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AI, ML, EH
• NASEM hosted a 2-day workshop on implications of AI 

and machine learning in environmental health research 
and decisions (June 6-7, 2019)


• Applications - pollution source characterization, 
exposure assessment, predicting chemical toxicity


• Challenges - Data quality/uncertainty; transparency/
reproducibility


• NASEM Summary - http://nap.edu/25520 



AI, ML, EH
• How might AI advance environmental health?


• Does AI change the standards used for conducting environmental health 
research?


• Does the use of AI allow us to change our established research principles?


• How does AI impact our training programs for the next generation of 
environmental health scientists?


• Are there barriers within the current academic incentive structures that are 
hindering the full potential of AI, and how might those barriers be 
overcome?


• Joint statement: https://tinyurl.com/v8fussz

https://tinyurl.com/v8fussz


AI, ML, EH
• There is much we can "bring over" from the AI / ML world 

to advance environmental health research


• Will need to adapt AI / ML approaches to the specific 
needs of environmental health research


• Transparency and reproducibility


• Model evaluation methodologies


• Evidence for decision-making



Decision-Making Levels

• Can AI / ML techniques used to automate "lower-level" 
modeling decisions?


• Reserve "higher-level" decisions for humans


• Low-level decisions can have large impacts on model 
results


• AI / ML techniques still require a substantial amount of 
manual tuning



Measurement Technologies

• Wearables: accelerometers, sleep-tracking, heart rate


• Exposure monitors: personal monitors, low-cost 
stationary sensors, crowd-sourced monitoring


• Environment: GIS data, satellite monitoring


• All measured at higher frequencies, and higher spatial 
resolution



AI / ML Approaches

• Data processing / transformation / filtering


• Feature selection / engineering


• Model building / evaluation / testing


• Out-of-sample prediction / minimize performance metric


• e.g. Neural network models, random forests, SVM, linear 
regression (!)



AI / ML Approaches
• ML approaches generally thrive on large feature sets


• Computationally optimized for fitting complex models to 
large datasets


• Highly engineered platforms / libraries for executing more 
"routine" prediction problems (Tensorflow, PyTorch, Keras) 
at large scale


• Leverage very large datasets where nonlinearities and 
complex interactions can be observed



Exposure Assessment: 
Augmenting Existing Approaches



Exposure Assessment: 
Augmenting Existing Approaches
• Land use regression (LUR) models commonly used to 

predict levels of ambient PM


• Satellite images + Convolutional Neural Networks (CNN) 
can expand coverage of LUR models w/missing GIS data


• Satellite images obtained from Google Maps (via ggmap 
R package)


• CNN trained on LUR output in wider region


• Increased coverage vs. decreased precision

Hong et al. 2019, Environ. Res.



Hong et al. 2019, Environ. Res.

CNN vs. LUR Performance



Hong et al. 2019, Environ. Res.Figure 2
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Model Evaluation
• Environmental health data often measured over space 

and time


• Estimates of health effects often focus on particular 
spatial or temporal scales of variation


• AI / ML model evaluation metrics / tools (e.g. R2, RMSE) 
tend to be more global in nature


• Global metrics can hide errors that may exist at specific 
temporal / spatial scales critical for air pollution studies



Spatial Scales of Variation

Antonelli et al. (2017) Ann. Appl. Stat.



Spatial Scales of Variation

Antonelli et al. (2017) Ann. Appl. Stat.
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Temporal Scales of Variation



Transparency and 
Reproducibility

• AI / ML methods introduce dramatic increase in complexity for both the 
data and the methods


• Would you accept a paper that did a logistic regression, but did not 
publish the weights? (J. Muschelli - https://tinyurl.com/rm3kzv5)


• Many more details must be disclosed for reproducibility, increased 
complexity for disclosure too


• Minor variations on standard ML platforms can be difficult to reproduce


• Reproducibility = understanding what is going on, not a badge of 
quality


• "Trust me, it just works"  Science≠



Transparency and 
Reproducibility

• McKinney, S. M., et al. International evaluation of an AI 
system for breast cancer screening. Nature (2020). 


• "The code used for training the models has a large 
number of dependencies on internal tooling, infrastructure 
and hardware, and its release is therefore not 
feasible." (authors all employees at Google, Inc.) 


• Haibe-Kains, et al. - "Even with sufficient description, 
reproducing complex computational pipelines based 
purely on text is a subjective and challenging task."



Details, Details...
• Training pipeline / data transformation / feature 

engineering


• Hyperparameters defining model structure


• Stochastic data transformations / model elements


• Fitting algorithm details (stochastic gradient descent) / 
custom tuning


• Proprietary datasets



Social/Ethical 
Considerations

• AI / ML research in EH can lead to highly consequential 
decisions being made


• AI / ML experts and EH stakeholders need aligned interests; 
trust in the process of evidence generation


• Accountability - reduce information asymmetries between 
various stakeholders


• Justification for the problem addressed; methods used; 
limitations of methods and training data


• Understanding of consequences of computation



Social/Ethical 
Considerations

• Data scientists have a "fiduciary duty" to use data in a 
way that does not betray end users and/or harm them


• Data are not abstract, not a "natural resource" -- they are 
produced by and have an impact on humans


• Tools (e.g. checklists) can be developed to implement AI 
principles, but ethics is ultimately a socio-cultural concept


• Ethical considerations unify areas of product development 
and scientific research

Stark and Hoffmann (2019), J. Cultural Analytics
Madaio, et al. (2020), CHI



Summary
• AI / ML approaches have potential to be used widely in 

environmental health research


• AI / ML methods need to adapt to specific issues in 
environmental health research


• Transparency and reproducibility is critical for building 
trust and for aligning stakeholders


• Decision-making in environmental health typical relies on 
numerous pieces of evidence; AI / ML findings can have a 
place in that framework


