HEI Annual Conference 2023 Exploring the Link Between Air Pollution and Health in High Pollution Environments: Insights from Recent Research Studies

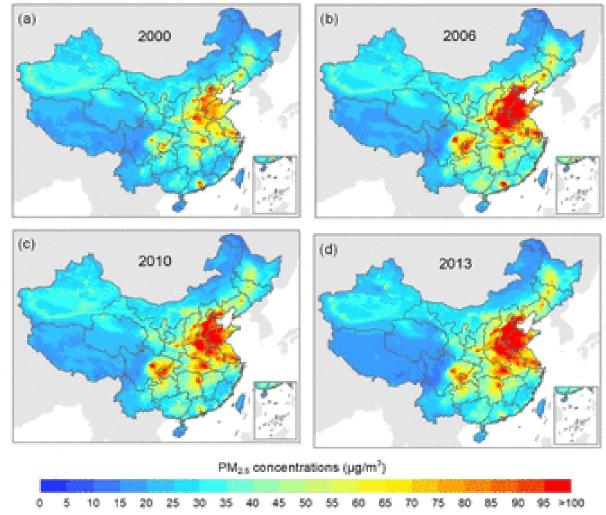
Clean Air Policies and Related Health Benefits in China

Tiantian Li

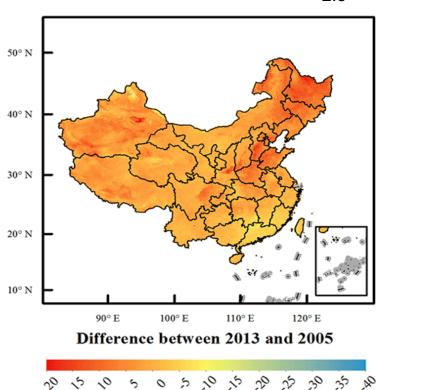
National Institute of Environmental Health, Chinese Center for Disease Control and Prevention 2023-5-2

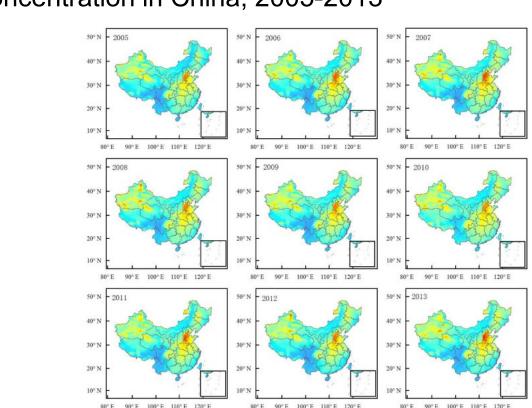
Clean Air Policies in China

Overview of Health Benefits Studies in China


Accountability Study in Beijing-Tianjin-Hebei Region

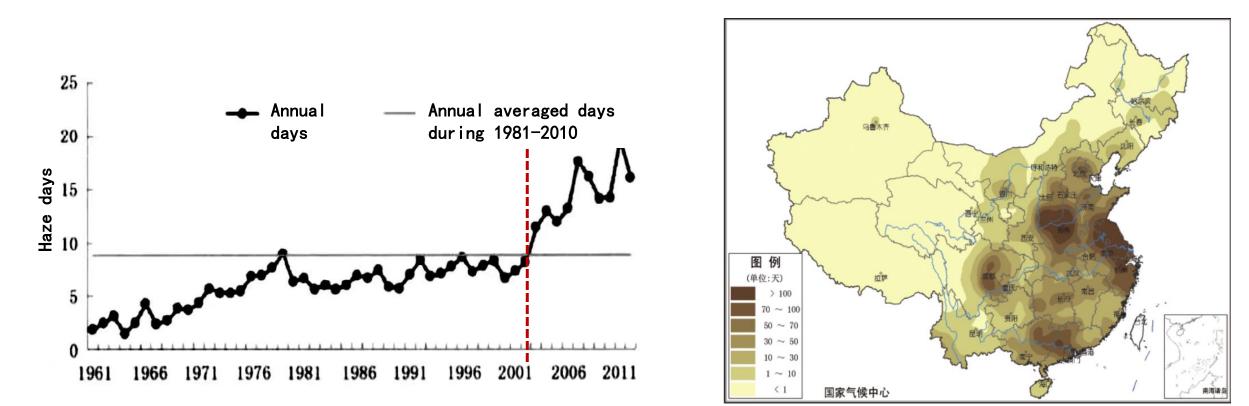
Clean Air Policies in China


Long-term trend of air pollution in China


The population-weighted
PM_{2.5} concentration increased
from 36.0µg/m³ in 1990
to 63.5µg/m³ in 2005,
to 49.9µg/m³ in 2015.

