HE

APPENDIX AVAILABLE ON THE HEI WEBSITE

Research Report 194

A Dynamic Three-Dimensional Air Pollution Exposure Model for Hong Kong

Barratt et al.

Appendix A. WP1–WP4 Tables and Figures

This Appendix was reviewed solely for spelling, grammar, and cross-references to the main text. It has not been formatted or fully edited by HEI. This document was reviewed by the HEI Review Committee.

Correspondence may be addressed to Dr. Benjamin Barratt, MRC-PHE Centre for Environment and Health & NIHR GSTFT/KCL Biomedical Research Centre, Analytical and Environmental Sciences Division, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London, UK SE1 9NH; e-mail: benjamin.barratt@kcl.ac.uk.

Although this document was produced with partial funding by the United States Environmental Protection Agency under Assistance Award CR-83467701 to the Health Effects Institute, it has not been subjected to the Agency's peer and administrative review and therefore may not necessarily reflect the views of the Agency, and no official endorsement by it should be inferred. The contents of this document also have not been reviewed by private party institutions, including those that support the Health Effects Institute; therefore, it may not reflect the views or policies of these parties, and no endorsement by them should be inferred.

© 2018 Health Effects Institute, 75 Federal Street, Suite 1400, Boston, MA 02110-1817

HEI Research Report 194 Barratt Appendix A (Available on the HEI Website)

Appendix A. WP1–WP4 Tables and Figures

Contents

	Figures	1
	Tables	2
۷	/P1	4
۷	/P2	13
	SidePak vs reference monitor scaling	15
	SidePak unit correction factors (derived from precision experiments)	17
	MicroAeth attenuation correction factors	21
	AQMesh correlation matrices from colocation tests	21
	Mean diurnal variations in BC and PM _{2.5} recorded during the canyon campaigns	23
	Comparison of wind direction during canyon campaigns in comparison with 10 year mean	29
	Mean vertical concentrations of PM _{2.5} and BC at the CHO1 site	30
	Comparison of measured and modeled PM _{2.5} and BC concentrations	31
	Results of F _{inf} calculations from residential sampling	33
	Correlation analysis of F _{inf} against occupant behavior	35
۷	VP3	36
	Hourly diurnal factors applied in the dynamic model for each pollutant	38
	Time-weighted exposures	40
۷	VP4	50
	Descriptive statistics of the elderly cohort and exposure estimates	51
	Sensitivity and stratification analysis results	56
	Hazard ratios	56
	Sensitivity analysis	57
	Stratified analysis	62
	Sample extracts from 3D visualization animation	67
	References	69

Figures

Figure A.1. Map of spatial campaign sampling sites in Hong Kong	4
Figure A.2. Spatial sampling campaign site selection flowchart	8
Figure A.3. 2D LUR model surface for NO with 500 m smoothing applied for use in the cohort	12
Figure A.4. Simulated prevailing wind and intensity at 60m AGL for the summer season	13
Figure A.5. Map of the monitoring sites (Purple = street canyons; green = open streets; red triangles show side A).	14
Figure A.6. Summer (warm) season results of co-location of SidePak unit with AQMS reference monitor (FDMS TEOM)	15
Figure A.7. Winter (cool) season results of co-location of SidePak unit with AQMS reference monitor (FDMS TEOM)	16
Figure A.8. Comparison of co-located SidePak units prior to application of the ratification process.	18
Figure A.9. Comparison of co-located SidePak units following ratification.	18
Figure A.10. Mean diurnal variation in BC (top) and PM _{2.5} (bottom) at NPC1	23

Web-only Appendix A for HEI Research Report 194 by Barratt et al.

Figure A.11. Mean diurnal variation in BC (top) and PM _{2.5} (bottom) at MKC1	.24
Figure A.12. Mean diurnal variation in BC (top) and PM _{2.5} (bottom) at JDC1	. 25
Figure A.13. Mean diurnal variation in BC (top) and PM _{2.5} (bottom) at HHC1.	.26
Figure A.14. Mean diurnal variation in BC (top) and PM _{2.5} (bottom) at CHO1.	. 27
Figure A.15. Mean diurnal variation in BC (top) and PM _{2.5} (bottom) at SWO1	. 28
Figure A.16. Prevailing wind direction recorded at the HK Observatory over the previous 10 years in comparison with the canyon	
campaign period.	. 29
Figure A.17. Mean vertical concentrations of PM _{2.5} and BC at the CHO1 site at six time points, illustrating the consistency of the	
decay curve throughout the day. Note that modeled street level estimates are not included	. 30
Figure A.18. Comparison of measured and modeled PM _{2.5} concentrations at five government network canyon monitoring sites	.31
Figure A.19. Comparison of measured and modeled black carbon concentrations at five government network canyon monitoring	
sites	. 32
Figure A.20. Scatter plot of AC score against BC Finf showing evidence of a decreasing monotonic relationship, as supported by the	
Spearman and Kendall tests.	. 35
Figure A.21. Tertiary planning units (TPU) in Hong Kong	.36
Figure A.22. TPU-averaged PM _{2.5} , BC and NO ₂ concentrations created from 2D land use regression models.	. 39
Figure A.23. Time-weighted PM _{2.5} exposures unstratified (top) and stratified by age group (bottom)	.44
Figure A.24. Time-weighted PM _{2.5} exposures stratified by population sub-group (top) and sex (bottom).	.45
Figure A.25. Time-weighted BC exposures unstratified (top) and stratified by age group (bottom).	.46
Figure A.26. Time-weighted BC exposures stratified by population sub-group (top) and sex (bottom).	.47
Figure A.27. Time-weighted NO ₂ exposures unstratified (top) and stratified by age group (bottom).	.48
Figure A.28. Time-weighted NO ₂ exposures stratified by population sub-group (top) and sex (bottom)	.49
Figure A.29. Spatial distribution of geocoded addresses of participants and boundaries of the 18 districts (<i>n</i> = 60,584). Each district	t
had one Elderly Health Centre to provide health service for persons ≥65 years of age who have enrolled voluntarily. Those enrolled	d
in 1998–2001 were recruited to this study, and their residential addresses were geocoded into x– and y-coordinates	.51
Figure A.30. Modeled 2D annual mean pollutant exposure trends from baseline to follow-up period. WHOGV = Word Health	
Organization Guideline Value.	.54
Figure A.31. Screen captures from an animated 3D visualisation of PM _{2.5} concentrations within the JDC1 canyon	.67

Tables

Table A.1. Spatial campaign sampling site details	5
Table A.2. Possible prediction variables offered to variable selection procedures for 2D LUR modeling	9
Table A.3. LUR modelling for other Asian cities	11
Table A.4. Major factors and selection criteria for street canyons	14
Table A.5. Correlation matrix plus offset and gradient scaling factors for the winter canyon pre-campaign precision test. Fill colour	ırs
indicate degree of correlation, from dark green ($R^2 = 1.00$) through to dark red ($R^2 < 0.2$). *S10 was the reference unit during this	;
test	17
Table A.6. Offset and scale factors for SidePak unit precision correction	19
Table A.7. Filter attenuation correction factors calculated for microAeth units for each campaign	21
Table A.8. Precision test results for the eight AQMesh electrochemical units. R2 values ≥95% are shown in bold. Scale and offset	
values are removed ('-') where associated R ² values were less than 0.2.	22
Table A.9. Infiltration efficiencies for all homes derived from the infiltration analysis of paired indoor/outdoor sampling. Median	
values were used in the dynamic model	33
Table A.10. Summary chart of median F _{inf} values in comparison with U.S. values calculated using a similar methodology in the ME	ESA-
Air study (Allen et al. 2012)	34
Table A.11. Number of survey subjects (TCS) included in analysis	36
Table A.12. Classifications of microenvironments	37
Table A.13. Hourly diurnal factors applied in the dynamic model for each pollutant	38
Table A.14. Mean ambient concentrations for TPUs (N = 289)	38
Table A.15. Time-weighted exposure of all modeling stages	40
Table A.16. Time-weighted exposure stratified by age group	41
Table A.17. Time-weighted exposure stratified by sex	42
Table A.18. Time-weighted exposure stratified by population group	43

Web-only Appendix A for HEI Research Report 194 by Barratt et al.

Table A.19. Adjusted individual, ecological and environmental covariates included in the final Cox PH models
Table A.20. Number of deaths in the elderly cohort after 10–13 years of follow-up in 2011
Table A.21. Descriptive statistics of 2D, 3D and D3D LUR modelled and back-extrapolated baseline exposures for all pollutants.
*From Wong et al. (2015) **From Wong et al. (2016)
Table A.22. Mean annual exposures from baseline to follow-up period
Table A.23. Hazard ratio (95% CI) of mortality from all natural causes adjusted for individual covariates only and together with
ecological covariates measured at baseline 1998-2001 based on D3D model56
Table A.24. Hazard ratio (95%CI) per IQR increase of PM _{2.5} in main analysis for average exposure at the baseline period and
sensitivity analyses for exposure to average PM _{2.5} yearly and for different inclusion and exclusion criteria
Table A.25. Hazard ratio (95%CI) per IQR increase of BC in main analysis for average exposure at the baseline period and sensitivity
analyses for exposure to average BC yearly and for different inclusion and exclusion criteria
Table A.26. Hazard ratio (95%CI) per IQR increase of NO in main analysis for average exposure at the baseline period and sensitivity
analyses for exposure to average NO yearly and for different inclusion and exclusion criteria
Table A.27. Hazard ratio (95%CI) per IQR increase of NO ₂ in main analysis for average exposure at the baseline period and sensitivity
analyses for exposure to average NO ₂ yearly and for different inclusion and exclusion criteria
Table A.28. Hazard ratio (95%CI) per 10 μg/m ³ increase of PM _{2.5} in main analysis for average exposure at the baseline period and
sensitivity analyses for exposure to average PM _{2.5} yearly and for different inclusion and exclusion criteria
Table A.29. Hazard ratio (95%CI) per IQR increase of PM _{2.5} in stratified analyses by age and sex with exposure at baseline (deaths
within the first year were excluded). (2D and D3D Exposure)62
Table A.30. Hazard ratio (95%CI) per IQR increase of BC in stratified analyses by age and sex with exposure at baseline (deaths within
the first year were excluded). 2D and D3D Exposure63
Table A.31. Hazard ratio (95%CI) per IQR increase of NO in stratified analyses by age and sex with exposure at baseline (deaths
within the first year were excluded). 2D and D3D Exposure64
Table A.32. Hazard ratio (95%CI) per IQR increase of NO ₂ in stratified analyses by age and sex with exposure at baseline (deaths
within the first year were excluded). 2D and D3D Exposure
Table A.33. Hazard ratios (95%CI) per IQR increase of pollutants for baseline exposure using the alternative decay profile capped at
20m ^a

WP1

Figure A.1. Map of spatial campaign sampling sites in Hong Kong

Table A.1. Spatial campaign sampling site details					
Site ID	Latitude	Longitude	Region	District	Planned Collection ^a
CW-A-1	22.28178	114.15812	Hong Kong Island	Central and Western	NO ₂ , NO, PM (2w)
CW-B-2	22.28103	114.15556	Hong Kong Island	Central and Western	NO ₂ , PM
CW-C-3	22.28135	114.15610	Hong Kong Island	Central and Western	NO ₂ , NO, PM (2w)
EN-A-1	22.28226	114.18340	Hong Kong Island	Wan Chai	NO ₂ , PM
EN-A-2	22.28207	114.18372	Hong Kong Island	Wan Chai	NO ₂ , NO, PM
EN-B-5	22.29105	114.20040	Hong Kong Island	Eastern	NO ₂ , PM
EN-B-7	22.28804	114.19340	Hong Kong Island	Eastern	NO ₂ , NO (SC2 only), PM
EN-B-8	22.28931	114.19460	Hong Kong Island	Eastern	NO ₂ , NO (SC2 only), PM
EN-C-10	22.29088	114.19957	Hong Kong Island	Eastern	NO ₂ , NO, PM
EN-C-9	22.29034	114.19627	Hong Kong Island	Eastern	NO ₂ , NO, PM (2w)
IS-A-2	22.30768	113.93743	New Territories	Islands	NO ₂ , NO (SC2 only), PM
IS-A-3	22.32826	114.02649	New Territories	Islands	NO ₂ , PM
IS-A-4	22.29365	113.95429	New Territories	Islands	NO ₂ , NO, PM (2w)
IS-B-6	22.28851	113.94170	New Territories	Islands	NO ₂ , PM
KC-A-1	22.32926	114.19281	Kowloon Peninsula	Kowloon City	NO ₂ , NO, PM
KC-A-3	22.30871	114.18347	Kowloon Peninsula	Kowloon City	NO ₂ , NO (SC2 only), PM
KC-A-4	22.30822	114.18261	Kowloon Peninsula	Kowloon City	NO ₂ , NO (SC2 only), PM
KC-B-5	22.30531	114.18902	Kowloon Peninsula	Kowloon City	NO ₂ , NO, PM
KC-B-6	22.30431	114.18978	Kowloon Peninsula	Kowloon City	NO ₂ , NO (SC2 only), PM
КС-В-7	22.32227	114.18778	Kowloon Peninsula	Kowloon City	NO ₂ , NO (SC2 only), PM
КС-В-8	22.32252	114.18849	Kowloon Peninsula	Kowloon City	NO ₂ , PM
KT-A-1	22.33100	114.20925	Kowloon Peninsula	Kwun Tong	NO ₂ , PM
KT-A-2	22.32981	114.21057	Kowloon Peninsula	Kwun Tong	NO ₂ , NO, PM
KT-B-6	22.31347	114.22508	Kowloon Peninsula	Kwun Tong	NO ₂ , NO, PM (2w)
KW-A-3	22.35916	114.12008	New Territories	Kwai Tsing	NO ₂ , NO, PM (2w)
MK-A-1	22.32244	114.16849	Kowloon Peninsula	Yau Tsim Mong	NO ₂ , NO, PM (2w)
NT-A-1	22.47931	114.15367	New Territories	North	NO ₂ , PM
NT-A-2	22.48393	114.15294	New Territories	North	NO ₂ , NO (SC2 only), PM
NT-A-3	22.48523	114.15163	New Territories	North	NO ₂ , NO (SC2 only), PM
NT-A-4	22.48642	114.14893	New Territories	North	NO ₂ , PM
NT-B-5	22.50270	114.12674	New Territories	North	NO ₂ , PM
NT-B-6	22.50184	114.12775	New Territories	North	NO ₂ , NO, PM
NT-B-7	22.50315	114.12671	New Territories	North	NO ₂ , NO (SC2 only), PM
^a NO ₂ refers to Ogawa badge, diffusion tube, or both. PM refers to 24-hour PM _{2.5} and black carbon collection, while PM (2w) refers to 2 week collection.					

