

#### **PURE AIR:** Assessing Air Pollution Exposure and Human Health Globally



# Perry Hystad, Michael Brauer, Salim Yusuf and the PURE team



Population Health Research Institute





THE UNIVERSITY OF BRITISH COLUMBIA





# **Collaborators**!

- Michael Brauer, UBC
- Andrew Larkin, OSU
- Raphael Arku, UBC
- Ying Wang, OSU
- Matt Shupler, UBC
- Courtney Roper, OSU
- John Volckens, CSU

- Aaron van Donkelaar, Dalhousie
- Randal Martin, Dalhousie
- Aaron Birch, UBC
- Kwadwo Boakye, OSU
- Salim Yusuf, PHRI
- Sumathy Rangarajan, PHRI
- The entire PURE team



PURE Team, Istanbul 2022

# The Prospective Urban and Rural Epidemiological Study (PURE)



- PURE: 160,000 adults (35-70), from 800 urban/rural communities in 27 low-, middle- and high- income countries.
- Started in 2004 (Bangalore, India) with ongoing enrollment and follow-up.
- Comprehensive baseline data collection: individual/household data, medical history, blood collection, lung function.
- Follow-up conducted every 3 years to document health events.

## **CVD Events at 5 Years**



Major CVD = death from CV causes, stroke, MI and HF

Yusuf et al NEJM 2014

# **Traditional CVD Risk Factors**



INTERHEART risk score: age, sex, smoking status, diabetes, high blood pressure, family history of heart disease, waist-to-hip ratio, psychosocial factors, diet, physical activity.

## **PURE-AIR**

PURE-AIR added an ancillary air pollution study to the existing PURE cohort.

- 1. Air pollution exposure assessment
- 2. Repeat lung function measurements
- 3. Epidemiological analyses







National Institutes of Health

### Summary of Air Pollution Exposure Assessments in PURE



#### **Outdoor PM<sub>2.5</sub> Exposure Assessment**

- Cannot rely on existing air pollution monitoring in many LMICs.
- Use satellite-based estimates of long-term PM<sub>2.5</sub> air pollution concentrations.
- Global R<sup>2</sup> 0.91 with RMSE of 10.7 μg/m<sup>3</sup>.



Van Donkelaar et al. EHP 2016 Shaddick et al. EST 2018

### **Outdoor PM<sub>2.5</sub> Exposure Levels From Satellite-Based Measures**



PURE Baseline 3 year mean =  $47.5 \mu g/m^3$  (std=32.6)

# Global Spatial-Temporal LUR NO<sub>2</sub> Model







Larkin et al. Frontiers in Env. Sc. 2023

Impervious X



#### **Household & Personal Air Monitoring**

- Household (n=2,500) and personal (n=1,400) samples collected in rural PURE communities with >10% biomass use for cooking.
- UPAS monitor collected filter-based air samples.
- Measured PM<sub>2.5</sub> and Black Carbon concentrations.
- Sub-set of individuals (n=600) wore wristband samplers to measure 1,500 organic chemicals and PAHs.



#### Standardized Equipment, Protocols, Training





#### **Home Monitoring**



#### **Personal Monitoring**



# **Monitoring Results**

- 2,541 households and 1,250 individuals in 120 communities.
- Strong gradient in PM<sub>2.5</sub> by cooking fuels.
- Average PM<sub>2.5</sub> measurements for all fuel types above the WHO Target-1 (35 μg/m<sup>3</sup>).
- Minor differences between average male and female PM<sub>2.5</sub> exposures (varied by country).
- PURE-AIR measures double the available HAP PM<sub>2.5</sub> samples in the WHO database.



Shupler et al. LPH 2020

# **PURE-AIR Epidemiology**



- 1. Few studies conducted in developing countries and at moderate-to-high PM<sub>2.5</sub> levels.
- 2. Important population differences and co-exposures.
- 3. No study of household air pollution and CVD incidence.

