
Land use regression models for exposure assessment of non-tailpipe PM constituents and sources

Meng Wang PhD
Department of Epidemiology and Environmental Health
University at Buffalo, SUNY
2020-11-13

Outline

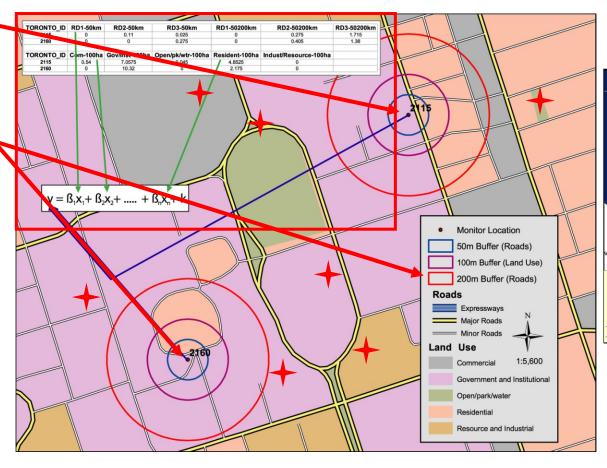
- What is land use regression model?
- Land use regression model for non-tailpipe PM constituents
- Land use regression model and source apportionment for PM mixtures

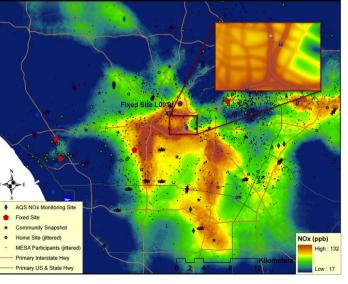
Challenges of assessing exposure to traffic air pollution

