre-
gated at 30-minute intervals across a mean 24-hour
period to produce a diurnal temporal variation.

2. Data were extrapolated vertically using the decay rate
calculated in WP2. Data were extrapolated horizon-
tally under the assumption that concentrations at a
specific height were constant along the canyon.

3. A 2D floor plan of buildings forming the canyon and
its surrounds were extruded upward using building
height data to produce a 3D environment for visual-
ization.

4. The data matrix was entered into EVS-Pro software
and extended into a cube-shape cloud filling the
whole canyon space.

5. EVS-Pro was used to produce a continuous-changing
3D animation over 24 hours at 30-minute intervals.

Table 3. Dynamic Exposure Factors Derived from WP2 and WP3, Where h is the Residential Height Above Street Level

PM2.5 BC NO NO2

Vertical Decay
Height of residence above street level e�0.004h e�0.012h e�0.012h e�0.012h

Agea

Below 18 1.09 1.18 1.18 1.04
18–64 0.99 1.00 1.00 1.01
�65 0.96 0.85 0.85 0.91

Sex

Male 1.01 1.04 1.04 1.02
Female 0.99 0.99 0.99 0.98

Population Subgroupa

Working adults 0.98 1.03 1.03 1.06
Students 1.10 1.18 1.18 1.03
Neither in work or study 0.97 0.87 0.87 0.90

a Grayed out values are only shown for comparison as they were not applicable to the study population.
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STATISTICAL METHODS AND DATA ANALYSIS

COX PROPORTIONAL HAZARD MODELS (WP4)

Cox regression models have been applied in studies to
elucidate the effects of long-term air pollution exposure on
mortality (Dockery et al. 1993; Pope et al. 2002). In stan-
dard Cox regression analysis, the hazard function is the
probability that an individual will experience an event
(i.e., death) within a time interval. The HR and 95% CI for
death can be estimated from Cox models for survival, with
adjustment for both the individual level confounders and
area covariates (e.g., age, sex, education, occupation, and
area socioeconomic characteristics). We adopted these
models to assess the mortality risks in relation to long-term
exposures to TRAP in elderly subjects. Study subjects were
assessed from year of recruitment to year of death for the
causes being modeled or censored at the year of the follow-
up in 2011. Statistical analyses were performed using func-
tion coxph in the R package survival (Therneau 2015).

Covariates

HRs and 95% CIs were calculated using Cox models, ad-
justed for individual, ecological, and environmental covari-
ates. The independent variable was exposure to pollutant
concentrations at baseline. Model covariates included
individual-level demographic, socioeconomic, and life-
style factors obtained from interviews (Lam et al. 2004b,
Wong et al. 2015). Individual-level variables in the final
model were age (continuous), sex, body mass index (<21.6,
21.6–26.3, >26.3 kg/m2), smoking (never smoker, former
smoker, current smoker), physical exercise (days per week),
education (<primary, primary, �secondary), and monthly
expenses (<128, 128–384, >384 USD). For ecological and en-
vironmental covariates, we geocoded subjects into TPUs, as
well as into the 18 larger administrative districts in Hong
Kong. We then derived sociodemographic variables obtained
from the 2001 Census (Census and Statistics Department
2002). The final models were adjusted for TPU-level pro-
portion of the population �65 years of age, the proportion
with more than a secondary education, and the average
monthly income in each TPU. Additionally, we adjusted for
the proportion of smokers in each district. District-level pro-
portion of smokers (>15 years of age) from 1998 to 2011 was
included as a covariate. Covariates are tabulated in Table 2
and in Appendix Table A.19 (available on the HEI website).

Comparison Between Pollutants

For the ease of comparing the health effects between dif-
ferent pollutants, we estimated the HRs and associated
95% CIs scaled to the interquartile range (IQR) based on

average distributions, for each pollutant and mortality out-
come combination. Statistical significance was based on a
P value of <0.05. In addition, we estimated HRs of PM2.5
exposure per unit increase (i.e., 10 µg/m3). The IQR-based
measure allowed us to compare the size of effects esti-
mates across pollutants (as the ranges of concentrations
differed between pollutants), where calculations of HR per
unit increment allowed the comparison of epidemiological
effects with exposures derived from satellite-based
methods (Wong et al. 2015).

Comparison with Satellite-Derived Exposure Estimates

In our earlier study (Wong et al. 2015), a simplistic
method was applied to measure exposure estimated from
satellite information surface extinction coefficients on a
1 � 1 km horizontal grid. The long-term effects on mor-
tality due to all natural causes, cardiovascular disease, and
respiratory disease were assessed. We compared the differ-
ences in HRs obtained from satellite-based and D3D LUR
exposure estimates when applied to the same cohort. We
compared results to examine whether the 3D model pro-
vided a wider exposure distribution than the 2D model,
and whether such changes improved exposure estimations
and hence altered estimated health effects.

Sensitivity Analyses

We performed sensitivity analyses to observe changes to
the associations between exposure and mortality. We
observed change in HRs when (1) yearly exposure to a pol-
lutant was used; (2) participants who died during the first
year after enrollment were included; and (3) participants
who died in the first 1–3 years were excluded. In addition,
we performed two stratified analyses: (1) subject’s age (as
defined by two age groups: <71 or �71 years old — based on
the cohort’s median age of 70), and (2) sex of the participants.
We also examined the effects of back-extrapolation on expo-
sure distributions and associations between 2D, 3D, and D3D
estimates. All statistical analyses were carried out using
functions in R software, version 3.3.2.

RESULTS

WP1: DEVELOPMENT OF A 2D LAND-USE 
REGRESSION MODEL FOR HONG KONG

Measurements

Combined measured concentrations from both campaigns
were (a) NO2 (Mean = 106 µg/m3, Median = 98 µg/m3,
SD = 38.5 ,  N  =  95) ,  (b )  NO (Mean  =  147  µg/m 3 ,
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Median = 131 µg/m3, SD = 88.9, N = 40), (c) PM2.5 (Mean =
35 µg/m3, Median = 35 µg/m3, SD = 6.3, N = 64), and (d) BC
(Mean = 10.6 µg/m3, Median = 10 µg/m3, SD = 5.3, N = 76).
Concentration distributions for all of the pollutants were
skewed slightly right. Substantial spatial variation in con-
centration was seen across the territory for all pollutants.
NO2, NO, and BC concentrations differed by one order of
magnitude across the territory. The highest concentrations
of gaseous pollutants were found in Kowloon and Hong
Kong Island, the central and the traditional developed
regions of Hong Kong. This pattern was not reflected for
PM2.5 and BC concentrations where higher concentrations
were measured in the northern regions of the New Territo-
ries, closer to the border with Mainland China. Statisti-
cally significant differences in concentrations between
sampling campaigns were noted only for PM2.5 concentra-
tions (mean difference = 17.80, P < 0.001) where SC2
mean, medium, minimum, and maximum were approxi-
mately 20 µg/m3 greater than in SC1.

Model Results and Evaluation

From the nine models built for each pollutant, the pre-
ferred models used the combined SC1 and SC2 road-length
models (Table 4). Road-length models overall performed
slightly better than those with the other traffic variables,
and road length was the most reliable traffic variable, as
continuous road-type data were available as inputs, where-
as traffic counts had to be interpolated between measure-
ment locations to provide complete spatial coverage. Since
the goal of the modeling was to predict long-term exposure,
the combined SC1 and SC2 models were preferred. For pre-
ferred models, R2 values ranged from 0.46 (NO2) to 0.59
(PM2.5). The number of predictor variables in these models
ranged from four to eight (depending on sample size), and
all models included at least one traffic variable. Land use
was also present in all preferred models.

The LOOCV R2 values for the preferred models were 15%
to 44% lower than the models’ R2 values (Table 4). The NO2
HEV R2 values for all the NO2 models were greater than
most of the LOOCV R2 except for two of the traffic-loading
models. This was unexpected as it is generally assumed
that HEV values should be lower than the LOOCV R2

(Wang et al. 2012). In the preferred NO2 model, the HEV R2

was higher than the model R2, which was also unexpected.

Diagnostic plots showed that the models met the condi-
tions of linearity, homoscedasticity, and normality. Moran
I values for the residuals for the preferred models ranged
from �0.26 to �0.0068, meaning spatial correlation ranged
from slightly dispersive to slightly clustered and that spa-
tial autocorrelation was minimal. This absence of spatial
autocorrelation also meant that interpolated residuals
could not be used as an additional predictor variable.

Multicollinearity was a concern during the modeling pro-
cess, and a few of the initial 36 models were rerun because
of high VIF values (the VIF cutoff was set at three). A major
source of multicollinearity was large buffered predictor
variables, particularly 4,000 meters and 5,000 meters, as
correlation was high for variables of this buffer size
between most spatial metrics.

Prediction surfaces were created for the preferred models
(Figure 2). Predictions were truncated to ±20% of the range
of the corrected combined SC1 and SC2 measured concen-
trations entered into the models, with the exception of the
NO2 model since the predicted values were within this
range (Amini et al. 2014; Henderson et al. 2007).

Alternative model results are shown in Additional
Materials 1 (available on the HEI website).

WP2: VERTICAL MONITORING FIELD CAMPAIGN 
AND DEVELOPMENT OF A 3D LUR MODEL

Sampling Site Characteristics

After the canyon selection and recruitment protocol
described in the Methods section, cool and warm season
monitoring was carried out at six street canyon and open-
street sites. These sites represented a range of physical
canyon types, biased toward locations with high AADT
counts (Table 5). All were in areas with high population
density. A small number of residents withdrew from the
study during or between seasonal campaigns. When this
occurred, a replacement residence was recruited on a floor
as close as possible.

Table 5 also shows a description of the typical buildings
adjacent to the canyons and two open sites. The old slab
residential blocks built over the past century are being
replaced by individual towers with regular gaps. At the
same time, an increasing proportion of the population is
living in public or private housing estates, comprising a
cluster of tall towers on podiums. The selected sites incor-
porated a mix of these residential slabs (JDC1, SWO1,
CHO1), mixed towers (NPC1), and residential tower
estates (HHC1, MKC1). Only JDC1 represented the now
uncommon old narrow slab canyon, with no interruptions
on either side. However, this canyon had a low AADT
count, as is typical for such types of canyon. Photographs
of each canyon location are shown in Figure 3.

Equipment Performance

High precision between the portable monitoring units
used in the canyon campaigns was necessary for the calcula-
tion of accurate decay rates because of the relatively small
differences in concentrations expected at higher floors. A
robust quality assurance and quality control process was
required because (a) interunit precision varied over time and
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Table 4. Preferred 2D LUR Model Results

Preferred
Model Variablesa Estimate Partitioned R2 Parameters

NO2 (µg/m3) Intercept
ExpRL.1000(m)
MainRL.50(m)
ElvRL.5000(m)
OpArT.300(m)

7.84e+01
1.61e�03
9.67e�02
3.02e�04

�1.27e�04

0.060
0.134
0.221
0.047

R2: 0.46
Adj. R2: 0.43
LOOCV R2: 0.39
HEV R2: 0.56
RMSE: 27.7 µg/m3

N: 75
Moran I: �0.256
Measured (µg/m3):
Mean = 107 (43, 213)

NO (µg/m3) Intercept
ElvRL.500(m)
BldVolD.25(m)
IndT.25(m)
WPopDen.100(m)

7.07e+01
1.06e�02
3.73e+00
1.98e�01
5.29e+02

0.192
0.148
0.078
0.082

R2: 0.50
Adj. R2: 0.48
LOOCV R2: 0.28
RMSE: 62.1 µg/m3

N: 40
Moran I: �0.0068
Measured (µg/m3):
Mean = 147 (21, 376)

PM2.5 (µg/m3) Intercept
ExpRL.25(m)
Dist_ShenzhenP(m)
CarPD.1000(m)
CarPD.25(m)
GovT.100(m)
IndT.25(m)

3.67e+01
8.91e�02

�3.09e�04
4.17e + 05
1.68e+04

�3.81e�04
1.38e�02

0.056
0.168
0.151
0.057
0.066
0.089

R2: 0.59
Adj. R2: 0.54
LOOCV R2: 0.43
RMSE: 4.0 µg/m3

N: 64
Moran I: �0.228
Measured (µg/m3):
Mean = 35 (25, 51)

BC (µg/m3) Intercept
ExpRL.3000(m)
ExpRL.50(m)
Long(decimal degree)
CarPD.50(m)
ComT.500(m)
ResT.50(m)
MixT.500(m)
Lands.500(m)

2.51e+03
9.48e�05
1.76e�02

�2.19e+01
3.23e+04

�2.74e�05
�8.74e�04
�2.32e�05
�1.50e�04

0.091
0.075
0.089
0.044
0.037
0.050
0.053
0.065

R2: 0.50
Adj. R2: 0.44
LOOCV R2: 0.31
RMSE: 3.7 µg/m3

N: 76
Moran I: �0.129
Measured (µg/m3):
Mean = 11 (6, 28)

a BldVolD = building volume density, CarPD = car park density, ComT = commercial total, Dist_ShenzhenP = Schenzhen, ElvRL = Elevated road length, 
ExpRL = expressways length, GovT = government total, IndT = industrial total, Lands = undeveloped lands, Long = longitude, MainRL = main road length, 
MixT = mixed use total, OpArT = open area total, ResT = residential total, WPopDen = population density

(b) changes in particulate composition meant that SidePak-to-
reference-instrument (tapered-element oscillating microbal-
ance FDMS) conversion factors and microAeth filter loading
attenuation correction factors varied over time. Full results of
the precision and scaling procedures are shown in Appendix
A (Tables A.5 to A.8, Figures A.6 to A.9).

The TSI AM510 SidePak is an optical instrument that is
factory calibrated by the manufacturers to the respirable frac-
tion of standard ISO 12103-1, A1 Test Dust. It is standard prac-
tice to determine the calibration factor for a specific aerosol by

colocation with a reference instrument. The SidePak units
performed well against the reference instruments throughout
each campaign, with R2 values of 0.92 and 0.97 for the
warm and cool seasons, respectively. Reference scaling fac-
tors were 0.37 and 0.43, respectively (Appendix Figures A.6
and A.7), which are in line with previous studies in urban
environments (Zhu et al. 2007).

To additionally test variations in reference scaling fac-
tors, colocation tests alongside FDMS reference monitors
were carried out in three different locations with contrasting
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Figure 2. Prediction surfaces for the preferred (combined SC1 and SC2 road length) models described in Table 4. The squares represent measured con-
centrations at the monitor sites; predicted concentrations are displayed for all of Hong Kong.

local emissions (curbside, roadside, and rooftop). No signif-
icant difference in reference correction factors was identi-
fied within the precision of the instruments.

The Aethlabs AE51 microAethalometer measures the
rate of change in absorption of transmitted light at 880 nm
wavelength from deposited aerosol continuously col-
lected onto a filter tab. Reference scaling of microAeth
units was not possible as no reference BC monitors were
operated in urban areas during the sampling campaigns.

