

Strengthening capacity to promote East Africa-led research programs on air quality and health Webinar

Capacity needs for converting research into practice: A Case for the Eastern Africa GEOHealth HUB

Co-Chair: Assoc. Professor Lynn Atuyambe, MPH, Ph.D. Makerere University School of Public Health

Date: 25th October 2023

Makerere University, East Africa

Capacity needs for converting research into practice

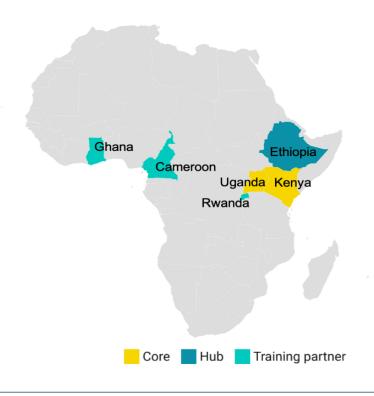
- There is a big gap in converting research evidence into practice, especially for the LIC
 - Limited funding for projects, programs, and innovations
 - Training institutions and higher education
 - Innovators and manufacturing
 - Investing in instrumentations
 - Limited evidence and publications for decision-makers to take action

Capacity needs for converting research into practice

- Examples of Makerere University training initiatives
 - Training programs
 - Bachelor of Environmental Health Sciences
 - Master of Environmental and Occupational Health
 - Other relevant PG courses (MPH, MBIO etc.)
 - Makerere University Lung Institute
 - Small grants program for young faculty and postgraduate trainees
 - Government agencies and departments active
 - MoWE, MoH, NEMA
 - Policy Makers Parliament and Local Government are more active but we need more advocates

Capacity needs for converting research into practice

- Major Challenge:
 - Laboratory, Equipment and Supplies
 - Scientists and instrumentation
- Illustration with the GEOHealth Hub



The Eastern Africa GEOHealth

- Higher Education Institutions important in fostering partnerships
 - They promote the exchange of knowledge, research, and innovations, and equip students with the skills needed
- The Eastern Africa GEOHealth HUB is a partnership in Africa and North America, 10 years so far
- Project focus: Indoor and outdoor air pollution effects on:
 - Lung function [ALL countries]
 - Blood pressure [Uganda]
 - Cognitive development [Kenya]
 - Hospital-based morbidity and mortality (time series) [ALL countries]
- Climate/occupational heat stress [Ethiopia]

Partner Institutions

- Africa
 - Makerere University Uganda
 - University of Nairobi Kenya
 - Addis Ababa University Ethiopia
 - The University of Rwanda Rwanda
- North America
 - Columbia University
 - University of Southern California
 - Colorado School of Public Health University
 - Colorado State University

Beta Attenuation Monitor (BAM-1022) at Makerere University School of Public Health-Central Site Monitoring

Practices for capacity building research

- Exchange visits
- For training Co-Pls training in USC
- Study tours for best practices

Top left NIEHS Top: USC Left: Harvard SPH,

Right: Training BEH

Sustainability of research and relationships

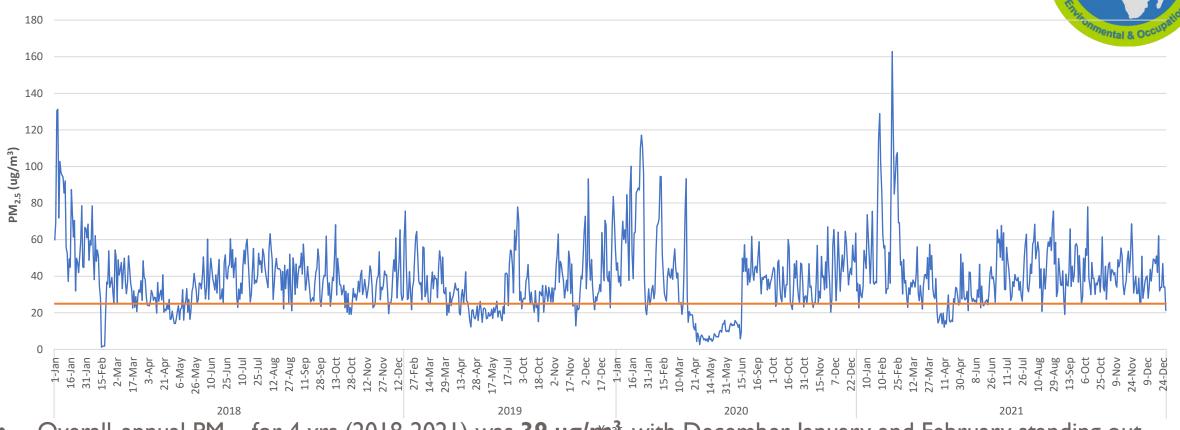
- Student involvement
 - Student field attachment during recess term
 - Rotations during university training in AP Climate Change
 - Small student grants for competition
- Visibility and networking with professional communities
 - Publications and co-authorship
 - Scientific conferences e.g. International Society for Environmental Epidemiology (ISEE)
 - International Society of Exposure Science (ISES)
 - WHO, Air Pollution Technical working group
 - MakCoCIS AirQO
 - Makerere University Lung Institute (MLI) refer patients during research
- Opportunities for collaboration e.g. US Embassy, Health Effects Institute, KCCA, saMRC

Visibility and networking at the WHO


Partnership management and strengthening

- Partnerships
 - Academic Institutions
 - Stakeholders and implementors of results (KCCA, MoH, MoWE, NEMA, HEI)
 - Exchange visits and Training

Engage community and provide evidence



Results: Time series patterns of PM_{2.5} based on BAMs 1022 at MakSPH, 2018-2021

- Overall, annual PM_{2.5} for 4 yrs (2018-2021) was 39 μ g/m³, with December, January, and February standing out with the highest concentration above 80 μ g/m³,
- PM_{2.5} concentrations are highest in the morning (09.00hrs) and in the evening (21.00 hrs)

Monthly average PM_{2.5} concentrations, January to June 2018, 2019, 2020, Kampala Uganda

During the COVID-19 complete lock-down period, PM_{2.5} was in the acceptable range

The Health Impact of AP in Kampala

- In 2020, 1,281 (17.9%) death could be attributable to long-term exposure to air pollution (exposure to $PM_{2.5}$ concentrations above the WHO annual mean of $5\mu g/m^3$)
- In 2021, 1,063 (19.8%) deaths could be attributable to long-term exposure to air pollution (exposure to $PM_{2.5}$ concentrations above the WHO annual mean of $5\mu g/m^3$).
 - This is derived from the WHO expected annual mean for healthy air to breathe (PM2.5 concentration of 5μg/m3).

Conclusion:

 Opportunities for converting evidence into practice though limited could be enhanced