Land Use Regression Modeling

Air pollution measurement


Collect GIS and other variables


Statistical modeling and evaluation


- Linear
- Non-linear
- Machine learning

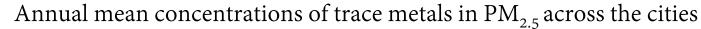
Prediction

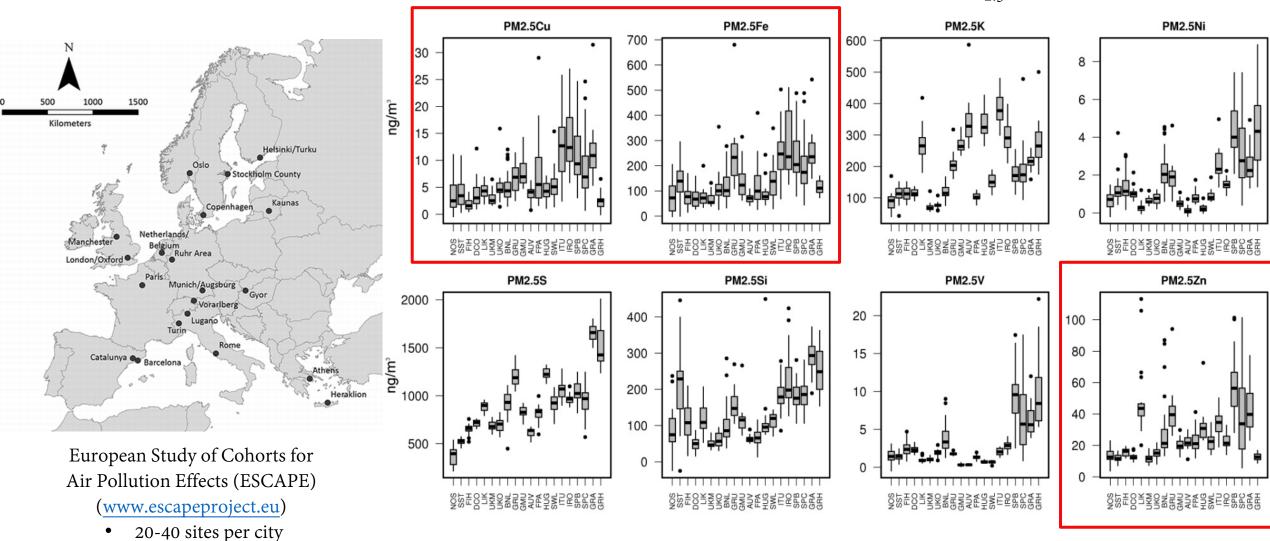
- Geocoded homes
- Spatial mapping

Outline

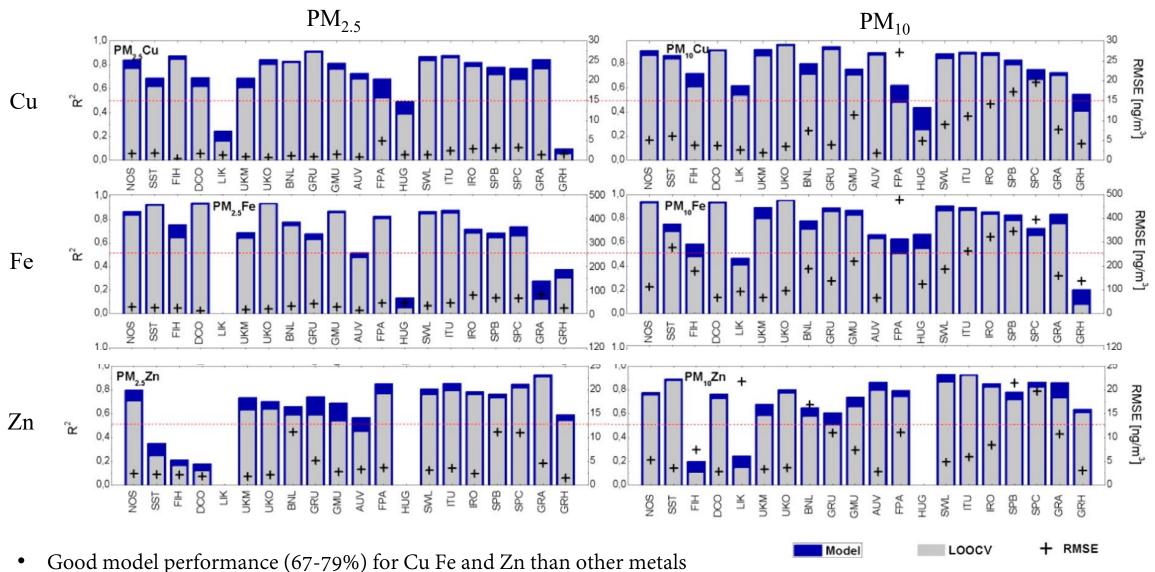
- What is land use regression model?
- Land use regression model for non-tailpipe PM constituents
- Land use regression model and source apportionment for PM mixtures

