Ultrafine Particles: What Progress Have We Made and What Questions Remain?

World Health Organization

Lidia Morawska Queensland University of Technology Collaborating Centre for Air Pollution and Health

WHITE PAPER Ambient ultrafine particles: evidence for policy makers

Prepared by the

'Thinking outside the box' team

Coordinated by: Flemming R. Cassee Udia Morawska Annette Peters

Exposure:

- Lidia Morawska, QUT
- Aneta Wierzbicka, Lund U
- Aurelio Tobias, IDÆA
- Xavier Querol, ID/EA
- Giorgio Buonanno, U Cassino
- Hicran Altug, U Hospital Düsseldorf
- Josef Cyrys,
- Jürgen Schnelle-Kreis, CMA Munich
- Karin Hougaard, APHA
- Michal Kowalski, EPI Munich
- Micheal Riediker, SCOEH
- Per Schwarze, NIPH
- Regina Pickford, EPI Munich
- Wolfram Birmili, UBA, Germany

The Team: Thinking outside the box

Ambient ultrafine particle: evidence for policy makers. White paper. Pfintal, Germany: European Federation of Clean Air and Environmental Protection Associations: 2019 (https://efca.net/files/WHITE%20PAPER-UFP%20evidence%20for%20policy%20makers%20(25%20OCT).pdf,.

Toxicology:

- Flemming Cassee, RIVM
- Ali Önder Yildirim, HMGU Munich
- Alison Elder, URMC
- Dietrich Plaß, UBA, Germany
- Je Yu, KEMTI
- Johan Øvrevik, NIPH
- Otmar Schmid, ILBD
- Steffen Loft, U Copenhagen
- Tobias Stöger, U Copenhagen

Epidemiology:

- <u>Annette Peters</u>, EPI Munich
- Susanne Breitner, EPI Munich
- Timo Lanki, NIHW Finland
- Enembe Okokon, NIHW Finland
- Regina Pickford, EPI, Helmholtz Center Munich
- Evangelia Samoli, U Athens
- Tamara Schikowski, IUF Düsseldorf
- Massimo Stafoggia, Lazio Region Health Service
- Alexandra Schneider, EPI Munich
- Siqi Zhang, EPI Munich
- Barbara Hoffmann, U Hospital Düsseldorf
- Kai Chen, EPI Munich
- Kathrin Wolf, EPI Munich
- Nino Künzli, Swiss TPH
- Ron Kappeler, Swiss TPH
- Sarah Lucht, U Hospital Düsseldorf

Recommendations: EXPOSURE

WHITE PAPER Ambient ultrafine particles: evidence for policy makers

Prepared by the *Thinking outside the box* tear

> Coordinated by: Flemming R. Cassee Udia Morawska Annette Peters

Progress: Recommendations 1, 2 and 3

Future: Recommendations 4 and 5

Recommendation to quantify ambient quasi-UFP in terms of particle number concertation (PNC) in a range at least down to 10 nm, with no restriction on the upper limit

From toxicology: For practical reasons, using particle number as a predictor may be preferred above mass and surface area, especially if the particle size distribution is known

Significance

This is an essential criterion for:

- Design of exposure/epi studies
- Carrying out the meta analysis

Background 1a

ISO/TC 146/SC 2/WG1 N 320 defines:

...an **ultrafine particle** as "A particle sized about 100 nm in diameter or less"

1. The recommendation means that SMPS and CPC data can be used

2. An error/uncertainly due to missing the first few nm:

- Could be calculated/corrected for lower size limit up to 10 nm.
- Negligible for lower size limit less than 5-6 nm

Background 1b

The impact of the lower cut off

Number of particles < 10 nm

- Morning traffic: ~ 1% (orange)
- During the day: about 4% (blue)
- During NPF: higher (grey)

Number of particles < 20 nm

Initial stages of NPF -blue curve) ⇒ 65% Fully developed NPF-red curve) ⇒ 42%

The following <u>daily (24 hours) mean</u> PNC can be considered as *typical*, based on the scientific literature:

- Clean environments < 10³ particles cm⁻³ (not affected by anthropogenic emissions)
- Urban background < 10⁴ particles cm⁻³

In *typical* clean urban microenvironments <u>hourly mean</u> concentrations < $2x10^4$ particles cm⁻³

The uncertainty in the calibration of PNC measuring instruments varies: $\sim 30\%$ for $< 10^3$ particles cm⁻³

~ 10% for ~10⁴ particles cm⁻³ (typical urban background concentrations)

Significance

At the moment that are no reference or guideline values for exposure to UFP

"... the existing body of epidemiological evidence is insufficient to conclude on exposure/response relationship to UFP". (WHO 2005)

Typical values can serve as a comparative reference

Morawska, et al. Atmospheric Environment, 42: 8113-8138, 2008

Background 2b

De Jesus et al. Ultrafine particles and $PM_{2.5}$ in the air of cities around the world: how similar or different are their drivers? Environment International, 129, 118-135, 2019

The following should not be used as proxies of UFP:

- PM_{2.5}
- CO
- NO_x
- BC

Significance

Using other pollutants as proxies of exposure to UFP leads to exposure misclassification

Very little/no relationship between PNC and PM_{2.5}

The existence/degree of the relationship between PNC and traffic emitted gases and BC vary → specific to the environment

Background 3a

•De Jesus et al. Ultrafine particles and PM_{2.5} in the air of cities around the world: how similar or different are their drivers? Environment International, 129, 118-135, 2019 ¹⁴

Background 3b

- PNC decreased in all cities
- PM_{2.5} to lesser extend

elli

 The years in which the reduction in concentration occurred do not coincide for PM_{2.5} and PNC

De Jesus at al., Long-term trends in PM2.5 mass and particle number concentrations in urban air: the impacts of mitigation measures and changing climates. Env Pollution, 263, 114500. doi:10.1016/j.envpol.2020.114500

Regulatory air quality monitoring strategy should be extended by integration of UFP for reporting purposes

Parameters monitored should allow quantification and characterization of **primary versus secondary** particles and their source contribution

- Mean UFP concentration similar in all 3 cities
- BC higher in Barcelona and Tenerife

> Association with daily mortality:

- In Barcelona and Tenerife with N1
- In Huelva with N2

(none were significant)

Tobias et al,. Short-term effects of ultrafine particles on daily mortality by primary vehicle exhaust versus secondary origin in three Spanish cities. Env. International, 111 (2018) 144-151.

Efforts should be stepped up to utilize the emerging science and technology to advance approaches to the assessment of exposure to UFP for application in epidemiological studies and management.

- Modelling tools
- Increasing the number of monitors
- Utilise mobile platforms

Not outside of the box yet, but on the way!

Thinking outside the box team, Munich, Germany, February 2019

