Air Pollution, Polycyclic Aromatic Hydrocarbons and Early Cardiovascular Effects

A Natural Experiment in Travelers from Los Angeles to Beijing

Yan Lin, PhD
Postdoctoral Associate at Duke Global Health Institute
Email: yan.lin@duke.edu

HEI Travel Awardee Webinar
December 3, 2020
Air Pollution is a Global Problem

- 87% of the global population breathed unhealthy air in 2013;
- Ambient PM pollution caused up to 8.9 million death in 2015;
- Large spatial variability in PM$_{2.5}$ exposure:
 - $10.7 \, \mu g/m^3$ in USA vs. $54.3 \, \mu g/m^3$ in China

(Brauer et al. EST 2016; Burnett et al, PNAS 2018)
Biospecimen Collection (Beijing)

UCLA (Los Angeles)
PM$_{2.5}$ levels: 5~30µg/m3

Biospecimen Collection (LA-before)

Biospecimen Collection (LA-after)

Peking University (Beijing)
PM$_{2.5}$ levels: 10~250µg/m3

Summer Student Exchange

Air Pollution and Cross-boundary Travels

(Donkelaar et al. EHP 2015)
Air Pollution and Exchanged Students

Panel 2014
14 students
5 men and 9 women
Average age=23.3 years

Panel 2015
13 students
3 men and 10 women
Average age=27.8 years

Panel 2016
8 students
3 men and 5 women
Average age=22.6 years

Panel 2017
10 students
8 men and 2 women
Average age=22.0 years

Ambient PM$_{2.5}$ levels in Los Angeles

Ambient PM$_{2.5}$ levels in Beijing

Urine Collection

(Data source: national air quality monitors within 30 km of the UCLA (n=4) and Peking University (n=18))
Question: Does traveling to a city with severe air pollution cause increased levels of polycyclic aromatic hydrocarbons (PAHs) metabolites in the urine?
Levels of urinary PAH metabolites were

- Higher in Beijing
- Decreased from 2014 to 2017 in Beijing
- Associated with ambient NO$_2$ and PM$_{2.5}$ levels
Air pollution causes

Systemic Oxidation & Inflammation → Atherosclerosis → Cardiovascular Diseases

Can occur in healthy people after hours’ or days’ exposures.

Occurs after years’ exposures.

Occur in susceptible people after years’ exposures.

(Møller et al, EHP 2010; Kuenzli et al, EHP 2005; Miller et al, NEJM 2007)
Systemic Oxidation and Inflammation

Pro-oxidative/inflammatory

Anti-oxidative/inflammatory

Lipoxygenase (LOX)
- Directly catalyzes the lipid peroxidation of unsaturated fatty acid;
- Leads to the synthesis of pro-inflammatory leukotrienes.

Paraoxonase 1 (PON1)
- Exhibits both anti-oxidative and anti-inflammatory activities;
- Serves as the major functional enzyme bond to HDL particle.
Effects of Air Pollution on LOX and PON1?

- PON1 ↓ LOX ↑
 - Initiation of Atherosclerosis
- Animals
 - PON1 ↓ LOX ↑
 - 2-10 weeks' air pollution exposures
- Controlled exposure experiments
 - No changes in PON1 or LOX
 - 2 hours' exposure

Longer exposure required?

(Spanbroek et al, PNAS 2003; Shih et al, Nature 1998; Fen et al, ATVB, 2011; Ramanathan et al, PFT 2016)
Blood was collected from 26 healthy students in 2014 and 2015 for biomarker measurements;

In Beijing, blood was collected 6 - 8 weeks after the arrival.

In LA-after, blood was collected 4 - 7 weeks after the return.

(Lin et al, Circulation 2019)
Table. Changes of traditional cardiovascular biomarker before, during, and after the travel from Los Angeles to Beijing

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>LA-before</th>
<th>Beijing</th>
<th>LA-before</th>
</tr>
</thead>
<tbody>
<tr>
<td>Systemic oxidation, pg/mL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-isoprostane</td>
<td>2.88 (1.37 - 5.10)</td>
<td>3.46 (1.67 - 7.38)</td>
<td>2.85 (1.85 - 3.46)</td>
</tr>
<tr>
<td>Systemic inflammation, µg/mL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-reactive protein</td>
<td>0.69 (0.24 - 1.15)</td>
<td>1.37 (0.70 - 4.07)</td>
<td>0.67 (0.30 - 1.24)</td>
</tr>
<tr>
<td>Fibrinogen</td>
<td>0.43 (0.27 - 0.48)</td>
<td>0.64 (0.55 - 0.81)</td>
<td>0.40 (0.26 - 0.47)</td>
</tr>
<tr>
<td>von Willebrand factor</td>
<td>5.79 (4.44 - 11.9)</td>
<td>9.12 (6.77 - 13.6)</td>
<td>7.08 (4.73 - 10.6)</td>
</tr>
<tr>
<td>Cholesterol, mg/dL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>84.9 (69.6 - 103)</td>
<td>80.5 (65.6 - 94.0)</td>
<td>90.5 (71.8 - 108)</td>
</tr>
<tr>
<td>HDL</td>
<td>32.1 (29.0 - 39.2)</td>
<td>31.7 (26.2 - 40.3)</td>
<td>33.0 (28.4 - 39.1)</td>
</tr>
</tbody>
</table>

(Lin et al, Circulation 2019)
Changes in cardiovascular biomarkers were associated with PAHs exposure.

(Lin et al, Circulation 2019)
Traveling from less-polluted Los Angeles to more-polluted Beijing increases exposure to PAHs.

Traveling from Los Angeles to Beijing induced systemic oxidation and inflammation, suggesting increased risk of cardiovascular diseases.

Changes in PAH exposures and health biomarkers reversed after returning to Los Angeles.
This work was funded by the National Institute of Environmental Health Sciences (NIEHS, 1R21ES024560), the National Natural Science Foundation of China (21322705, 41121004, and 21190051), and UCLA Center for Occupational and Environmental Health.
Thank you!!