Nine precision experiments were carried out during
the fieldwork to test the stability of the units: at the start

and end of each campaign plus extra tests when units
were returned from servicing or when borrowed units
were used. In each test, linear regression analysis was
used to derive correlation, offset, and gradient matrices
between the reference unit (the unit colocated with the
tapered-element oscillating microbalance FDMS refer-
ence monitor) and all other units. This testing revealed
that the SidePak units had a high degree of correlation,
but some had large offset and/or scaling factors relative to
the reference unit. Scale factors tended to be stable over
time, but certain units had highly variable offsets. A
sample Sidepak correlation matrix from the winter
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Table 5. Details of the Sampling Sites for the Canyon Campaigns, Including Floors on Which Sampling was Undertaken 
on Sides A and Ba 

District 
& Site Codeb

Road
(District)

Aspect 
Ratioc AADT Description

Floor 
A

Height 
A (m)

Floor 
B

Height
B (m)

Street Canyon

Jordan
(JDC1)

Man Ying Street
(Kowloon)

7.4 Low Old residential slab 1
3
6
9

15

6.3
12.1
20.8
29.5
46.9

2
13
—
—
—

9.2
41.1

—
—
—

Mong Kok 
(MKC1)

Hoi Wang Road
(Kowloon)

3 Medium Large residential towers 2
5

12
20

10.1
18.3
37.4
59.2

11
14
20
—

34.6
42.8
59.2

—

Hung Hom 
(HHC1)

Hung Hom Road
(Kowloon)

2.1 High Large residential towers 2
3
5

11
14

17.2
19.9
25.5

42
50.3

2
6

13
—
—

17.2
28.2
47.5

—
—

North Point 
(NPC1)

Java Road
(HK Island)

3.6 High Mixed residential tower 
and slab

3
5
9

10
16

13.8
21.6
33.2

37
50.2

2
17
—
—
—

12
53.3

—
—
—

Open Street

Sai Wan 
(SWO1)

Des Voeux Road 
West 

(HK Island)

— High Residential slab 2
4

11
15
21

11.4
16.8
35.7
46.5
62.7

—
—
—
—
—

—
—
—
—
—

Choi Hung 
(CHO1)

Lung Cheung Road
(Kowloon)

— High Residential slab 1
4
6
7

19

2.6
10.5
15.7
18.3
49.8

—
—
—
—
—

—
—
—
—
—

AQMS Canyon

Causeway Bay 
(CBAQMS)

Yee Wo Street
(HK Island)

2.7 High Mixed residential tower 
and slab

0
12

2
36

—
—

—
—

Kwai Chung 
(KCAQMS)

Kwai Chung Road
(Kowloon)

1.1 High Mixed commercial 
tower and slab

0
6

2
13

—
—

—
—

Kwun Tong 
(KTAQMS)

Kwun Tong Road
(Kowloon)

1.5 High Residential slab and 
commercial towers

0
12

2
25

—
—

—
—

Mong Kok 
(MKAQMS)

Nathan Road
(Kowloon)

3.9 High Mixed residential tower 
and slab

0
27

2
81

—
—

—
—

Sham Shui Po
(SSPAQMS)

Yen Chow Street
(Kowloon)

0.9 High Mixed residential and 
commercial towers

0
8

2
17

—
—

—
—

a See Figure 1 for descriptions of sides A and B. — = not applicable. 

b AQMS canyons were used only for validation purposes.

c Vardoulakis et al. 2003 describes a regular canyon as having an aspect ratio of about 1.
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Figure 3. Photographs of the six canyon campaign monitoring locations illustrating prominent building type (tower or slab). Measurement sites: JDC1 =
Jordan canyon; MKC1 = Mong Kok canyon; HHC1 = Hung Hom canyon; NPC1 = North Point canyon; CHO1 = Choi Hung open; SWO1 = Sai Wan open.

pre-campaign test is shown in Table 6, with precision
scaling factors and offsets relative to the reference unit
(S10) for each unit shown at the base of the table. This test
identified that unit S03 had a fault and was taken out of
service for the campaign. Note that faulty units had to be
shipped back to the United Kingdom or the United States
for repair, taking them out of service for several months.

The precision experiments showed that the microAeths
were stable and consistent, with the majority of R2 values in
the correlation matrices at 98% or above and precision scale
factors between 0.95 and 1.05. No units showed offsets.
However, because of the high filter loading rates experi-
enced in the polluted conditions typical during the cam-
paigns, coupled with limited access to instruments in
residences, an adapted version of the method used by
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Virkkula and colleagues (2007) for attenuation correction
had to be applied. Separate attenuation correction (�) fac-
tors were calculated for each canyon and each season to
account for changing particulate atmospheric composition.
Attenuation factors ranged from 0.004 to 0.019 and were
typically higher during the warm season campaign than
the cool season. A full set of attenuation correction factors
is shown in Appendix Table A.7.

The AQMesh electrochemical units suffered several
sensor failures, particularly associated with high rainfall
conditions during the warm season. They also demon-
strated irregular and unpredictable responses, which were
evident during precision testing. A series of precision tests
was carried out alongside the particle monitoring units.
Unlike the particle monitoring units, the AQMesh units
reported poor between-unit correlation, widely variable
precision scaling factors, and large, inconsistent positive
and negative offsets for each of the gas sensors. Between-
unit precision of the temperature and relative humidity
sensors was generally good, with high correlation and
stable scaling. The results of these precision tests are
shown in Appendix Table A.8.

It was also clear from time-series charts of the gaseous
pollutant data that the sensors took between 6 and 24 hours
to stabilize after deployment in the residences during the
campaigns. After stabilization, between-unit offsets

appeared to be different from those measured before the
unit’s relocation. This combined evidence gave us insuffi-
cient confidence in the accuracy and, more important, pre-
cision of the electrochemical sensors to proceed with their
use for calculating gaseous vertical decay rates.

These disappointing results were reported to the manu-
facturer, who has since updated data-processing algorithms
and upgraded the NO2 sensor to a new version. Tests in the
United Kingdom indicate that the new algorithms produce
greatly improved NO and CO precision, but without the
sensor upgrade, the NO2 precision remains poor. It is there-
fore possible that the NO and CO data may be salvageable in
the future by the reapplication of processing algorithms on
the historical data set by the manufacturers.

Vertical Decay Rates

As illustrated in Figure 4, PM2.5 showed strong seasonal
differences in mean concentration throughout the day.
Typically, during the warm season southwesterly winds
bring monsoon rainfall to the region and relatively clean
maritime air. A shift to northerly winds during the cool
season leads to the import of continental air to Hong Kong.
This air has traveled across Mainland China, including the
heavily industrialized Pearl River Delta. This produced an
increment of between 30 and 40 µg/m3 over warm season
concentrations. This effect was less marked in BC, which
had a lower regional contribution. In addition to this

Table 6. PM 2.5 SidePak Unit Correction Factors Correlation Matrix (R2) Plus Offset and Scaling Factors for the Winter 
Canyon Pre-Campaign Precision Testa

Unit S01 S02 S03 S04 S07 S09 S10b S11 S12 CAN06

S01 1.00 0.21 0.97 0.98 0.99 1.00 0.96 1.00 1.00

S02 1.00 0.21 0.97 0.98 0.99 1.00 0.97 1.00 1.00

S03 0.21 0.21 0.12 0.27 0.24 0.25 0.28 0.25 0.19

S04 0.97 0.97 0.12 0.94 0.96 0.95 0.92 0.96 0.98

S07 0.98 0.98 0.27 0.94 0.96 0.98 0.99 0.99 0.98

S09 0.99 0.99 0.24 0.96 0.96 0.99 0.96 0.99 0.99

S10b 1.00 1.00 0.25 0.95 0.98 0.99 0.98 1.00 0.99

S11 0.96 0.97 0.28 0.92 0.99 0.96 0.98 0.98 0.97

S12 1.00 1.00 0.25 0.96 0.99 0.99 1.00 0.98 0.99

CAN06 1.00 1.00 0.19 0.98 0.98 0.99 0.99 0.97 0.99

Offset 1 5 41 29 2 0 3 1 5

Scale 1.01 1.02 — 0.95 0.91 1.14 1.00 1.89 0.96 1.28

a Fill colors indicate degree of correlation, from dark green (R2 = 1.00) through to dark red (R2 < 0.2). 
b S10 was the reference unit during this test.
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offset, lower dispersion conditions exaggerated diurnal
variation in both pollutants during the cool season.
Diurnal analyses from all six vertical monitoring locations
are shown in Appendix Figures A.10 to A.15.

In all but one case (MKC1), the prevailing wind speed and
direction during the monitoring campaigns were comparable
with the 10-year mean. We are therefore confident that
these results are representative of typical weather condi-
tions in Hong Kong during each season. Supporting data
are shown in Appendix Figure A.16.

Pollutant concentrations for each sampling site were
plotted against height, with the addition of temporally cor-
rected street-level model estimates. The general pattern was
of a rapid decrease in concentrations over the first few me-
ters, followed by a gradual decrease, no change, or gradual
increase, dependent on canyon and season (Figure 5). There
were exceptions, particularly during the cool season: JDC1,
NPC1, and SWO1 all showed no decay in PM2.5 with height
during the cool season. Generally, decay of BC was greater
than PM2.5, perhaps reflecting the greater component of

Figure 4. Mean diurnal variation in (A) BC and (B) PM2.5 at the NPC1 site during the warm and cool seasons.
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Figure 5. Vertical concentrations measured during the warm and cool season canyon campaigns. Values are matched means throughout the two-week
sampling period (one week for side B). Exponential decay curves are only fitted for A-side sites. The 2-meter height concentrations are derived from
temporally corrected 2D model estimates. Figure continues next page. 
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Figure 5 (Continued).
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local emissions for this pollutant. Only one site, CHO1,
showed no decay with height. A sensitivity test was car-
ried out to establish whether decay rates were dependent
on the time of day, but results were similar throughout. An
example plot of this diurnal analysis is shown in Appen-
dix Figure A.17.

In most cases, concentrations on the B side of the canyon
followed the same curve as the A side. However, both PM2.5
and BC concentrations measured on the B side of HHC1
were consistently higher than those on the A side.

Concentrations were then log-transformed to derive
decay rates (k) for each canyon and season (Table 7). Decay
rates calculated for AQMS locations were used for compar-
ison, as they were derived from only two sampling heights.
Nevertheless, seasonal means from the AQMS sites were
similar to those from the canyon sites for both pollutants
(0.007 vs. 0.009 for PM2.5 and 0.022 vs. 0.016 for BC).

While it was clear that decay rates were higher during
the warm season than the cool, no robust patterns could be
identified relating to the canyon physical parameters. This
meant that differential decay rates could not be applied
across the region according to canyon classification. It was
therefore decided to use a single decay rate for each pol-
lutant across the whole region for derivation of the 3D
exposure layer (k = 0.004 and 0.012 for PM2.5 and BC,
respectively).

Some degree of evaluation of the use of modeled street-
level concentrations and application of a mean decay rate
was possible at the five locations where paired rooftop and
roadside monitoring was carried out alongside AQMS sites
(see Table 5 for AQMS site details). First, temporally cor-
rected PM2.5 and BC concentrations for these five locations
were extracted from the 2D LUR. Then the warm season
decay rates (0.009 and 0.016, respectively) were applied to

Table 7. Decay Rates (k) for Each Vertical Sampling Site Alongside Canyon Characteristicsa

Site
Codeb 

Height/
Width 
Ratio AADT

Canyon
Type

Wind Directionc Decay Rate (PM2.5) Decay Rate (BC)

Warm Cool Warm Cool Warm Cool

Street Canyons

JDC1 High Low Slab Para. Para. 0.001 0 0.016 0.012
MKC1 Med High Tower Perp. Perp. 0.001 0.001 0.002 0.010

HHC1 Low High Tower Perp. Mixed 0.005 0.002 0.028 0.012

NPC1 Med High Mixed Para. Para. 0.012 0 0.021 0.013

SWO1 — High Slab (coast) Perp. Perp. 0.010 0 0.008 0.007

CHO1 — High Slab Perp. Perp. 0.008 0.005 0.018 0

Seasonal mean 0.009 0.001 0.016 0.009

Annual mean 0.004 0.012

AQMS Canyons

CBAQMS Mid High Mixed Para. — 0.016 — 0.032 —

KCAQMS Low High Mixed Perp. — 0.015 — 0.017 —

KTAQMS Low High Mixed Para. — 0.003 — n.a. —

MKAQMS Mid High Mixed Perp. — 0.002 — 0.016 —

SSPAQMS Low High Tower Perp. — �0.001 — n.a. —

Seasonal mean 0.007 0.022

a n.a. = not available; — = not applicable.

b See Table 5 for site codes. 

c Wind direction (parallel, perpendicular, mixed) refers to the dominant wind direction recorded by the closest Hong Kong Observatory meteorological 
monitoring site relative to the canyon orientation.
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these modeled estimates to produce modeled rooftop-level
concentration estimates. These were then compared with
the monitored street and rooftop level concentrations
(Table 8). Because of instrument faults, street-level BC con-
centrations at two sites were not available.

While the modeled PM2.5 concentrations at street level
compared well with the measured concentrations, the
modeled magnitudes in decay were more variable, with a
large underestimate evident at the CBAQMS site and a large
overestimate at the MKAQMS site, relative to absolute con-
centrations. Conversely, the model produced relatively
good estimates in BC decay, but uniformly overestimated
street-level BC concentrations. The results shown in Table 8
are reproduced graphically in Appendix Figures A.18 and
A.19.

While this evaluation was useful in illustrating model
performance, a perfect match of modeled and measured
concentrations was not expected. This is because the mod-
eled concentrations and decay rates were selected to repre-
sent seasonal average conditions. Meteorological
conditions during the monitoring period when measure-
ments were taken would not be expected to match the sea-

sonal mean. Unusual meteorological conditions are likely
to explain the lack of decay measured at the SSPAQMS
site, which was not duplicated in the model, resulting in a
decay overestimate.

Alternative Decay Exposure Profile

The exponential equation used to calculate the decay
rates (Equation 2) assumes a continuous decay to infinity.
However, it is clear from the mean vertical concentration
profiles shown in Figure 5 that decay occurs to the point at
which the local emissions are fully mixed. From that
height upward, concentrations have reached the urban
background, and little or no decay occurs. This is particu-
larly evident in the cool season PM2.5 profiles, due to the
dominant regional component.