Trend of annual PM_{2.5} concentration during 2000-2013

Long-term trend of air pollution in China



Annual mean $PM_{2.5}$ concentration in China, 2005-2013

Relative to 2005,

□ $PM_{2.5}$ concentration increased by 2.60 µg/m³ in 2013 averaged across China □ $PM_{2.5}$ concentration increased by 8.75 and 1.07 µg/m³ in BTH and YRD in 2013, respectively

Heavy-polluted weather appealed nation-wide attention

Distribution of Haze Days in 2013

Summary of China Air Pollution Control Actions since 2013

	Impleme	ntation pe	eriod				Targe	eted pre	cursor				Sector	r	
2013 2014 2015	2016	2017	2018	2019	2020	PM	SO ₂	NO _X	VOC	NH ₃	PP	IN	TR	DO	AR
→12th FYP						\checkmark		\checkmark			\checkmark				
→Air Pollution Prev Action Plan	ention and	d Control				\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark		
→Enhancing						\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	
in the ener →Action Plar Coal-Fired	for Retro	fitting an	d Upgrad	ling of		V	\checkmark	\checkmark	\checkmark		\checkmark				
→The Env	Plans for ironment	en Devel the Prote in Beijing Developn	ection of –Tianjin-	the Eco	ological	V		$\sqrt[]{}$	$\sqrt{1}$		\checkmark	$\sqrt[]{}$	\checkmark	\checkmark	
		Plan on		duction	in Key				\checkmark			\checkmark			
			rehensivo y Conser ion Redu	vation a			\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark	
			→Three Plan	e-Year A	ction	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark

Nationwide

Key regions (e.g., BTH, YRD)

Nationwide with more efforts in key regions

The policy framework shows a trend of gradually involving more PM_{2.5} precursors and emission sectors.

(Lu, et al. 2020)

Air Pollution Prevention and Control Action Plan: 2013–2017

Launched by Sep 10th, 2013 10 main measures

- 1. Increase effort of control and reduce emission of multi-pollutants
- 2. Optimize the industrial structure, promote industrial restructure
- 3. Accelerate the technology transformation, improve the innovation capability
- 4. Adjust the energy structure and increase the clean energy supply
- 5. Strengthen environmental thresholds and optimize industrial layout
- 6. Better play the role of market mechanism and improve environmental economic policies
- 7. Improve law and regulation system, carry on law-based supervision and management
- 8. Establish the regional coordination mechanism and the integrated environmental management
- 9. Establish monitoring and warning system, cope with heavy pollution weather

10. Clarify the responsibilities of the government, enterprise and society.

> Overall goal:

- the overall national air quality shall be improved;
- heavily polluted days shall be reduced dramatically;
- regional air quality in Beijing-Tianjin-Hebei, Yangtze River delta and Pearl River delta will be turned better.

Specific goals:

- By 2017, the urban PM₁₀ concentration shall decrease by 10% compared with 2012;
- Annual number of days with fairly good air quality will gradually increase;
- Concentration of PM_{2.5} shall fall by:
 25% in Beijing-Tianjin-Hebei,
 20% in Yangtze River Delta,
 - **15%** in Pearl River Delta
- Fine particulate matter annual concentration in Beijing shall be controlled below 60µg/m³

Three-Year Action Plan for Winning the Blue Sky Defense Battle: 2018

Launched by July 3rd, 2018 6 main measures

5

6

Adjust and optimize the industrial structure and promote the green industrial development.

- ²Accelerate the adjustment of the energy mix and establish a clean, low-carbon, and efficient energy framework.
- ³Adjust the transportation structure and develop green transport system.
- ⁴Optimize and adjust the land use structure and press ahead with the control of pollution from non-point sources.

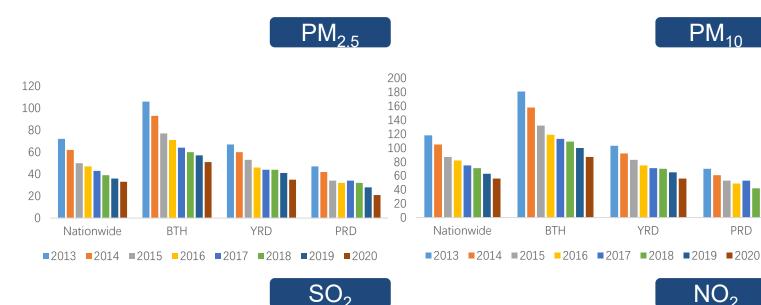
Launch major campaigns to substantially reduce pollutants.

Strengthen regional cooperation on control of heavy air pollution.

> Overall goal:

- the total load of main air pollutants will have been significantly reduced, along with less greenhouse gas emissions
- the concentration of PM_{2.5} will be notably lowered down
- remarkably improved air quality, and much greater sense of happiness for the people from the sight of blue skies.

Specific goals:

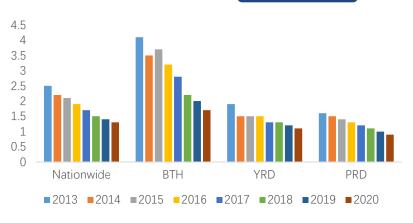

- The total emission of SO₂ and NO₂decreased by more than 15%
- The PM_{2.5} in nonattainment cities at or above the prefectural level will have been down over **18%**
- The cities at or above prefectural level will have recorded clean or fairly clean air during 80% of the days across the year
- The number of the days with heavy or severe pollution will have dropped over **25%**