Non-tailpipe PM components

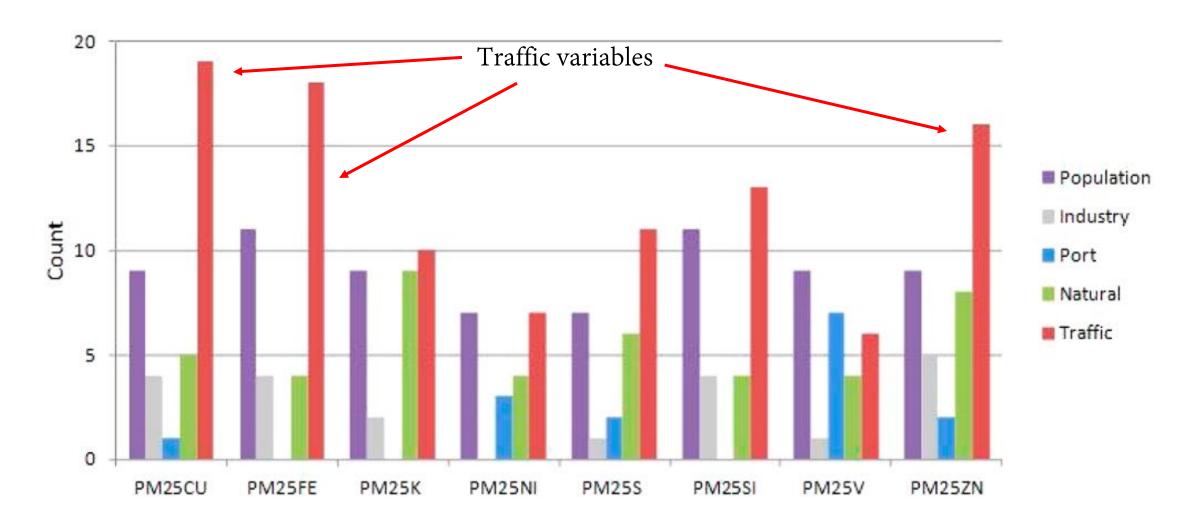

- Non-tailpipe PM is becoming more important but detailed information is relatively scarce
- Non-tailpipe emissions are typically characterized by trace metals in PM (e.g. Cu, Fe, Zn).
- LUR model for trace metals in PM has been studied in cities of Europe, U.S., and Canada.


Key tracers used for non-exhaust PM.

Reference	Brake wear	Tyre wear	Re-suspension	
Adachi and Tainosho (2004)	Fe, Ba, Cu, Sb, Zr	Zn	_	
Schauer et al. (2006)	Fe, Cu, Ba		_	
Grieshop et al. (2006)	Cu, Sb, Ba and Ga			
Wahlin et al. (2006)	Cr, Fe, Cu, Zn, Zr, Mo, Sn, Sb, Ba and Pb	Al, Si, K, Ca, Ti, Mn, Fe, Zn and Sr (together with road dust)		
Tanner et al. (2008)	Cu, Cd	Zn		
Canepari et al. (2008)	Ba, Fe, Sb, Sr	_	_	
Harrison (2009)	Ba, Cu	_	Al	
Dongarra et al. (2009)	Cu, Mo, Sb	_		
Fabretti et al. (2009)	Cu, Zn, Sb, Sn (vehicular abrasion)	_	Rb, Sr, Mn, Fe, As	
Keuken et al. (2010)	Cu	Zn	_	
Bukowiecki et al. (2010)	Fe, Cu, Zn, Zr, Mo, Sn, Sb and Ba			
Pey et al. (2010)	_	_	Fe, Ca, Sb, Sn, Cu, Zn	
Perez et al. (2010)	Sb, Cu, Ni, Sn (wear of brake, tire and other parts)		Fe	
Amato et al. (2011a)	Fe, Cu, Zn, Cr, Sn, Sb	OC, S, Zn	Al, Ca, Fe, V	
Apeagyei et al. (2011)	Fe, Ti, Cu, Ba	Zn, Ca, W, K, Fe, Ti, Cr, Mo	_	
Duong and Lee (2011)	Ni, Cu	Zn		
Ondráček et al. (2011)	Cu, Ba, Fe, Zn	_		
Song and Gao (2011)	Sb, Cu, Fe, Pb	Zn, Co		
Sahu et al. (2011)	Zn (brake and tyre wear)	_		
Peltier et al. (2011)	_	_	Al, Si, Ti, Fe	
Harrison et al. (2012b)	Ba, Cu, Fe, Sb	Zn	Si, Al	