We made a conservative visual estimate that this fully
mixed state was reached at a height of 20 meters above street
level on average across all seasons and monitoring loca-
tions. A quantitative method could not be established with
our data set because of the relatively small number of moni-
toring heights and variability in profiles. An alternative
decay exposure profile was produced where concentration

Table 8. Comparison of Measured and Modeled PM2.5 and BC Concentrations at the Five AQMS Monitoring Sitesa

Pollutant / 
Site Codeb

Measured (µg/m3) Modeled (µg/m3) Over/Under Estimate (µg/m3) 

Street Level Decay Street Level Decay Street Level Decay

PM2.5
CBAQMS 23.6 10.0 21.5 6.0 �2.1 �4.1

KCAQMS 15.7 4.0 18.2 3.1 2.5 �0.8

KTAQMS 17.5 1.9 18.2 5.0 0.7 3.1

MKAQMS 18.0 2.1 18.5 9.6 0.5 7.5

SSPAQMS 13.7 �0.2 14.5 2.8 0.8 3.0

BC
CBAQMS 12.5 8.4 21.5 9.4 9.0 1.1
KCAQMS 7.1 1.9 13.4 3.8 6.3 1.9

KTAQMS — — 14.0 6.2 — —

MKAQMS 9.8 6.9 11.6 8.4 1.8 1.5

SSPAQMS — — 13.2 4.2 — —

a — = missing data. 

b See Table 5 for site codes. 
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decay was capped at 20 meters (i.e., all exposure estimates
at heights above 20 m were set at a value equal to the 20 m
estimate). The impact of this capping is illustrated in
Figure 6. A continuous decay profile produces a large
underestimate in PM2.5 concentration at rooftop level, par-
ticularly at the MKAQMS site, which is at 85 meters. This
overestimate in decay is corrected when capped at 20
meters, and measured and modeled vertical profiles are in
much closer agreement.

Infiltration Efficiencies

PM2.5 and BC infiltration efficiencies were calculated
for each home and season. The median Finf for both PM2.5
and BC during the cool season was 91% (n = 23 and 25,
respectively). This dropped to 81% and 88% for PM2.5 and
BC, respectively (n = 21 and 22) during the warm season
(Appendix Table A.9), reflecting the fact that residents
were more likely to keep their windows closed and use
their in-window air conditioning units during hot weather.

This was confirmed through analysis of the questionnaire
data, which included frequency of air conditioning use
during the sampling period. We found a significant nega-
tive correlation between air conditioning use and Finf of
PM2.5 and BC during the warm season (analysis results are
shown in Appendix Figure A.20). No resident reported air
conditioner use during the cool season.

The Finf for the mechanically ventilated office building
was 45% and 40% during the cool and warm seasons, re-
spectively.

WP3: INTEGRATION OF POPULATION MOVEMENTS 
TO CREATE A DYNAMIC 3D LUR MODEL

Exposure and Time Spent in Different 
Microenvironments

Maps showing mean concentrations in each TPU are
shown in Appendix Figure A.22, with tabulated results
shown in Appendix Table A.14 (available on the HEI web-
site).

Figure 6. Vertical PM2.5 profiles at two government network monitoring sites illustrating the impact of capping decay at 20 meters. 
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In line with published literature (de Nazelle et al. 2013)
for a European location (Barcelona), we found that signifi-
cantly higher pollutant exposure estimates in transport
microenvironments and trips made on surface modes of
transport contributed notably to the daily exposure of sub-
jects, even though time spent in these microenvironments
was considerably less (Table 9). Ambient exposure esti-
mates were typically the second highest, although this
varied spatially. For example, residents of the north-
western and Kowloon-area TPUs were exposed to ambient
concentrations of PM2.5 up to 75% higher than those living
in northeastern TPUs. These spatial contrasts were ampli-
fied when accounting for diurnal variations, as most sub-
jects traveled during morning and evening rush-hour
periods. Lowest indoor exposure estimates were found in
office buildings due to the low MVAC infiltration effi-
ciency; however, this contrast was lessened slightly with
the inclusion of diurnal factors, as these were somewhat
higher than 1 during typical working hours (between 1.1
and 1.3 depending on the pollutant).

As expected, most of the subjects spent most of their
time indoors, at their home residential address. On average
across the whole population, time spent at home, in work,
in school, and in transport (including traveling outdoors
[walking, cycling]) was 62%, 23%, 10%, and 5%, respec-
tively.

Model Stage 5 dynamic PM2.5 exposure estimates for
sample individuals within two population groups through-
out a notional 24-hour period are shown in Figure 7 (mean
across all TPUs). Each group has characteristic travel pat-
terns, illustrated in the spikes in concentration around

afternoon–evening and during the day for �65 not work-
ing and 18–65 working age groups, respectively.

Time-Weighted Exposure by Model Stage

Time-weighted exposure estimates of all six modeling
stages are shown in Table 10.

Examining the static models, overall exposures were
19%, 13%, and 27% higher outdoor (Stage 1) compared
with the indoor estimates (Stage 2), for PM2.5, BC, and
NO2, respectively. The mean outdoor exposures were 32.0,
9.4, and 92.9 µg/m3 for PM2.5, BC, and NO2, respectively. It
should be noted that these estimations are based on the 2D
LUR results, and aggregated at the TPU level; floor of resi-
dence was not available in the travel survey database.

In addition to the static outdoor and indoor exposure esti-
mates, time-weighted exposure estimates were calculated
from the time participants spent at home and work and at
other indoor locations (e.g., shopping centers) (Stage 3).
Their destination was determined by the trip purpose in the
travel survey questionnaire and their occupations. Com-
paring Stage 3 (dynamic indoor) with Stage 1 (static out-
door) results, 28%, 24%, and 27% decreases were seen for
PM2.5, BC, and NO2, respectively. When transport microen-
vironments were added (Stage 4), these differences
decreased by 16%, 12%, and 24%, respectively, reflecting
elevated exposures while in transit. The inclusion of
diurnal factors decreased population mean exposure esti-
mates slightly in comparison with the previous stage.

Model Stage 6 was added as a sensitivity test to examine
movement effects as distinct from infiltration effects. The
mean exposures for Stage 6 were 33.8, 9.6, and 90.9 µg/m3

Table 9. Mean Concentrations in Microenvironments and Average Time Spent

Microenvironment 
Mean Time Spent

(hours)

Mean Concentration (µg/m3)

PM2.5 BC NO2

Home indoor 14.9 50.9 7.5 67.5

Commercial indoor 5.2 31.2 4.6 76.9

School indoor 2.5 50.3 7.4 65.2

Other indoor (natural) 0.1 56.4 8.3 68.1

Other indoor (MVAC) 0.2 30.6 4.5 65.9

Transport 1.1 61.8 9.1 98.8
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for PM2.5, BC, and NO2, respectively, which were slightly
higher than Stage 1 (static outdoor) exposures for PM2.5
and BC.

Overall, the inclusion of dynamic components de-
creased exposure estimates in comparison with standard
static outdoor exposure estimates, principally driven by
the indoor components, despite relatively high infiltration
efficiencies. In the case of PM2.5, exposure heterogeneity
(represented by the standard deviation) increased, but it
decreased in BC and NO2 estimates.

Stratified Analysis for Different Population Subgroups

Full numerical results and box plots for each model
stage and each subgroup are presented in Appendix Fig-
ures A.23 to A.28 and Tables A.15 to A.18.

Time-weighted exposures for each model stage were
split by age groups, population subgroup, and sex. Static
outdoor and indoor exposure estimates (Stages 1 and 2)
did not differ among groups as all behaviors were assumed
to be equal; however, the addition of dynamic components
(Stage 5) showed the lowest PM2.5 exposures with the
�65 age group and the highest for the <18 age group (see
Figure 8). Compared with the oldest age group, the youngest

Figure 7. Modeled dynamic PM2.5 exposure (Stage 5) of two individuals over a 24-hour period.
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Figure 8. Box plots of time-weighted PM2.5 exposures for each model stage split by age group.

Table 10. Time-Weighted Exposure Estimates for all Model Stages for the Survey Population

Stage / 
Microenvironment

Time-Weighted Exposure (µg/m3)  (N = 89,358)

PM2.5 BC NO2

Mean Min Max SD Mean Min Max SD Mean Min Max SD

1 Static outdoor 32.0 23.3 40.8 3.4 9.4 2.8 18.5 3.5 92.9 56.2 141.1 15.1

2 Static indoor 27.0 19.7 34.5 2.8 8.3 2.5 16.4 3.1 73.4 44.4 111.4 12.0

3 Dynamic indoor 25.0 11.2 38.7 3.9 7.6 1.9 17.0 2.7 73.4 42.9 116.7 10.9

4 Dynamic indoor + 
transit

27.5 13.1 46.5 4.1 8.4 2.3 18.0 2.6 74.8 44.4 116.7 10.5

5 Dynamic indoor + 
transit + diurnal

27.1 11.9 46.8 4.2 7.8 1.2 21.5 2.8 71.3 24.9 122.7 14.3

6 Dynamic outdoor + 
transit + diurnal 

33.8 20.3 50.2 3.9 9.6 1.3 22.0 3.4 90.9 31.5 147.7 18.1
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showed an increase of 13%, 39%, and 14% for PM2.5, BC,
and NO2, respectively.

Comparison of exposure estimates split by population
subgroups revealed different patterns in static (Stages 1–2)
and dynamic (Stage 5) models. The static model found that
those who were neither in work nor study (i.e., “others”)
had slightly higher exposures than other subgroups. How-
ever, the dynamic models found that students had higher
PM2.5 and BC exposure than workers, and the lowest expo-
sures were found with the “others” subgroup. Students
had a 13% and 35% increase compared with that group for
PM2.5 and BC, respectively. For students, the mean time-
weighted exposures were 29.7 and 9.2 µg/m3 for PM2.5 and
BC, respectively. For NO2, working adults had the highest
dynamic exposure with a mean time-weighted exposure of
75.5 µg/m3, which was 2% and 18% higher than those of
the students and “others” subgroups.

Dynamic models found lower female exposures for all
pollutants. Male exposures were 2%, 5%, and 4% higher
than female in dynamic exposures when compared with
static. For male subjects, the mean time-weighted expo-
sures were 27.4, 8.1, and 72.8 µg/m3 for PM2.5, BC, and
NO2, respectively.

WP4: MODEL EVALUATION AND TRANSLATION FOR 
APPLICATION IN OTHER MEGACITIES

Cohort Data

Out of the 66,820 subjects enrolled in the cohort, 63,218
(95%) were geocoded from their baseline residential
addresses. Excluding subjects with missing individual-level
covariates (n = 589; 0.88%), missing community-level
covariates (n = 22; 0.03%), unavailable exposure estimates
(n = 838; 1.25%), or unavailable or incorrect floor level
information in addresses (n = 838, 1.25%), a total of 60,584
subjects were included in the analysis. The average residen-
tial height above street level was 38.7 meters (11th floor).

The spatial distribution of geocoded addresses of partic-
ipants is shown in Appendix Figure A.29 (available on the
HEI website). There were 8,553 subjects (13.3%) who had
a change of address during the analysis period, in which
case, address at baseline was used. Within the cohort,
approximately 70% of the participants were 65–74 years of
age. Around 67% of the participants were female, and
about 26.4% of the total subjects had died by the end of the
study period. Of the total number of deaths recorded (n =
16,415), 16,006 were from natural causes, and 409 were
from external causes. The number of deaths from all car-
diovascular and respiratory causes were 4,656 and 3,150,
respectively. The number of deaths for each mortality out-
come in the cohort is shown in Appendix Table A.20.

Exposure Data

Mean exposure estimates ranked in the order of highest to
lowest were 2D, 3D, and D3D LUR (Appendix Table A.21).
At baseline, D3D exposures were on average 20%, 50%,
50%, and 46% lower than the corresponding 2D exposure
for PM2.5, BC, NO, and NO2, respectively. BC exhibited the
largest range of values out of all pollutants, with a mean ex-
posure of 6.6 ± 4.0 µg/m3 (D3D). Satellite-derived 2D and 3D
PM2.5 exposures applied to the same study area and cohort
(Wong et al. 2015, 2016) were included for comparison. LUR-
estimated exposures were found to have higher means com-
pared with satellite-derived exposures for PM2.5. The 2D
mean exposures were 42.4 µg/m3 (LUR) and 35.6 µg/m3

(satellite). The 3D mean exposures were 36.6 µg/m3 (LUR)
and 33.7 µg/m3 (satellite). Satellite estimates generally had
lower spatial heterogeneity as concentrations were averaged
over a 1 � 1 km grid cell.

The correlations between different exposure estimates
across pollutants and among 2D, 3D, and D3D exposures
are shown in Table 11. High correlation between 3D and
D3D exposures is expected as the analysis cohort was lim-
ited to age �65 by design; thus dynamic factors based on
age and occupation groups would show less variation than
if applied across an age-representative population.

We examined the trends in back-extrapolated annual
concentrations for each pollutant, derived from govern-
ment network monitoring data. While BC and NO concen-
trations decreased steadily over the 13-year study period
(~50% and 35%, respectively), NO2 and PM2.5 concentra-
tions changed by <10% and remained well above the
World Health Organization Air Quality Guidelines (World
Health Organization 2016a).

Descriptive statistics of modeled and back-extrapolated
exposure distributions from the 2D, 3D, and D3D LUR
models, as well as the annual mean back-extrapolated 2D
exposure trends, are shown in Appendix Tables A.21 and
A.22 and Figure A.30 (available on the HEI website).

Associations Between Long-Term Air Pollution Exposure 
and Mortality

HRs were calculated per IQR increase in pollutant for
each LUR model stage (Table 12). Generally, HRs for the 3D
and D3D models were very similar, with more statistically
significant associations found than in the 2D models. This
indicates a homogenous distribution of changes in expo-
sure estimates resulting from the addition of the dynamic
model component.

A 3% increased risk of death from all natural causes
was found with each IQR increase of PM2.5 (HR = 1.03;
95% CI = 1.01–1.06) and BC (HR = 1.03; 95% CI = 1.00–1.05)
using 2D exposures. For PM2.5, the HRs per IQR increase
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in PM2.5 with all-natural-cause mortality were HR = 1.07
(95% CI = 1.04–1.09) for both 3D and D3D exposures. For
BC, the HRs per IQR increase in BC with all-natural-cause
mortality were HR = 1.05 (95% CI = 1.02–1.07) for both 3D
and D3D exposures. Overall, results from 3D and D3D ex-
posures were similar, but results differed significantly be-
tween 2D and both 3D and D3D. For NO, while a
nonsignificant negative association was reported for all-
natural-cause mortality for 2D exposure (HR = 0.99; 95%
CI = 0.97–1.02), 3D and D3D exposures had significant
positive associations (HR = 1.05; 95% CI = 1.02–1.07).
Similar results were found for NO2 and all-natural-cause
mortality: HR for 2D exposure was 1.00 (CI = 0.97–1.03)
compared with 1.06 (95% CI = 1.03–1.09) for 3D exposure
and 1.06 (95% CI = 1.03–1.08) for D3D exposure.

The long-term air pollution exposure had strong effects
on cardiovascular deaths. The HRs per IQR increase in PM2.

5 for all cardiovascular causes of death were 1.06 (95% CI =
1.02–1.10) for 2D and 1.10 (95% CI = 1.05–1.14) for 3D and
D3D. PM2.5 exposures were also significantly associated
with subcategories of IHD and cerebrovascular deaths. Sim-
ilarly, a 7%, 9%, and 10% increased risk of cardiovascular
death was found with each IQR increase of BC for 2D, 3D,
and D3D exposures, respectively. Positive associations were
found only with 3D and D3D NO exposures and IHD

mortality (HR = 1.09; 95% CI = 1.01–1.17). For NO2, signif-
icant associations with overall cardiovascular and the sub-
category of IHD were reported with 3D and D3D exposures
(HR = 1.09; 95% CI = 1.04–1.14 for overall cardiovascular,
and HR = 1.15; 95% CI = 1.06–1.24 for IHD mortality). This
association was the strongest of all pollutants. For respira-
tory mortality, the only significant associations found were
between 3D and D3D PM2.5 and all respiratory deaths (HR
= 1.06; 95% CI = 1.01–1.11).