Air Quality Improvement: 2013–2020


 PM_{10}

PRD

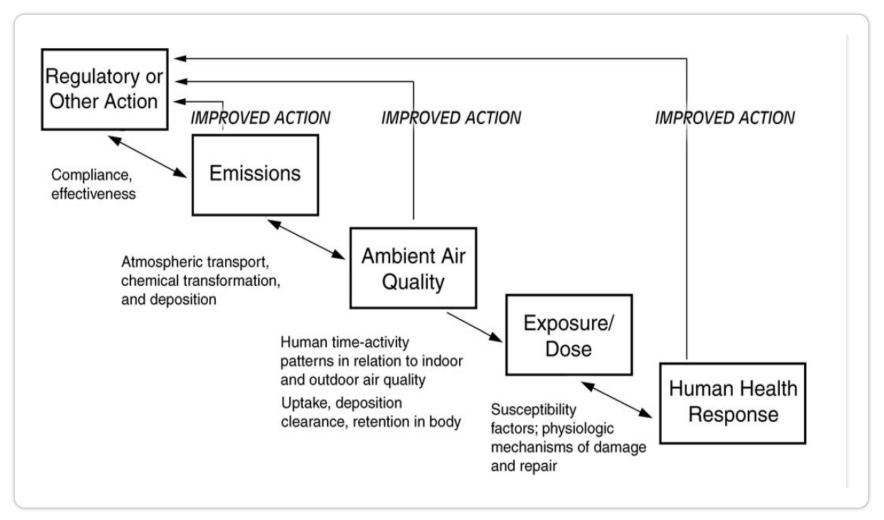
NO₂



CO

Bulletin of the State of the Ecological Environment. 2015-2020. Bulletin of Guangdong Province's Ecological Environment.2018-2020

Questions

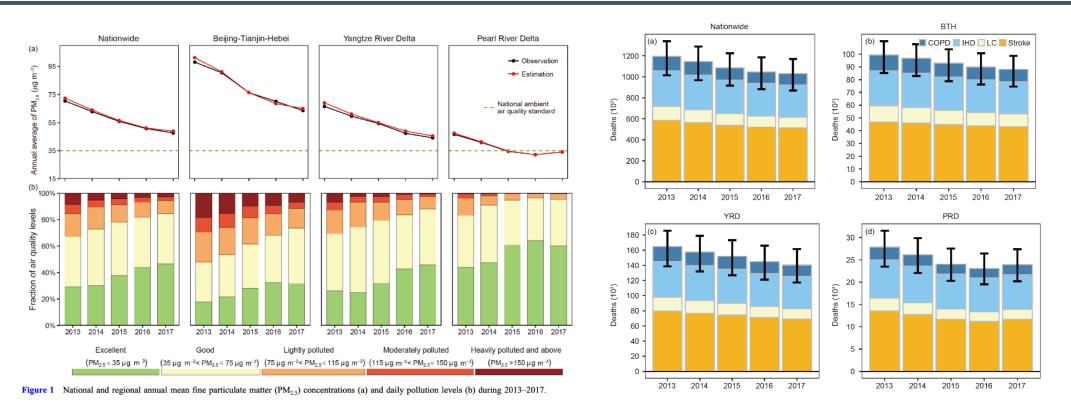


Could the rapid air quality improvement driven by the clean air actions in China bring any beneficial effects on population health?

Overview of Health Benefits Studies in China

Accountability Study: Concepts and Methods

 HEI proposed the concepts and methods for
 Accountability
 Research to assess health impact of air quality regulations



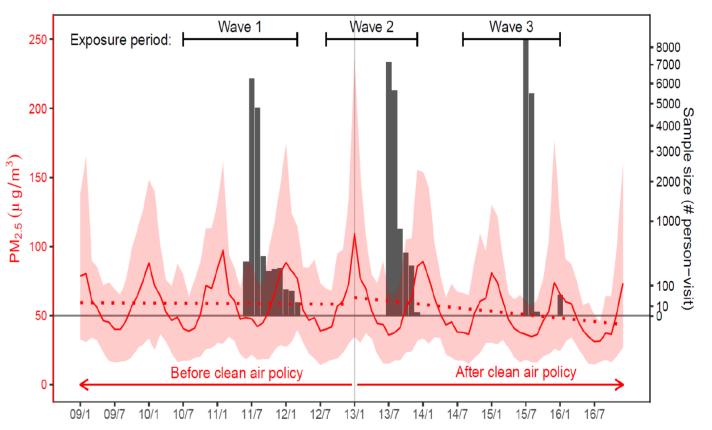
Chain of accountability

Accountability Study in China:

health risk assessment based method

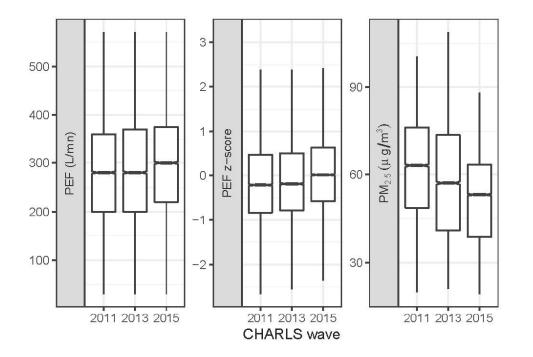
Rapid improvement of the PM_{2.5} concentration and decline in premature death

- The national annual population-weighted PM_{2.5} concentrations decreased from 67.4 μg/m³ in 2013 to 45.5 μg/m³ in 2017, with a linearly reducing trend of 4.4 μg/m³/year.
- In comparison, premature deaths in 2017 were reduced by 14% (95% CI: 11%, 16%) due to reductions in long-term exposure to PM_{2.5}


Xue, et al. Science China Earth Sciences, 2019.