Continued on next 2 pages.

Table A.1 continued. Spatial campaign sampling site details					
Site ID	Latitude	Longitude	Region	District	Planned Collection ^a
NT-B-8	22.50291	114.12920	New Territories	North	NO ₂ , NO (SC2 only), PM
NT-B-9	22.50276	114.12901	New Territories	North	NO ₂ , PM
P1	22.28321	114.12749	Hong Kong Island	Central and Western	NO ₂ , NO, PM
P10	22.29624	114.16919	Kowloon Peninsula	Yau Tsim Mong	NO ₂ , NO, PM
P11	22.37122	114.11923	New Territories	Tsuen Wan	NO ₂ , NO, PM
P12	22.28729	114.21942	Hong Kong Island	Eastern	PM
P2	22.28697	114.14045	Hong Kong Island	Central and Western	NO ₂ , NO, PM
Р3	22.27956	114.17536	Hong Kong Island	Wan Chai	NO ₂ , NO, PM
P4	22.28289	114.22140	Hong Kong Island	Eastern	NO ₂ , NO, PM
Р5	22.26472	114.24122	Hong Kong Island	Eastern	NO ₂ , NO, PM
P6	22.31605	114.16383	Kowloon Peninsula	Yau Tsim Mong	NO ₂ , NO, PM
Р7	22.31536	114.17038	Kowloon Peninsula	Yau Tsim Mong	PM
P8	22.31582	114.17333	Kowloon Peninsula	Yau Tsim Mong	NO ₂ , NO, PM (2w)
Р9	22.30532	114.17164	Kowloon Peninsula	Yau Tsim Mong	NO ₂ , NO, PM (2w)
SK-A-2	22.31920	114.26438	New Territories	Sai Kung	NO ₂ , NO, PM (2w)
SK-A-3	22.30481	114.25361	New Territories	Sai Kung	NO ₂ , NO, PM
SK-A-6	22.29540	114.27331	New Territories	Sai Kung	NO ₂ , PM
SK-A-7	22.31810	114.25892	New Territories	Sai Kung	NO ₂ , PM
SK-A-9	22.38220	114.27097	New Territories	Sai Kung	NO ₂ , PM
SK-B-11	22.38203	114.27342	New Territories	Sai Kung	NO ₂ , NO, PM
SO-A-1	22.25036	114.17056	Hong Kong Island	Southern	NO ₂ , NO, PM
SO-A-2	22.25024	114.16969	Hong Kong Island	Southern	NO ₂ , PM
SO-A-3	22.24850	114.16159	Hong Kong Island	Southern	NO ₂ , PM
SO-A-4	22.24844	114.16287	Hong Kong Island	Southern	NO ₂ , NO, PM (2w)
SO-B-5	22.24896	114.15454	Hong Kong Island	Southern	NO ₂ , NO, PM
SO-B-6	22.24886	114.15366	Hong Kong Island	Southern	NO ₂ , PM
SSP-A-4	22.33551	114.15913	Kowloon Peninsula	Sham Shui Po	NO ₂ , NO (SC2 only), PM
SSP-B-5	22.32982	114.16348	Kowloon Peninsula	Sham Shui Po	NO ₂ , PM
SSP-B-6	22.33171	114.16102	Kowloon Peninsula	Sham Shui Po	NO ₂ , NO (SC2 only), PM
SSP-B-7	22.33087	114.16315	Kowloon Peninsula	Sham Shui Po	NO ₂ , NO, PM (2w)
SSP-C-10	22.33699	114.14700	Kowloon Peninsula	Sham Shui Po	NO ₂ , NO, PM
SSP-C-9	22.33701	114.14764	Kowloon Peninsula	Sham Shui Po	NO ₂ , PM
ST-A-1	22.38753	114.19191	New Territories	Sha Tin	NO ₂ , NO (SC2 only), PM
^a NO ₂ refers to Ogawa badge, diffusion tube, or both. PM refers to 24-hour PM _{2.5} and black carbon collection, while PM (2w) refers to 2 week collection.					

Continued on next page.

Table A.1 continued. Spatial campaign sampling site details					
District	District	District	District	District	District
ST-B-5	22.37579	114.17734	New Territories	Sha Tin	NO ₂ , NO, PM (2w)
ST-B-6	22.37391	114.17856	New Territories	Sha Tin	NO ₂ , PM
ST-B-7	22.37374	114.17873	New Territories	Sha Tin	NO ₂ , PM
ST-B-8	22.37349	114.17843	New Territories	Sha Tin	NO ₂ , NO (SC2 only), PM
TM-A-1	22.39960	113.97668	New Territories	Tuen Mun	NO ₂ , NO, PM
TM-A-4	22.40735	113.97831	New Territories	Tuen Mun	NO ₂ , PM
TM-B-6	22.39261	113.97841	New Territories	Tuen Mun	NO ₂ , NO, PM (2w)
TP-A-1	22.42411	114.21151	New Territories	Tai Po	NO ₂ , NO, PM
TP-A-2	22.43240	114.20111	New Territories	Tai Po	NO ₂ , NO (SC2 only), PM
TP-A-3	22.46646	114.15106	New Territories	Tai Po	NO ₂ , NO, PM (2w)
TP-A-4	22.46747	114.15176	New Territories	Tai Po	NO ₂ , PM
TP-B-5	22.44859	114.16702	New Territories	Tai Po	NO ₂ , PM
TP-B-6	22.44465	114.16666	New Territories	Tai Po	NO ₂ , PM
TP-C-10	22.44841	114.16740	New Territories	Tai Po	NO ₂ , NO, PM (2w)
TP-C-9	22.44903	114.16604	New Territories	Tai Po	NO ₂ , PM
TW-A-3	22.36251	114.11794	New Territories	Tsuen Wan	NO ₂ , NO (SC2 only), PM
TW-A-4	22.36397	114.11977	New Territories	Tsuen Wan	NO ₂ , NO, PM
TW-B-5	22.37062	114.11487	New Territories	Tsuen Wan	NO ₂ , NO (SC2 only), PM
TW-B-6	22.37004	114.11598	New Territories	Tsuen Wan	NO ₂ , PM
TW-B-7	22.36908	114.11636	New Territories	Tsuen Wan	NO ₂ , NO (SC2 only), PM
WC-A-1	22.28006	114.18436	Hong Kong Island	Wan Chai	NO ₂ , NO, PM (2w)
WC-B-2	22.28014	114.18578	Hong Kong Island	Wan Chai	NO ₂ , PM
WC-C-3	22.28080	114.18551	Hong Kong Island	Wan Chai	NO ₂ , NO (SC2 only), PM
WTS-A-1	22.33540	114.20355	Kowloon Peninsula	Wong Tai Sin	NO ₂ , PM
WTS-A-3	22.33620	114.20721	Kowloon Peninsula	Wong Tai Sin	NO ₂ , NO, PM (2w)
WTS-A-4	22.33705	114.20657	Kowloon Peninsula	Wong Tai Sin	NO ₂ , PM
WTS-B-5	22.34175	114.19530	Kowloon Peninsula	Wong Tai Sin	NO ₂ , PM
WTS-B-6	22.34175	114.19315	Kowloon Peninsula	Wong Tai Sin	NO ₂ , NO, PM (2w)
YL-A-1	22.46584	114.05380	New Territories	Yuen Long	NO ₂ , NO, PM
YL-A-2	22.45906	114.05216	New Territories	Yuen Long	NO ₂ , PM
YL-A-3	22.43547	114.02089	New Territories	Yuen Long	NO ₂ , NO, PM (2w)
YL-A-4	22.43460	114.02527	New Territories	Yuen Long	NO ₂ , PM
YL-B-5	22.44463	114.02935	New Territories	Yuen Long	NO ₂ , PM
YL-B-6	22.44432	114.02934	New Territories	Yuen Long	NO ₂ , PM
^a NO ₂ refers to Ogawa badge, diffusion tube, or both. PM refers to 24-hour PM _{2.5} and black carbon collection, while PM (2w) refers to 2 week collection.					

Figure A.2. Spatial sampling campaign site selection flowchart

Table A.2. Possible prediction variables offered to variable selection procedures for 2D LUR modeling

Buffer value variables (buffer radii 25 m, 50 m, 100 m, 200 m, 300 m, 500 m, 1000 m, 1500 m, 2000 m, 3000 m, 4000 m, 5000 m)				
Annual Average Traffic Density (AADT)	Expressway	AADTExp		
(sum in buffer)	Main roads	AADTMain		
	Secondary roads	AADTSec		
Road Length	Expressway	ExpRL		
(sum [m] in buffer)	Main roads	MainRL		
	Secondary roads	SecRL		
	Elevated roads	ElvRL		
Traffic Loading	Expressway	ExpTrL		
(AADT * road length [m] in buffer)	Main roads	MainTrL		
	Secondary roads	SecTrrL		
Urban Build-up	Building volume density	BldVolD		
(area [m²] or volume [m³] /buffer area)	Building area density	BldArD		
	Population density	WPopDen		
	On street parking density	PrkArD		
Land Use	Commercial	ComT		
(total area [m²] in buffer)	Government	GovT		
	Park	ParkT		
	Mixed	MixT		
	Residential	ResT		
	Open area	OpArT		
	Industrial	IndT		
	Undeveloped lands	Lands		
	Point value variables			
Point feature	Street intersections	InterD		
(count/buffer area)	Bus terminus density	BusTD		
	Car park density	CarPD		
	Mini bus terminus density	MiniBusD		
	Temple density	TmplD		
	Food stall density	FoodStD		
Value Extracted at Point	In aircraft flight path	FlightRouteBuf		
	Aspect ratio	AspRatio		
[m above sea-level]	Elevation	Elevation		
[decimal degrees]	Longitude	Long		
[decimal degrees]	Latitude	Lat		
[μg/m³]	Predicted NO ₂ (NO model only)	NO ₂		
		Continued on next page.		

٦

Table A.2 continued. Possible prediction variables offered to variable selection procedures for 2D LUR modeling

Distance (Euclidean and natural log [m])

Ferry	(Ln)Dist_FerryTerm
Cross boundary vehicle terminus	(Ln)Dist_CrossBrdVehTm
Toll gates	(Ln)Dist_TollGate
Incinerator	(Ln)Dist_Incin
Crematorium	(Ln)Dist_Crematorium
Mass transit rail line	(Ln)Dist_MTRLines
Mass transit rail stations	(Ln)Dist_MTRstnts
Coastline	(Ln)Dist_Coast
Shipping lanes	(Ln)Dist_ShippingLanes
High volume unrestricted shipping lanes	(Ln)DistUnRHighVol
Airport	(Ln)Dist_Airport
Port	(Ln)Dist_Port
Shenzhen	(Ln)Dist_ShenzhenP
Power stations	(Ln)Dist_PSntswoPenny

Table A.3. LUR modelling for other Asian cities

_

Location	Reference	Sampling Sites	Predictors
		(n)	(R ² ; no. of predictors)
Changsha, China	Li et al. 2015	Field campaign	NO ₂ (0.41-0.51)
		(n = 80)	PM ₁₀ (0.32-0.39) ^a
		NO ₂	
		(n = 40 PM ₁₀)	
Jinan, China	Li et al. 2010	Regulatory air quality monitoring sites	SO ₂ (0.62; 3)
		(n = 14)	NO ₂ (0.64; 3)
			PM ₁₀ (0.60; 3)
Shanghai, China	Meng et al. 2015	Ambient air quality monitoring sites	NO ₂ (0.82; 4)
		(n = 38)	
Shanghai, China	Meng et al. 2016	Ground level air pollution monitoring sites	PM ₁₀ (0.80; 4)
		(n = 28)	
Tianjin, China	Chen et al. 2010	Ambient air quality monitoring sites	NO ₂ PM _{2.5}
		(n = 20; another 10 used to validate)	(0.74; 5, heating season)
			(0.61; 4, non-heating season)
			PM ₁₀
			(0.72; 4, heating season)
			(0.49; 3, non-heating season)
Metropolitan area of	Lee et al. 2012	Regulatory air quality monitoring sites	NO ₂ (0.59; 5)
Seoul, Kyunggi, and Incheon, Korea	[Conference paper]	(n = 102)	
,			
New Delhi, India	Saraswat et al. 2013	Field campaign	Ultrafine particle number concentrations
		(n = 18, morning; n = 37, afternoon)	(0.28; 1 morning)
			(0.23; 2, afternoon) ^b
Shizuoka prefecture,	Kashima et al. 2009	Regulatory air quality monitoring sites	NO ₂ (0.54; 5)
Japan		(n = 83)	SPM (0.11; 1)
Ulaanbaatar,	Allen et al. 2013	Field campaign deployment	Wintertime
Niongolia		(n =37)	NO ₂ (0.74; 5)
			SO ₂ (0.78; 2)

^a For Li et al. 2015 only the circular buffer models were included as they are directly comparable.

^b Only models without rooftop concentrations as a predictor are shown.

Figure A.3. 2D LUR model surface for NO with 500 m smoothing applied for use in the cohort.

WP2

Prevailing wind direction obtained from Professor Jimmy Fung in the Division of Environment at Hong Kong University of Science and Technology. Two prevailing wind directional maps of Hong Kong at 60m above ground were generated by taking the dominant mode of the wind rose at each 100 m x 100 m grid aggregated over June to August and November to January for the years 2004 to 2006 (Figure A.4).

Figure A.4. Simulated prevailing wind and intensity at 60m AGL for the summer season.