PM2.5 exposure estimates and HRs were also available
from a previously published study utilizing the same
cohort (Wong et al. 2015), allowing a direct comparison of
health outcomes. As IQR was not available for this study,
comparisons were made based on calculated HRs per
10-µg/m3 increase in PM2.5. Table 13 summarizes the cal-
culated HRs per 10-µg/m3 increase using LUR models and
satellite-based exposures for PM2.5. A 10-µg/m3 increase
in PM2.5 was associated with all-natural-cause mortality
for both 2D estimates (HR = 1.06; 95% CI = 1.02–1.11 for
LUR; and HR = 1.14; 95% CI = 1.07–1.22 for satellite esti-
mates). In general, satellite exposure estimates had higher
HRs than the other models, but their CIs were approxi-
mately twice as large as the CIs for the 3D and D3D models,
indicating much greater uncertainty in associations. Only
3D and D3D LUR models found significant associations

Table 11. Correlation Coefficient (r) Matrix for 2D, 3D, and D3D Exposure Estimates for All Pollutantsa

2D 3D D3D

PM2.5 BC NO NO2 PM2.5 BC NO NO2 PM2.5 BC NO NO2

2D

PM2.5 0.32 0.15 0.00 0.65 0.24 0.07 �0.02 0.65 0.24 0.07 �0.02

BC 0.32 0.05 0.12 0.24 0.83 0.05 0.09 0.24 0.83 0.05 0.09

NO 0.15 0.05 0.47 0.16 0.07 0.68 0.31 0.16 0.07 0.68 0.31

NO2 0.00 0.12 0.47 0.06 0.12 0.35 0.55 0.06 0.12 0.35 0.55

3D

PM2.5 0.65 0.24 0.16 0.06 0.56 0.63 0.64 1.00 0.56 0.63 0.64

BC 0.24 0.83 0.07 0.12 0.56 0.42 0.49 0.56 1.00 0.41 0.49

NO 0.07 0.05 0.68 0.35 0.63 0.42 0.82 0.63 0.42 1.00 0.82

NO2 �0.02 0.09 0.31 0.55 0.64 0.49 0.82 0.64 0.49 0.82 1.00

D3D

PM2.5 0.65 0.24 0.16 0.06 1.00 0.56 0.63 0.64 0.56 0.63 0.64

BC 0.24 0.83 0.07 0.12 0.56 1.00 0.42 0.49 0.56 0.42 0.49

NO 0.07 0.05 0.68 0.35 0.63 0.41 1.00 0.82 0.63 0.42 0.82

NO2 �0.02 0.09 0.31 0.55 0.64 0.49 0.82 1.00 0.64 0.49 0.82

a Correlations between 3D and D3D appear identical due to rounding.
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Table 12. Adjusted Hazard Ratios (95%CI) per IQR Increase of Pollutants for Baseline Exposurea,b

Pollutants / 
Cause of Death 2D 3D D3D

PM2.5 IQR: 5.5 µg/m3 IQR: 7.5 µg/m3 IQR: 7.0 µg/m3

All natural causes 1.03 (1.01 to 1.06) 1.07 (1.04 to 1.09) 1.07 (1.04 to 1.09)

Cardiovascular 1.06 (1.02 to 1.10) 1.10 (1.05 to 1.14) 1.10 (1.05 to 1.14)

IHD 1.03 (0.97 to 1.10) 1.09 (1.03 to 1.17) 1.09 (1.03 to 1.17)

Cerebrovascular 1.06 (0.99 to 1.13) 1.08 (1.01 to 1.16) 1.08 (1.01 to 1.16)

Respiratory 1.02 (0.97 to 1.06) 1.06 (1.01 to 1.11) 1.06 (1.01 to 1.11)

Pneumonia 1.00 (0.94 to 1.06) 1.05 (0.99 to 1.12) 1.05 (0.99 to 1.12)

COPD 1.06 (0.97 to 1.15) 1.09 (1.00 to 1.19) 1.09 (1.00 to 1.19)

External causes 1.02 (0.90 to 1.16) 1.03 (0.90 to 1.19) 1.04 (0.90 to 1.19)

BC IQR: 9.6 µg/m3 IQR: 7.2 µg/m3 IQR: 5.4 µg/m3

All natural causes 1.03 (1.00 to 1.05) 1.05 (1.03 to 1.07) 1.05 (1.03 to 1.07)

Cardiovascular 1.07 (1.03 to 1.11) 1.09 (1.05 to 1.14) 1.10 (1.06 to 1.14)

IHD 1.08 (1.01 to 1.15) 1.10 (1.04 to 1.17) 1.11 (1.04 to 1.17)

Cerebrovascular 1.05 (0.98 to 1.13) 1.07 (1.01 to 1.14) 1.07 (1.01 to 1.15)

Respiratory 0.99 (0.94 to 1.04) 1.02 (0.97 to 1.06) 1.02 (0.97 to 1.06)

Pneumonia 0.99 (0.93 to 1.05) 1.01 (0.96 to 1.07) 1.01 (0.96 to 1.07)

COPD 0.98 (0.90 to 1.08) 1.01 (0.93 to 1.10) 1.01 (0.93 to 1.10)

External causes 1.18 (1.03 to 1.35) 1.15 (1.01 to 1.30) 1.15 (1.01 to 1.30)

NO IQR: 167 µg/m3 IQR: 203 µg/m3 IQR: 151 µg/m3

All natural causes 0.99 (0.97 to 1.02) 1.05 (1.02 to 1.07) 1.05 (1.02 to 1.07)

Cardiovascular 0.96 (0.91 to 1.00) 1.04 (0.99 to 1.09) 1.04 (0.99 to 1.09)

IHD 0.98 (0.91 to 1.05) 1.09 (1.01 to 1.17) 1.09 (1.01 to 1.17)

Cerebrovascular 0.96 (0.89 to 1.04) 1.01 (0.94 to 1.10) 1.01 (0.94 to 1.10)

Respiratory 1.00 (0.94 to 1.05) 1.06 (1.00 to 1.12) 1.06 (1.00 to 1.12)

Pneumonia 0.99 (0.93 to 1.06) 1.06 (0.99 to 1.13) 1.06 (0.99 to 1.13)

COPD 1.04 (0.94 to 1.15) 1.10 (0.99 to 1.22) 1.10 (0.99 to 1.22)

External causes 1.10 (0.94 to 1.28) 1.07 (0.92 to 1.25) 1.07 (0.92 to 1.26)

NO2 IQR: 26 µg/m3 IQR: 38 µg/m3 IQR: 31 µg/m3

All natural causes 1.00 (0.97 to 1.03) 1.06 (1.03 to 1.09) 1.06 (1.03 to 1.08)

Cardiovascular 1.00 (0.95 to 1.05) 1.09 (1.04 to 1.14) 1.09 (1.04 to 1.14)

IHD 1.09 (1.00 to 1.18) 1.15 (1.06 to 1.24) 1.15 (1.06 to 1.24)

Cerebrovascular 1.00 (0.91 to 1.09) 1.06 (0.98 to 1.15) 1.06 (0.98 to 1.15)

Respiratory 0.99 (0.93 to 1.06) 1.06 (1.00 to 1.12) 1.06 (1.00 to 1.12)

Pneumonia 0.98 (0.90 to 1.06) 1.06 (0.99 to 1.14) 1.06 (0.99 to 1.14)

COPD 1.02 (0.90 to 1.15) 1.06 (0.96 to 1.18) 1.06 (0.96 to 1.18)

External causes 1.10 (0.92 to 1.31) 1.08 (0.93 to 1.27) 1.08 (0.93 to 1.27)

a Bolded font = P <0.05; 2D = street-level LUR; 3D = 2D + vertical decay; D3D = 3D + infiltration, mobility, and transport microenvironments.

b Corrected for the following confounders: age, sex, body mass index, smoking status, physical exercise, education, monthly expenses, proportion of the 
population �65 years of age, proportion with > secondary education, proportion that are smokers, average monthly income.
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with overall respiratory mortality (respectively, HR = 1.08;
95% CI = 1.01–1.15; and HR = 1.09; 95% CI = 1.01–1.17).

Sensitivity Analyses

We performed sensitivity analyses to observe changes to
associations between exposure and mortality when
(1) yearly exposure to pollutants was included as a time-
dependent variable varying from year to year; (2) partici-
pants who died during the first year after enrollment were
included; and (3) participants who died between years 1
and 3 were excluded. In addition, we performed two
stratified analyses: (1) subject’s age (as defined by two age
groups: <71 or �71 years old — based on the cohort’s
median age of 70) and (2) sex of the participants.

Significant associations found between BC, NO, and
NO2 exposures and mortality outcomes remained when
yearly exposures were used, when deaths within the first
year were included, or when deaths between years 1 and 3
were excluded. When 2D exposures were used, the associ-
ations between PM2.5 and all-natural and overall cardio-
vascular mortality became nonsignificant when yearly
exposures were used. For 3D and D3D PM2.5 exposures,
associations with IHD, cerebrovascular, and overall respi-
ratory mortality were also nonsignificant when yearly con-
centrations were used. All other estimates and levels of
significance were similar in the sensitivity analysis com-
pared with main analysis results.

In the age-stratified analysis, the association between
IQR increases in PM2.5 and mortality was closer to the null

(or essentially null) in the �71 years age group compared
with the <71 years age group for all mortality outcomes. For
2D estimates, differences were pronounced for all natural
causes (interaction P value=0.007), cardiovascular disease
(interaction P value = 0.001), and IHD (interaction P
value=0.008). There was no evidence of consistent differ-
ences in any associations using between-D3D estimates, or
in other pollutants for 2D estimates, and any mortality out-
comes. There was no evidence of consistent differences
according to the subjects’ sex in D3D estimates, although
more associations with outcomes were found in males
than in females with the 2D exposures. The interaction of a
potential effect modifier with PM2.5 was formally evalu-
ated. The P value for the interaction was obtained by inclu-
sion of the interaction term of each potential effect
modifier with the pollutant. The interaction was evaluated
between air pollutants and the potential effect modifier by
including the interaction term in the final model.

Results of the sensitivity analyses relating to yearly
exposures, stratification by age, and stratification by sex
are presented in Appendix Tables A.23 to A.32.

Application of Alternative Decay Profile

Epidemiological analysis was also applied to the cohort
using the alternative decay profile illustrated in Figure 6 (i.e.,
applying a cap to decay at 20 m above street level, which is
at floor six). The impact of this was to increase exposure
estimates for those living above approximately floor six,
leading to an overall increase in mean cohort exposure

Table 13. Adjusted Hazard Ratios (95%CI) per 10-µg/m3 Increase of PM2.5 in Main Analysisa,b

Cause of Death 2D 2D – Satellitec 3D D3D

All natural causes 1.06 (1.02 to 1.11) 1.14 (1.07 to 1.22) 1.09 (1.06 to 1.12) 1.10 (1.06 to 1.13)

Cardiovascular 1.11 (1.03 to 1.19) 1.22 (1.08 to 1.39) 1.13 (1.07 to 1.19) 1.14 (1.08 to 1.21)

IHD 1.06 (0.95 to 1.19) 1.42 (1.16 to 1.73) 1.13 (1.03 to 1.23) 1.14 (1.04 to 1.25)

Cerebrovascular 1.11 (0.98 to 1.25) 1.24 (1.00 to 1.53) 1.11 (1.01 to 1.21) 1.12 (1.01 to 1.23)

Respiratory 1.03 (0.94 to 1.12) 1.05 (0.90 to 1.22) 1.08 (1.01 to 1.15) 1.09 (1.01 to 1.17)

Pneumonia 1.00 (0.90 to 1.11) 0.94 (0.77 to 1.14) 1.07 (0.98 to 1.16) 1.07 (0.98 to 1.17)

COPD 1.10 (0.95 to 1.29) 1.30 (0.98 to 1.74) 1.12 (1.00 to 1.26) 1.13 (0.99 to 1.28)

External causes 1.04 (0.82 to 1.32) 1.04 (0.69 to 1.58) 1.05 (0.87 to 1.26) 1.05 (0.86 to 1.28)

a Bolded font = P <0.05; 2D = street-level LUR; 3D = 2D + vertical decay; D3D = 3D + infiltration, mobility, and transport microenvironments.

b Corrected for the following confounders: age, sex, body mass index, smoking status, physical exercise, education, monthly expenses, proportion of the 
population �65 years of age, proportion with > secondary education, proportion that are smokers, average monthly income.

c From Wong et al. 2015. Note that satellite estimates had lower mean exposure concentrations due to lower spatial resolution.



4040

A Dynamic Three-Dimensional Air Pollution Exposure Model for Hong Kong

(PM2.5 from 36.9 to 39.8 µg/m3, NO2 from 71.5 to 87.8 µg/m3)
and a decrease in exposure variability. Consequently, dif-
ferences between street level (2D) and residential level
(3D) exposure estimates also decreased. Recalculated HRs
are shown in Appendix Table A.33 (available on the HEI
website). The impact of application of this alternative pro-
file on the 3D model was to decrease the magnitude of HRs
across all mortality outcomes. Several previously signifi-
cant associations became insignificant, including all-cause
mortality for NO, cerebrovascular mortality for BC, and re-
spiratory mortality for PM2.5.

Visualization of 3D Dispersion Patterns

Screen captures from a sample 3D visualization anima-
tion are shown in Appendix Figure A.31. The full sample
video can be seen at http://geog.hku.hk/h-city/HKD3D.
html. Work is still ongoing to refine this visualization and
extend it to cover the whole urban region.

DISCUSSION AND CONCLUSIONS

The Hong Kong D3D study had the overarching aim of
creating and evaluating an advanced TRAP exposure
model methodology that incorporated population mobility
and residential height above street level, using Hong Kong,
a densely populated Asian city, as a case study. Our prin-
cipal hypothesis was that the inclusion of dynamic and
vertical components in TRAP exposure models applied to
Asian cities would lead to increased confidence in associ-
ated health outcomes.

The study had four main components: (1) the creation of
a street-level LUR model for the Hong Kong region through
an extensive seasonal sampling campaign; (2) the deriva-
tion of a canyon typology and associated vertical decay
rate, through multiheight paired in–out sampling cam-
paigns in several locations representative of population
exposure; (3) creation of a series of dynamic model compo-
nents incorporating infiltration efficiencies and popula-
tion mobility utilizing an extensive travel behavior survey;
and (4) application of a staged modeling approach to an
existing cohort to compare mortality risk estimates.

In achieving this aim, several practical and methodolog-
ical obstacles had to be overcome. On the whole, the orig-
inal study plan was adhered to, but a few adjustments had
to be made, most notably, the exclusion of gaseous pollut-
ants from the vertical sampling campaign results because
of sensor performance issues, and the simplification of
canyon typology because there was no robust identifiable
pattern in canyon TRAP dispersion patterns. Conversely,
we achieved more than we anticipated in the creation of

dynamic modeling components and the application to the
existing cohort.