Accountability Study in China:

epidemiological study based method


Clean Air Action and Multi-dimension Health Benefits Based on CHARLS in China

- Study period: 2011-2015
- Study population: The China Health and Retirement Longitudinal Study (CHARLS)
- Health outcomes: sub-clinical symptoms, including *lung functions*, *depressive* symptoms and etc.
- **Exposure:** PM_{2.5} concentration (0.1° grid)
- Method: DID, mixed-effect models

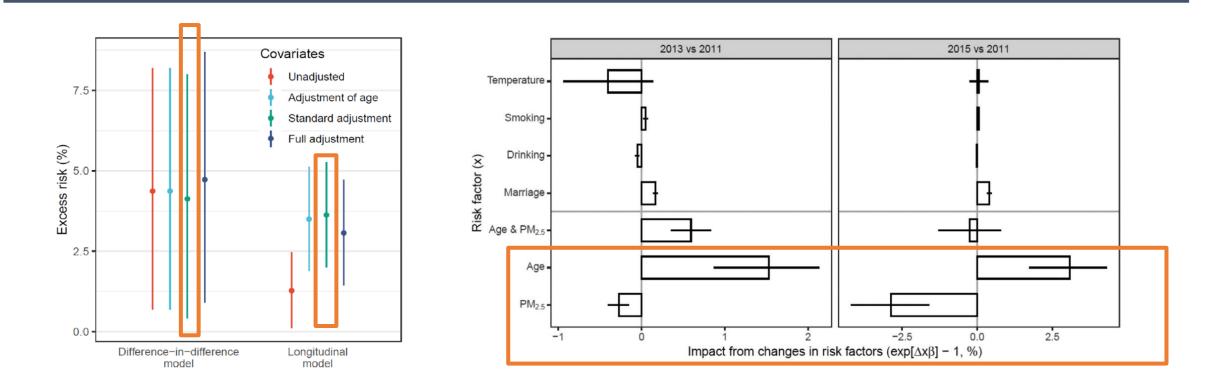
Survey samples of CHARLS and $PM_{2.5}$ level during the clean air policy

PM_{2.5} Reduction has improved Lung Function in Adults

Outcome	Adjusted covariates*	Inclusion criteria [#]	Change (95% confidence intervals) per 10 µg/m ³ reduction in PM _{2.5}	Subjects	Visits	
PEF	Age only [‡]	All	15.84 (14.18, 17.50)		35055	
	Set 1	longitudinal	15.74 (14.02, 17.45)	13959		
	Set 2	samples	14.41 (12.65, 16.17)			
		Subset 1	15.54 (13.46, 17.62)	7137	21411	
	Set 1	Subset 2	14.05(12.33, 15.78)	13339	33168	
		Subset 3	14.43(12.74, 16.12)	13147	32670	
z-score	Age only [‡]	All	0.13 (0.12, 0.14)			
	Set 1	longitudinal	0.13 (0.11, 0.14)	13959	35055	
	Set 2 samples		0.12 (0.10, 0.13)			

Table 3. Estimated associations between PM_{2.5} and PEF.

*Set 1: Ambient temperature, age, urban/rural residence, education, marriage, smoking and drinking. Set 2: Set 1 + indoor temperature maintenance, cooking energy type, building type, rent payment, household tidiness, and in-house telephone.


[#]Subset 1: Subjects participated in all three waves of CHARLS. Subset 2: subjects who attended at least two waves and had a PEF measurement of high quality. From all PEF records, we excluded measurements if the participants (1) did not apply full effort to the test; (2) sat or lay down during the test; (3) were unable to complete the test due to health issues; or (4) tried but failed to complete the test. Subset 3: excluding truncated measurements (values = 30 or 890 L/min) from subset 2.

⁺The effects of age were controlled for using the spline (for PEF) or z-score approach.

Based on mixed-effect model, Compared with the reference in 2011, after the policy was implemented, the mean PEF was elevated by 9.19 (6.79–11.59) L/min and 36.64 (33.53– 39.75) L/min in 2013 and 2015, respectively.

□ According to the regression results, each 10-µg/m³ reduction of PM_{2.5} was associated with a 14.95 (12.62–17.28) L/min improvement of PEF.

Clean Air Action has improved depressive symptoms

□ Based on DID model, a 10-µg/m³ reduction of PM_{2.5} concentration was associated with a 4.14% (95% CI: 0.41–8.00%) decrement in the depressive score.

□ Improved air quality during 2011–2015 offset the negative impact from 5-years' aging.

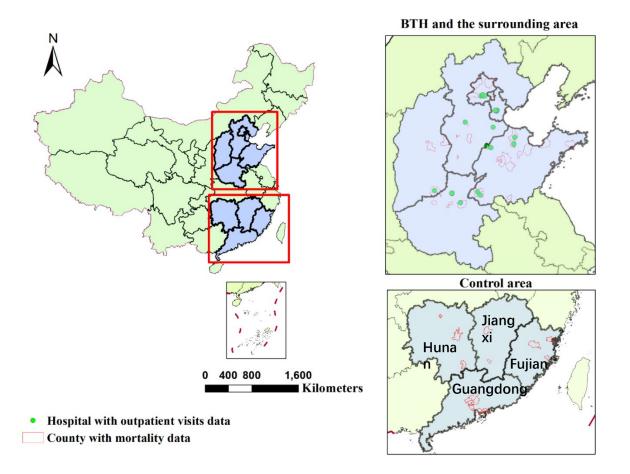
Xue, et al. The Lancet Regional Health - Western Pacific , 2021.