Table A.4. Major factors and selection criteria for street canyons

Major Factors	Selection Criteria	Data Sources
Canyon Orientation	Perpendicular to the prevailing wind direction, preferably opposite prevailing wind direction for summer and winter	Road centerline (Lands Department); Prevailing wind direction (Hong Kong Observatory and Hong Kong University of Science & Technology)
Aspect Ratio	Medium to high	Building height (Lands Department); Road width (Lands Department)
Canyon Length	Medium to long	Roads (Lands Department)
Road Type	Major and minor	Roads (Lands Department)
Annual Average Daily Traffic (AADT)	Low to high	2014 Traffic data (Transport Department)
Population Density	High	2011 Census (Census & Statistics Department)
Building Type	Residential (preferable)	Buildings (Census & Statistics Department)

Figure A.5. Map of the monitoring sites (Purple = street canyons; green = open streets; red triangles show side A).

SidePak vs reference monitor scaling

During each spatial and canyon monitoring campaign, SidePak PM_{2.5} monitors were placed alongside an AQMS reference monitoring site for at least two weeks. These co-location periods were used to calculate a reference scaling factor and offset for the "reference" SidePak.

Figure A.6. Summer (warm) season results of co-location of SidePak unit with AQMS reference monitor (FDMS TEOM).

Co-location period: 18-Nov-2014 to 02-Dec-2015 SidePak unit: S04 Calibration factor: 0.34 Offset: -4.5

Co-location period: 30-Jan-2015 to 30-Feb-2015 SidePak unit: S10 Calibration factor: 0.43 Offset: 0.5

Figure A.7. Winter (cool) season results of co-location of SidePak unit with AQMS reference monitor (FDMS TEOM).

SidePak unit correction factors (derived from precision experiments)

Following reference scaling, each SidePak unit in use during each campaign was scaled according to pre- and post-co-location monitoring results. A linear correlation matrix first identified units not responding in a unified way due to drift or early onset of a fault. In Table A.5 below, unit S03 was been identified as an outlier and subsequently sent for repair. Precision scaling factors and offsets were calculated by applying linear regression analysis to each unit against the 'reference' unit. After precision scaling, all units were reference scaled.

Table A.5. Correlation of correlation, from	Table A.5. Correlation matrix plus offset and gradient scaling factors for the winter canyon pre-campaign precision test. Fill colours indicate degree of correlation, from dark green ($R^2 = 1.00$) through to dark red ($R^2 < 0.2$). *S10 was the reference unit during this test.											
Unit \ R ²	S01	S02	S03	S04	S07	S09	S10*	S11	S12	CAN06		
S01		1.00	0.21	0.97	0.98	0.99	1.00	0.96	1.00	1.00		
S02	1.00		0.21	0.97	0.98	0.99	1.00	0.97	1.00	1.00		
S03	0.21	0.21		0.12	0.27	0.24	0.25	0.28	0.25	0.19		
S04	0.97	0.97	0.12		0.94	0.96	0.95	0.92	0.96	0.98		
S07	0.98	0.98	0.27	0.94		0.96	0.98	0.99	0.99	0.98		
S09	0.99	0.99	0.24	0.96	0.96		0.99	0.96	0.99	0.99		
S10	1.00	1.00	0.25	0.95	0.98	0.99		0.98	1.00	0.99		
S11	0.96	0.97	0.28	0.92	0.99	0.96	0.98		0.98	0.97		
S12	1.00	1.00	0.25	0.96	0.99	0.99	1.00	0.98		0.99		
CAN06	1.00	1.00	0.19	0.98	0.98	0.99	0.99	0.97	0.99			
Offset	1	5		41	29	2	0	3	1	5		
Scale	1.01	1.02	-	0.95	0.91	1.14	1.00	1.89	0.96	1.28		

A comparison of unscaled and precision+reference scaled PM_{2.5} measurements from all SidePak units is shown in Figure A.8 and Figure A.9.

Figure A.8. Comparison of co-located SidePak units prior to application of the ratification process.

Figure A.9. Comparison of co-located SidePak units following ratification.

Table A.6. Offset and scale factors for SidePak unit precision correction

Unit	Offset	Scale	Comments
Summer spatial campaign			
S01	-7	0.91	
S02	0	1.00	Reference Unit
S03	-10	1.12	
S04	29	0.90	
S05	16	1.10	
S06			Fault
S07	-10	1.00	
S08	-7	0.84	
S09			Fault
S10	-8	0.87	
S11	-5	1.14	
S12	-5	0.92	
Summer canyon campaign a			
S01	-2	0.97	
S02	5	1.12	
S03	-6	1.22	
S04	39	1.00	
S05	21	1.30	
S06			Fault
S07	-6	1.00	
S08	-2	0.91	
S09			Fault
S10	-3	0.93	
S11	-1	1.27	
S12	0	1.00	Reference Unit
Winter canyon campaign a			
S01	1	1.01	
S02	5	1.02	
S03			Fault
S04	41	0.95	
S05			Fault
S06			Fault
S07	29	0.91	
S08			Fault
S09	2	1.14	
S10	0	1.00	Reference Unit
S11	3	1.89	
S12	1	0.96	
CAN06	5	1.28	
CAN11	5	1.08	

Continued on next page.

Table A.6 continued. Offset a	and scale factors	for SidePak unit	t precision correction	
Winter spatial campaign				
S01	-35	1.08		
S02	-31	1.10		
S03			Fault	
<i>S04</i>	0	1.00	Reference Unit	
S05			Fault	
S06			Fault	
S07	-15	0.95		
S08			Fault	
S09	-30	1.22		
S10	-38	1.06		
S11	-17	2.04		
S12	-38	1.02		
CAN06	-26	1.35		
CAN11	0	1.09		
Winter canyon campaign b				
S01	1	1.01		
S02	5	1.02		
S03	257	1.27		
S04	41	0.95		
S05	3	0.94		
S06			Fault	
S07	29	0.91		
S08	6	0.85		
S09	2	1.14		
S10	0	1.00	Reference unit	
S11	3	1.89		
S12	1	0.96		
CAN06	5	1.28		
CAN11	5	1.08		
Summer canyon campaign b a	and AQMS canyon:	S		
S01	-4	0.82		
S02	3	0.96		
503	70	0.00	Fault	
S04	79	0.92		
SU5	11	0.90	Foult	
500			Fault	
507	4	0.70	Fault	
508	4	0.79		
509 510	,	1.00	Pafaranca unit	
S10	U	1.00	Fault	
S12	11	0 ዓጾ	, conc	
CAN06	11	0.50	Notused	
CAN07	2	0.82		
CAN08	- 5	1.16		
	-			

MicroAeth attenuation correction factors

A number of different methods were tested to correct the microAeth filter loading attenuation effect, including Kirchstetter and Novakov (2007) and Virkkula and colleagues (2007). We found that the Kirchstetter method under-corrected at high filter loadings. We also found that Virkkula attenuation correction factors calculated during the precision tests (by changing filters on half of the units after 24 hours and analyzing the difference in response between fresh and exposed filters) did not remain valid throughout the campaigns due to changes in atmospheric conditions. We therefore calculated factors for each canyon for each season using the following method adapted from Virkkula:

- 1. Extract 20 minute mean BC concentration prior to and following each filter change for each unit in operation within the canyon (8 units), excluding a 15 minute buffer to allow the instrument to settle.
- 2. Calculate k factors for each filter change using the formula:

$$\beta = (BC_I - BC_f)/(AT_f^*BC_f - AT_I^*BC_I)$$

Where BC_I is the last BC concentration before filter change, BC_f is the first following filter change, AT_I and AT_f are the last and first attenuation values before and after filter change.

3. Take the mean β value from all filter changes (up to 18 per canyon) to derive a canyon specific factor.

The attenuation correction factors calculated for each canyon and season are shown in Table A.7.

 Table A.7. Filter attenuation correction factors calculated for microAeth units for each campaign

Site	Summer 2014	Winter	Summer 2015
Spatial	0.008	0.007	
CHO1	0.006	0.009	
JDC1	0.011	0.007	
MKC1	0.019	0.004	
SWO1	0.009	0.006	
ННС1		0.009	0.008
NPC1		0.005	0.007
AQMS canyons			0.008

AQMesh correlation matrices from colocation tests

Five precision tests were carried out on the AQMesh units between August and November 2014, each lasting between two and ten days. After a six hour stabilisation period had been excluded, results from each unit were compared to a single 'reference' AQMesh unit and linear regression used to derive correlation coefficients, scaling factors and offsets.

Table A.8. Precision test results for the eight AQMesh electrochemical units. R2 values \geq 95% are shown in bold. Scale and offset values are removed ('-') where associated R² values were less than 0.2.

	R ² Scale Offs						Offset								
Unit	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
CO (ppb)															
UNIT01							Ref	ference u	nit						
UNIT02	0.93	0.83	0.05	0.92	0.93	0.76	0.99	-	0.92	0.84	-157	-208	-	-225	-160
UNIT03	0.97	0.93	0.90	0.97	0.99	0.9	0.85	0.83	0.94	1.08	20	17	32	6	-23
UNIT04	0.87	0.75	0.01	0.95	0.12	0.76	1.18	-	0.87	1.74	-155	-234	-	-235	-227
UNIT05	0.91	0.81	0.95	0.96	0.98	0.85	1.19	1.05	0.86	1	39	-43	-6	3	4
UNIT06	0.83	0.88	0.95	0.58	0.96	0.89	1.06	1.09	0.86	1.06	29	6	-12	-14	-3
UNIT07	0.85	0.71	0.00	0.85	0.97	0.84	1.43	-	0.98	0.95	20	-88	-	-24	12
UNIT08	0.71	0.77	0.02	0.97	0.97	0.84	0.97	-	0.91	0.98	47	-16	-	-35	4
NO (ppb)															
UNIT01							Ref	ference u	nit						
UNIT02	0.69	0.11	0.71	0.09	0.58	1.03	-	0.44	-	0.46	2	-	-25	-	4
UNIT03	0.98	0.99	0.98	0.76	0.83	1.17	1.28	1.69	0.79	0.88	-33	-4	-2	-31	-9
UNIT04	0.99	0.99	0.87	0.00	0.29	1.25	1.48	1.16	-	0.58	-16	7	-62	-	-46
UNIT05	0.96	0.97	0.94	0.78	0.93	1.5	1.27	1.06	1.04	0.97	8	19	-12	6	11
UNIT06	0.33	0.16	0.98	0.36	0.88	0.74	-	1.51	0.62	1.09	-27	-	-34	-57	-11
UNIT07	0.95	n.a.	0.09	0.14	0.85	1.07	n.a.	-	-	1.08	-43	n.a.	-	-	17
UNIT08	0.25	0.02	0.07	0.03	0.04	0.75	-	-	-	-	-39	-	-	-	-
NO₂(ppb)															
UNIT01	0.29	0.04	0.10	0.07	0.35	1.49	-	-	-	1.27	88	-	-	-	19
UNIT02							Ref	ference u	nit						
UNIT03	0.72	0.91	0.86	0.51	0.74	0.78	0.9	0.82	0.71	0.88	-5	-11	-9	-2	-6
UNIT04	0.74	0.90	0.90	0.76	0.93	0.77	0.88	0.77	0.73	0.85	-14	-18	-16	-13	-13
UNIT05	0.90	0.94	0.91	0.45	0.96	1.06	1.02	1.26	0.86	1.06	4	2	-4	10	3
UNIT06	0.73	0.91	0.94	0.56	0.97	0.89	0.94	1.02	0.81	0.99	-14	-18	-21	-11	-15
UNIT07	0.87	0.95	0.15	0.35	0.90	0.92	1.02	-	0.99	0.99	9	1	-	3	-3
UNIT08	0.67	0.64	0.08	0.54	0.90	0.78	0.96	-	1.1	0.94	-18	-26	-	-18	-9
Relative hum	nidity (%)														
UNIT01							Ref	ference u	nit						
UNIT02	0.98	0.99	0.99	0.99	1.00	1.08	1.10	1.11	1.3	1.02	-8	-10	-10	-27	-2
UNIT03	0.98	1.00	1.00	1.00	0.99	1.08	1.12	1.13	1.08	1.14	-8	-11	-11	-7	-13
UNIT04	0.96	1.00	1.00	0.99	0.04	1.05	1.12	1.09	1.30	-	-6	-11	-9	-27	-
UNIT05	0.96	0.99	0.99	0.99	1.00	1.08	1.07	1.08	1.15	0.99	-8	-8	-8	-14	-1
UNIT06	0.95	0.98	0.99	0.98	1.00	1.06	1.07	1.01	1.12	0.98	-8	-9	-4	-13	-1
UNIT07	0.96	0.99	0.22	0.99	1.00	1.04	1.06	0.34	1.27	1.01	-6	-7	32	-25	-2
UNIT08	0.96	0.02	0.01	0.99	1.00	1.04	-	-	1.20	0.97	-6	-	-	-20	0
Temperature	e (°C)														
UNIT01							Ref	ference u	nit						
UNIT02	0.98	0.99	0.99	0.99	0.99	0.93	0.98	1.05	1.02	0.94	2	1	-1	-1	2
UNIT03	0.98	0.99	0.99	0.99	0.99	0.92	0.97	1.05	1.00	1.01	2	1	-1	0	0
UNIT04	0.96	0.99	0.99	0.99	0.31	0.93	1.01	1.03	1.03	11.4	2	0	-1	-1	305
UNIT05	0.99	0.99	0.99	0.99	1.00	0.94	0.99	1.03	1.01	0.99	2	0	-1	0	0
UNIT06	0.98	0.99	1.00	1.00	0.99	0.92	0.98	1.01	0.98	0.97	3	1	0	1	1
UNIT07	0.97	0.99	0.15	0.99	0.99	0.93	1	0.21	1.01	1.04	2	0	28	-1	-1
UNIT08	0.98	0.99	0.29	0.99	0.99	0.91	1.02	2.27	1	0.94	3	-1	-35	0	2

Web-only Appendix A for HEI Research Report 194 by Barratt et al.

Mean diurnal variations in BC and PM_{2.5} recorded during the canyon campaigns

Figure A.10. Mean diurnal variation in BC (top) and PM_{2.5} (bottom) at NPC1.