# Outdoor PM<sub>2.5</sub> (per 10 µg/m<sup>3</sup> increase)

|                         | Evente | Base        | Adjusted    | +Geographic |  |
|-------------------------|--------|-------------|-------------|-------------|--|
| Events                  |        | Model       | Model       | Variables   |  |
| CVD Events <sup>a</sup> | 9 152  | 1.09        | 1.05        | 1.08        |  |
|                         |        | (1.07-1.11) | (1.03-1.07) | (1.01-1.16) |  |
| МІ                      | 4 083  | 1.07        | 1.03        | 1.11        |  |
|                         |        | (1.05-1.10) | (1.00-1.06) | (1.02-1.21) |  |
| Stroke                  | 4 139  | 1.13        | 1.07        | 1.11        |  |
|                         |        | (1.10-1.15) | (1.05-1.10) | (1.00-1.22) |  |
| CVD Death               | 3 219  | 1.07        | 1.03        | 1.12        |  |
|                         |        | (1.04-1.10) | (1.00-1.06) | (1.02-1.23) |  |
| Death <sup>b</sup>      | 9 996  | 1.01        | 0.98        | 1.08        |  |
|                         |        | (0.99-1.03) | (0.96-0.99) | (1.01-1.15) |  |

Base: Age, sex, baseline year, community random effect.

Adjusted: Model 1 plus smoking status, physical activity, PURE diet score, waist to hip ratio, INTERHEART risk score, use of solid fuels for cooking, education level, household wealth index, occupational class, baseline chronic condition, use of CVD medication, and hypertension status, urban/rural status, baseline country GDP per person, community lights at night satellite data (indicator of local economic activity), and a national or regional healthcare access & quality index.

Fixed effects: Model 3 with a fixed effect for each center urban/rural area.

<sup>a</sup> Death from cardiovascular causes and non-fatal myocardial infarction, stroke, and heart failure. Each sub-category includes fatal and non-fatal events. <sup>b</sup> All deaths excluding injuries.

## **Concentration-Response**



Hystad et al. LPH 2020

#### **Cooking with Solid Fuels Versus Clean**

|                            | n      | Events | Adjusted<br>Model    | + SES<br>Factors     |
|----------------------------|--------|--------|----------------------|----------------------|
| CVD<br>Events <sup>a</sup> | 91,350 | 5 472  | 1.14<br>(1.05, 1.23) | 1.08<br>(0.99, 1.17) |
| MI                         | 91,350 | 2 363  | 1.12<br>(1.00, 1.26) | 1.07<br>(0.94, 1.22) |
| Stroke                     | 91,350 | 2 685  | 1.16<br>(1.03, 1.30) | 1.12<br>(0.99, 1.17) |
| CVD<br>Death               | 91,350 | 2 104  | 1.18<br>(1.04, 1.34) | 1.04<br>(0.91, 1.19) |
| Mortality <sup>b</sup>     | 91,350 | 6 595  | 1.24<br>(1.16, 1.34) | 1.12<br>(1.04, 1.21) |

Model 1: Age, sex, baseline year, strata for center and urban/rural status, INTERHEART risk score, smoking, physical activity, alcohol use, alternative healthy eating index, BMI, baseline chronic condition, baseline CVD medication use, baseline hypertensive status, outdoor PM25. Model 2: Model 1 + education, percentage income spent on food, and strata for household wealth index tertile.

<sup>a</sup> Death from cardiovascular causes and non-fatal myocardial infarction, stroke, and heart failure· Each sub-category includes fatal and non-fatal events.

<sup>b</sup> All deaths excluding injuries

#### Hystad et al. EHP 2019

#### All-Cause Mortality



0.25 0.5 1 2 4

#### Households Switching from Solid to Clean Fuels During Follow-Up

|                         | n    | Respiratory<br>Events<br>HR (95% CI) | Mortality<br>HR (95% CI) |
|-------------------------|------|--------------------------------------|--------------------------|
| Persistent solid fuels  | 4520 | ref                                  | ref                      |
| Switched to clean fuels | 3901 | 0.76<br>(0.57, 1.00)                 | 0.85<br>(0.62, 1.17)     |

Model 1: Age, sex, baseline year, strata for center and urban/rural status, INTERHEART risk score, smoking, physical activity, alcohol use, alternative healthy eating index, BMI, baseline chronic condition, baseline CVD medication use, baseline hypertensive status, outdoor PM25.