IMPLICATIONS FOR FUTURE USE OF LOW-COST AIR 
QUALITY SENSORS

The development of a new generation of relatively low-
cost air pollution sensors has generated a great deal of
interest, both in the research community and in public
interest groups (U.S. Environmental Protection Agency
2016). This study used relatively high-cost (~4,000 USD
per unit) active samplers for PM2.5, BC, and gaseous pol-
lutants. While these samplers have advantages over pas-
sive samplers, we identified several major shortcomings
that should be considered by others designing spatial sam-
pling campaigns in Asian cities and elsewhere across the
world. First, harsh sampling conditions — variously, high
temperatures, intense rainfall, wind storms, high humidity,
and high particulate levels, which are typical in tropical
and subtropical climates — take their toll on sensitive elec-
tronics. Every active sampling unit we deployed required
maintenance at least once during our campaigns, and sev-
eral back-up units were required while repairs were car-
ried out. Second, active samplers are more visible, heavier,
and more expensive to replace than passive samplers.
Safety and security are therefore major concerns, both to
personnel and equipment. Our spatial sampling cam-
paigns relied on collaboration with the Hong Kong EPD.
Hong Kong is widely considered a very secure city, and
our only losses were some passive samplers removed by
concerned locals. No active samplers could be hung out-
side of buildings, necessitating the use of sampling tubing
(for pumped PM samplers) and a manifold (for electro-
chemical samplers). Third, a high degree of interunit pre-
cision is necessary when deploying samplers in networks
to detect spatial and vertical variations in TRAP. The
development of refined methods of data scaling and ratifi-
cation was required to achieve the necessary precision in
each of the PM units. Such precision could not be
achieved with the electrochemical gas sensors, which did
not respond well to being regularly moved, and these data
had to be excluded from further analysis.

In our experience, very careful experimental design is
required if the low-cost electrochemical sensors currently
available are to be used effectively in spatial exposure
measurement campaigns where accurate representation of
within-neighborhood variations is required. This is pri-
marily due to issues with unstable baseline measurements
creating bias of a magnitude greater than the spatial varia-
tion being investigated. While all instruments suffer from
some degree of bias, this has been well characterized in
more established monitors, and robust, demonstrably
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consistent methods for correction can be developed. The
strong influence of a range of factors (including tempera-
ture, humidity, cross-gas interference, and signal noise),
which combine to produce a complex pattern of interfer-
ence in real-world conditions, makes consistent correction
methods challenging to develop. Until such correction
methods can be documented and demonstrated, the use of
such electrochemical sensors has to be questioned closely
before being incorporated into future studies.

DEVELOPMENT OF A 2D LAND-USE REGRESSION 
MODEL FOR HONG KONG

The street-level (2D) LUR modeling captured important
spatial parameters and represented spatial patterns of air
quality in Hong Kong that were consistent with the litera-
ture (Chiu and Lok 2011; Kok et al. 1997; Shi et al. 2016;
Yu et al. 2004). Higher concentrations of gaseous pollut-
ants were centered in Kowloon and the northern region of
Hong Kong Island, consistent with the importance of
motor vehicle traffic as a dominant source of local NO and
NO2 (Tian et al. 2011). PM2.5 and BC predictions exhibited
a north–south/west–east gradient, with higher concentra-
tions in the northwest. This appears to be due to regional
transport from Mainland China. A similar gradient in
PM10 concentrations, noted previously in an analysis of
the rooftop AQMS, was attributed to transport from Main-
land China (Chiu and Lok 2011). Further, Kok and col-
leagues (1997) reported elevated BC concentrations in the
western regions of the territory and similarly attributed
these higher levels to regional sources. A recent LUR
model of PM2.5 restricted to downtown Hong Kong indi-
cated spatial patterns similar to those of the HK 2D model
(Shi et al. 2016). For BC, the port was also an area of ele-
vated predicted values. Yu and colleagues (2004) had
noted the port as an important emission source affecting
spatial distribution of BC levels with increases in back-
ground BC concentrations around the port, depending on
the seasonal direction of the prevailing wind. Shipping
lane variables were not, however, present in any of the
final exposure models in the current study.

While the degree of explained variance of the models was
modest, they were within the range seen with other LUR
modeling efforts (e.g., Hoek et al. 2008). Given the complex
urban morphology of Hong Kong compared with most of the
European and North American cities, a somewhat reduced
explained variance was expected. Compared with LUR
models developed in other Asian cities where urban mor-
phology, vehicle use, and building design may be similar,
LUR models that were developed with dedicated sampling
campaigns reported similar R2 values (shown in Appendix
Table A.3, available on the HEI website).

VERTICAL DECAY OF TRAP AND DERIVATION OF A 
CANYON TYPOLOGY

Our canyon sampling campaign was designed to capture
variations in TRAP within canyons by height, time of day,
and wind conditions. We selected canyons that had a
range of aspect ratios, building configurations, and align-
ment to the prevailing wind. In practice, measurements
did not show sufficiently consistent patterns in vertical
pollutant concentrations to isolate the impact of many of
these variables. We found no evidence of strong TRAP
stagnation in typical weather conditions, even in high
AADT narrow canyons such as NPC1. TRAP either was
fully mixed within the canyon (decay rate approximately
zero) or decayed rapidly over the lower floors.

It is important to note that our objective was to charac-
terize population-level vertical exposure, not to produce a
detailed explanation of emission dispersion patterns, such
as that created by fluid dynamics models. While complex
modeled eddies of the type identifiable through computa-
tional fluid dynamics are important for urban design, our
results suggest that they are of less importance in urban
canyons of the type typical in Hong Kong when assessing
population exposure levels. Indeed, it may be that we
found no evidence of stagnation because of improvements
in urban street canyon design over the past 50 years. In
Hong Kong, continuous slab-type buildings have largely
been replaced by individual residential towers, many laid
out in gridded estates with little or no vehicle traffic
allowed within. New slab constructions are built at an
angle, and many are pierced with voids at higher levels;
both designs are intended to increase air flow. While these
construction methods have had the primary aim of
reducing heat stress (Deng et al. 2016; Ng 2009), they have
also had the beneficial effect of increasing the dispersion
of TRAP and other air pollution sources, such as cooking.

Our original intention was to produce a coupled street
canyon typology with specific TRAP vertical decay rates
for each canyon type. By creating such a classification
system, street-level exposure estimates within high-density
urban landscapes could be scaled vertically according to
basic canyon geometry. Our results led us to the conclu-
sion that derivation of such a classified system was not
possible, and we assumed a single mean decay rate across
the region. Widespread vertical sampling campaigns are
challenging to execute, requiring large resources to iden-
tify suitable locations, recruit building and flat owners,
and deploy and manage samplers. In our view, the addi-
tion of sampling in additional canyons would not have
produced a substantially different result. However, uncer-
tainties remain, and improvements could be made to sub-
sequent vertical sampling campaigns. The addition of
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street-level sampling in all canyons would remove the
necessity for temporally corrected model estimates, but
would introduce additional practical considerations.
Time-resolved measurements were not as informative as
expected, and paired windward and leeward sampling
was difficult to interpret.

An additional limitation in the vertical decay calcula-
tion was the separation of local and regional pollution
components. Assuming that regional pollutant sources are
well dispersed across the urban area, vertical decay occurs
only in the local pollutant component. Thus, an improved
version of Equation 2 would be: 

where Cr is the regional component of concentration C.
This approach would bring the k (decay rate) for BC and
PM2.5 much closer together; BC being a primary compo-
nent of local PM2.5. In this study, this improvement could
have been achieved through a rooftop sampling campaign
mirroring that of the street-level campaign. Emissions-
based modeling methods would be able to make this sepa-
ration more easily than the empirical LUR method that we
employed. An attempt was made to incorporate this alter-
native decay pattern by capping decay to a height of 20
meters, but further measurements would be required to
confirm this height estimate.

We found seasonal PM2.5 decay rates (k factors) of 0.009
and 0.001 for the warm and cool seasons, respectively,
highlighting the dominance of regional PM2.5 sources
during the cool season (see Table 7). For BC, the seasonal
difference was 0.016 and 0.009. The single mean decay rates
across the region for PM2.5 and BC were 0.004 and 0.012,
respectively. Direct comparisons with these decay rates are
difficult because of varying methodology; however, Chan
and Kwok (2000) reported a decay rate for PM10 in Hong
Kong of 0.017 from a campaign in the cool season. In
common with Wu and colleagues (2002), we found little
diurnal variation in decay rates.

BUILDING INFILTRATION EFFICIENCIES

A major advantage of the vertical monitoring campaign
design was that paired in–out monitoring could be added
relatively simply, allowing the calculation of infiltration
efficiencies for the Hong Kong housing stock. We found
that median Finf values for both BC and PM2.5 were espe-
cially high during the cool season (91%), indicating that
residents were breathing only slightly lower levels of these
pollutants indoors than was measured in ambient air.
Median infiltration efficiencies were somewhat lower
during the warm season (81% and 88% for PM2.5 and BC,

respectively), and we found a significant negative correla-
tion between air conditioning use and infiltration efficien-
cies of PM2.5 and BC. The MESA-Air study reported a
median infiltration efficiency for PM2.5 across seven urban
communities in North America of 62%, although the
median for New York was 82% and was therefore similar
to what we found in Hong Kong (Allen et al. 2012).

During the cool season, when PM2.5 concentrations are
typically far higher in Hong Kong, residents were more
likely to open their windows, leading to a greater infiltra-
tion of outdoor air. Therefore, higher ambient concentra-
tions and higher infiltration efficiencies acted together to
increase population exposure.

Infiltration efficiencies for the mechanically ventilated
office building were 45% and 40% during the cool and
warm seasons, respectively. While we only measured infil-
tration efficiencies in one such building, this is similar to
those reported in other studies for occupied HVAC build-
ings (Chatoutsidou et al. 2015; Fisk et al. 2000). Only a
very small proportion of high-value residences have
mechanical ventilation, so few benefit from this protec-
tion. This finding has important socioeconomic implica-
tions for developing subtropical cities: those who can
afford higher-specification homes are also more likely to
have office jobs in similarly protected buildings. Con-
versely, these buildings have higher power requirements
than naturally ventilated buildings and in many cases will
contribute further to regional sources of PM2.5 through
fossil-fuel–based electricity generation.

DYNAMIC EXPOSURE MODELING

A population-representative travel behavior survey (n =
89,358) was used to further extend our exposure model to
create a dynamic model comprising population mobility
and derivation of time-weighted exposure estimates in dif-
ferent microenvironments. A staged approach was used to
investigate the impact of each component on exposure
estimates for the survey respondents. The vertical compo-
nent of the model was not included as the survey did not
record floor of residence.

Comparisons were made against the static outdoor expo-
sure estimates. As expected, the addition of an indoor
component decreased time-weighted exposure estimates,
which were balanced out to some extent by the inclusion
of transport microenvironments. Overall, mean time-
weighted exposures for the full dynamic model were
around 20% lower than the static outdoor estimates. The
inclusion of diurnal factors had a greater impact on BC and
NO2 exposure estimates than on PM2.5, because BC and
NO2 tend to vary more during the day than PM2.5.

C C Ch r h
kh  0  e ,                                          �        (7)
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Smith and colleagues (2016) combined a nested disper-
sion modeling technique with building infiltration factors
and travel behavior to create a dynamic exposure model
for London. They found that the dynamic model produced
estimated exposures 37% lower for PM2.5 and 63% lower
for NO2 than the static ambient model. This difference is
likely to be driven by the much lower mean infiltration
efficiencies used for London (31% and 56% for NO2 and
PM2.5, respectively).

If these differences were equally distributed across the
population, then their inclusion would have little impact on
health outcome analyses. A stratified analysis of population
subgroups was carried out to test the hypothesis that the
dynamic model increased variation in exposure estimates.

The stratified analysis confirmed this hypothesis.
Higher levels of exposures were found with working
adults and students than for those neither in work nor
study. This was due to increased mobility, despite rela-
tively low concentrations in office locations, particularly
in BC estimates. The results consistently found higher
exposures with persons under age 18, compared with
other age groups. The exposures to PM2.5, BC, and NO2
were respectively 13%, 39%, and 14% higher for the
under-age-18 population compared with the population of
people who were age 65 or older. One explanation for this
is that most students’ schools were located within the
same TPU, and many commuted to school by walking.
This pattern of increased exposure with longer travel time
has been described by others in exposure monitoring
studies (Chau et al. 2002; de Nazelle et al. 2013), and has
been suggested to partially offset the physical activity ben-
efits of walking (Hankey et al. 2012). We also assumed nat-
ural ventilation in schools, with higher infiltration rates
than in office buildings. Spatial contrasts were amplified
when accounting for diurnal variation in pollutants, as
most subjects traveled during morning and evening rush-
hour periods, indicating that population mobility is an
important consideration beyond that of transport microen-
vironment effects.

We found the addition of additional exposure model
components increased the gap between male and female
exposures, with the female population having lower expo-
sures to air pollution by approximately 4%. A study in
Vancouver (Setton et al. 2010), which examined only the
working population, found no significant difference in
exposure by sex. However, a higher than 50% proportion
of women in our survey data were in the nonworking cate-
gory, which is likely to account for the different finding.

Many of our model results reflect those of Chau and col-
leagues (2002), who used portable samplers to examine
exposure to PM10, NO2, and CO for different age groups in
20 different microenvironments in Hong Kong. They

found that the Hong Kong population spent around 86% of
the time indoors and around 8% (two hours) commuting.
However, higher pollutant exposures were experienced
during commuting, so commuting contributed a dispro-
portionately high amount to the 24-hour average, particu-
larly for NO2. They found high concentrations at
restaurants, bars, and transport microenvironments, but
low concentrations in offices. For both PM10 and NO2,
concentrations in offices were much lower than in residen-
tial buildings. Concentrations monitored at schools were
around four times those in offices. Out of 400 subjects sam-
pled, the under-18 age group was found to have the highest
exposures.

A key uncertainty in our transport microenvironment
component arose from a lack of contemporary factors from
recent monitoring surveys for all pollutants and modes of
transport. Such surveys could be considered as part of the
sampling requirements for development of similar
dynamic models if published factors are not available.

STAGED EPIDEMIOLOGICAL ANALYSIS OF 
MORTALITY RATES IN AN ELDERLY COHORT

The availability of an existing cohort data set of elderly
Hong Kong residents (n = 66,820) facilitated the calcula-
tion and comparison of mortality risk estimates for the dif-
ferent exposure models. We further incorporated results
from an earlier study on the same cohort but used satellite-
derived exposure estimates.

Overall, the results indicated that the addition of a ver-
tical component to the exposure model modified the asso-
ciations between long-term exposure to air pollution and
mortality. The application of exposure estimates that
incorporated infiltration, vertical, and, to a lesser extent,
dynamic components produced narrower confidence
intervals and increased the number of significant associa-
tions with all-natural-cause, cardiovascular disease, and
respiratory disease mortality outcomes.