Figure A.11. Mean diurnal variation in BC (top) and $PM_{2.5}$ (bottom) at MKC1.

Figure A.12. Mean diurnal variation in BC (top) and PM_{2.5} (bottom) at JDC1.

Figure A.13. Mean diurnal variation in BC (top) and $PM_{2.5}$ (bottom) at HHC1.

Figure A.14. Mean diurnal variation in BC (top) and $\rm PM_{2.5}$ (bottom) at CHO1.

Figure A.15. Mean diurnal variation in BC (top) and PM_{2.5} (bottom) at SWO1.

Comparison of wind direction during canyon campaigns in comparison with 10 year mean

These figures show wind direction recorded at the Hong Kong Observatory site during the summer (warm season) and winter (cool season) canyon monitoring campaigns in comparison with the same site's 10 year mean.

Figure A.16. Prevailing wind direction recorded at the HK Observatory over the previous 10 years in comparison with the canyon campaign period.

Mean vertical concentrations of $\mathsf{PM}_{2.5}$ and BC at the CHO1 site

Figure A.17. Mean vertical concentrations of PM_{2.5} and BC at the CHO1 site at six time points, illustrating the consistency of the decay curve throughout the day. Note that modeled street level estimates are not included.

Comparison of measured and modeled $\mathsf{PM}_{2.5}$ and BC concentrations

Figure A.18. Comparison of measured and modeled PM_{2.5} concentrations at five government network canyon monitoring sites.

Figure A.19. Comparison of measured and modeled black carbon concentrations at five government network canyon monitoring sites.

Results of $\mathsf{F}_{\mathsf{inf}}$ calculations from residential sampling

Table A.9. Infiltration efficiencies for all homes derived from the infiltration analysis of paired indoor/outdoor sampling. Median values were used in the dynamic model.

Ноте	PM _{2.5} warm	PM _{2.5} cool	BC warm	BC cool
CHO1A1	0.84	0.78	1.37	0.76
CHO1A19	1.03	0.94	0.91	0.46
CHO1A4	0.48		0.93	
CHO1A6	0.72	0.92	1.07	0.56
CHO1A7		0.85		0.50
HHC1A11	0.64	1.13		0.91
HHC1A14		0.81		1.02
HHC1A2	0.84			0.42
ННС1АЗ	0.39	0.79	0.97	0.96
HHC1A5	1.15	1.04	1.00	0.88
JDC1A1	0.93		1.04	
JDC1A15		0.93	0.86	1.30
JDC1A3	0.57	0.72	0.78	1.15
JDC1A6		0.91		1.20
JDC1A9	0.84	0.91	0.88	0.99
MKC1A12	0.83	1.18	0.87	1.05
MKC1A2	0.61	1.12	0.78	1.02
MKC1A20		1.01	0.89	0.89
MKC1A5	0.59	0.90	0.82	1.14
NPC1A10	0.63		0.86	0.84
NPC1A16	0.63	0.85	0.72	0.68
NPC1A5	0.81	0.85	0.93	0.91
NPC1A9		0.82	0.64	0.77
SWO1A11	1.13	0.82	0.88	0.99
SWO1A15	1.08	0.99	0.91	1.01
SWO1A2	1.04	0.86	0.75	0.73
SWO1A4	0.41	0.98	0.84	0.95
Mean	0.77	0.92	0.89	0.88
Median	0.81	0.91	0.88	0.91
SD	0.23	0.12	0.15	0.23

Table A.10. Summary chart of median F_{inf} values in comparison with U.S. values calculated using a similar methodology in the MESA-Air study (Allen et al. 2012).

Correlation analysis of F_{inf} against occupant behavior

BC and $PM_{2.5}$ F_{inf} values derived from paired in/out monitoring during each season were compared against resident questionnaire and daily log responses. For each of cooking, window-opening and in-window air conditioner use (referred to as C, W, and AC respectively), a score was calculated. These scores were defined to be the number of times the residents said they used each of these divided by the total number of opportunities (21 for each). For example, if a resident cooked every evening for all seven days, but not at any other time, then for this resident we would assign C = 7/21 = 1/3. The *R* function Im() was used to perform regression analysis, using single-variable tests (Pearson, Spearman and Kendall).

During the warm season, significant negative correlation (P < 0.05) was found between the F_{inf} of both pollutants and AC. During the cool season none of the residents used air conditioning, so an AC correlation test was not possible. No significant correlations were found.

Figure A.20. Scatter plot of AC score against BC F_{inf} showing evidence of a decreasing monotonic relationship, as supported by the Spearman and Kendall tests.

Table A.11. Number of survey subjects (TCS) included in analysis

Original Number of subjects: 101,385		
Exclusion criteria	Number of subjects	% in original number of subjects
Subject is driver or worker on van	2,380	2.4
Subject works in "Transportation, storage, postal & courier services" industry	2,498	2.5
Subject is domestic helper	3,510	3.5
Subject is mobile resident	199	0.2
Subject's trip involving boundary control points or anywhere outside Hong Kong	3,218	3.2
Subject with missing working industry information	197	0.2
Time data is incorrectly typed in the original TCS dataset (e.g. n^{th} trip arrival time is later than $(n+1)^{th}$ trip departure time	25	0.02
Total subjects excluded	12,027	11.9%
Number of subjects remaining:	89,358	88.1%

Figure A.21. Tertiary planning units (TPU) in Hong Kong.

Table A.12. Classifications of microenvironments

_

Microenvironment	Building type
Home indoor	Residential building
Commercial indoor	Commercial and industrial building (including shopping plaza and hotel)
School indoor	School, including Kindergarten/nursery, Primary School, Secondary School, Tertiary Institution and University
Other indoor	Building other than the above
Outdoor	non-building area
In-transit	Bus, train, minibus (23 classifications)

Hourly diurnal factors applied in the dynamic model for each pollutant

Table A.13. Hourly diurnal factors applied in the dynamic model for each pollutant

_

Hour	PM _{2.5}	ВС	NO ₂
0	0.97	0.92	0.92
1	0.93	0.68	0.73
2	0.89	0.57	0.63
3	0.87	0.48	0.56
4	0.86	0.46	0.55
5	0.86	0.53	0.60
6	0.88	0.85	0.83
7	0.92	1.21	1.03
8	0.98	1.37	1.11
9	1.01	1.27	1.08
10	1.01	1.13	1.02
11	1.01	1.04	1.00
12	1.01	0.98	0.98
13	1.03	0.99	1.02
14	1.06	1.02	1.08
15	1.07	1.06	1.14
16	1.07	1.13	1.22
17	1.08	1.22	1.31
18	1.09	1.30	1.37
19	1.12	1.26	1.31
20	1.13	1.17	1.21
21	1.09	1.13	1.14
22	1.05	1.13	1.11
23	1.01	1.08	1.05

Table A.14. Mean ambient concentrations for TPUs (N = 289)

	Mean	Min	Max	S.D.
PM _{2.5}	31.11	23.3	40.8	3.3
BC	8.66	2.8	18.5	3.6
NO ₂	92.42	56.2	141.1	17.6

Figure A.22. TPU-averaged PM_{2.5}, BC and NO₂ concentrations created from 2D land use regression models.

Time-weighted exposures

Table A.15. Time-weighted exposure of all modeling stages

		Time-weighted Exposure (μ g/m ³) (N = 89,358)												
Stage	Stage Microenvironment		PM	2.5			BC				NO ₂			
		mean	min	max	S.D.	mean	min	max	S.D.	mean	min	max	S.D.	
1	Static outdoor	32.0	23.3	40.8	3.4	9.4	2.8	18.5	3.5	92.9	56.2	141.1	15.1	
2	Static indoor	27.0	19.7	34.5	2.8	8.3	2.5	16.4	3.1	73.4	44.4	111.4	12.0	
3	Dynamic indoor	25.0	11.2	38.7	3.9	7.6	1.9	17.0	2.7	73.4	42.9	116.7	10.9	
4	Dynamic indoor + transit	27.5	13.1	46.5	4.1	8.4	2.3	18.0	2.6	74.8	44.4	116.7	10.5	
5	Dynamic indoor + transit + diurnal	27.1	11.9	46.8	4.2	7.8	1.2	21.5	2.8	71.3	24.9	122.7	14.3	
6	Dynamic indoor + transit + diurnal (movement)	33.8	20.3	50.2	3.9	9.6	1.3	22.0	3.4	90.9	31.5	147.7	18.1	

Table A.16. Time-weighted exposure stratified by age group

		Time-weighted Exposure (μg/m ³)											
Stage	ME	PM _{2.5}											
			<18 (N =	14,279)		1	18-64 (N = 61,882)				65+ (N =	13,197)	
		mean	min	max	S.D.	mean	min	max	S.D.	mean	min	max	S.D.
1	Static outdoor	31.9	23.3	40.8	3.4	32.0	23.3	40.8	3.4	32.0	23.3	40.8	3.3
2	Static indoor	27.0	19.7	34.5	2.9	27.0	19.7	34.5	2.8	27.0	19.7	34.5	2.8
3	Dynamic indoor	27.7	16.2	37.0	2.9	24.2	11.2	38.7	4.0	26.0	14.9	35.8	2.9
4	Dynamic indoor + transit	29.5	17.3	41.8	3.2	27.1	13.1	46.5	4.3	27.1	16.8	42.6	3.4
5	Dynamic indoor + transit + diurnal	29.5	16.6	42.1	3.4	26.8	11.9	46.8	4.4	26.1	16.2	42.9	3.6
6	Dynamic outdoor + transit + diurnal	33.5	20.3	46.3	3.6	34.3	20.3	50.2	3.9	31.8	20.3	47.4	3.9

			Time-weighted Exposure (μg/m³)										
Channa	AAF						B	BC					
Slage			<18 (N =	14,279)			18-64 (N	= 61,882)			65+ (N =	: 13,197)	
		mean	min	max	S.D.	mean	min	max	S.D.	mean	min	max	S.D.
1	Static outdoor	9.4	2.8	18.5	3.5	9.4	2.8	18.5	3.5	9.2	2.8	18.5	3.5
2	Static indoor	8.3	2.5	16.4	3.1	8.3	2.5	16.4	3.1	8.2	2.5	16.4	3.1
3	Dynamic indoor	8.3	2.3	16.4	2.8	7.4	1.9	17.0	2.6	7.8	2.3	16.4	2.9
4	Dynamic indoor + transit	8.8	2.6	17.5	2.7	8.3	2.3	18.0	2.5	8.2	2.5	17.5	2.9
5	Dynamic indoor + transit + diurnal	9.2	1.3	19.2	3.1	7.8	1.2	21.5	2.7	6.6	1.2	18.9	2.8
6	Dynamic outdoor + transit + diurnal	10.3	1.4	21.7	3.4	9.8	1.3	22.0	3.2	7.9	1.3	21.2	3.3

		Time-weighted Exposure (μg/m³)												
Stago	NAE						N	0 ₂						
Sluge	IVIE	<	:18 (N =	14,279)		18	3-64 (N	= 61,882)	e	65+ (N = 13 <i>,</i> 197)			
		mean	min	max	S.D.	mean	min	max	S.D.	mean	min	max	S.D.	
1	Static outdoor	91.6	56.2	141.1	14.7	92.6	56.2	141.1	15.1	95.5	56.2	141.1	15.5	
2	Static indoor	72.4	44.4	111.4	11.6	73.1	44.4	111.4	11.9	75.5	44.4	111.4	12.3	
3	Dynamic indoor	70.5	42.9	111.4	10.6	73.8	43.1	116.3	10.6	75.0	43.9	116.7	11.9	
4	Dynamic indoor + transit	72.1	44.4	111.4	10.4	75.2	44.4	116.7	10.2	76.2	44.4	113.0	11.7	
5	Dynamic indoor + transit + diurnal	73.9	24.9	113.2	12.7	72.1	24.9	122.7	13.9	64.7	24.9	111.2	15.6	
6	Dynamic outdoor + transit + diurnal	95.7	31.5	147.7	16.6	91.7	31.5	147.7	17.4	82.0	31.5	143.1	19.9	

Web-only Appendix A for HEI Research Report 194 by Barratt et al.

Table A.17. Time-weighted exposure stratified by sex

_

ī.