• Study design:

Spatial controls are rarely involved.

• Outcome:

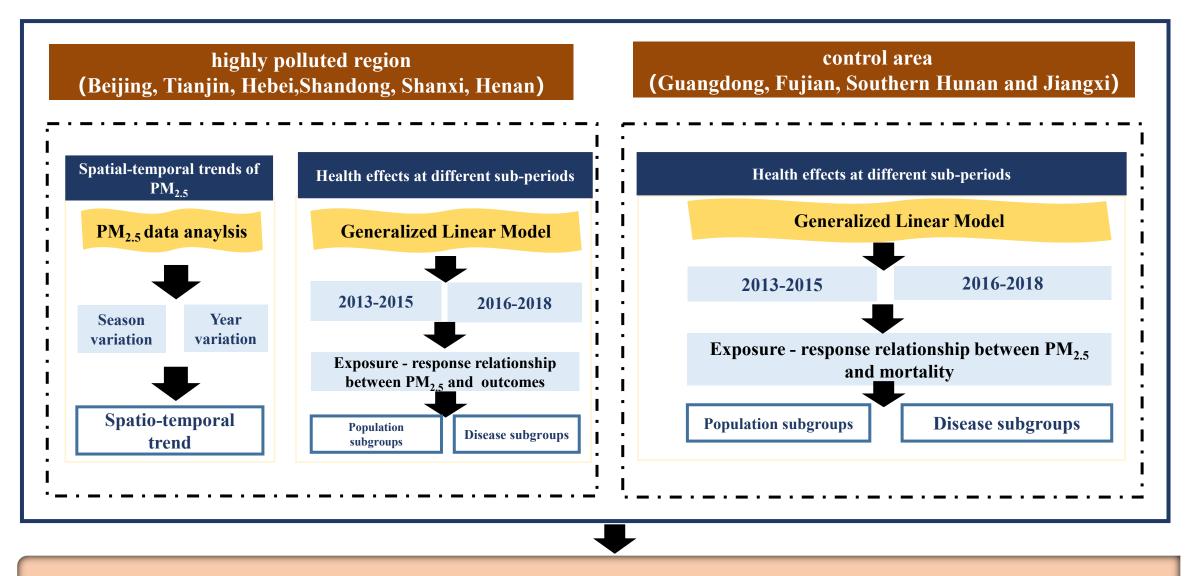
Lack of studies focusing on mortality as a health outcome.


• Study results:

Contributors for the decline in air pollution related effects could not be fully explained.

Accountability Study in Beijing-Tianjin-Hebei Region(BTH)

Study design


Based on multi-center datasets, a two-stage time-series analysis was used to quantify the temporal and spatial changes of the acute health impact of $PM_{2.5}$ after the implementation of the China National Action Plan on Air Pollution Prevention and Control in the BTH region.

Time differences: divide the entire study period into two subperiods, 2013 to 2015 and 2016 to 2018, to estimate PM_{2.5}related health effects separately and to observe whether the effects of the two subperiods have changed.

Region differences: heavily polluted region is BTH and the surrounding area; control area include Guangdong, Fujian, Southern Hunan, and Southern Jiangxi, which have experienced relatively low PM_{2.5} concentrations

Study design

Health benefits and policy implications

Health Outcome and exposure

Daily health outcome data, 2013 to 2018

- non-accidental mortality (A00-R99)
- circulatory disease mortality (100-199)
- respiratory disease mortality (J00-J99)

Mortality data

Study region: BTH and control regions **Data source:** DSP system of China CDC

Daily outpatient visit data

Study region: the BTH and Beijing **Data source:** 30 hospitals' information system

Hospital admissions data

Study region: Beijing **Data source:** Beijing Municipal Health Commission Information Center

Daily exposure data, 2013 to 2018

- Air pollution
- Meteorological data

Daily average PM_{2.5} and O₃

Study region: counties within the BTH **Data sources:** the National Environmental Monitoring System

Daily mean temperature and relative humidity

Study region: counties within the BTH **Data sources:** the Chinese Meteorological Data Sharing Service System

Statistical Analysis

Divide the entire study period into 2013 to 2015 and 2016 to 2018, to estimate $PM_{2.5}$ -related effects separately and to observe whether the effects of the two periods have changed.

> Two step analysis:

multi-county time-series analysis + random-effect meta-analysis

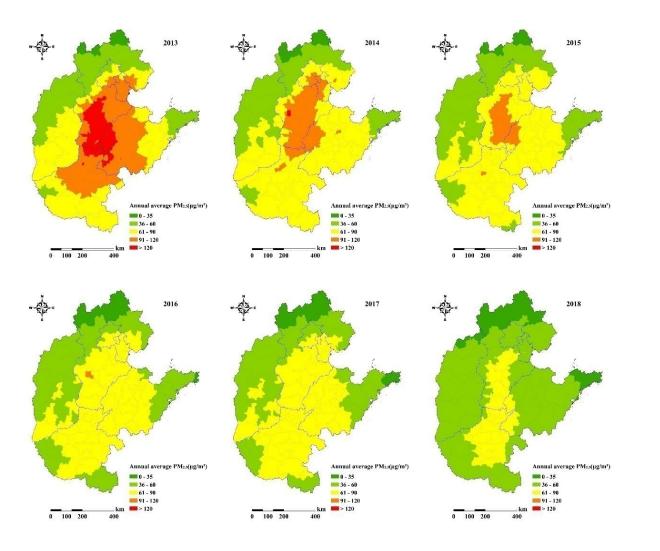
$LogE(Y)=Intercept+\beta X_t +ns(time,df)+ns(temperature,df)+ns(humidity,df)+day of week + public holidays$

