Air Pollution Exposure And Altered Immune Response To Respiratory Viral Infection

Ilona Jaspers, PhD
University of North Carolina at Chapel Hill
Why could what we breathe affect viral infections?

- Concurrent exposures:
 - We breathe over 12,000 Liters of air per day – contains both infectious pathogens and air pollutants

- Target the same tissue
 - Respiratory epithelium is the primary target for both viral pathogens and inhaled pollutants

- Rely on similar host defense functions
 - Innate immune cells are the primary and initial response for pollutants and viral infections
During the SARS outbreak in 2002, SARS patients coming from areas of high air pollution were more than twice as likely to die from the disease (Cui et al., 2003).

Long-term exposure to air pollution was associated with increased COVID-19 severity (Conticini et al., 2020).

Higher historical PM$_{2.5}$ exposures are positively associated with higher county-level COVID-19 mortality (Wu et al., 2020).

Environmental factors (air quality index) are associated with daily number of COVID-19 cases (Ma et al., 2021).
Potential Interactions Between Air Pollutants and SARS-CoV2

Inhaled pollutant exposure induces:

1. Enhanced viral activation and entry
2. Impaired TLR activation
3. Impaired intracellular pathway activation
4. Impaired gene expression
5. Impaired antiviral immune signaling
6. Cytokines and chemokines
7. Macrophage phagocytosis
8. Impaired immune cell function
9. Neutrophil phagocytosis and NET formation
Pollutant-induced Modification of Viral Receptors/Proteolytic Activation

- Proteolytic Cleavage/Activation of SARS-CoV2 requires proteases, such as TMPRSS2, furin, cathepsins, etc.

- Exposure to diesel exhaust increased expression of ACE2 and TMPRSS2 in human pluripotent stem cell-derived alveolar epithelial cells and alveolar organoids (Kim et al., 2020)

- Expression of ACE2 and TMPRSS2 might be regulated by several consensus motifs for binding of the aryl hydrocarbon receptor (AhR), a common pathway activated by ambient air pollutants (Watzky et al., 2020; Lawal 20217)

- Exposure to ozone increases secreted levels of TMPRSS2 and decreases levels of SLPI (antiprotease), which was linked to increased viral entry of influenza virus (Kesic et al., 2012)
Internally Quenched Fluorescent Peptides to Assess Cleavage Activity
WSP Enhance Cleavage of SARS-CoV2 Peptide

MODEL

Differentiated human nasal epithelial cells from Males and Females

Cultured at Air-Liquid Interface

22 μg/cm² particulate suspension (or vehicle)

Apical washes from particle exposed and unexposed hNECs for cleavage assay

Graph:
- Apical wash alone
- Apical wash + peptide
- Peptide alone

Legend:
- Red Oak WSP
- Eucalyptus WSP
Potential Interactions Between Air Pollutants and SARS-CoV2

Inhaled pollutant exposure induces:

1. Enhanced viral activation and entry
2. Impaired TLR activation
3. Impaired intracellular pathway activation
4. Impaired gene expression
5. Impaired antiviral immune signaling
6. Impaired immune cell function
7. Cytokines and chemokines
8. Neutrophil phagocytosis and NET formation
9. Macrophage phagocytosis

Airway epithelial cell

UNC SCHOOL OF MEDICINE
Experimental Outline

MODEL
- Differentiated human nasal epithelial cells from *Males* and *Females*.
- Cultured at Air-Liquid Interface.

METHOD
- 22 µg/cm² particulate suspension (or vehicle).
- SARS-CoV-2 infection (or vehicle).
- 0, 24, or 72 h p.i. sample collection.

Viral titer

Gene expression
WSP Modify SARS-CoV2 Antiviral Gene Expression in a Sex-dependent Manner

RESULTS

Particulate exposure did not affect viral load

![Graph showing viral load and gene expression](image)

- **SARS-CoV-2 infection alone**
 - Upregulates: IFIT1, IFITM3, IFNB1, IFNL1, IFNL2, MX1, CCL3, CCL5, CXCL8, CXCL9, CXCL10, CXCL11, IL6, TNF, IRF7, STAT1, DDX58, (IFNL1), (IFNL2)

- **Red Oak WSP + SARS-CoV-2 infection**
 - Downregulates: CCL3, MMP7

Viral load highly correlated to expression of IFN-related genes and viral genes

CONCLUSIONS

- Red Oak WSP:
 - Upregulation of IFNs, ISGs, chemokines, etc.

Nasal epithelial cell 72 h p.i.