Model 2: Model 1 + education, percentage income spent on food, and strata for household wealth index tertile.

<sup>a</sup> Death from cardiovascular causes and non-fatal myocardial infarction, stroke, and heart failure. Each sub-category includes fatal and non-fatal events.

<sup>b</sup> All deaths excluding injuries

#### Wang et al. EHP 2023

Stroke, Full Exposure Range



#### Ischemic Heart Disease, Full Exposure Range



#### PURE Integrated Analysis of Modifiable Risk Factors for <u>CVD</u>



Yusuf et al. Lancet 2020

#### PURE Integrated Analysis of Modifiable Risk Factors for <u>Mortality</u>



Yusuf et al. Lancet 2020

# **Lung Function**



|                      | FEV1 ml<br>β (95%Cl) | FVC ml<br>β (95%Cl) | FEV1/FVC %<br>β (95%CI) |
|----------------------|----------------------|---------------------|-------------------------|
| Clean cooking fuels  | ref                  | ref                 | ref                     |
| Solid applying fuels | -17.5                | -14.4               | -0.1                    |
|                      | (-32.7, -2.3)        | (-32.0, 3.2)        | (-0.4, 0.2)             |

Adjusted for: Age, sex, baseline year, strata for center and urban/rural status, INTERHEART risk score, smoking, physical activity, alcohol use, alternative healthy eating index, BMI, baseline chronic condition, baseline CVD medication use, baseline hypertensive status, outdoor PM25, education, percentage income spent on food, and strata for household wealth index tertile.

# <u>Measured</u> PM<sub>2.5</sub> and Respiratory Symptoms

|                                 | Na  | Household PM <sub>2.5</sub><br>(OR, 95%Cl) | Personal PM <sub>2.5</sub><br>(OR, 95%Cl) |
|---------------------------------|-----|--------------------------------------------|-------------------------------------------|
| Individual Symptoms             |     |                                            |                                           |
| Breathlessness                  | 135 | 1.11 (0.98, 1.25)                          | 1.08 (0.91, 1.28)                         |
| Cough at least 2 weeks          | 94  | 1.22 (1.06, 1.39)                          | 1.06 (0.87, 1.30)                         |
| Sputum                          | 98  | 1.26 (1.10, 1.44)                          | 1.19 (1.00, 1.41)                         |
| Wheezing/chest whistling        | 48  | 1.25 (1.07, 1.46)                          | 1.23 (1.00, 1.50)                         |
| Respiratory function impairment | 103 | 1.11 (0.94, 1.30)                          | 1.20 (1.01, 1.43)                         |
| Number of Symptoms <sup>d</sup> |     |                                            |                                           |
| 2 Symptoms                      | 48  | 1.22 (1.03, 1.44)                          | 1.12 (0.90, 1.39)                         |
| ≥3 Symptoms                     | 57  | 1.25 (1.06, 1.48)                          | 1.20 (0.98, 1.48)                         |

\*Scaled per IQR (119.1 ug/m<sup>3</sup>) increase in household PM<sub>2.5</sub> and IQR (91.5 ug/m<sup>3</sup>) increase in personal PM<sub>2.5</sub> <sup>a</sup> Number of individuals reporting symptoms. Total sample size is 870.

Adjusted model: Age, sex, current smoker, second-hand smoke exposure, education, household wealth index, ambient annual PM<sub>2.5</sub>

### **Total Air Pollution Exposure**



Wang et al. Sci. Total Env. 2021; Shupler et al. Env. Int. 2022

# **Research Collaboration and Logistics**

- PURE-Air feasible due to the long-standing collaborations and buy-in from local PURE investigators.
- Local field staff (no experience with air sampling) were able to effectively collect air pollution measures.
- Study built local capacity for air pollution research many new local and country projects and analyses.
- Don't underestimate logistic challenges survey translation, shipping, local IRB, sending money, power....
- Data overload!

#### Join us in June!!!







# **Register Now!**

Visit <u>https://bit.ly/43akASW</u> to register.

ISEE North American Chapter Conference June 19-21 Corvallis, Oregon

**Thank You!** 

Perry.Hystad@oregonstate.edu