When considering only 2D exposure, PM2.5 was signifi-
cantly associated with elevated risks of mortality only
from all-natural and cardiovascular causes. When 3D and
D3D exposure models were used, associations increased,
and narrower CIs led to additional significant associations
with cardiovascular subgroups and respiratory causes.
Similarly, no significant associations were found for NO2
using the 2D model, but mortality from all natural causes,
cardiovascular disease, and IHD became significant in the
3D model. Very little difference in associations was detected
between the 3D and D3D model. This is because the popula-
tion mobility of the elderly cohort was relatively modest
since the cohort included only persons age 65 and older,
producing little variation in exposure estimates.
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The one anomaly occurred between BC and external
causes of death where an unexplained significant associa-
tion was reported. This may be a result of left-truncated
exposure distribution or it may be due to high variability
of estimates around a low mean. As expected, particulate
pollutants displayed more health effects than did gaseous
pollutants.

While air pollution is known to vary vertically and in
street canyons (Berkowicz et al. 1996; Meroney et al. 1996;
Vardoulakis et al. 2003), as well as between outdoor,
indoor (Allen et al. 2012; Hystad et al. 2009), and transport
microenvironments (Adams et al. 2001; Kaur and Nieu-
wenhuijsen 2009), few studies have taken these factors
into consideration when investigating the long-term health
effects of air pollution. This issue becomes more important
in high-rise urban areas where activities take place in high
buildings. Studies have included variables representing
the 3D landscape in LUR models to improve street-level
exposure estimates (Eeftens et al. 2013; Su et al. 2008; Tang
et al. 2013). Wong and colleagues (2016) applied horizontal–
vertical PM2.5 exposure estimates to assess cancer mor-
tality by geocoding the vertical height of addresses, but
they did not assess the epidemiological effects between the
use of 2D and 3D exposures.

The range of associations was coherent with other
cohort studies that looked at long-term exposure to air pol-
lution and mortality. Associations were more pronounced
with cardiovascular mortality, which is in common with
findings in other study areas. The ESCAPE study (Beelen
et al. 2014) found similar associations. HRs for 10-µg/m3

increases in PM2.5 were 1.15 (95% CI: 1.13–1.16) for all-
natural-cause mortality and 1.31 (95% CI: 1.27–1.35) for
IHD, consistent with our finding.

The principal limitation of this evaluation phase of the
study was the use of a cohort not representative of the whole
population. This meant that the dynamic components could
not be fully tested. This presents a challenge as most health
outcome data sets are age-biased in some way. Conversely,
most published studies on dynamic exposure to air pollut-
ants have been based on personal monitoring studies (e.g.,
Özkaynak et al. 2013; Steinle et al. 2013), which cannot
easily be applied to cohorts to represent mobility and
exposure patterns for the general population. Effort is
required to bring together population-representative
dynamic exposure methods with epidemiological data sets
that have heterogeneous mobility patterns in order to fully
test the impact of this component of exposure. We found
that contrasts in exposure between dynamic and static
models were greatest in pollutants with relatively high
spatial variability; BC, NO, and NO2 are more influenced
by traffic and other local emissions sources than is PM2.5.

This conclusion was consistent with Setton and colleagues
(2011), who compared mobility- and residential-based
exposures of NO2 in Canada.

We also used modeled exposures that were back-extrap-
olated, for a comparatively long period, to match cohort
data. However, previous studies have found high correla-
tions among annual air pollution concentrations, even
over a period of more than 10 years (Beelen et al. 2008), as
major roads that influence air pollution exposure are likely
to have been in place for the entire period.

IMPACT OF MODEL ASSUMPTIONS

As with all modeling exercises, we had to make a
number of assumptions and simplifications in the devel-
opment of the advanced exposure model. We were able to
carry out a limited evaluation of some of these assump-
tions by utilizing street-level and rooftop monitoring
results at five independent locations. These evaluations
showed that while the model produced good results in
some conditions, it performed less well in others. This is
not a surprise; our aim was to develop a mean exposure
model that could be applied in epidemiological studies to
estimate long-term health effects.

While the model could be improved in a number of
areas, the advantage of the resulting simple methodology
proposed is that it could be applied within any urban area
with a significant proportion of the population living
above street level. With regard to the vertical component of
the model, a decay profile could be applied to any street-
level model, whether it is produced by LUR, dispersion
modeling, or hybrid methods. Indeed, it would be straight-
forward to add a vertical component to appropriate
existing epidemiological studies in cities other than Hong
Kong where floor of residence is known in order to explore
whether our findings are repeated.

APPLICATION OF TRAP EXPOSURE METHODOLOGY 
IN OTHER HIGH-RISE ASIAN CITIES

We aimed to create an incremental exposure assessment
methodology without onerous demands on input data that
could therefore be applied to other megacities across Asia
and the developing world. Such input data could be spe-
cific to the study, gathered through monitoring campaigns,
or readily available from previous comparable studies or
accessible government data sets.

The demonstration of reasonable LUR models to
describe spatial variability in pollutant concentrations in
Hong Kong suggests this to be a viable modeling method
for high-density, high-rise cities, which are especially
common in Asia. Further, these results suggest the utility
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of model development using traditional sampling methods
and relatively low-labor, low-data-intensive predictors.
More complex urban development predictors, such as
aspect ratio, that one might expect to be important in mod-
eling a high-density, high-rise city, were not present in any
of the final exposure models. This suggests that the added
complexity in the spatial distribution of air pollutants in
high-density, high-rise cities is reflected in the models’
performance rather than in the selection of predictors.

Our vertical monitoring campaign was intensive and
resource heavy, but the results suggest that such a compre-
hensive campaign is not necessary to derive broadly appli-
cable results in other cities. However, as described earlier in
this section, there are significant practical challenges in car-
rying out vertical campaigns, particularly in cities less
secure and collaborative than Hong Kong. Where building
configurations are similar to those in Hong Kong, such as in
many Mainland Chinese cities, stock decay factors may be
used, although care must be taken when considering pollut-
ants with large regional components, such as PM2.5. Our
results suggest that severe stagnation, which would strongly
affect decay rates, does not occur except in exceptional cir-
cumstances, either geographical or meteorological.

Our study benefited from a large travel behavior survey
data set with population-representative sampling. Such
large surveys are unlikely to be available in many Asian
cities, but the importance of urban transport planning in
densely populated cities is sufficiently high to make it
likely that some form of survey exists in most. Several
recent studies have demonstrated the use of mobile phone
locational data in assessing population mobility for
dynamic air pollution exposure assessments (de Nazelle et
al. 2013; Dewulf et al. 2016; Nyhan et al. 2016). While
these methods generate very large volumes of data, they
have little context, requiring further assumptions about
sex, age, and purpose of travel; therefore, they do not nec-
essarily present a direct alternative to travel surveys.
Where exposure estimates are applied to an epidemiolog-
ical study, the cohort demographic may dictate the neces-
sity of a dynamic component; we demonstrated that
incorporation of the dynamic component did not improve
associations in our elderly cohort.

There are distinct differences in terms of exposure to
consider in Asian cities versus European and North Amer-
ican cities that can be capitalized upon to advance under-
standing of the health impacts of TRAP. These include
relatively high infiltration efficiencies and population den-
sity, homogenous ethnicity, cohabiting extended families,
greatly contrasting seasonal exposure levels, and the often
unexplored potential for large-scale interventions. These
opportunities make barriers such as data availability,

quality, and access, unregulated emissions, and sometimes
extreme occupational exposures worth challenging.

IMPLICATIONS OF FINDINGS

To date this is the first comprehensive study to investi-
gate the health effects of traffic-related air pollution using
detailed vertical and dynamic air pollution exposure assess-
ment techniques. The results from the study provided evi-
dence that considering air pollution exposure in a dynamic
3D landscape would benefit epidemiological studies. Sig-
nificant associations were found between mortality and air
pollution that would not have been found had standard 2D
LUR or satellite exposure models been used.

We also identified differential exposures between popu-
lation subtypes that would not be present in static expo-
sure models, including higher exposures for those under
the age of 18 and marginally higher exposures for male
subjects. As more studies incorporate population mobility,
such contrasts will become better defined, leading to
increased variation in estimates across a population and
between pollutants (Smith et al. 2016).

Improved urban building design appears to be stimu-
lating the dispersion of local TRAP emissions in street can-
yons, including broken canyons, tower estates, and angled
building layout. Importantly, we found no clear evidence
of stagnation reaching the upper floors of buildings. The
practice of setting aside lower floors of residential towers
for commercial and leisure use means that most of the
Hong Kong population is not exposed to undispersed
TRAP emissions in their homes, where they spend the
majority of their time.

Conversely, infiltration factors found in homes were
close to 1, and residences provided little protection from
ambient air pollution. This is particularly critical when
considering regional pollutants, such as PM2.5, where
height above street level makes little difference. There are
also socioeconomic implications of this finding; those res-
idents who can afford to live in mechanically ventilated
buildings will have nearly half the exposure of those who
cannot.

One of our stated aims was to create an incremental expo-
sure assessment methodology that balanced exposure error
with input data availability and that would be applicable to
other megacities across Asia and the developing world.
While there are several uncertainties associated with this
study that could be improved in later iterations, we have
demonstrated that the creation of effective advanced
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exposure models is possible in Asian cities without undue
burden on resources.

A number of assumptions and simplifications had to be
made in developing our dynamic three-dimensional expo-
sure model. Yet it is intuitive that street-level TRAP expo-
sure estimates will overestimate exposure for residents
living in adjacent high-rise buildings. Our results provide
evidence that this misclassification leads to a lower associ-
ation between mortality and air pollution exposure. How-
ever, for vertical exposure patterns to be taken into
consideration for epidemiological studies, the floor of res-
idence must be recorded in health record data. While this
requirement is likely to be difficult for the total population
in most countries, it should be feasible within cohort
studies. We recommend that the floor of residence be rou-
tinely recorded as part of basic participant personal details
at recruitment and follow up.
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INTRODUCTION

Traffic emissions are an important source of urban air
pollution. Exposure to traffic-related air pollution has
been associated with various adverse health effects (HEI
2010; World Health Organization 2013). In 2010, HEI pub-
lished Special Report 17, Traffic-Related Air Pollution: A
Critical Review of the Literature on Emissions, Exposure,
and Health Effects. This report, developed by the HEI
Panel on the Health Effects of Traffic-Related Air Pollu-
tion, summarized and synthesized research related to the
health effects from exposure to traffic emissions. The
Panel concluded that exposure to traffic-related air pollu-
tion was causally linked to worsening asthma symptoms.
It also found suggestive evidence of a causal relationship
with onset of childhood asthma, nonasthma respiratory
symptoms, impaired lung function, total and cardiovas-
cular mortality, and cardiovascular morbidity (HEI 2010).

Because traffic-related air pollution is of public health in-
terest, it is important to understand where and how people
are exposed to traffic emissions. However, exposure assess-
ment is challenging because traffic-related air pollution is a
complex mixture of many particulate and gaseous pollut-
ants and is characterized by high spatial and temporal vari-
ability (HEI 2010). The highest levels of traffic-related air
pollution occur within a few hundred meters of major
roads with the impact zone depending on the pollutant,
geographic and land-use characteristics, and meteorologic
conditions (Karner et al. 2010; Zhou and Levy 2007). Iden-
tifying an appropriate exposure metric that uniquely indi-
cates traffic-related air pollution has been difficult,
because many of the pollutants are also emitted from other
combustion sources. A range of models, such as disper-
sion, land-use regression, and hybrid models, have been

developed to estimate exposure and some attempts to ac-
count for infiltration and time–activity patterns have been
considered for more accurate estimates of personal expo-
sure. Each of these exposure estimation approaches, how-
ever, has limitations, which have been discussed previously
(HEI 2010). To improve exposure assessment of traffic-
related air pollution for use in health studies, HEI issued
RFA 13-1, Improving Assessment of Near-Road Exposure
to Traffic Related Pollution, in 2013. HEI funded five stud-
ies under RFA 13-1 (see Preface).

In response to RFA 13-1, Dr. Benjamin Barratt from
King’s College London and his team submitted an applica-
tion for a 2.5-year study, “The Hong Kong D3D Study: A
Dynamic Three-Dimensional Exposure Model for Hong
Kong.” They proposed to estimate exposure to traffic-
related air pollution using a dynamic three-dimensional
(D3D*) land-use regression (LUR) model for Hong Kong.
The HEI Research Committee recommended Dr. Barratt’s
application for funding because they liked the overall
design of the study and the addition of a vertical compo-
nent to the LUR model, which was a novel feature since
previous air pollution exposure models have been largely
two-dimensional. They thought such a model would have
potential wide application given that high-density high-
rise megacities have become more prominent globally. For
example, the United Nations reported that there were
28 megacities in 2014, home to 453 million people; 16 of
those megacities were located in Asia. Moreover, they have
estimated that by 2030, the world is projected to have
41 megacities, each with 10 million inhabitants or more
(United Nations 2015). High-rise buildings, which can
house hundreds or even a few thousand people, are there-
fore of great interest and have risen rapidly in most megac-
ities; such buildings can also create urban street canyons,
which are the focus of the current study.

This Critique provides the HEI Review Committee’s
evaluation of the study. It is intended to aid the sponsors of
HEI and the public by highlighting both the strengths and
the limitations of the study and by placing the Investiga-
tors’ Report into scientific and regulatory perspective.

Dr. Benjamin Barratt’s 2.5-year study, “The Hong Kong D3D Study: A
Dynamic Three-Dimensional Exposure Model for Hong Kong,” began in
March 2014. Total expenditures were $642,977. The draft Investigators’
Report from Barratt and colleagues was received for review in December
2016. A revised report, received in May 2017, was accepted for publica-
tion in June 2017. During the review process, the HEI Review Committee
and the investigators had the opportunity to exchange comments and to
clarify issues in both the Investigators’ Report and the Review Commit-
tee’s Critique.

This document has not been reviewed by public or private party institu-
tions, including those that support the Health Effects Institute; therefore, it
may not reflect the views of these parties, and no endorsements by them
should be inferred. * A list of abbreviations and other terms appears at the end of this volume.
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APPROACH

AIMS

The overarching aim of the study was to create a D3D
LUR model for Hong Kong that could be applied to other
Asian megacities. The study had three main objectives:

1. to investigate the dispersion and distribution of air
pollution in a three-dimensional urban landscape
with high residential and traffic density;

2. to develop, evaluate, and demonstrate a dynamic
three-dimensional traffic-related air pollution expo-
sure model; and

3. to create an incremental exposure assessment meth-
odology that can be applied in megacities across Asia.

METHODS

To address those aims, the study was divided into 4 work
packages. Work packages 1 to 3 were the development of
three models with increasing complexity: a two-dimensional
LUR model, a three-dimensional model, and a dynamic
three-dimensional model, respectively. Work package 4
was the application of those models to a cohort.