		Time-weighted Exposure (μg/m³)										
Ctores	БАГ				PN	1 _{2.5}						
Slage			Male (N =	41,240)			Female (N	= 48,148)				
		mean	min	max	S.D.	mean	min	max	S.D.			
1	Static outdoor	32.0	23.3	40.8	3.4	32.0	23.3	40.8	3.4			
2	Static indoor	27.0	19.7	34.5	2.8	27.0	19.7	34.5	2.8			
3	Dynamic indoor	25.0	11.2	38.7	4.1	25.0	12.6	37.0	3.7			
4	Dynamic indoor + transit	27.7	13.1	44.4	4.3	27.3	14.7	46.5	3.8			
5	Dynamic indoor + transit + diurnal	27.4	11.9	45.0	4.5	26.9	13.6	46.8	4.0			
6	Dynamic outdoor + transit + diurnal	34.1	20.3	48.9	3.9	33.6	20.3	50.2	3.9			

Time-weighted Exposure (μg/m³)

StageME1Static ou2Static in3Dynamic4Dynamic5Dynamic6Dynamic	ME	BC										
	IVIE		Male (N =	41,240)			Female (N	= 48,148)				
		mean	min	max	S.D.	mean	min	max	S.D.			
1	Static outdoor	9.4	2.8	18.5	3.5	9.3	2.8	18.5	3.5			
2	Static indoor	8.3	2.5	16.4	3.1	8.3	2.5	16.4	3.1			
3	Dynamic indoor	7.6	1.9	17.0	2.7	7.6	2.0	16.6	2.7			
4	Dynamic indoor + transit	8.4	2.3	17.6	2.6	8.3	2.3	18.0	2.6			
5	Dynamic indoor + transit + diurnal	8.1	1.2	21.5	2.9	7.7	1.2	19.6	2.8			
6	Dynamic outdoor + transit + diurnal	9.8	1.3	22.0	3.4	9.4	1.3	21.8	3.4			

			Time-weighted Exposure (μg/m³)									
Chana	ME				NO ₂	!						
Slage	IVIE		Male (N	= 41,240)			Female (N	= 48,148)				
		mean	min	max	S.D.	mean	min	max	S.D.			
1	Static outdoor	93.0	56.2	141.1	15.2	92.7	56.2	141.1	15.1			
2	Static indoor	73.5	44.4	111.4	12.0	73.3	44.4	111.4	11.9			
3	Dynamic indoor	74.0	42.9	116.3	11.0	72.9	43.1	116.7	10.8			
4	Dynamic indoor + transit	75.4	44.4	116.7	10.6	74.3	44.4	112.7	10.5			
5	Dynamic indoor + transit + diurnal	72.8	24.9	122.7	14.4	70.1	24.9	117.3	14.0			
6	Dynamic outdoor + transit + diurnal	92.3	31.5	147.7	17.9	89.8	31.5	147.7	18.2			

Table A.18. Time-weighted exposure stratified by population group

_

						Time-we	ighted Ex	(posure (µg/m³)				
Stago	NAE						PM	2.5					
Sluge		Worki	ng adults	(N = 41,9	972)	Stu	idents (N	= 17,871)	Others (N = 29,515)			
		mean	min	max	S.D.	mean	min	max	S.D.	mean	min	max	S.D.
1	Static outdoor	31.9	23.3	40.8	3.4	31.9	23.3	40.8	3.4	32.0	23.3	40.8	3.4
2	Static indoor	27.0	19.7	34.5	2.8	27.0	19.7	34.5	2.9	27.1	19.7	34.5	2.8
3	Dynamic indoor	23.0	11.2	38.7	3.9	27.8	16.7	37.0	2.8	26.2	14.4	36.2	2.8
4	Dynamic indoor + transit	26.6	13.1	46.5	4.4	29.8	18.1	44.7	3.2	27.4	15.8	42.6	3.4
5	Dynamic indoor + transit + diurnal	26.5	11.9	46.8	4.5	29.7	17.2	45.4	3.4	26.4	14.4	42.9	3.6
6	Dynamic outdoor + transit + diurnal	35.1	20.3	50.2	3.6	33.7	20.3	48.8	3.6	32.0	20.3	48.0	3.9

						Time-we	ighted Ex	xposure (ug/m³)				
Stago	ME						В	C					
Sluge	IVIE	Worki	ng adults	s (N = 41,	972)	Stu	idents (N	I = 17,871)	0	thers (N	= 29,515)	
		mean	min	max	S.D.	mean	min	max	S.D.	mean	min	max	S.D.
1	Static outdoor	9.3	2.8	18.5	3.5	9.4	2.8	18.5	3.4	9.4	2.8	18.5	3.5
2	Static indoor	8.3	2.5	16.4	3.1	8.3	2.5	16.4	3.0	8.3	2.5	16.4	3.1
3	Dynamic indoor	7.1	1.9	17.0	2.4	8.3	2.5	16.4	2.7	8.0	2.3	16.4	2.9
4	Dynamic indoor + transit	8.1	2.3	17.6	2.4	8.9	2.7	17.5	2.7	8.4	2.5	18.0	2.9
5	Dynamic indoor + transit + diurnal	8.0	1.2	21.5	2.6	9.2	1.3	19.2	3.0	6.8	1.2	18.9	2.8
6	Dynamic outdoor + transit + diurnal	9.3	2.8	18.5	3.5	9.4	2.8	18.5	3.4	9.4	2.8	18.5	3.5

						Time-we	ighted Ex	kposure (ug/m³)				
Stage	ME						NC) ₂					
Sluge	IVIL	Worki	ng adults	s (N = 41,	972)	Stu	dents (N	= 17,871)	Ot	thers (N :	rs (N = 29,515) nin max 56.2 141.1 44.4 111.4	
		mean	min	max	S.D.	mean	min	max	S.D.	mean	min	max	S.D.
1	Static outdoor	92.9	56.2	141.1	15.1	91.7	56.2	141.1	14.7	93.5	56.2	141.1	15.4
2	Static indoor	73.4	44.4	111.4	11.9	72.4	44.4	111.4	11.6	73.9	44.4	111.4	12.2
3	Dynamic indoor	74.6	43.1	116.3	10.2	70.7	42.9	111.4	10.4	73.4	43.9	116.7	11.9
4	Dynamic indoor + transit	76.1	44.4	116.7	9.7	72.2	44.4	111.4	10.1	74.6	44.4	113.0	11.6
5	Dynamic indoor + transit + diurnal	75.5	24.9	122.7	12.4	73.7	24.9	113.2	12.6	63.9	24.9	111.2	14.7
6	Dynamic outdoor + transit + diurnal	96.1	31.5	147.7	15.3	95.4	31.5	147.7	16.5	81.0	31.5	143.1	18.7

Figure A.23. Time-weighted PM_{2.5} exposures unstratified (top) and stratified by age group (bottom)

Figure A.24. Time-weighted PM_{2.5} exposures stratified by population sub-group (top) and sex (bottom).

Figure A.26. Time-weighted BC exposures stratified by population sub-group (top) and sex (bottom).

Time-weighted NO2 Exposure - Overall results

Figure A.28. Time-weighted NO₂ exposures stratified by population sub-group (top) and sex (bottom).

WP4

Level	Variables	Categories
	Age	
	Sex	Female, Male
	Body mass index (BMI)	Defined as weight/height ² (kg/m ²). < 21.6, 21.6–26.3, > 26.3 kg/m ²
Individual	Smoking status	(never, ex-smoker, current smoker)
	Physical exercise	(days per week)
	Education	(< primary, primary, ≥ secondary)
	Monthly expenses	(< 128, 128–384, > 384 US\$).
	Proportion of the population \geq 65 years of age	
TPU	Proportion with > secondary education	
	Average monthly income	
District	Proportion of smokers	

Table A.19. Adjusted individual, ecological and environmental covariates included in the final Cox PH models.

Figure A.29. Spatial distribution of geocoded addresses of participants and boundaries of the 18 districts (n = 60,584). Each district had one Elderly Health Centre to provide health service for persons ≥ 65 years of age who have enrolled voluntarily. Those enrolled in 1998–2001 were recruited to this study, and their residential addresses were geocoded into x– and y-coordinates.

Descriptive statistics of the elderly cohort and exposure estimates

ICD10 codes	Cause of death	Number of deaths	% of total death
A00–R99	All natural causes	16,006	97.5
100–99	Cardiovascular	4,656	28.4
120–125	- IHD	1,810	11
160–69	- Cerebrovascular	1,621	9.9
J00–47, 80–99	Respiratory	3,150	19.2
J12–18	- Pneumonia	2,057	12.5
J40–44, 47	- COPD	940	5.7
S00–T99	External causes	409	2.5
All included codes	All causes	16,415	100

 Table A.20. Number of deaths in the elderly cohort after 10–13 years of follow-up in 2011

Table A.21. Descriptive statistics of 2D, 3D and D3D LUR modelled and back-extrapolated baseline exposures for all pollutants. *From Wong et al.(2015) **From Wong et al. (2016)

			PM _{2.5}			
	Mean	SD	Min	IQR	Median	Max
			Baseline			
2D	42.4	4.2	27.2	5.5	42.2	73.6
3D	36.6	5.5	18.2	7.5	36.7	66.0
D3D	34.0	5.1	16.8	7.0	34.1	62.1
			2014			
2D	33.1	4.0	20.0	5.0	33.0	62.0
3D	28.6	4.7	13.3	6.3	28.6	56.8
D3D	26.5	4.3	12.2	5.9	26.6	53.4
	I	Baseli	ne (Satellite-based estin	nates)		
2D*	35.6	2.5	26.4	3.4	35.3	44.6
3D ^{**}	33.7	3.2	26.1	3.3	33.2	92.7
	I		ВС			
	Mean	SD	Min	IQR	Median	Max
	1		Baseline			
2D	13.1	6.7	3.9	9.6	12.1	44.7
3D	8.8	5.4	0.9	7.2	7.7	41.1
D3D	6.6	4.0	0.7	5.4	5.7	31.5
	1		2014			
2D	7.4	3.7	2.8	5.2	6.9	23.4
3D	4.9	3.0	0.6	4.0	4.3	22.8
D3D	3.7	2.2	0.5	3.0	3.2	17.6
			NO			
	Mean	SD	Min	IQR	Median	Max
			Baseline			
2D	489	119	120	167	486	785
3D	327	136	39	203	315	776
D3D	244	102	29	151	235	576
			2014			
2D	284	69	71	96	282	444
3D	190	79	23	118	183	439
D3D	141	59	17	88	136	334
	Maan	CD	NU ₂	100	Madian	
	Iviean	20	IVIIN	IQK	iviedian	iviax
20	107	10	JG	26	104	105
30	71	26	40	38	72	177
D3D	58	20	17	31	59	142
	50		2014	51		
2D	96	17	43	23	94	177
3D	64	23	13	34	65	158
D3D	52	19	10	28	53	127

Table A.22. Mean annual exposures from baseline to follow-up period

Vear	Satellite	Satellite	LUR	LUR	LUR	LUR
rear	PM _{2.5}	PM _{2.5} 3D	PM _{2.5}	BC	NO ₂	NO
1998	34.8	33.0	44.3	14.3	107	481
1999	36.9	34.6	43.2	14.1	108	486
2000	34.1	32.6	41.2	12.7	106	496
2001	35.6	33.7	41.5	11.0	106	489
2002	34.0	32.4	42.0	9.9	104	463
2003	37.0	34.7	45.9	9.9	106	424
2004	39.4	36.6	50.7	9.6	109	415
2005	38.9	36.2	49.5	9.0	105	412
2006	36.7	34.5	46.9	9.0	103	397
2007	40.2	37.2	47.0	8.6	104	385
2008	39.7	36.8	43.9	6.6	102	356
2009	39.5	36.7	38.3	5.0	99	335
2010	37.4	35.0	38.7	5.7	102	336
2011	38.6	35.9	38.7	6.3	103	327

Figure A.30. Modeled 2D annual mean pollutant exposure trends from baseline to follow-up period. WHOGV = Word Health Organization Guideline Value.

Figure continues on next page.

Figure A.30 continued.

Sensitivity and stratification analysis results

Hazard ratios

Table A.23. Hazard ratio (95% CI) of mortality from all natural causes adjusted for individual covariates only and together with ecological covariates measured at baseline 1998-2001 based on D3D model

Variables	Individual covariates	Individual and ecological covariates
Individual Level		
$PM_{2.5}$ concentrations (per 10 μ g/m ³)	1.11 (1.08, 1.15)	1.10 (1.06, 1.13)
Age at entry	1.12 (1.11, 1.12)	1.12 (1.12, 1.12)
Gender: Male (%)	1	1
Female (%)	0.65 (0.62, 0.68)	0.65 (0.63, 0.68)
BMI quartiles:		
1 st [<21.6] (%)	1.25 (1.21, 1.30)	1.25 (1.21, 1.30)
2 nd - 3 rd [21.6-26.3] (%)	1	1
4 th [>26.3] (%)	1.01 (0.97, 1.05)	1.01 (0.97, 1.05)
Smoking status		
Never (%)	1	1
Former (%)	1.40 (1.34, 1.45)	1.39 (1.33, 1.44)
Current (%)	1.72 (1.64, 1.81)	1.71 (1.62, 1.79)
Exercise (days per week)	0.97 (0.95, 0.98)	0.97 (0.95, 0.98)
Education		
Below primary (%)	1.23 (1.18, 1.30)	1.20 (1.14, 1.26)
Primary (%)	1.11 (1.06, 1.16)	1.08 (1.03, 1.13)
Secondary or above (%)	1	1
Expenses/month in US\$		
Low [<128] (%)	1	1
Medium [128-384] (%)	1.07 (1.01, 1.13)	1.06 (1.01, 1.12)
High [≥385] (%)	1.02 (0.98, 1.06)	1.01 (0.96, 1.05)
TPU level		
age≥65	-	0.99 (0.98, 0.99)
tertiary education	-	0.99 (0.98, 1.00)
income≥US\$1,923	-	1.00 (1.00, 1.00)
District level		
Smoking rate	-	1.07 (1.00, 1.15)

Table A.24. Hazard ratio (95%CI) per IQR increase of PM_{2.5} in main analysis for average exposure at the baseline period and sensitivity analyses for exposure to average PM_{2.5} yearly and for different inclusion and exclusion criteria