PM_{2.5} Metal Elements in 20 European Cities

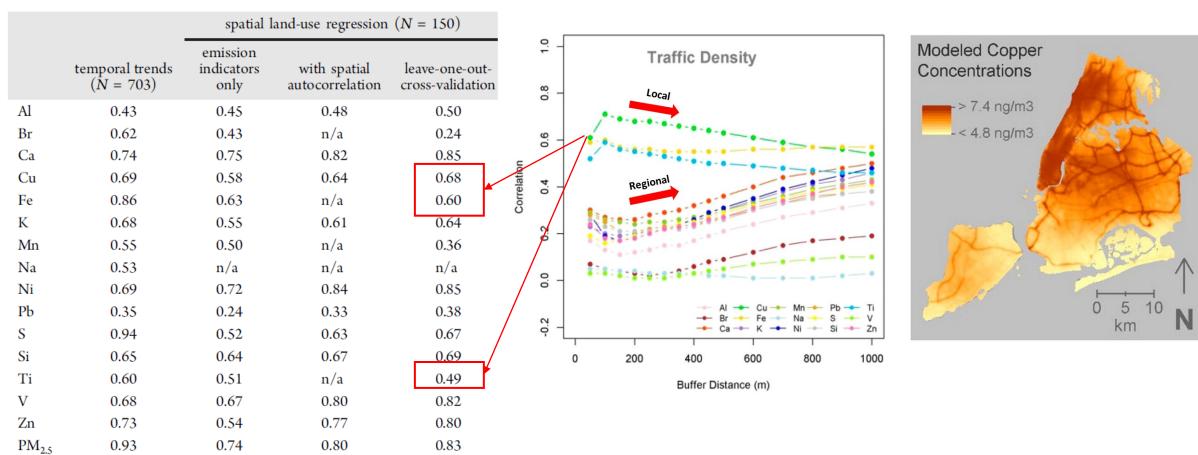
3 seasons per site


Performance of LUR Models for metal elements in PM_{2.5} and PM₁₀

- Better model in PM₁₀ than in PM_{2.5}

- Model: model fitting R²
- LOOCV: leave-one-out-cross-validation R²
- de Hoogh et al. 2013 ES&T RMSE: root mean square error

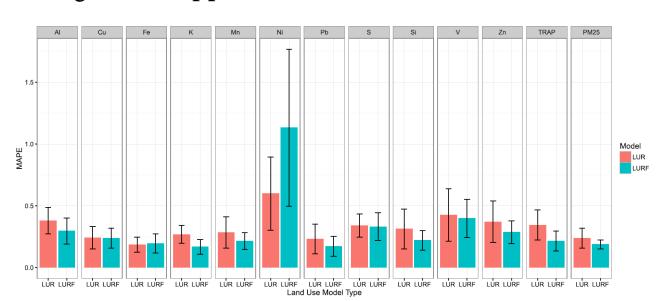
Predictor variables for metal elements in PM_{2.5} and PM₁₀



Traffic variables were the dominant predictors in Cu, Fe, and Zn, reflecting non-tailpipe emissions.

PM_{2.5} Metal Elements in New York City

Table 1. R² Values for Temporal Adjustment Model and LUR Models Developed Using the Data From 150 Sites during the First Year of Sampling^a


^aDecember, 2008–November, 2009.

Country & continent	Cities	N sites	Non- tailpipe metals	CV R ²	Predictors ranks 1-3	Correlation (R ²) with tailpipe emissions
Europe (PM _{2.5} PM ₁₀) De Hoogh, 2013, ES&T	20 cities summary	20-40 sites, 1-year	Cu Fe Zn	0.73 0.70 0.66	Traffic (1 st) Population (2 nd) Industrial (3 rd) Traffic (1 st) Population (2 nd) Natural (3 rd) Traffic (1 st) Population (2 nd) Natural (3 rd)	0.55-0.60 (NO2/NOx, BC) 0.59-0.72 (NO2/NOx, BC) 0.29-0.66 (NO2/NOx, BC)
U.S. (PM _{2.5}) Ito, 2016, ES&T	New York City NY	150, 3-year	Cu Fe Ti	0.68 0.60 0.49	Traffic (1 st) Res oil boiler (2 nd) Industrial (3 rd) Traffic (1 st) Res oil boiler (2 nd) Cooking (3 rd) Traffic (1 st) Industrial (2 nd) Res oil boiler (3 rd)	NA
U.S. (PM _{2.5}) Brokamp, 2016, AE	Cincinnati OH	24, 1-year	Cu Fe Zn	0.92* 0.94* 0.85*	Land cover (1 st) Shrub (2 nd) truck count (3 rd) Land cover (1 st) truck count (2 nd) Bus routes (1 st) Distance to A3 road (2 nd)	0.55 (EC) 0.58 (EC) 0.56 (EC)
U.S. (PM _{2.5-10}) Zhang, 2014, EHP	Chicago IL St. Paul MN Winston-Salem NC	33, 1-year 34, 1-year 35, 1-year	Cu Zn Cu Zn Cu Zn	0.65 0.73 0.86 0.40 0.41 0.36	Traffic (1 st) CALINE (2 nd) Land cover (3 rd) Traffic (1 st) Industrial (2 nd) Traffic (1 st) Residential (2 nd) Land cover (3 rd) Traffic (1 st) Commercial(2 nd) Land cover (3 rd) Traffic (1 st) Commercial(2 nd) Land cover (3 rd) Traffic (1 st) Residential (2 nd) Land cover (3 rd)	NA
U.S. (PM _{2.5}) Tunno, 2016, STOTEN	Pittsburgh, PA	36, 1-year	Fe (summer) Fe (winter)	0.63 0.04	Bus density (1 st) Parking garage (2 nd) Reference site	0.11 (BC) 0.23 (BC)
1.0		Fe Ti Ti Zn	0.74 0.82 0.86 0.74 0.82 0.75 0.73	Commercial (1 st) Industrial (2 nd) Industrial (1 st) Traffic (2 nd) Residential (3 rd) Industrial (1 st) Commercial (2 nd) Traffic (3 rd) Industrial (1 st) Residential (2 nd) Commercial (3 rd) Industrial (1 st) Commercial (2 nd) Industrial (1 st) Traffic (2 nd) Industrial (1 st) Commercial (2 nd) Residential (3 rd) Industrial (1 st) Traffic (2 nd) Residential (3 rd)	NA	