Two-Dimensional LUR Models (Work Package 1)

Barratt and colleagues conducted street-level outdoor
monitoring campaigns to measure particulate matter
�2.5 µm in aerodynamic diameter (PM2.5), black carbon
(BC), nitrogen monoxide (NO), and nitrogen dioxide (NO2)
concentrations at about 100 locations during two weeks in
the warm season and two weeks in the cold season of 2014.
The study leveraged data from a NO2 sampling campaign
conducted by the Hong Kong Environmental Protection
Department during the same periods at many of the same
locations. The Critique Table provides more information
about the monitoring campaigns. Data were corrected for
temporal variation and for systematic differences across
instruments and sampling methods, using colocated
instruments and regulatory monitor locations. These cor-
rected data were used to develop two-dimensional LUR
models to estimate long-term exposure in the whole of
Hong Kong. In total, 373 spatial predictor variables were
available for model building; these included multiple
buffer areas, ranging from 25 to 5,000 meters for about
50 different predictor variables being considered. Among
the predictor variables were conventional variables, such
as traffic intensity and road length, land-use variables, and
distance to sources (e.g., ports or airports), as well as some
more complex urban development predictors, such as

aspect ratio (the ratio of building height to street width) to
capture street canyons. Model development was based on
a supervised semi-automatic selection process, with pre-
dictors removed if their sign was inconsistent with a priori
hypotheses and if not statistically significant (P �0.10).
The maximum number of predictor variables allowed in
the model was set to one for every ten observations. In
total, 36 models were developed: 4 pollutants � 3 data sets
(warm season, cold season, and average of both seasons) �
3 different traffic predictors (traffic intensity, road length,
and both variables combined). The investigators preferred
the models that combined measurements from both seasons
and used road-length predictor variables, and they used
those in all subsequent analyses. Model performance was
evaluated using a leave-one-out cross validation as well as a
hold-out evaluation for NO2 where they held 20 random
sites for evaluation only instead of using all sites for model
building. The number of observations for the preferred
models was 64 (PM2.5), 76 (BC), 75 (NO2), and 40 (NO).

Three-Dimensional LUR Models (Work Package 2)

In addition to the two-dimensional outdoor street-level
spatial monitoring campaigns described earlier, the investi-
gators carried out vertical outdoor and indoor air pollution
monitoring of PM2.5 and BC at four heights on both sides of
six streets for two weeks in the warm season and two weeks
in the cold season (Critique Table). Four street canyons (i.e.,
roads with adjoining high-rise buildings on both sides)
and two open streets (with high-rise buildings on one side
only) were selected for monitoring, representing a range of
different traffic and street characteristics. Residents living
on different floors along those streets were approached
and asked to participate in the sampling campaign. If they
agreed, sampling equipment was placed inside (and out-
side the windows or balcony) of their apartments. The
mean sampling height of the lowest sampling point across
the streets was 10 meters above street level (1st residential
floor). The maximum sampling height was 60 meters (21st
residential floor). The ground floors were occupied by
mainly shops and businesses, and no street-level measure-
ments were obtained. NO and NO2 measurements were not
reported because of the poor quality of the electrochemical
sensors used. For example, precision tests showed widely
variable and unexplained differences within a sensor and
poor agreement between sensors. Outdoor PM2.5 and BC
data were used to develop three-dimensional LUR models.
Vertical decay functions were derived assuming an expo-
nential function; in sensitivity analyses the investigators
capped the concentration decay at 20 meters (approxi-
mately the 6th floor); in other words, all exposure esti-
mates at heights above 20 meters were set at a value equal
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to the 20-meter estimate. To estimate the missing concen-
trations at lower floors (i.e., from street level to 10 m), the
investigators used the modeled two-dimensional LUR
street-level estimate. Indoor sampling was included to
assess infiltration rates; this information was integrated
into the dynamic LUR model described below. Infiltration
rates were assessed following methods similar to those in
the Multi-Ethnic Study of Atherosclerosis and Air Pollu-
tion (MESA-AIR) cohort (Allen et al. 2012). An approach
was developed to identify periods affected by indoor
sources (e.g., cooking), and those periods were not used in
the calculations. Note that participants were not allowed
to smoke inside.

Dynamic Three-Dimensional LUR Models (Work Package 3)

To incorporate time–activity patterns into the LUR
exposure models, the investigators developed what they

termed dynamic models. A population-representative
travel behavior survey was available from the Transport
Department of Hong Kong to develop dynamic LUR
models for PM2.5, BC, and NO2. Survey data were available
from ~89,000 Hong Kong residents for one representative
weekday in 2011. Information on travel mode, travel time,
location, and purpose of the trips was used to construct
time–activity patterns for each survey subject. This infor-
mation was combined with results from previous moni-
toring studies in different modes of transport in Hong
Kong to predict exposure in different transport microenvi-
ronments. This information was integrated with outdoor
air pollution estimates from the two-dimensional LUR
model and indoor infiltration estimates to arrive at
dynamic time-weighted air pollution exposure estimates.
Next, dynamic exposure factors were derived for different
age (below 18, 18–64, 65 and above), sex (male, female),

Critique Table. Details of the Spatial and Canyon Monitoring Campaigns in Hong Kong

Equipment and 
Sampling Period

Site
Selection

Sampling
Regime

Spatial Monitoring to Develop Two-Dimensional LUR Model

• SidePak AM510 (PM2.5);
MicroAeth AE51 (BC);
Ogawa badges and 
Gradko diffusion tubes 
(NO, NO2)

• April 2014–May 2014 
(summer campaign);
November 2014–January 
2015 (winter campaign)

• Sampling at street level using lampposts at about 
2.5 m off the ground. 

• Site selection was based on geographical location, 
traffic intensity, land use, and population density, 
and was aimed to maximize variation in those 
factors.

• Number of sites differed per pollutant and season: 
ranging between 43 and 97 sites. Number of 
observations for the preferred models was 
64 (PM2.5), 76 (BC), 75 (NO2) and 40 (NO).

• Sampling duration of 24 hours 
(PM2.5 and BC) and 2 or 3 weeks 
(NO/NO2) per season.

• For logistical and budgetary 
reasons, not all sites were 
simultaneously sampled. Data 
were corrected for temporal 
variation using regulatory 
monitoring sites.

• In addition, data were corrected for 
systematic differences across in-
struments and sampling methods. 

Canyon Monitoring to Develop Three-Dimensional LUR Model

• SidePak AM510 (PM2.5);
MicroAeth AE51 (BC);
AQMesh electro-
chemical sensors (NO, 
NO2)*

• August 2014–September 
2014 and May 2015–
June 2015 (summer 
campaign); October 
2014–March 2015 
(winter campaign).

• Sampling at 6 streets (4 canyon streets, 2 open 
streets) with different traffic and street 
characteristics. 

• At each street, monitoring was conducted at four 
heights on both sides of the street (ranging between 
10 and 50 m above street level).

• Streets were selected based on population density, 
traffic intensity, canyon aspect ratio, canyon 
length, and prevailing winds.

• Sampling duration was 2 weeks 
(1 week for paired indoor 
measurements) per season for 
all pollutants.

• Streets were sampled 
sequentially. 

*Data not reported because of poor quality.
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and population subgroups (working adults, students, nei-
ther in work nor study). Limitations of the survey were
that it did not include the residential address or the floor.
As a result, the dynamic modeling was based on the
smallest spatial administrative unit in Hong Kong (tertiary
planning unit [TPU, N = 289], which is comparable to zip
codes in the United States) and did not include a three-
dimensional component.

Application to the Cohort (Work Package 4)

Finally, Barratt and colleagues applied the exposure
models with increasing complexity in an epidemiological
study using an existing elderly cohort of 66,000 Hong Kong
residents to evaluate the potential impact of exposure mea-
surement error in mortality estimates. The cohort was
recruited in 1998–2001, and mortality data were collected
until the end of 2011. The average residential height above
street level was 39 meters (~11th floor). More details about
the cohort can be found in Schooling and colleagues (2016).
The investigators ran standard Cox proportional hazard
models that were adjusted for important individual-level
confounder variables such as age, sex, body mass index,
physical activity, smoking, and socioeconomic status (the
last variable also at the TPU level). Exposure was esti-
mated at the recruitment residential address using the two-
dimensional LUR estimate for 2014, and back-extrapolated
to the recruitment period using regulatory monitoring sites.
Subsequently, investigators matched the participants’ floor
of residence with the derived pollutant’s vertical decay rate
to estimate three-dimensional exposure. Next, they applied
dynamic exposure factors accounting for exposure in var-
ious indoor, outdoor, and transport micro-environments.
They assumed that no participants in the cohort worked or
studied because they were elderly, and information on
occupation was not collected. Health estimation for the
cohort was performed for all four pollutants using single-
pollutant models. Because of the lack of data for NO and
NO2, the investigators used vertical gradients and dynamic
exposure factors of BC instead.

SUMMARY OF RESULTS

EXPOSURE MODELS WITH INCREASING 
COMPLEXITY

• The investigators reported a rather modest prediction
accuracy of the two-dimensional LUR models, with
explained variances of 0.50–0.60, though they indi-
cated this was consistent with LUR estimates from
other Asian cities. The number of predictor variables

ranged from four to eight, and all models included only
conventional variables such as traffic, land use, coordi-
nates, and distance to large regional emission sources.

• Generally, the investigators reported only modest ver-
tical decay of PM2.5 and BC, with most of the decay
happening over the first few meters. As a result, it
appeared that the vast majority of the population lives
within the well-mixed zone. In addition, vertical
decay across the canyons and seasons did not vary by
much. Therefore, for the three-dimensional LUR
model, a single exponential decay rate was calculated
for PM2.5 and BC (0.004 and 0.012, respectively).
Results were sensitive to the choice of the model: sen-
sitivity analyses revealed influences of substituting
modeled two-dimensional LUR estimates for missing
measurements at lower floors and assuming that the
air was well mixed at heights above 20 meters.

• When the investigators compared the results of the
dynamic LUR model with results from the static out-
door and indoor estimates in the survey population,
they found that estimates from the dynamic model
were about 20% lower on average, mostly due to the
addition of an indoor component. As expected, addi-
tion of an in-transit component increased exposure
estimates. In subgroup analyses, dynamic exposure
estimates were higher for working adults and students
than for less mobile populations; higher for popula-
tions under age 18 than for populations over age 65;
and slightly higher for males than for females.

• PM2.5 and BC home infiltration rates were reported to
be relatively high (81%–91% depending on pollutant
and season). Home infiltration rates were somewhat
lower in the warm season due to the increased use of
air conditioning and closed windows.

APPLICATION OF THE EXPOSURE MODELS TO 
THE COHORT

• Associations were fairly similar when comparing re-
sults from the complex models with the two-dimen-
sional models for PM2.5, BC, NO, and NO2. Neither the
incorporation of vertical gradients nor that of dynamic
components, including indoor pollutant infiltration,
into the exposure estimates resulted in meaningful or
consistent changes in the associations with all-natu-
ral-cause, cardiovascular, and respiratory mortality in
the Hong Kong elderly cohort. Only the association
between NO2 and cardiovascular mortality changed
substantially — from a null finding to a positive find-
ing — when a vertical gradient was added, and this re-
sult was consistent in sensitivity analyses where the
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investigators assumed that the air was well mixed at
heights above 20 meters (Critique Figure).

• The dynamic part of the model could not be fully tested
in the cohort application given the use of an elderly
cohort instead of a population-representative sample.
Thus only a limited number of dynamic exposure fac-
tors could be applied: namely, those from age category
65 and above, sex, and the population subgroup “nei-
ther in work nor study.” Partly because of this, correla-
tions between estimates from the dynamic exposure
model and the vertical gradient exposure model were
very high, hampering the application to the cohort.

REVIEW COMMITTEE EVALUATION

In its independent review of the study, the HEI Review
Committee concluded that Barratt and colleagues con-
ducted a novel study — one of the first to integrate vertical
gradients and time–activity patterns into an air pollution
exposure model. The Committee noted several strengths
and limitations of the study, as described below.

STRENGTHS OF THE STUDY

The extensive air quality measurements, the develop-
ment of exposure models using state-of-the art modeling
practices, and the application of those models to estimate
exposure for epidemiological analyses of an existing Hong
Kong cohort were considered strengths of the study. The
extensive spatial monitoring campaigns provided a wealth
of air quality measurements to support the development of
exposure models. For example, multiple pollutants were
sampled and measurements were conducted in both the
warm and cold seasons. The collaboration with the Hong
Kong Environmental Protection Department was helpful
in this regard. In addition, the investigators included many
quality assurance/quality control tests to make sure the
data were of good quality. They conducted many colocated
tests, including validation with reference monitors, and
used them to correct the measurements for systematic dif-
ferences across devices, if needed.

Regarding LUR modeling, the Committee commended
the authors for using many of the recommended best prac-
tices (Hoek et al. 2008). For example, all two-dimensional
models in this study had at least 40 monitoring sites, as has
been recommended. In addition, sampling sites were
selected that maximized the range of values in pollution
concentrations and spatial variables. Moreover, many spa-
tial predictors were considered in the models to ensure that
available variables likely to be related to air pollution were
evaluated. In addition, to decrease potential for overfitting,

the investigators limited the number of predictors allowed
to no more than 10% of the total number of observations.
Moreover, the models were appropriately evaluated using a
leave-one-out cross validation and, for NO2 models where
more sampling sites were available, a hold-out validation.

The Committee also thought the application of the differ-
ent exposure models in an epidemiological study was anoth-
er strength. The investigators used a well-characterized,
existing elderly cohort to evaluate the potential impact of
exposure measurement error in mortality estimates. It was
also useful that the investigators compared their results
with those from a previous epidemiological analysis in the
same cohort that used satellite data for the exposure as-
sessment (Wong et al. 2015). The Committee concluded
that Barratt and colleagues have found fairly similar asso-
ciations when comparing results from the complex models
to the two-dimensional models for PM2.5, BC, NO, and
NO2. Neither the incorporation of vertical gradients nor
that of dynamic components, including indoor pollutant
infiltration, into the exposure estimates resulted in mean-
ingful or consistent changes in the associations with all-
natural-cause, cardiovascular, and respiratory mortality in
the Hong Kong elderly cohort. This conclusion differs
slightly from the investigators’ interpretation of the epide-
miological results for reasons summarized below.

DATA CHALLENGES

The investigators encountered a number of challenges
in the study, many of which were outside their control,
and they developed approaches to compensate for those
challenges in a variety of ways. The Committee found it
difficult to ascertain the impacts of the various work-
arounds on the findings because the consequences of
many of those workarounds on the results were not fully
investigated. For example, there were harsh sampling con-
ditions (e.g., intense rainfall, high humidity, and high tem-
perature) that resulted in some missing data and data
quality issues. In addition, recruitment and access to
apartments was challenging in the vertical air pollution
monitoring campaign, especially at lower floors; this
resulted in a lack of measurements from street level to the
first sampling point (10 m above street level). For the deri-
vation of vertical decay rates, therefore, the investigators
used modeled two-dimensional LUR estimates to fill in the
missing measurements at lower floors. Moreover, there
were issues with the quality of the NO and NO2 data from
low-cost electrochemical sensors, so those data were not
reported. Therefore, the investigators applied the decay
function of BC to the vertical NO2 and NO models. There
were other issues that were not explored in depth, such as
the effect of averaging across different types of canyons to
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Critique Figure. Association between air pollutants (PM2.5, NO2, BC, and NO) and mortality using different exposure models (two-dimensional versus
three-dimensional models; dynamic model not shown). See the Investigators’ Report Table 12 and Appendix Table A.33 for interquartile ranges (available
on the HEI website). (Figure continues next page.)
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Critique Figure (Continued).
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derive a single decay rate, as well as many other modeling
decisions, on the modeled estimates. The Committee real-
ized that this study was exploratory in many respects but
thought that it would have been useful to further explore
the impacts of the various workarounds on the findings.