Cause of Death	Main analysis - baseline exposure ^a	Yearly Exposure	Including deaths within 1 year - baseline exposure	Excluding deaths within 3 years - baseline exposure
2D				
All natural causes	1.03 (1.01, 1.06)*	1 (0.98, 1.03)	1.03 (1.01, 1.05)*	1.04 (1.02, 1.07)*
Cardiovascular	1.06 (1.02, 1.1)*	1.02 (0.98, 1.06)	1.06 (1.02, 1.1)*	1.07 (1.03, 1.11)*
IHD	1.03 (0.97, 1.1)	0.98 (0.92, 1.05)	1.04 (0.98, 1.1)	1.03 (0.97, 1.1)
Cerebrovascular	1.06 (0.99, 1.13)	1.02 (0.95, 1.09)	1.05 (0.99, 1.12)	1.08 (1.01, 1.16)*
Respiratory	1.02 (0.97, 1.06)	0.99 (0.94, 1.04)	1.02 (0.97, 1.06)	1.02 (0.97, 1.07)
Pneumonia	1 (0.94, 1.06)	0.98 (0.92, 1.04)	1 (0.94, 1.06)	1 (0.95, 1.06)
COPD	1.06 (0.97, 1.15)	1.02 (0.93, 1.11)	1.06 (0.97, 1.15)	1.06 (0.97, 1.16)
External causes	1.02 (0.9, 1.16)	0.99 (0.86, 1.13)	1.01 (0.89, 1.15)	1.02 (0.89, 1.17)
3D				
All natural causes	1.07 (1.04, 1.09)*	1.05 (1.02, 1.07)*	1.07 (1.04, 1.09)*	1.07 (1.05, 1.1)*
Cardiovascular	1.1 (1.05, 1.14)*	1.07 (1.02, 1.11)*	1.09 (1.05, 1.14)*	1.1 (1.05, 1.14)*
IHD	1.09 (1.03, 1.17)*	1.06 (0.99, 1.13)	1.09 (1.02, 1.16)*	1.09 (1.02, 1.17)*
Cerebrovascular	1.08 (1.01, 1.16)*	1.05 (0.98, 1.12)	1.08 (1, 1.15)	1.08 (1.01, 1.16)*
Respiratory	1.06 (1.01, 1.11)*	1.04 (0.99, 1.09)	1.06 (1.01, 1.11)*	1.07 (1.01, 1.12)*
Pneumonia	1.05 (0.99, 1.12)	1.03 (0.97, 1.1)	1.05 (0.99, 1.11)	1.05 (0.99, 1.12)
COPD	1.09 (1, 1.19)	1.06 (0.97, 1.16)	1.09 (1, 1.19)	1.09 (0.99, 1.2)
External causes	1.03 (0.9, 1.19)	1.01 (0.88, 1.15)	1.02 (0.89, 1.17)	1.02 (0.88, 1.18)
D3D				
All natural causes	1.07 (1.04, 1.09)*	1.05 (1.02, 1.07)*	1.07 (1.04, 1.09)*	1.07 (1.05, 1.1)*
Cardiovascular	1.1 (1.05, 1.14)*	1.07 (1.02, 1.11)*	1.09 (1.05, 1.14)*	1.1 (1.05, 1.14)*
IHD	1.09 (1.03, 1.17)*	1.06 (1, 1.13)	1.09 (1.02, 1.16)*	1.09 (1.02, 1.17)*
Cerebrovascular	1.08 (1.01, 1.16)*	1.05 (0.98, 1.13)	1.08 (1.01, 1.15)*	1.08 (1.01, 1.17)*
Respiratory	1.06 (1.01, 1.11)*	1.04 (0.99, 1.09)	1.06 (1.01, 1.11)*	1.07 (1.01, 1.12)*
Pneumonia	1.05 (0.99, 1.12)	1.03 (0.97, 1.1)	1.05 (0.99, 1.12)	1.05 (0.99, 1.12)
COPD	1.09 (1, 1.19)	1.06 (0.97, 1.16)	1.09 (1, 1.19)	1.09 (0.99, 1.2)
External causes	1.04 (0.9, 1.19)	1.01 (0.88, 1.16)	1.02 (0.89, 1.17)	1.02 (0.88, 1.18)

Cause of death	Main analysis - baseline exposure ^a	Yearly Exposure	Including deaths within 1 year - baseline exposure	Excluding deaths within 3 years - baseline exposure
2D	·		·	
All natural causes	1.03 (1, 1.05)*	1.02 (0.99, 1.06)	1.03 (1, 1.05)	1.03 (1, 1.05)
Cardiovascular	1.07 (1.03, 1.11)*	1.09 (1.02, 1.16)*	1.07 (1.03, 1.12)*	1.06 (1.02, 1.11)*
IHD	1.08 (1.01, 1.15)*	1.07 (0.96, 1.19)	1.08 (1.01, 1.15)*	1.08 (1.01, 1.15)*
Cerebrovascular	1.05 (0.98, 1.13)	1.07 (0.96, 1.2)	1.06 (0.99, 1.13)	1.04 (0.97, 1.12)
Respiratory	0.99 (0.94, 1.04)	0.96 (0.88, 1.04)	0.99 (0.94, 1.04)	1 (0.95, 1.05)
Pneumonia	0.99 (0.93, 1.05)	0.95 (0.86, 1.06)	0.99 (0.93, 1.05)	0.99 (0.93, 1.06)
COPD	0.98 (0.9, 1.08)	0.94 (0.81, 1.09)	0.98 (0.89, 1.07)	1 (0.9, 1.1)
External causes	1.18 (1.03, 1.35)*	1.27 (1.03, 1.56)*	1.17 (1.03, 1.33)*	1.16 (1, 1.33)
3D				
All natural causes	1.05 (1.03, 1.07)*	1.06 (1.02, 1.09)*	1.05 (1.03, 1.07)*	1.05 (1.02, 1.07)*
Cardiovascular	1.09 (1.05, 1.14)*	1.14 (1.07, 1.21)*	1.1 (1.06, 1.14)*	1.09 (1.04, 1.13)*
IHD	1.1 (1.04, 1.17)*	1.14 (1.03, 1.25)*	1.11 (1.04, 1.17)*	1.11 (1.04, 1.18)*
Cerebrovascular	1.07 (1.01, 1.14)*	1.12 (1.01, 1.24)*	1.08 (1.01, 1.15)*	1.06 (0.99, 1.13)
Respiratory	1.02 (0.97, 1.06)	1 (0.93, 1.08)	1.01 (0.97, 1.06)	1.02 (0.97, 1.07)
Pneumonia	1.01 (0.96, 1.07)	1 (0.9, 1.1)	1.01 (0.96, 1.07)	1.01 (0.96, 1.08)
COPD	1.01 (0.93, 1.1)	0.99 (0.86, 1.14)	1.01 (0.93, 1.1)	1.02 (0.93, 1.12)
External causes	1.15 (1.01, 1.3)*	1.2 (0.99, 1.46)	1.14 (1, 1.29)	1.12 (0.97, 1.28)
D3D				
All natural causes	1.05 (1.03, 1.07)*	1.06 (1.02, 1.09)*	1.05 (1.03, 1.07)*	1.05 (1.02, 1.07)*
Cardiovascular	1.1 (1.06, 1.14)*	1.14 (1.08, 1.22)*	1.1 (1.06, 1.14)*	1.09 (1.05, 1.13)*
IHD	1.11 (1.04, 1.17)*	1.14 (1.03, 1.26)*	1.11 (1.04, 1.17)*	1.11 (1.04, 1.18)*
Cerebrovascular	1.07 (1.01, 1.15)*	1.12 (1.01, 1.24)*	1.08 (1.01, 1.15)*	1.06 (0.99, 1.14)
Respiratory	1.02 (0.97, 1.06)	1 (0.93, 1.08)	1.01 (0.97, 1.06)	1.02 (0.97, 1.07)
Pneumonia	1.01 (0.96, 1.07)	1 (0.9, 1.1)	1.01 (0.96, 1.07)	1.01 (0.96, 1.08)
COPD	1.01 (0.93, 1.1)	0.99 (0.86, 1.14)	1.01 (0.93, 1.1)	1.02 (0.93, 1.12)
External causes	1.15 (1.01, 1.3)*	1.2 (0.99, 1.46)	1.14 (1, 1.29)	1.12 (0.98, 1.28)

 Table A.25. Hazard ratio (95%CI) per IQR increase of BC in main analysis for average exposure at the baseline period and sensitivity analyses for exposure to average BC yearly and for different inclusion and exclusion criteria

Cause of death	Main analysis - baseline exposure ^a	Yearly Exposure	Including deaths within 1 year - baseline exposure	Excluding deaths within 3 years - baseline exposure
2D	·	, ,	·	·
All natural causes	0.99 (0.97, 1.02)	1 (0.97, 1.03)	0.99 (0.97, 1.02)	0.99 (0.97, 1.02)
Cardiovascular	0.96 (0.91, 1)	0.95 (0.89, 1)	0.95 (0.91, 1)	0.97 (0.92, 1.01)
IHD	0.98 (0.91, 1.05)	0.97 (0.89, 1.06)	0.98 (0.91, 1.05)	1 (0.93, 1.08)
Cerebrovascular	0.96 (0.89, 1.04)	0.95 (0.86, 1.04)	0.95 (0.89, 1.03)	0.97 (0.9, 1.05)
Respiratory	1 (0.94, 1.05)	1.01 (0.94, 1.08)	1 (0.94, 1.05)	0.99 (0.93, 1.05)
Pneumonia	0.99 (0.93, 1.06)	0.99 (0.9, 1.08)	0.99 (0.93, 1.06)	0.98 (0.92, 1.05)
COPD	1.04 (0.94, 1.15)	1.08 (0.95, 1.22)	1.04 (0.94, 1.15)	1.03 (0.92, 1.14)
External causes	1.1 (0.94, 1.28)	1.13 (0.94, 1.36)	1.09 (0.93, 1.26)	1.12 (0.96, 1.32)
3D				
All natural causes	1.05 (1.02, 1.07)*	1.06 (1.03, 1.09)*	1.05 (1.02, 1.07)*	1.05 (1.02, 1.08)*
Cardiovascular	1.04 (0.99, 1.09)	1.05 (0.99, 1.11)	1.03 (0.99, 1.08)	1.03 (0.99, 1.09)
IHD	1.09 (1.01, 1.17)*	1.12 (1.02, 1.23)*	1.08 (1.01, 1.16)*	1.1 (1.02, 1.19)*
Cerebrovascular	1.01 (0.94, 1.1)	1.02 (0.92, 1.13)	1.01 (0.93, 1.09)	1 (0.92, 1.09)
Respiratory	1.06 (1, 1.12)	1.09 (1.01, 1.17)*	1.06 (1, 1.12)	1.06 (1, 1.12)
Pneumonia	1.06 (0.99, 1.13)	1.07 (0.98, 1.18)	1.06 (0.99, 1.13)	1.06 (0.98, 1.13)
COPD	1.1 (0.99, 1.22)	1.15 (1.01, 1.31)*	1.1 (0.99, 1.22)	1.09 (0.97, 1.21)
External causes	1.07 (0.92, 1.25)	1.07 (0.89, 1.3)	1.05 (0.9, 1.23)	1.07 (0.91, 1.27)
D3D				
All natural causes	1.05 (1.02, 1.07)*	1.06 (1.03, 1.09)*	1.05 (1.02, 1.07)*	1.05 (1.02, 1.07)*
Cardiovascular	1.04 (0.99, 1.09)	1.05 (0.99, 1.12)	1.03 (0.99, 1.08)	1.03 (0.99, 1.09)
IHD	1.09 (1.01, 1.17)*	1.12 (1.02, 1.23)	1.08 (1, 1.16)	1.1 (1.02, 1.19)*
Cerebrovascular	1.01 (0.94, 1.1)	1.02 (0.93, 1.13)	1.01 (0.93, 1.09)	1 (0.92, 1.09)
Respiratory	1.06 (1, 1.12)	1.09 (1.01, 1.17)*	1.06 (1, 1.12)	1.06 (1, 1.12)
Pneumonia	1.06 (0.99, 1.13)	1.08 (0.98, 1.18)	1.06 (0.99, 1.13)	1.06 (0.98, 1.14)
COPD	1.1 (0.99, 1.22)	1.15 (1.01, 1.31)*	1.09 (0.99, 1.21)	1.08 (0.97, 1.21)
External causes	1.07 (0.92, 1.26)	1.08 (0.89, 1.3)	1.05 (0.9, 1.23)	1.07 (0.91, 1.27)

Table A.26. Hazard ratio (95%CI) per IQR increase of NO in main analysis for average exposure at the baseline period and sensitivity analyses for exposure to average NO yearly and for different inclusion and exclusion criteria.

Cause of death	Main analysis - baseline exposure ^a	Yearly Exposure	Including deaths within 1 year - baseline exposure	Excluding deaths within 3 years - baseline exposure
2D	expected e		chpodule	chpoodic
All natural causes	1 (0.97, 1.03)	0.99 (0.96, 1.02)	0.99 (0.97, 1.02)	1 (0.97, 1.03)
Cardiovascular	1 (0.95, 1.05)	0.99 (0.94, 1.05)	0.99 (0.94, 1.05)	1 (0.95, 1.06)
IHD	1.09 (1, 1.18)	1.08 (0.99, 1.18)	1.08 (0.99, 1.17)	1.1 (1.01, 1.2)*
Cerebrovascular	1 (0.91, 1.09)	0.99 (0.9, 1.08)	0.99 (0.91, 1.08)	0.98 (0.89, 1.08)
Respiratory	0.99 (0.93, 1.06)	0.99 (0.92, 1.06)	0.99 (0.93, 1.05)	0.99 (0.92, 1.06)
Pneumonia	0.98 (0.9, 1.06)	0.97 (0.9, 1.06)	0.98 (0.9, 1.06)	0.98 (0.9, 1.07)
COPD	1.02 (0.9, 1.15)	1.02 (0.9, 1.16)	1.02 (0.9, 1.15)	1.02 (0.9, 1.16)
External causes	1.1 (0.92, 1.31)	1.09 (0.91, 1.31)	1.1 (0.92, 1.3)	1.1 (0.91, 1.33)
3D				
All natural causes	1.06 (1.03, 1.09)*	1.06 (1.03, 1.09)*	1.06 (1.03, 1.08)*	1.06 (1.03, 1.09)*
Cardiovascular	1.09 (1.04, 1.14)*	1.09 (1.04, 1.14)*	1.08 (1.03, 1.14)*	1.08 (1.02, 1.13)*
IHD	1.15 (1.06, 1.24)*	1.15 (1.07, 1.25)*	1.14 (1.06, 1.23)*	1.15 (1.06, 1.25)*
Cerebrovascular	1.06 (0.98, 1.15)	1.06 (0.98, 1.15)	1.06 (0.98, 1.15)	1.04 (0.95, 1.13)
Respiratory	1.06 (1, 1.12)	1.06 (1, 1.13)	1.06 (1, 1.12)	1.07 (1.01, 1.13)*
Pneumonia	1.06 (0.99, 1.14)	1.06 (0.98, 1.14)	1.06 (0.99, 1.14)	1.06 (0.99, 1.15)
COPD	1.06 (0.96, 1.18)	1.07 (0.96, 1.19)	1.07 (0.96, 1.18)	1.07 (0.96, 1.2)
External causes	1.08 (0.93, 1.27)	1.08 (0.92, 1.27)	1.07 (0.91, 1.25)	1.06 (0.89, 1.25)
D3D				
All natural causes	1.06 (1.03, 1.08)*	1.06 (1.03, 1.09)*	1.06 (1.03, 1.08)*	1.06 (1.03, 1.09)*
Cardiovascular	1.09 (1.04, 1.14)*	1.09 (1.04, 1.14)*	1.08 (1.03, 1.14)*	1.08 (1.02, 1.13)*
IHD	1.15 (1.06, 1.24)*	1.15 (1.07, 1.24)*	1.14 (1.06, 1.22)*	1.15 (1.06, 1.25)*
Cerebrovascular	1.06 (0.98, 1.15)	1.06 (0.98, 1.16)	1.06 (0.98, 1.15)	1.04 (0.95, 1.13)
Respiratory	1.06 (1, 1.12)	1.06 (1, 1.13)	1.06 (1, 1.12)	1.07 (1.01, 1.13)*
Pneumonia	1.06 (0.99, 1.14)	1.06 (0.98, 1.14)	1.06 (0.99, 1.14)	1.07 (0.99, 1.15)
COPD	1.06 (0.96, 1.18)	1.06 (0.96, 1.19)	1.06 (0.96, 1.18)	1.07 (0.96, 1.19)
External causes	1.08 (0.93, 1.27)	1.08 (0.92, 1.27)	1.07 (0.91, 1.25)	1.06 (0.89, 1.25)