Challenges for non-tailpipe trace metal models

- Over-fitting due to small number of monitoring sites
- Relatively short-term measurements (mostly 2-3 seasons in 1 year)
- Traffic-related predictor variables cannot disentangle tailpipe and non-tailpipe PM species
 - Accounting for traffic congestion, such as traffic speed and speed limit.
 - Incorporate dispersion model predictions.
- Trace metals (e.g. Cu, Fe, Zn) may not exclusively represent non-tailpipe emissions
- Modeling approach was mostly based on linear regression approach
 - Variable selection vs. machine learning

Outline

- What is land use regression model?
- Land use regression model for non-tailpipe PM constituents
- Land use regression model and source apportionment for PM mixtures

Land Use Regression Model for PM Mixtures

PM species:

- Metals
- PAHs
- EC/OC

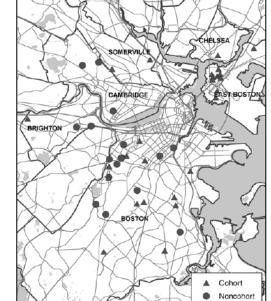
Source apportionment:

- Positive Matrix Factorization
- Principal component analysis
- K-means clustering

LUR model for spatially-derived factor scores as indicators of emission sources

by Householda

Predicting spatial distribution of each factor score for exposure assessment


Walter A. Rosenblith New Investigator Award RESEARCH REPORT

HEALTH EFFECTS INSTITUTE

Number 152 December 2010 Evaluating Heterogeneity in Indoor and Outdoor Air Pollution Using Land-Use Regression and

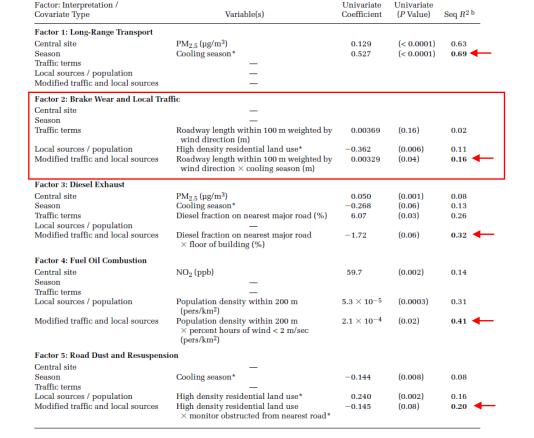
Jonathan I. Levy, Jane E. Clougherty, Lisa K. Baxter, E. Andres Houseman, and Christopher J. Paciorek

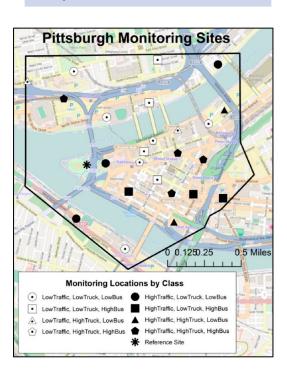
Constrained Factor Analysis

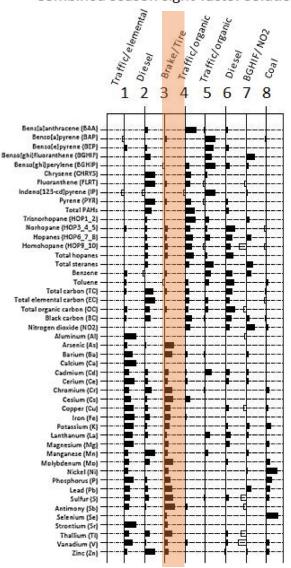
Boston, MA

Air Pollutants (N=38 sites, 2 seasons)