E(Y)—Expected number of deaths/outpatients/inpatients on day t;

 X_t —PM_{2.5} component concentration on day t;

ns — The natural spline function controls the time trend, temperature and humidity variables;

day of week — Day of the week effect;

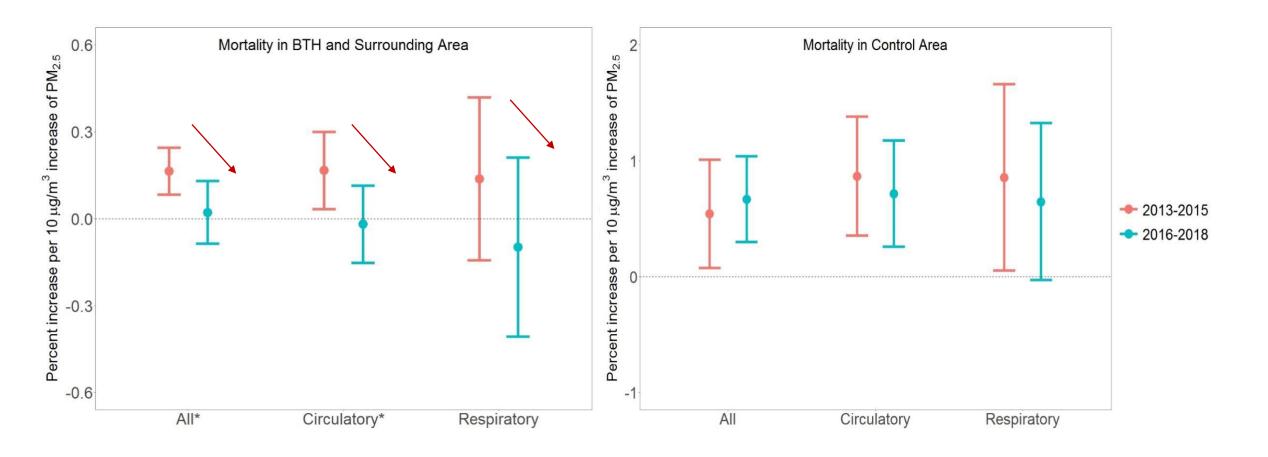

public holidays — the effect of public holidays;

Intercept —intercept.

Test of the differences in the effect estimates between the two periods

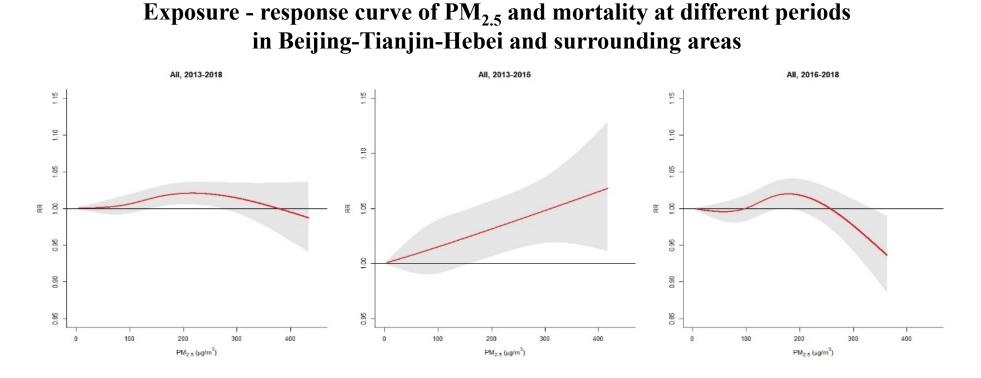
$$\mathbf{Z} = \frac{\beta_{2013-2015} - \beta_{2016-2018}}{\sqrt{se(\beta_{2013-2015})^2 + se(\beta_{2016-2018})^2}}$$

Preliminary results: Change in regional PM_{2.5} concentration



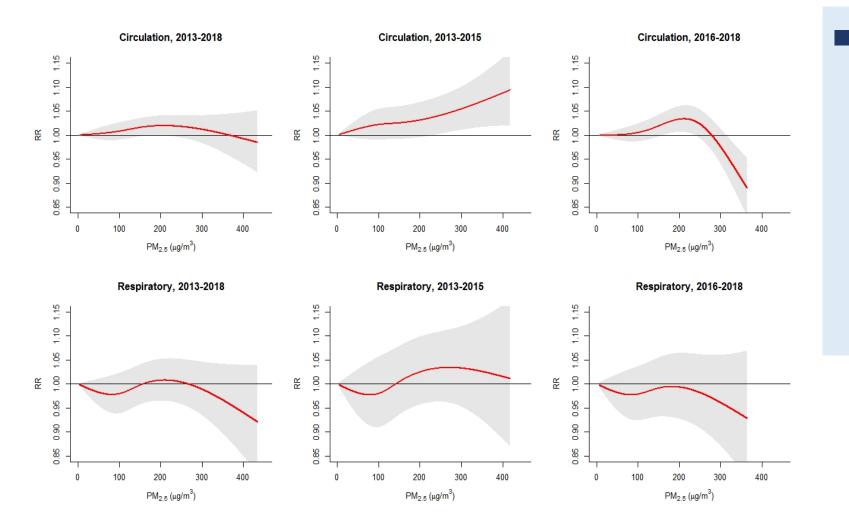
- The annual PM_{2.5} concentrations in BTH and the surrounding area from 2013 to 2018 indicate a decreasing trend by year.
- The mean daily PM_{2.5} level was reduced by 20 µg/m³ in the period of 2016 to 2018, which was likely related to coal emissions control.