Table A.27. Hazard ratio (95%CI) per IQR increase of NO_2 in main analysis for average exposure at the baseline period and sensitivity analyses for exposure to average NO_2 yearly and for different inclusion and exclusion criteria

	Main analysis - baseline		Including deaths within 1 year -	Excluding deaths within 3
Cause of Death	exposure ^a	Yearly Exposure	baseline exposure	years - baseline exposure
2D				
All natural causes	1.06 (1.02, 1.11)*	1.01 (0.97, 1.05)	1.06 (1.02, 1.1)*	1.08 (1.04, 1.12)*
Cardiovascular	1.11 (1.03, 1.19)*	1.03 (0.96, 1.11)	1.1 (1.03, 1.18)*	1.13 (1.05, 1.22)*
IHD	1.06 (0.95, 1.19)	0.97 (0.86, 1.09)	1.07 (0.96, 1.19)	1.06 (0.94, 1.19)
Cerebrovascular	1.11 (0.98, 1.25)	1.03 (0.91, 1.17)	1.09 (0.97, 1.23)	1.16 (1.02, 1.32)*
Respiratory	1.03 (0.94, 1.12)	0.98 (0.9, 1.07)	1.03 (0.95, 1.12)	1.03 (0.94, 1.13)
Pneumonia	1 (0.9, 1.11)	0.96 (0.86, 1.07)	1 (0.9, 1.11)	1 (0.9, 1.12)
COPD	1.1 (0.95, 1.29)	1.04 (0.88, 1.22)	1.11 (0.95, 1.29)	1.11 (0.94, 1.3)
External causes	1.04 (0.82, 1.32)	0.98 (0.76, 1.25)	1.02 (0.81, 1.3)	1.04 (0.81, 1.34)
3D				
All natural causes	1.09 (1.06, 1.12)*	1.06 (1.03, 1.09)*	1.09 (1.06, 1.12)*	1.1 (1.06, 1.13)*
Cardiovascular	1.13 (1.07, 1.19)*	1.09 (1.03, 1.15)*	1.13 (1.07, 1.19)*	1.13 (1.07, 1.19)*
IHD	1.13 (1.03, 1.23)*	1.08 (0.99, 1.18)	1.12 (1.03, 1.22)*	1.12 (1.03, 1.23)*
Cerebrovascular	1.11 (1.01, 1.21)*	1.07 (0.97, 1.17)	1.1 (1.01, 1.21)*	1.11 (1.01, 1.22)*
Respiratory	1.08 (1.01, 1.15)*	1.06 (0.99, 1.13)	1.08 (1.01, 1.15)*	1.09 (1.02, 1.16)*
Pneumonia	1.07 (0.98, 1.16)	1.05 (0.96, 1.13)	1.07 (0.98, 1.16)	1.07 (0.99, 1.17)
COPD	1.12 (1, 1.26)	1.08 (0.96, 1.22)	1.12 (1, 1.26)	1.12 (0.99, 1.27)
External causes	1.05 (0.87, 1.26)	1.01 (0.84, 1.21)	1.03 (0.86, 1.23)	1.02 (0.84, 1.25)
D3D				
All natural causes	1.1 (1.06, 1.13)*	1.07 (1.03, 1.1)*	1.1 (1.06, 1.13)*	1.1 (1.07, 1.14)*
Cardiovascular	1.14 (1.08, 1.21)*	1.1 (1.04, 1.16)*	1.14 (1.07, 1.2)*	1.14 (1.07, 1.21)*
IHD	1.14 (1.04, 1.25)*	1.09 (0.99, 1.2)	1.13 (1.03, 1.24)*	1.14 (1.03, 1.25)*
Cerebrovascular	1.12 (1.01, 1.23)*	1.07 (0.97, 1.18)	1.11 (1.01, 1.23)*	1.12 (1.01, 1.24)*
Respiratory	1.09 (1.01, 1.17)*	1.06 (0.99, 1.14)	1.09 (1.01, 1.17)*	1.1 (1.02, 1.18)*
Pneumonia	1.07 (0.98, 1.17)	1.05 (0.96, 1.15)	1.07 (0.98, 1.17)	1.08 (0.99, 1.18)
COPD	1.13 (0.99, 1.28)	1.09 (0.96, 1.24)	1.13 (1, 1.28)	1.13 (0.99, 1.29)
External causes	1.05 (0.86, 1.28)	1.01 (0.83, 1.23)	1.03 (0.85, 1.25)	1.03 (0.83, 1.27)

Table A.28. Hazard ratio (95%CI) per 10 μ g/m³ increase of PM_{2.5} in main analysis for average exposure at the baseline period and sensitivity analyses for exposure to average PM_{2.5} yearly and for different inclusion and exclusion criteria

Table A.29. Hazard ratio (95%CI) per IQR increase of PM_{2.5} in stratified analyses by age and sex with exposure at baseline (deaths within the first year were excluded). (2D and D3D Exposure)

Cause of death	Age <71 years	Age ≥71 years	Inter- action	Male	Female	Inter- action
2D						
All natural causes	1.07 (1.03, 1.11)*	1.02 (0.99, 1.05)	0.007	1.05 (1.01, 1.08)*	1.03 (1, 1.06)	0.442
Cardiovascular	1.13 (1.05, 1.21)*	1.02 (0.98, 1.07)	0.001	1.08 (1.02, 1.15)*	1.04 (0.99, 1.09)	0.235
IHD	1.13 (1.01, 1.27)*	0.99 (0.92, 1.07)	0.008	1.06 (0.96, 1.17)	1.02 (0.94, 1.1)	0.578
Cerebrovascular	1.11 (0.99, 1.24)	1.04 (0.96, 1.12)	0.107	1.1 (0.99, 1.22)	1.03 (0.95, 1.12)	0.179
Respiratory	1.09 (0.99, 1.2)	0.99 (0.94, 1.04)	0.12	1 (0.94, 1.07)	1.04 (0.97, 1.11)	0.541
Pneumonia	1.1 (0.97, 1.25)	0.96 (0.9, 1.03)	0.077	0.97 (0.89, 1.05)	1.03 (0.95, 1.11)	0.225
COPD	1.13 (0.96, 1.32)	1.04 (0.94, 1.15)	0.363	1.05 (0.95, 1.17)	1.07 (0.93, 1.24)	0.784
External causes	1.01 (0.82, 1.24)	1.04 (0.88, 1.23)	0.977	1.03 (0.86, 1.24)	1 (0.83, 1.21)	1
D3D						
All natural causes	1.11 (1.07, 1.16)*	1.09 (1.06, 1.12)*	0.061	1.07 (1.03, 1.1)*	1.07 (1.03, 1.1)*	0.924
Cardiovascular	1.15 (1.07, 1.24)*	1.13 (1.08, 1.19)*	0.097	1.11 (1.04, 1.18)*	1.09 (1.03, 1.14)*	0.406
IHD	1.13 (1, 1.27)	1.14 (1.05, 1.23)*	0.232	1.1 (0.99, 1.22)	1.09 (1, 1.18)	0.985
Cerebrovascular	1.14 (1, 1.28)	1.12 (1.03, 1.22)*	0.672	1.17 (1.05, 1.3)*	1.03 (0.94, 1.13)	0.048
Respiratory	1.16 (1.05, 1.28)*	1.1 (1.04, 1.17)*	0.279	1.05 (0.98, 1.12)	1.08 (1, 1.16)	0.497
Pneumonia	1.21 (1.06, 1.38)*	1.09 (1.02, 1.17)*	0.115	1.05 (0.96, 1.14)	1.05 (0.97, 1.14)	0.699
COPD	1.12 (0.95, 1.31)	1.13 (1.02, 1.26)*	0.944	1.06 (0.95, 1.18)	1.17 (1, 1.37)	0.531
External causes	1.03 (0.83, 1.28)	1.1 (0.92, 1.31)	0.87	1.1 (0.91, 1.33)	0.97 (0.8, 1.18)	0.463

Table A.30. Hazard ratio (95%CI) per IQR increase of BC in stratified analyses by age and sex with exposure at baseline (deaths within the first year were excluded). 2D and D3D Exposure

Cause of death	Age <71 years	Age ≥71 years	Inter- action	Male	Female	Inter- action
2D						
All natural causes	1.03 (1, 1.08)	1.04 (1.02, 1.07)*	0.914	1.04 (1.01, 1.08)*	1.02 (0.99, 1.05)	0.456
Cardiovascular	1.11 (1.03, 1.19)*	1.08 (1.03, 1.13)*	0.231	1.12 (1.05, 1.2)*	1.04 (0.98, 1.09)	0.028
IHD	1.17 (1.04, 1.32)*	1.06 (0.98, 1.15)	0.049	1.12 (1.01, 1.23)*	1.05 (0.96, 1.14)	0.379
Cerebrovascular	1.12 (0.99, 1.27)	1.05 (0.97, 1.14)	0.326	1.12 (1, 1.26)	1.01 (0.93, 1.11)	0.088
Respiratory	0.96 (0.87, 1.07)	1.03 (0.97, 1.09)	0.234	1 (0.93, 1.07)	0.98 (0.92, 1.06)	0.941
Pneumonia	0.95 (0.82, 1.09)	1.04 (0.97, 1.11)	0.237	0.99 (0.91, 1.09)	0.99 (0.91, 1.07)	0.773
COPD	0.96 (0.81, 1.13)	1.02 (0.91, 1.14)	0.745	0.98 (0.87, 1.1)	1 (0.86, 1.17)	0.923
External causes	1.31 (1.07, 1.61)*	1.11 (0.93, 1.33)	0.17	1.25 (1.03, 1.51)*	1.12 (0.93, 1.35)	0.537
D3D						
All natural causes	1.08 (1.04, 1.12)*	1.08 (1.05, 1.1)*	0.541	1.05 (1.02, 1.08)*	1.04 (1.01, 1.07)*	0.945
Cardiovascular	1.15 (1.07, 1.23)*	1.13 (1.08, 1.18)*	0.159	1.13 (1.07, 1.2)*	1.07 (1.02, 1.13)*	0.095
IHD	1.17 (1.05, 1.31)*	1.13 (1.05, 1.21)*	0.091	1.11 (1.01, 1.21)*	1.1 (1.02, 1.19)*	0.945
Cerebrovascular	1.16 (1.04, 1.3)*	1.1 (1.02, 1.19)*	0.393	1.16 (1.05, 1.28)*	1.03 (0.94, 1.12)	0.038
Respiratory	1.02 (0.93, 1.13)	1.08 (1.03, 1.14)*	0.433	1.02 (0.96, 1.09)	1 (0.94, 1.07)	0.91
Pneumonia	1.03 (0.91, 1.18)	1.08 (1.02, 1.15)*	0.601	1.04 (0.95, 1.13)	0.99 (0.92, 1.07)	0.835
COPD	0.97 (0.82, 1.14)	1.08 (0.97, 1.19)	0.453	0.98 (0.88, 1.09)	1.08 (0.94, 1.24)	0.399
External causes	1.26 (1.04, 1.52)*	1.13 (0.96, 1.33)	0.27	1.2 (1.01, 1.42)*	1.11 (0.93, 1.33)	0.623

Table A.31. Hazard ratio (95%CI) per IQR increase of NO in stratified analyses by age and sex with exposure at baseline (deaths within the first year were excluded). 2D and D3D Exposure.

Cause of death	Age <71 years	Age ≥71 years	Inter- action	Male	Female	Inter- action
2D						
All natural causes	0.98 (0.94, 1.03)	0.99 (0.96, 1.02)	0.439	1 (0.96, 1.03)	0.99 (0.96, 1.03)	0.954
Cardiovascular	0.97 (0.9, 1.06)	0.94 (0.89, 0.99)	0.587	0.97 (0.91, 1.04)	0.94 (0.89, 1)	0.481
IHD	1.05 (0.92, 1.2)	0.95 (0.87, 1.03)	0.065	0.99 (0.88, 1.1)	0.98 (0.89, 1.07)	0.812
Cerebrovascular	1 (0.87, 1.15)	0.93 (0.85, 1.02)	0.991	1.02 (0.9, 1.15)	0.93 (0.84, 1.02)	0.639
Respiratory	1.04 (0.93, 1.16)	0.98 (0.92, 1.05)	0.677	1.01 (0.94, 1.09)	0.99 (0.91, 1.07)	0.55
Pneumonia	0.98 (0.85, 1.14)	0.99 (0.92, 1.07)	0.813	1.02 (0.92, 1.12)	0.97 (0.89, 1.06)	0.32
COPD	1.16 (0.97, 1.39)	0.99 (0.88, 1.11)	0.239	1.03 (0.91, 1.16)	1.08 (0.91, 1.28)	0.675
External causes	1.24 (0.97, 1.58)	1.01 (0.83, 1.23)	0.3	1.19 (0.95, 1.49)	1.02 (0.82, 1.26)	0.589
D3D						
All natural causes	1.06 (1.01, 1.11)*	1.09 (1.06, 1.12)*	0.492	1.04 (1, 1.08)*	1.05 (1.02, 1.09)*	0.529
Cardiovascular	1.05 (0.96, 1.14)	1.09 (1.03, 1.15)*	0.815	1.04 (0.97, 1.12)	1.03 (0.97, 1.09)	0.681
IHD	1.09 (0.96, 1.25)	1.15 (1.05, 1.25)*	0.564	1.08 (0.97, 1.21)	1.09 (0.98, 1.2)	0.972
Cerebrovascular	1.05 (0.91, 1.21)	1.06 (0.97, 1.17)	0.508	1.1 (0.98, 1.25)	0.96 (0.87, 1.07)	0.264
Respiratory	1.13 (1.01, 1.27)*	1.13 (1.06, 1.2)*	0.849	1.08 (1, 1.16)	1.04 (0.96, 1.14)	0.793
Pneumonia	1.14 (0.98, 1.33)	1.14 (1.05, 1.23)*	0.891	1.1 (1, 1.21)	1.02 (0.92, 1.12)	0.334
COPD	1.12 (0.93, 1.35)	1.14 (1.01, 1.28)*	0.96	1.06 (0.94, 1.2)	1.17 (0.98, 1.41)	0.417
External causes	1.18 (0.93, 1.51)	1.06 (0.86, 1.3)	0.503	1.17 (0.94, 1.46)	0.98 (0.78, 1.23)	0.419

Table A.32. Hazard ratio (95%CI) per IQR increase of NO₂ in stratified analyses by age and sex with exposure at baseline (deaths within the first year were excluded). 2D and D3D Exposure.