PM2.5 mass, EC, NO₂, 23 PM_{2.5} constituents by ICP-MS and XRF




Table 11. Multivariate LUR Model Results for Outdoor Concentration Factor Scores, Adjusted for Repeated Measures


Land Use Regression Model for PM Mixtures

Air Pollutants (N=36 sites, 2 seasons)

PM2.5 mass, BC, EC/OC, NO₂, 25 PM_{2.5} constituents, PAHs, VOCs

Combined season eight-factor solution

. Combined winter and summer factor score LUR (land use regression) results (n = 72).

Factor (% variance)	Proposed Sources	Final LUR Modeling Covariates (R ²)	Covariates Most Strongly Correlated with Factor Scores (r)	
1 (36%)	Traffic-related elemental	Signaled intersections, 125 m ($R^2 = 0.07$)	Bus stop use, 100 m (r = 0.34) Signaled intersections, 125 m (r = 0.27) Commercial land use, 25 m (r = 0.25) Bus density, 25 m (r = 0.25)	
2 (16%)	Diesel (chrysene, fluoranthene, Mn, pyrene, total carbon, total EC, Zn)	Bus density, 200 m Commercial land use, 25 m (R^2 = 0.37)	Signaled intersections, 200 m ($r = 0.57$) Bus stop use, 200 m ($r = 0.56$) Bus density, 200 m ($r = 0.55$) Truck density, 200 m ($r = 0.51$)	
3 (11%)	Brake/ tire wear (Cu, Mo, Sb)	Primary and secondary roadways, $50 \text{ m} (R^2 = 0.10)$	Primary and secondary roadways, $50 \text{ m} (r = 0.23)$	
4 (7%)	Traffic-related organic (benz[a]anthracene, hopanes, total PAHs)	Traffic density, 200 m $(R^2 = 0.06)$	Traffic density, 200 m (r = 0.25) Primary and secondary roadways, 200 m (r = 0.25)	
5 (5%)	Traffic-related organic (benzo[a]pyrene, benzo[e]pyrene, benzo[ghi]perylene, indeno[123-cd]pyrene, and total steranes)	Primary roadways, 125 m $PM_{2.5}$ emissions, ($R^2 = 0.19$)	Primary roadways, 125 m ($r = 0.33$) Road complexity, 150 m ($r = 0.30$) PM _{2.5} emissions ($r = 0.30$)	
6 (4%)	Diesel (norhopane, toluene, total hopanes, total OC)	Bus density, 200 m $(R^2 = 0.10)$	Bus stop use, 175 m (r = 0.35) Bus density, 200 m (r = 0.32) Truck density, 200 m (r = 0.30)	
7 (3%)	Benzo[ghi]fluoranthene, NO ₂	Temperature Bus density, 200 m $(R^2 = 0.73)$	Temperature (r = -0.81) Wind speed (r = 0.56) Bus density, 200 m (r = 0.23)	
8 (3%)	Coal (Ni, Se)	Commercial land use, 25 m Building density, 25 m Railroads, 200 m (R ² = 0.11)	Commercial land use, 25 m ($r = 0.40$) Building density, 50 m ($r = 0.33$) Railroads, 200 m ($r = 0.29$)	

Model performed much better for exhausted sources than non-exhausted sources (i.e. brake/tire wear)

Summary

- Land use regression model has moderately good prediction ability for non-tailpipe PM metal elements, such as Cu, Fe, and Zn
- Land use regression model has limited power to predict sourceapportioned non-exhaust sources.
- More advanced statistical approaches and more specific traffic-related predictor variables are needed for non-tailpipe PM and source predictions.

Thank You!

Welcome for Questions