The southern area of Hebei Province indicated large reduction of PM_{2.5} concentration.


Annual PM_{2.5} concentration in BTH region, 2013-2018

Preliminary results: Change in PM_{2.5} related all-cause mortality risk

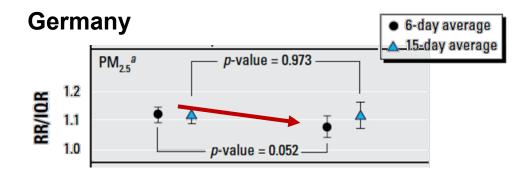
In Beijing-Tianjin-Hebei and the surrounding area, a 10 μg/m³ increase in PM_{2.5} concentrations was associated with a 0.16% (95% CI: 0.08%, 0.24%) and 0.02% (95% CI: -0.09%, 0.13%) increase in mortality from 2013 to 2015 and from 2016 to 2018, respectively.


Preliminary results: Change in PM_{2.5} related all-cause mortality risk

- The exposure-response curves of the PM_{2.5} concentration and daily all-cause mortality in BTH and the surrounding area for the entire study period, 2013 to 2018, showed a monotonic increase in the excess relative rate until approximately 250µg/m³, after which the excess relative rate monotonically decreased.
 - The exposure-response curves for 2013-2016 showed a monotonically linear increase whereas the exposure-response curves for 2016-2018 had an inverted J shape, with nearly no significant effect.

Preliminary results: Change in PM_{2.5} related cause-specific mortality risk

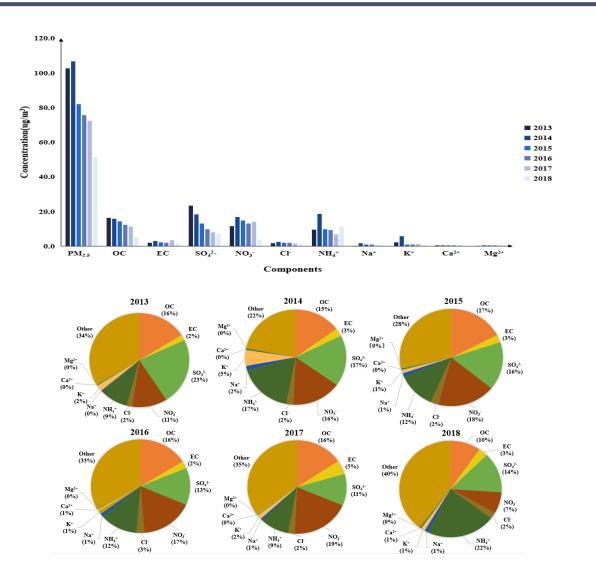
Exposure-response curve of PM_{2.5} (Lag 0-1 days) and circulatory and respiratory diseases mortality in Beijing-Tianjin-Hebei and surrounding areas at different periods


Similar results were
observed for
cardiovascular mortality,
but linear increases were
not observed for
respiratory mortality for
2013-2015.

Discussion: Comparison between health benefits in China and developed countries

USA

TABLE 2. Estimates and 95% posterior intervals for the national and regional (eastern United States and western United States) percentage increase in all-cause, cardiorespiratory, and other-cause mortality associated with a $10-\mu g/m^3$ increase in PM₁₀* at lag 1 for the periods 1987–1994, 1995–2000, and 1987–2000


	1987–1994	95% PI	1995–2000	95% PI	1987–2000	95% PI
All cause						
East	0.29	0.12, 0.46	0.13	-0.19, 0.44	0.25	0.11, 0.39
West	0.12	-0.07, 0.30	0.18	-0.07, 0.44	0.12	-0.02, 0.26
National	0.21	0.10, 0.32	0.18	0.00, 0.35	0.19	0.10, 0.28
Cardiorespiratory						
East	0.39	0.16, 0.63	0.30	-0.13, 0.73	0.34	0.15, 0.54
West	0.17	-0.07, 0.40	0.13	-0.23, 0.50	0.14	-0.05, 0.33
National	0.28	0.14, 0.43	0.21	-0.03, 0.44	0.24	0.13, 0.36
Other						
East	0.21	-0.03, 0.44	0.00	-0.49, 0.50	0.15	-0.09, 0.39
West	0.09	-0.21, 0.38	0.23	-0. 1 5, 0.62	0.11	-0.10, 0.33
National	0.15	-0.02, 0.32	0.17	-0.07, 0.41	0.15	0.00, 0.29

- The effects of PM_{2.5} were significantly decreased for the total and circulatory mortalities in China.
- In USA, the effects of PM₁₀ on all cause and cardiovascular mortality declined during 1987–2000
- In Germany, the effects of short-term PM_{2.5} exposure on all cause mortality indicated a weak decline.

