THE ROAD AHEAD FOR THE LEGACY DIESEL FLEET

dam Ph.D.

Arvind Thiruvengadam Ph.D. Principal Engineer

Carl Hergart Ph.D.
Director Powertrain Planning and Agency Relations

PACCAR POWERTRAIN

Introduction

- Global truck and engine manufacturer
- PACCAR has been around for 120 years
- We have seen technology transition from steam powered trucks to gasoline, diesel, electric and even hydrogen
- Diesel-powered trucks have served us well for over a century and will continue to play an important role in freight movement across the world

PATH TO CLEAN DIESEL ENGINES

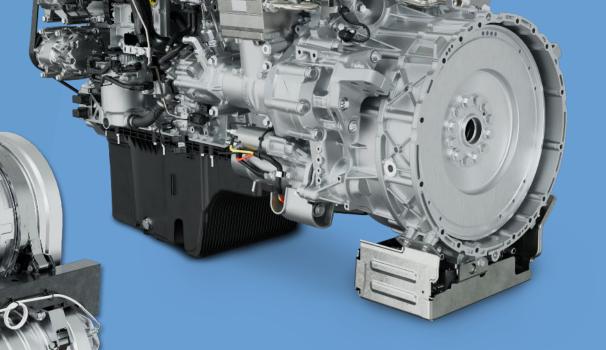
PACCAR POWERTRAIN

- ➤ USEPA 2010 Emissions Regulation
 - ➤ First significantly stringent in Particulate Matter (PM) and Oxides of Nitrogen (NO_x) standard
 - Incremental increase in engine technology needed to meet regulations
- In addition to reduction in regulated emissions significant reduction in unregulated emissions were observed
- ➤ Diesel engines have come a long way since this 2013 study
 - ➤ These advanced early model year 2010 engines can be considered legacy compared to current technology

1986	2018

	2010 % reduction relative to 2007 engines	2010 % reduction relative to 2004 engine
Single Ring Aromatics	50	91
PAH	97	99
NitroPAH	99	100
Alkanes	93	99
Polar	96	99
Hopanes & Steranes	89	100
Carbonyls	80	100
Inorganic Ions	87	92
Metals and Elements	81	100
Organic Carbon	36	97
Elemental Carbon	53	100
Dioxins and Furans ^a	88	100
^a Relative to 1998 Technology	Engine	

CRC Report: Phase 2 of the Advanced Collaborative Emissions


Study, Nov 2013

PAH: Poly Aromatic Hydrocarbons

CARB 24 MX-13

Only Fully CARB
Compliant Engine in

Compliant Engine in the Market

455HP and 510HP

Extensive Testing in Real-world Conditions

1.1M miles

Driven on public roads

-30°F

Winter Test

@ Yellowknife, Canada

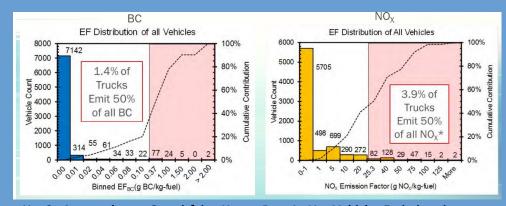
120°F

Summer Test @ Death Valley

12,000 Feet

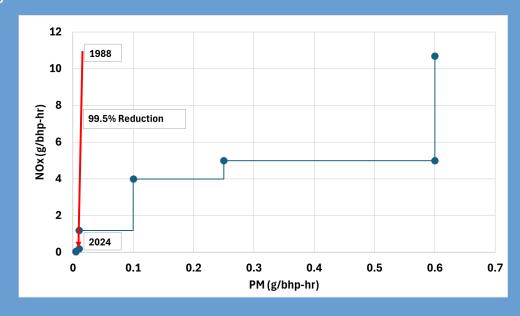
above Sea level High Elevation

@ Eisenhower Pass


8

Loveland Pass

Legacy Vs New Technology


PACCAR POWERTRAIN

- Legacy vehicle emissions footprint
 - Small population contributes to large fraction of soot and NO_x emissions
- ➤ In comparison emissions from modern diesel engines are in some parts of the world cleaner than ambient air concentrations of PM
- ➤ Majority of the vehicle operation results in tailpipe NO_x and PM mass emissions below the detection limits of analytical instruments
 - ➤ Tire and brake wear emissions are higher than tailpipe PM mass emissions
- Common misconception
 - Older engines have better fuel economy
- While engines are becoming cleaner, engine efficiency has continuously improved
- Upkeep and maintenance of modern diesel engine is highly critical
 - ➤ Engine components and aftertreatment age continuously, periodic and preventative maintenance ensures longevity of emissions reduction potential

Hu, S., Approaches to Quanitfying Heavy-Duty In-Use Vehicles Emissions in California

BC: Black Carbon; EF: Emissions Factor

Conclusion

- Modern engines are extremely clean
- Critical to deploy best available technology
- Broad product portfolio is necessary
 - Clean Diesels
 - BEV trucks
- Low carbon fuels such as hydrogen fueled engines have proven to be a comparable clean alternative to diesel technology
- A clear well-to-wheel assessment of air quality impact is necessary

