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Studies using Medicare data have provided key insights 
about the relationship between PM2.5 and mortality
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Why Medicare?
What makes studies in the Medicare population well-suited to inform policy?

Representative Diverse Principled design
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Medicare participants are representative…
• Of a key vulnerable population

• Almost completely captures mortality in the age 65+ population in the US.

• A ‘sensitive population’ that the Clean Air Act explicitly calls for the NAAQS to protect.

• Of exposures experienced throughout the US

• Live in all parts of the US.

• Provides data to inform estimates of health effects of pollution both above and below the 
current NAAQS.

• Also can provide insights into differential health impacts over space, possibly due to different 
pollution sources, different levels of vulnerability, or different meteorology.
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Medicare participants are diverse
• Medicare data provide nearly complete mortality data on marginalized groups, such as low-income 

and Black individuals.

• These groups are typically under-represented in cohort studies.

• This allows us to characterize inequities across groups.
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Medicare data allow for principled study designs
• Huge sample size

• Unlike other health claims data, they represent a 
well-defined population.

• This gives us accurate population 
denominators.

• Most people are followed continuously over time 
between cohort entry and death

• Little “churning”, i.e., exiting and re-entering 
the population, which is common in other 
health claims data

https://www.kff.org/medicaid/issue-brief/medicaid-enrollment-churn-and-implications-for-
continuous-coverage-policies/
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Medicare studies: Open challenges
What challenges do we face when conducting studies of air pollution effects on mortality and inequities using Medicare data? 

How can we address them?

Confounding Measurement 
error

Computation + 
data security
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Potential for unmeasured confounding
• Few measured individual level characteristics of Medicare enrollees

• E.g., we don’t know incomes, education levels, engagement in health 
behaviors

• These are potential confounders.

• Current solutions:

• Link to area-level measures 

• Causal inference methods to enable robust adjustment for measured 
features

• Use e-value to assess potential sensitivity to unmeasured confounding

• Confirm associations in validation sub-sample with more measured 
features.

Image from Bind, M. A. (2019). Causal modeling in 
environmental health. Annual review of public health, 40, 23-43.
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Potential for measurement error
• Exposure measurement error due to reliance on 

gridded exposure predictions aggregated to zip code 
of residence

• Aggregate by averaging grid cells within zip 
codes

• Can conduct sensitivity analyses using people 
living near monitors

• Have developed causal methodology to 
account for exposure error

• Poor classification of Hispanic and Asian individuals

• Makes it difficult to understand inequities 
experienced by these groupsImage from Josey, K. P., deSouza, P., Wu, X., Braun, D., & Nethery, R. (2023). Estimating a Causal 

Exposure Response Function with a Continuous Error-Prone Exposure: A Study of Fine Particulate 
Matter and All-Cause Mortality. Journal of Agricultural, Biological and Environmental Statistics, 28(1), 
20–41. 
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Computational burdens and data privacy

• Costly Federal Information Security Modernization Act (FISMA)-compliant system required to store 
and analyze the data.

• Running causal models on the full data can require >500 GB of memory.

• Open question of how to best handle these issues.

• Currently we hire a lot of staff to help with data processing, data security, and code scalability.
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How might we use the Medicare data in new 
ways to inform future policy? 

• Estimate more informative, directly policy-relevant quantities

• Not just hazard ratios / exposure-response curves

• Estimate impacts on less severe but more widespread outcomes

• Invoke outpatient and Part D data (although less representative)

• Apply novel environmental policy design methods
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