Discussion: Potential contributors for the health benefits in China

- The changes in components or sources
- Use of air purifiers and residential energy substitution
- The air pollution control measures implemented recently targeting coal emissions control

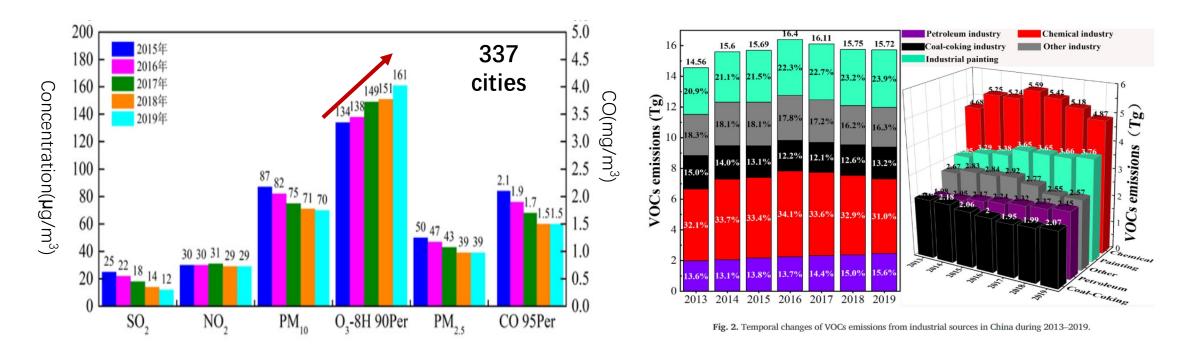
Concentrations and proportions of PM_{2.5} components in Beijing

Prospects

Accountability studies on long-term health benefits of air pollution regulations in China, 2008-2019

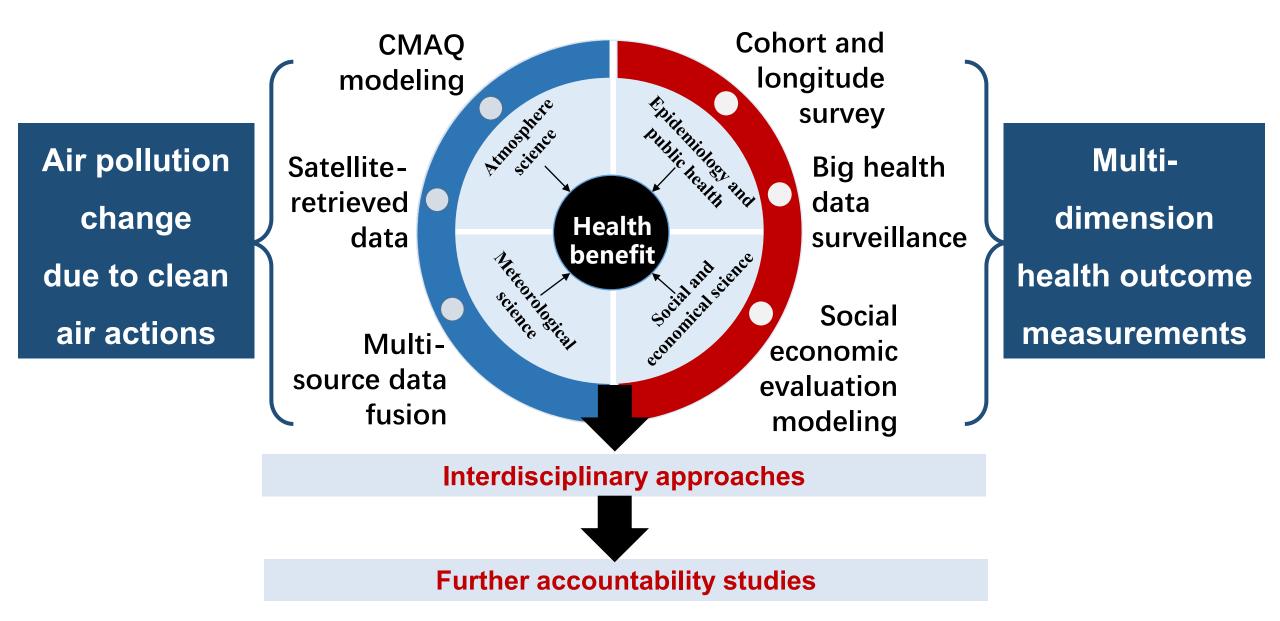
RFA 18-1: Assessing Improved Air Quality and Health From National, Regional, and Local Air Quality Actions

The ongoing study will evaluate the major national regulatory policies that were implemented in China from 2008–2018. The investigators will focus on regulations in particular regions that target specific sources, such as coal combustion, and how they have reduced ambient concentrations of fine particles (and their components). PI: Patrick L Kinney,


Boston University

Accountability study on O₃ and VOCs control actions

During 2013–2019, ambient ozone concentration and VOCs experienced an upward trend



During the 14th five-year plan, further action plans are implemented, including the Elimination of heavily Polluted Weather, the Prevention and Control of Ozone Pollution, and the Pollution Control of Diesel Trucks

□ Further accountability studies on ozone and VOCs control actions are expected.

(Blue Book on Prevention and Control of Atmospheric Ozone Pollution in China 2020; Simayi et al. 2022)

Accountability studies based on interdisciplinary collaboration

Thank you!

litiantian@nieh.chinacdc.cn