ADDING A VERTICAL COMPONENT TO THE 
EXPOSURE MODEL

During the review of the report, the Committee was par-
ticularly interested in the vertical gradient component of
the model because this is the most novel aspect of this
study. They requested that the investigators further ex-
plore this aspect. In response, Barratt and colleagues eval-
uated the impact of the various modeling choices on the
vertical gradient component of the exposure model (see In-
vestigators’ Report Table 8 and Figure 6), and also on the
health estimations in the cohort (Appendix Table A.33).
The added analyses were revealing, because they showed
that results were sensitive to the choice of the model; sen-
sitivity analyses revealed the influence of substituting the
modeled two-dimensional LUR estimates for missing mea-
surements at lower floors and assuming that the air was
well mixed at heights above 20 meters. As a result, when
the vertical concentration decay was capped at 20 meters,
exposure estimates were increased for those living above
20 meters (approximately above floor 6), and associations
in the cohort were somewhat reduced. Only the association
between NO2 and cardiovascular mortality changed sub-
stantially — from a null finding to a positive finding —
when a vertical gradient was added, and the result was con-
sistent in sensitivity analyses where the investigators
capped the vertical decay at 20 meters. However, it should
be noted that in the NO2 (and NO) model, the BC decay
rate was used to fill the gap in vertical measurements — a
workaround that was unfortunately not further explored.
While this imputation may be appropriate with the data
at hand, it should be noted that BC, NO2, and NO have
quite distinct spatial and temporal patterns, and different
background levels (HEI 2010; Karner et al. 2010). This sub-
stantially reduced the Committee’s confidence in the verti-
cal NO2 and NO models and led the Committee to
conclude that the incorporation of vertical gradients into
the exposure estimates did not meaningfully change the
associations with all-natural-cause, cardiovascular, and re-
spiratory mortality in the Hong Kong elderly cohort. This
conclusion differs slightly from the investigators’ interpre-
tation of the epidemiological results; they put more empha-
sis on statistical significance and concluded that higher
associations and a greater number of significant associa-
tions were found for the more complex models that would
not have been found had two-dimensional exposure models

been used solely. Being cautious about over-reliance on
statistical significance (e.g., Lash 2017), the Committee fo-
cused more on the magnitude of the observed associations
across the different exposure models and whether the as-
sociations were consistent in sensitivity analyses. Overall,
the Committee thought the study provided important in-
sights because it shows that adding complexity to an expo-
sure model does not necessarily improve the estimation of
health effects, likely because new sources of uncertainty are
introduced at the same time. This has been shown in some
other applications as well (e.g., Baxter et al. 2013; Szpiro et
al. 2011, 2013).

Several previous studies have evaluated whether the
incorporation of a vertical gradient, or more generally
street configuration and building height to capture expo-
sure in canyon streets, improves LUR exposure predic-
tions (Brauer et al. 2003; Eeftens et al. 2013; Shi et al. 2016;
Su et al. 2008; Tang et al. 2013; Wu et al. 2014). Some ear-
lier studies used data collected from field observations
(Brauer et al. 2003) or estimations from satellite imagery
(Su et al. 2008), whereas more recent studies were based
on geographical data available in geographical information
system (GIS) environments, allowing for potential wide-
scale application (Eeftens et al. 2013; Shi et al. 2016; Tang
et al. 2013). More important, all but one (Wu et al. 2014) of
the previous LUR studies were based only on air pollution
measurements from street-level monitoring, which limits
the comparison to the current study. On the whole, the addi-
tion of a vertical gradient, street configuration, and building
height appears to improve exposure model performance,
although the added value may be modest — ranging from
essentially no improvement to an approximately 15% point
increase in explained variance, depending on pollutant and
study area. One study in another Asian city (Kaohsiung,
Taiwan) that did include vertical measurements (Wu et al.
2014) reported a much higher explained variance (~50%
point increase) when the investigators included sampling
height as a predictor in the PM2.5 model. The explained
variance of the PM2.5 model was, however, low without
sampling height (0.12), and notably the variable sampling
height did not add much in most PM2.5 composition
models.

The one previous study in Hong Kong (Shi et al. 2016)
showed approximately a 10% point increase in explained
variance in PM10 and PM2.5 models when adding building
height and other street configuration factors to the expo-
sure model (although readers should note that that study
did not include vertical measurements). Notably, the cur-
rent study did not show an effect of including aspect ratio
and other more complex urban development predictors in
the model; those variables were therefore not included in
the preferred two-dimensional LUR models. In addition, the
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difference in results between the two Hong Kong studies
may be due to the difference in study area: the study by Shi
and colleagues (2016) modeled only the downtown Hong
Kong area with the highest density of high-rise buildings
and street canyons, whereas the current study developed
LUR models for the entire city, including the less-developed
areas.

ADDING A DYNAMIC COMPONENT TO THE 
EXPOSURE MODEL

The Committee thought more insights were gained from
the vertical gradient model than from the dynamic compo-
nent of the model. To develop the dynamic part of the
model, survey data were used from ~89,000 Hong Kong res-
idents for one weekday in 2011, which is a very large sam-
ple and one that was representative of the general Hong
Kong population. However, it remains a snapshot, and data
were available only at an aggregated level (TPU, comparable
to zip codes in the United States) instead of an individual
level, because no residential addresses were available in
the survey. Therefore, interpretation of dynamic and time-
weighted exposures remains difficult.

Other recent studies have attempted to integrate time–
activity patterns into long-term exposure models at a fine
spatial resolution using a variety of approaches (e.g.,
Beckx et al. 2009; Dons et al. 2014; Lane et al. 2015; Smith
et al. 2016). Though challenging, the Committee thought
the inclusion of time–activity patterns into exposure
models for health studies remains an important area for
future research because it is known that exposure during
transit may contribute substantially to a person’s average
exposure, in spite of the fact that time spent in transit
makes up only a relatively small proportion of a person’s
day. Activity-based or hybrid exposure models, which
include space–time activity data, were also recommended
by the HEI Traffic Panel in 2010 (HEI 2010). The investiga-
tors’ original plan to explore individual-level smart pay-
ment card data for public transportation, whose use is
widespread in Hong Kong, was unfortunately not possible
because of privacy and data-protection issues. Smart card
data may be a useful resource in the future if privacy issues
can be satisfactorily resolved.

DEVELOPMENT OF THE TWO-DIMENSIONAL 
EXPOSURE MODELS

The Committee commended the investigators for using
many of the recommended best practices for LUR mod-
eling (Hoek et al. 2008). However, the Committee noted
that the prediction accuracy of the two-dimensional LUR
models was rather modest, with explained variances of 0.50–
0.60, despite offering a very large number of potential

predictors to the model. The investigators argued that the
two-dimensional LUR prediction accuracy was compa-
rable to that in other studies in Asian cities (see Appendix
Table A.3), and that prediction accuracy tends to be lower
in Asia than in European and American cities because of
the complex urban morphology and other features.

However, the Committee thought that the modest predic-
tion accuracy may also suggest that alternative modeling
strategies would be necessary for further improvements and
that certain decisions by the Barratt team may have influ-
enced the modest prediction accuracy. First, the investiga-
tors made the decision to disregard a large amount of
valuable data by selecting only sites that had valid measure-
ments during both the summer and winter campaigns.
Second, influential observations could have contributed to
the modest predictions, considering the large drop between
the explained variance (R2) of the model and the leave-one-
out cross-validated variance (LOOCV R2); the Committee
thought it would have been useful to investigate this further.
Third, to limit overfitting, the investigators applied a rule of
thumb — allowing no more than 1 predictor per 10 observa-
tions — but they seem to have selected the maximum per-
missible number of predictors for each of the preferred
models, suggesting there would be room for further
improvements if other strategies and decisions were made.
Fourth, considering the limited number of potential vari-
ables that the investigators’ semi-automatic variable selec-
tion process permitted (they used the leaps package in R,
which permits a maximum of N�1 variables), the preselec-
tion from the 373 predictors was quite extensive but not
described. The Committee wondered about the influence
of these decisions in this study and recommends taking
such issues into account in future analyses.

OVERARCHING FINAL CONSIDERATIONS

The Review Committee concluded that the investigators
took appropriate steps throughout the study to increase
generalizability of results. However, it remains unclear
whether the vertical gradient model is applicable to the
entire city of Hong Kong and other Asian megacities with
large populations living in high-rise buildings. For
example, the investigators carefully selected six streets for
vertical monitoring, representing a range of different traffic
and street characteristics, but this remains a very small
sample for a large city. Similarly, as is true for many other
cohorts, the Hong Kong cohort was a convenience sample
that is not representative of the general population. In
addition, because it was an elderly cohort, the dynamic
part of the exposure model could not be fully tested.

The relative benefits and risks of high-rise living and its
impact on health due to factors unrelated to air pollution
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research continue to be debated (e.g., Gifford 2007). For
example, a study in Switzerland (Panzcak et al. 2013) doc-
umented that mortality from all causes was higher in
people living on the ground floor compared with those
living on higher floors, with level of floor serving as an
indicator of socioeconomic status, given that residents on
higher floors usually have higher socioeconomic status.
However, other studies have found the opposite. For
example, a study in Toronto that investigated cases of out-
of-hospital cardiac arrest concluded that survival was
greater on lower floors than higher floors because emer-
gency response times were longer for residents living on
higher floors, leading to lower survival rates (Drennan et al.
2016). It is clear that relationships between floor of resi-
dence in high-rise buildings and health are complex and
highly contextual; they are influenced by cultural and socio-
economic characteristics of neighborhoods, levels of crime,
physical characteristics of buildings, and air pollution and
noise, among many other factors. Floor of residence may thus
also act as a confounding factor in studies of the health effects
of air pollution.

Finally, the Committee noted that the possibility of
using any vertical gradient component in an exposure
model is currently hampered by the fact that administra-
tive data do not typically contain residential floor informa-
tion. Therefore, the use of a vertical gradient component in
exposure models for future epidemiological studies
employing administrative data is likely to be limited.

SUMMARY AND CONCLUSIONS

Barratt and colleagues conducted a novel study — one
of the first to integrate vertical gradients and time–activity
patterns into an air pollution exposure model. The exten-
sive air quality measurements, the development of expo-
sure models using state-of-the-art modeling practices, and
the application of those models to an existing Hong Kong
cohort for epidemiological analyses were strengths of the
study. The Review Committee concluded that Barratt and
colleagues have found fairly similar associations when
comparing results from the complex models to the two-
dimensional models for PM2.5, BC, NO, and NO2. Neither
the incorporation of vertical gradients nor that of dynamic
components, including indoor pollutant infiltration, into
the exposure estimates resulted in meaningful or consis-
tent changes in the associations with all-natural-cause,
cardiovascular, and respiratory mortality in the Hong Kong
elderly cohort.

The Committee noted that the investigators encountered
many challenges in the study and developed approaches

to compensate for those challenges in a variety of ways,
but the impacts of the various workarounds were not fully
explored. Additionally, the Committee thought that the
prediction accuracy of the two-dimensional LUR models
was rather modest, which may suggest that alternative
modeling strategies and decisions may be necessary for
further improvements. The investigators’ further explora-
tion of the vertical gradient component of the model at the
Committee’s request was revealing because it showed that
results were sensitive to the choice of the model. Sensitivity
analyses revealed influences of substituting the modeled
two-dimensional LUR estimates for missing measurements
at lower floors and assuming that the air was well mixed at
heights above 20 meters. The Committee thought more
insights were gained from the vertical gradient model than
from the dynamic component of the model because the
latter was based on aggregated survey data, which makes
interpretation difficult.

Based on the current study as well as findings from ear-
lier studies, the addition of a vertical gradient — or, more
generally, street configuration and building height to cap-
ture exposure in canyon streets — appears to improve ex-
posure model performance, although the added value may
be modest, depending on pollutant and study area. It
should be realized that relationships between floor of resi-
dence in high-rise buildings and health are complex and
highly contextual, and that floor of residence may act also
as a confounding factor in studies of the health effects of
air pollution. Although appropriate steps were taken
throughout the study to increase generalizability of results,
it remains unclear to what extent the vertical gradient
model is applicable to the entire city of Hong Kong and to
other Asian megacities with large populations living in
high-rise buildings. Finally, the use of a vertical gradient
component in exposure models for future epidemiological
studies employing administrative databases is likely to be
limited, partly because administrative data do not typically
contain residential floor information.
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2D two-dimensional

3D three-dimensional

AADT annual average daily traffic

AQMS air quality monitoring station

BC black carbon

CBAQMS Causeway Bay AQMS

CHO1 Choi Hung open measurement site

CI confidence interval

CO carbon monoxide

COPD chronic obstructive pulmonary disease

D3D dynamic three-dimensional

EHSC Hong Kong Department of Health’s Elderly 
Health Service

EPD Environmental Protection Department

ESCAPE European Study of Cohorts for Air Pollu-
tion Effects 

FDMS filter dynamic measurement system

Finf infiltration efficiency

GIS geographical information system

HEPA high efficiency particulate air

HEV hold-out evaluation

HHC1 Hung Hom canyon measurement site

HK Hong Kong

HK 2D Hong Kong 2-dimensional sampling

HK SAR Hong Kong Semi-Autonomous Region

HR hazard ratio

ICD-10 International Classification of Diseases, 
10th Revision

IHD ischemic heart disease

IQR interquartile range

JDC1 Jordan canyon measurement site

KCAQMS Kwai Chung AQMS

KTAQMS Kwun Tong Road AQMS

LOOCV leave-one-out cross validation

LUR land-use regression

MESA-Air Multi-Ethnic Study of Atherosclerosis and 
Air Pollution 

MKAQMS Mong Kok AQMS

MKC1 Mong Kok canyon measurement site

MRC-PHE Medical Research Council – Public Health 
England

MVAC mechanical ventilation and air 
conditioning

NIHR National Institute for Health Research

NO nitric oxide

NO2 nitrogen dioxide

NOx oxides of nitrogen

NPC1 North Point canyon measurement site

RMSE root mean square error

PM2.5 particulate matter �2.5 µm in aerodynamic 
diameter

PM10 particulate matter �10 µm in aerodynamic 
diameter

SC sampling campaign

SD standard deviation

SSPAQMS Sham Shui Po AQMS

SWO1 Sai Wan open measurement site

TPU tertiary planning unit

TRAP traffic-related air pollution

UK United Kingdom

VIF variance inflation factor

WP work package
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