Created with BioRender.com
Woodsmoke particle exposure prior to SARS-CoV-2 infection alters antiviral response gene expression in human nasal epithelial cells in a sex-dependent manner

Stephanie A Brocke, Grant T Billings, Sharon Taft-Benz, Neil E. Alexis, Mark T Heise, and Ilona Jaspers

02 FEB 2022 // https://doi.org/10.1152/ajplung.00362.2021
Human *in vivo* studies of Influenza Infections

- FluMist™ is a cold-adapted Live Attenuated Influenza Virus (LAIV) vaccine
 - “cold-adapted”, thus replication limited to nasal cavity (32°C)
 - It generates a replicative but self limited viral infection with innate and immune host defense responses
 - Provides a safe tool to study influenza virus infections *in vivo*
Model Pollutant Exposures and LAIV - Woodsmoke

- PM derived from Woodsmoke is of increasing public health concern in the US and globally
- Healthy study participants were exposed to either 500 μg/m³ of wood smoke particulate or air for two hours
- LAIV-induced CXCL10 (a critical IFN-inducible chemokine) levels were suppressed in the nasal mucosa of all participants
- An exposure by sex interaction was observed, with males showing greater inflammation-related gene expression, while in females’ host-defense related gene expression was mildly decreased

Wood Smoke Exposure Alters Human Inflammatory Responses to Viral Infection in a Sex-Specific Manner
A Randomized, Placebo-controlled Study

Meghan E. Rebuli¹, Adam M. Speen¹, Elizabeth M. Martin¹,², Kezia A. Addo¹, Erica A. Pawlak³, Ellen Glista-Baker³, Carole Robinette³, Haibo Zhou⁴, Terry L. Noah¹,³,⁵, and Ilona Jaspers¹,³,⁵

¹Curriculum in Toxicology & Environmental Medicine, ²Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, ³Center for Environmental Medicine, Asthma, and Lung Biology, ⁴Department of Biostatistics, and ⁵Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina

Am J Respir Crit Care Med Vol 199, Iss 8, pp 996–1007, Apr 15, 2019
Summary

• Both acute and chronic exposure to air pollutants (particulate and gas phase) affect respiratory host defense

• Epidemiological studies suggest a link between pollutant exposure and COVID-19, but more studies are needed to determine whether other co-factors are modifying this effects

• Organotypic *in vitro* models have uncovered plausible mechanisms by which inhaled air pollutants could affect the susceptibility to SARS-CoV2

• Model virus infections combined with controlled acute pollutant exposures have identified pollutant-induced modification of respiratory virus infection; sex is a biological variable that needs to be considered
Acknowledgements

Jaspers Lab
Stephanie Brocke
Tim Smyth, PhD
Alexia Perryman
Elise Hickman, PhD
Keith Rogers
Aleah Bailey
Charlotte Love
Elijah Scott
Andrew Barber
Missy White
Kevin Cao

Rebuli Lab
Meghan Rebuli, PhD
Catalina Cobos-Uribe

Pickles Lab
Raymond Pickles, PhD
Samuel Gallant

Gilmour Lab
M. Ian Gilmour, PhD
Yong Ho Kim, PhD

Study Coordinators
Carole Robinette
Martha Almond
Noelle Knight

Former Members:
Yael Escobar, PhD
Grace Nipp
Jamie Antinori
Phil Clapp, PhD

Wu Lab (China Collaborators)
Weidong Wu, PhD
Zhen An, PhD

Surratt & Turpin Labs
Barbara Turpin, PhD
Jason Surratt, PhD
Jiaqi Zhou, PhD
Naomi Chang

Grant Funding
U.S. EPA CR83346301)
T32 ES007126
R01ES031173
R01ES013611

Biorender.com
Diesel Exhaust Exposure and Nasal Response to Attenuated Influenza in Normal and Allergic Volunteers

Terry L. Noah\(^1,2\), Haibo Zhou\(^2,3\), Hongtao Zhang\(^3\), Katie Horvath\(^4\), Carole Robinette\(^1,2\), Matthew Kesic\(^2\), Megan Meyer\(^5\), David Diaz-Sanchez\(^6\), and Ilona Jaspers\(^1,2\)

\(^1\)Department of Pediatrics, \(^2\)Center for Environmental Medicine, Asthma and Lung Biology, \(^3\)Department of Biostatistics, \(^4\)Curriculum in Toxicology, and \(^5\)Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; and \(^6\)United States Environmental Protection Agency, Chapel Hill, North Carolina

Am J Respir Crit Care Med Vol 185, Iss. 2, pp 179–185, Jan 15, 2012