Trends in Inter- and Intraurban Ultrafine Particle Levels in the U.S.: Exposure Implications

Albert Presto

Dept. of Mechanical Engineering Center for Atmospheric Particle Studies

Important questions about UFP exposures

- Concentrations and spatial/temporal trends
 - What are typical concentrations?
 - What are the trends over time?
 - What are the inter- and intra-city spatial patterns?
- UFP sources
 - What are the major sources, and how do they drive temporal and spatial patterns?
 - What are contributions of primary and secondary particles?
- UFP exposures
 - What is the current ability to estimate exposures?
 - What would be needed to improve exposure estimates?

Reminder 1: There is not a regulatory standard for UFP measurement or quantification

This presentation will use particle number count (<u>PNC</u>, # cm⁻³) as a UFP surrogate

Reminder 2: UFPs are a data-poor pollutant

This is the current EPA network for PM_{2.5}

Source: US EPA

This is the current EPA UFP network

We will investigate trends with a small number of cities that have long(er) term measurements

PNC concentrations are highly variable

PNC range from <5,000 to >20,000 cm⁻³

PNC concentrations are highly variable and depend on sampling location

How much of this inter-city variation is a result of the specifics of each sampling site?

PNC varies by a factor of 2-3 at urban scales

Micro-environment

Carnegie Mellon University

Saha et al, STOTEN, 2019

We investigated inter- and intra-city PNC with mobile sampling

We investigated inter- and intra-city PNC with mobile sampling

Oakland Baltimore Pittsburgh

We investigated inter- and intra-city PNC with mobile sampling

Inter- and intra-city PNC variations are larger than for PM_{2.5}

Micro-environment

Carnegie Mellon University

Saha et al, STOTEN, 2019

Inter- and intra-city PNC variations are larger than for PM_{2.5}

Carnegie Mellon University

Saha et al, STOTEN, 2019

PM_{2.5} variability is much smaller and concentrations are less dependent on sampling site

PNC

PM_{2.5} variability is much smaller and concentrations are less dependent on sampling site

Summary: Concentrations and trends

- Typical concentrations: <5k to >20k cm⁻³. Urban ~10k cm⁻³
- Trends over time: 30% decrease since 2006
- Inter- and intra-city spatial patterns: Factor of 2 within and between cities

Traffic and nucleation are two major sources

Traffic: Large reductions in <u>near-road</u> PNC over time

Nucleation: Often driven by SO₂ chemistry

Carnegie Mellon University

Nucleation: Fallen by half since 2002

Carnegie Mellon University

Nucleation: Fallen by half since 2002

Carnegie Mellon University

Summary: Sources

- Major sources: **Traffic** and nucleation
- Contributions of primary and secondary particles: Much of the urban enhancement is primary.

What is the status of exposure assessment for epidemiology?

Recall: This is the current EPA UFP network

Exposure assessment generally relies on single-city LURs built from mobile or distributed sampling

Carnegie Mellon University

Widescale UFP sampling can be expensive and time consuming

Many studies have used short-term or quasistationary sampling to fill data gaps

Exposure estimates based on short-term monitoring can partially fill the data gap

Carnegie Nellon University

There is large improvement with modest additional sampling

We are a long way off from national estimates

PM_{2.5}: continental-scale estimates that combine satellite and ground data

Carnegie Mellon University

Saha et al, *ES&T*, 2019 van Donkelaar et al, *EST*, 2015

What is needed to improve UFP epidemiology?

- More data is needed in more locations
 - Systematically and continuously collected
 - 10s of sites per city in a mix of rural, suburban, and urban locations
- National-scale exposure estimates are not currently possible
 - Require either a large investment in monitoring or improvement in chemical transport models
- Improved UFP exposure and epidemiology data are likely necessary to help drive policy changes

Acknowledgments

- Center for Air, Climate, and Energy Solutions (CACES)
 - U.S. Environmental Protection Agency, Assistance Agreement No. RD83587301
- Data access
 - Boston Harvard (Petros Koutrakis; US EPA grants (RD-835872 and RD-834798))
 - Rochester Phil Hopke
 - Toronto Greg Evans
 - LA and Bay Area Public records from SCAQMD and BAAQMD
 - Southern Great Plains US DOE

PNC concentrations at a given location depend strongly on site characteristics. This is less of an issue for PM_{2.5}.

Intra-city variations are large for PNC

The large *intra*-city variations can mask *inter*-city variations

Robust exposure estimates require wide-scale distributed data collection

Adapted from Lenschow et al, 2001