Cause of death	Age <71 years	Age>=71 years	Inter-	Male	Female	Inter-
			action			action
2D						
All natural causes	0.99 (0.94, 1.04)	1 (0.96, 1.03)	0.133	1.01 (0.97, 1.05)	0.99 (0.95, 1.03)	0.808
Cardiovascular	0.98 (0.89, 1.08)	1.01 (0.95, 1.07)	0.183	1.04 (0.96, 1.13)	0.97 (0.91, 1.04)	0.473
IHD	1.1 (0.95, 1.28)	1.07 (0.97, 1.18)	0.792	1.12 (0.98, 1.27)	1.06 (0.95, 1.19)	0.653
Cerebrovascular	1.03 (0.88, 1.21)	0.98 (0.88, 1.1)	0.287	1.1 (0.95, 1.27)	0.94 (0.84, 1.05)	0.836
Respiratory	0.98 (0.87, 1.12)	0.98 (0.91, 1.05)	0.664	1.02 (0.94, 1.12)	0.95 (0.87, 1.05)	0.309
Pneumonia	0.97 (0.82, 1.16)	0.96 (0.88, 1.05)	0.818	1.02 (0.91, 1.15)	0.94 (0.84, 1.05)	0.13
COPD	0.97 (0.78, 1.2)	1.07 (0.92, 1.24)	0.404	1.01 (0.87, 1.18)	1.04 (0.85, 1.28)	0.621
External causes	1.09 (0.83, 1.43)	1.09 (0.87, 1.37)	0.709	1.05 (0.82, 1.34)	1.15 (0.9, 1.47)	0.479
D3D	1.08 (1.03, 1.13)*	1.11 (1.07, 1.14)*	0.364	1.05 (1.01, 1.09)*	1.06 (1.03, 1.1)*	0.4
All natural causes	1.09 (1, 1.19)	1.17 (1.1, 1.23)	0.247	1.1 (1.02, 1.18)*	1.08 (1.02, 1.15)*	0.851
Cardiovascular	1.1 (0.97, 1.26)	1.25 (1.14, 1.37)*	0.58	1.14 (1.02, 1.28)*	1.14 (1.03, 1.26)*	0.87
IHD	1.11 (0.96, 1.28)	1.13 (1.03, 1.24)*	0.291	1.18 (1.04, 1.33)*	1 (0.9, 1.11)	0.259
Cerebrovascular	1.11 (0.99, 1.24)	1.15 (1.07, 1.22)*	0.68	1.08 (1, 1.17)	1.03 (0.95, 1.13)	0.718
Respiratory	1.17 (1.01, 1.36)*	1.15 (1.06, 1.24)*	0.859	1.1 (1, 1.22)	1.01 (0.92, 1.12)	0.279
Pneumonia	0.99 (0.82, 1.19)	1.18 (1.04, 1.33)*	0.207	1.04 (0.91, 1.18)	1.12 (0.93, 1.34)	0.487
COPD	1.1 (0.86, 1.41)	1.14 (0.93, 1.4)	0.803	1.11 (0.89, 1.38)	1.06 (0.85, 1.33)	0.928
External causes	1.08 (1.03, 1.13)*	1.11 (1.07, 1.14)*	0.364	1.05 (1.01, 1.09)*	1.06 (1.03, 1.1)*	0.4

Table A.33. Hazard ratios (95%CI) per IQR increase of pollutants for baseline exposure using the alternative decay profile capped at 20m^a

	PM _{2.5}			
Cause of Death	2D (IQR: 5.5 μg/m ³)	3D (IQR: 5.3 μg/m ³)	D3D (IQR: 4.9 μg/m ³)	
All natural causes	1.03 (1.01, 1.06)*	1.04 (1.02, 1.07)*	1.04 (1.02, 1.07)*	
Cardiovascular	1.06 (1.02, 1.10)*	1.08 (1.04, 1.12)*	1.08 (1.04, 1.12)*	
IHD	1.03 (0.97, 1.10)	1.06 (1, 1.13)*	1.06 (1, 1.13)*	
Cerebrovascular	1.06 (0.99, 1.13)	1.08 (1.01, 1.15)*	1.08 (1.01, 1.15)*	
Respiratory	1.02 (0.97, 1.06)	1.02 (0.97, 1.06)	1.01 (0.97, 1.06)	
Pneumonia	1.00 (0.94, 1.06)	1 (0.94, 1.06)	1 (0.94, 1.06)	
COPD	1.06 (0.97, 1.15)	1.06 (0.97, 1.16)	1.06 (0.97, 1.15)	
External causes	1.02 (0.90, 1.16)	1.02 (0.89, 1.16)	1.02 (0.89, 1.16)	
	ВС			
Cause of Death	2D (IQR: 9.6 μg/m ³)	3D (IQR: 8.0 μg/m ³)	D3D (IQR: 4.9 μg/m ³)	
All natural causes	1.03 (1.00, 1.05)*	1.03 (1.01, 1.05)*	1.03 (1.01, 1.05)*	
Cardiovascular	1.07 (1.03, 1.11)*	1.08 (1.04, 1.12)*	1.08 (1.04, 1.12)*	
IHD	1.08 (1.01, 1.15)*	1.09 (1.02, 1.16)*	1.09 (1.02, 1.16)*	
Cerebrovascular	1.05 (0.98, 1.13)	1.06 (0.99, 1.13)	1.06 (0.99, 1.13)	
Respiratory	0.99 (0.94, 1.04)	0.99 (0.94, 1.04)	0.99 (0.94, 1.04)	
Pneumonia	0.99 (0.93, 1.05)	0.98 (0.92, 1.05)	0.98 (0.93, 1.05)	
COPD	0.98 (0.90, 1.08)	0.98 (0.9, 1.08)	0.98 (0.9, 1.08)	
External causes	1.18 (1.03, 1.35)*	1.18 (1.04, 1.35)*	1.18 (1.04, 1.35)*	
	NO			
Cause of Death	2D (IQR: 167 μg/m ³)	3D (IQR: 141 µg/m ³)	D3D (IQR: 106 μg/m ³)	
All natural causes	0.99 (0.97, 1.02)	1.01 (0.99, 1.04)	1.01 (0.99, 1.04)	
Cardiovascular	0.96 (0.91, 1.00)	0.99 (0.95, 1.03)	0.99 (0.95, 1.04)	
IHD	0.98 (0.91, 1.05)	1.03 (0.96, 1.1)	1.03 (0.96, 1.1)	
Cerebrovascular	0.96 (0.89, 1.04)	0.99 (0.92, 1.07)	0.99 (0.92, 1.07)	
Respiratory	1.00 (0.94, 1.05)	1.01 (0.96, 1.06)	1.01 (0.96, 1.06)	
Pneumonia	0.99 (0.93, 1.06)	1 (0.94, 1.07)	1 (0.94, 1.07)	
COPD	1.04 (0.94, 1.15)	1.07 (0.97, 1.18)	1.06 (0.97, 1.17)	
External causes	1.10 (0.94, 1.28)	1.09 (0.94, 1.27)	1.1 (0.94, 1.27)	
a * P < 0.05, 2D = street level LUR, 3D = 2D + vertical decay, D3D = 3D + infiltration, mobility and transport microenvironments Continued on next page				

Table A.33 continued. Hazard ratios (95%CI) per IQR increase of pollutants for baseline exposure using the alternative decay profile capped at 20m^a

NO ₂					
Cause of Death	2D (IQR: 26 μg/m ³)	3D (IQR: 22 μg/m ³)	D3D (IQR: 18 µg/m ³)		
All natural causes	1.00 (0.97, 1.03)	1.03 (1, 1.06)*	1.03 (1, 1.06)*		
Cardiovascular	1.00 (0.95, 1.05)	1.06 (1.01, 1.12)*	1.06 (1.01, 1.12)*		
IHD	1.09 (1.00, 1.18)	1.15 (1.06, 1.24)*	1.15 (1.06, 1.24)*		
Cerebrovascular	1.00 (0.91, 1.09)	1.06 (0.97, 1.15)	1.06 (0.97, 1.15)		
Respiratory	0.99 (0.93, 1.06)	1 (0.94, 1.07)	1 (0.94, 1.07)		
Pneumonia	0.98 (0.90, 1.06)	0.99 (0.92, 1.07)	0.99 (0.92, 1.07)		
COPD	1.02 (0.90, 1.15)	1.04 (0.92, 1.16)	1.03 (0.92, 1.16)		
External causes	1.10 (0.92, 1.31)	1.12 (0.95, 1.32)	1.11 (0.94, 1.31)		

^a **P* < 0.05, 2D = street level LUR, 3D = 2D + vertical decay, D3D = 3D + infiltration, mobility and transport microenvironments

Sample extracts from 3D visualization animation

These screen captures show three time intervals of animated $PM_{2.5}$ concentrations within the JDC1 canyon. The color scale represents an equally distributed range of $PM_{2.5}$ concentrations in $\mu g/m^3$ increasing from blue to red. The full sample video can be seen at <u>http://geog.hku.hk/h-city/HKD3D.html</u>.

Figure A.31. Screen captures from an animated 3D visualisation of PM_{2.5} concentrations within the JDC1 canyon.

Figure continues on next page.

Figure A.31 continued.

References

Allen RW, Adar SD, Avol E, Cohen M, Curl CL, Larson T, et al. 2012. Modeling the residential infiltration of outdoor PM(2.5) in the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). Environ Health Perspect 120(6):824–830.

Allen RW, Gombojav E, Barkhasragchaa B, Byambaa T, Lkhasuren O, Amram O, et al. 2013. An assessment of air pollution and its attributable mortality in Ulaanbaatar, Mongolia. Air Qual Atmos Health 6(1):137–150.

Census and Statistics Department. 2011. Thematic Household Survey. Report No. 48. [online]. Gov. Hong Kong Spec. Adm. Reg. 2011. Available: *http://smokefree.hk/UserFiles/resources/Statistics/Thematic_Household_Survey_No48.pdf* [accessed 10-May-2017].

Chen L, Bai Z, Kong S, Han B, You Y, Ding X, et al. 2010. A land use regression for predicting NO_2 and PM_{10} concentrations in different seasons in Tianjin region. China. J Environ Sci 22(9):1364–1373.

Kashima S, Yorifuji T, Tsuda T, Doi H. 2009. Application of land use regression to regulatory air quality data in Japan. Science of the Total Environment 407(8):3055–3062.

Kirchstetter TW, Novakov T. 2007. Controlled generation of black carbon particles from a diffusion flame and applications in evaluating black carbon measurement methods. Atmos Environ 41(9):1874–1888.

Lee JY, Leem JH, Kim HC, Hwang SS, Jung DY, Park MS. 2012. Land use regression model for assessing exposure and impacts of air pollutants in school children. J Korean Soc Atmos Environ 28(5):571–580.

Li C, Du SY, Bai ZP, Shao-fei K, Yan Y, Bin H, et al. 2010. Application of land use regression for estimating concentrations of major outdoor air pollutants in Jinan, China. Journal of Zhejiang University SCIENCE A 11(11):857–867.

Li X, Liu W, Chen Z, Zeng G, Hu C, León T. et al. 2015. The application of semicircular-buffer-based land use regression models incorporating wind direction in predicting quarterly NO_2 and PM_{10} concentrations. Atmospheric Environment 103:18–24.

Meng X, Chen L, Cai J, Zou B, Wu CF, Fu Q, et al. 2015. A land use regression model for estimating the NO₂ concentration in Shanghai, China. Environmental Research 137:308–315.

Meng X, Fu Q, Ma Z, Chen L, Zou B, Zhang Y, et al. 2016. Estimating ground-level PM_{10} in a Chinese city by combining satellite data, meteorological information and a land use regression model. Environmental Pollution 208:177–184.

Saraswat A, Apte JS, Kandlikar M, Brauer M, Henderson SB, Marshall JD. 2013. Spatiotemporal land use regression models of fine, ultrafine, and black carbon particulate matter in New Delhi, India. Environ Sci Technol 47(22):12903–12911.

Transport Department. 2014. Travel Characteristics Survey 2011 - Final Report. Available: www.td.gov.hk/en/publications_and_press_releases/publications/free_publications/travel_characteristics_survey_2011_final_report/i ndex.html [accessed 1 Dec 2016].

Virkkula A, Makela T, Hillamo R, Yli-Tuomi T, Hirsikko A, Hameri K, et al. 2007. A simple procedure for correcting loading effects of aethalometer data. J Air Waste Manag Assoc 57(10):1214–1222.

Wong CM, Lai HK, Tsang H, Thach TQ, Thomas GN, Lam K, el al. 2015. Satellite-based estimates of long-term exposure to fine particles and association with mortality in elderly Hong Kong residents. Environ Health Perspect 123(11):1167.

Wong CM, Tsang H, Lai HK, Thomas GN, Lam KB, Chan KP, et al. 2016. Cancer mortality risks from long-term exposure to ambient fine particle. Cancer Epidemiol Biomarkers Prev 25(5):839–845.