A multi-modal MRI approach to studying air pollution exposure and adolescent neurodevelopment

Presented By: Megan M. Herting, PhD Assistant Professor Department of Preventive Medicine

HEI Brain Health and Air Pollution Symposium Date: May 13, 2020

Neurotoxicant effects on child behavior

- Developmental delays
- Risk for Autism
- Lower IQ
- Greater behavioral problems

Remaining questions:

- Source(s) and exposure(s) characteristics
- Confounders/covariates
- Heterogeneity of effects (sex, socio-economic, etc.)
- Brain Mechanism(s)
- Which periods of exposure are most important?
- Are the effects long-lasting?

Timing: Prenatal vs. Postnatal?

associations

Elsie M. Taveras ^{j, k, 1}, Rosalind J. Wright ^{a, b, i} 1

Environmental Research Volume 158, October 2017, Pages 798-805

Prenatal particulate air pollution

exposure and body composition in

sensitive windows and sex-specific

urban preschool children: Examining

Yueh-Hsiu Mathilda Chiu^{a, b}, Hsiao-Hsien Leon Hsu^a, Ander Wilson^c, Brent A. Coull^{d, e},

Mathew P. Pendo^f, Andrea Baccarelli^g, Itai Kloog^h, Joel Schwartz^e, Robert O. Wright^{a, i},

N=267;

5 years

Int. J. Environ. Res. Public Health 2014, 11, 6827-6841; doi:10.3390/ijerph110706827

OPEN ACCESS

International Journal of Environmental Research and Public Health ISSN 1660-4601 www.mdpi.com/journal/ijerph

Article

Multilevel Analysis of Air Pollution and Early Childhood Neurobehavioral Development

Ching-Chun Lin¹, Shih-Kuan Yang¹, Kuan-Chia Lin², Wen-Chao Ho³, Wu-Shiun Hsieh⁴, Bih-Ching Shu⁵ and Pau-Chung Chen^{1,6,7,*}

N=533; 18 months

Environment International Volume 131, October 2019, 104927

Prenatal and postnatal exposure to air pollution and emotional and aggressive symptoms in children from 8 European birth cohorts

Ainhoa Jorcano ^{a, b, c}, Mafgorzata J. Lubczyńska ^{a, b, c}, Livia Pierotti ^{a, b, c}, Hicran Altug ^d, Ferran Ballester ^{c, e, f}, Giulia Cesaroni ^g, Hanan El Marroun ^{h, i, j}, Ana Fernández-Somoano ^{c, ^{k, l}, Carmen Freire ^{c, m}, Wojciech Hanke ⁿ, Gerard Hoek ^o, Jesús Ibarluzea ^{c, p, q, r}, Carmen Iñiguez ^{c, s}, Pauline W. Jansen ^{h, j}, Johanna Lepeule ^t, Iana Markevych ^{u, v, w}, Kinga Polańska ⁿ, Daniela Porta ^g... Mònica Guxens ^{a, b, c, h} 名 國} N=13,182; 7-11 years

Child and adolescent development: a period of opportunity & vulnerability

Child and adolescent development: a period of opportunity & vulnerability

- Heightened risk taking paired with a mis-match in timing of maturation of emotion, reward, and regulation systems
- 50% of all lifetime mental illness begins by age 14
- 75% of all lifetime mental illness by age 24

ADHD, conduct disorder						
Anxiety disorders						
Mood disorders						
Schizophrenia						
Substance abuse						
Any mental illness						
	-	-	10	15	20	-
	0	5	10	15	20	25
			Age i	vears		

Lee et al., Science, 2014

Interconnections & efficiency of ^{5 years} neural systems occur in a systematic fashion

Early childhood: sensory and motor regions involved in speaking, listening, and perceived emotions

Mid-to-Late childhood: association brain regions to sensory integration and conceptual frameworks of social, emotion, and cognitive concepts

Early-to-Mid adolescence: emotional & reward processes, sensitivity to social identity

Late adolescence to adulthood: improved emotional regulation, long-term planning, and abstract thinking

Gogtay et al., PNAS, 2004

25 years

Does air pollution exposure impact brain structure and function in humans?

Outdoor Air Pollution-MRI Studies

	Structural MRI		Diffusion MRI		Functional MRI		Spectroscopy (MRS)	
	tissue composition water		diffusion blood-oxygen-level- depe		el- dependent	tissue perfusion	proton frequencies	
MRI Technique	white matter surface			ROI 1 WAXWY	Stimulus/Events			
		diffusion modeling (e.g. DTI, ball & stick, NODDI)	tractography	resting-state correlations	task-based brain activity			
Measures	volume; surface area; cortical thickness; density (VBM)	water restriction/ orientation (e.g. FA, ICVF)	white matter fiber bundles	timecourse correlations	signal change between task conditions	cerebral blood flow	metabolites	
Biomarkers								
Functionality	gray or white matter size & shape	white matter microstructure	<i>structural</i> connectivity between regions	<i>functional</i> connectivity of brain regions	brain function	brain blood flow	brain metabolites	

- Peterson 2015
- Pujol 2016a
- Pujol 2016b
- Mortamais 2017
- Guxens 2018
- Alemany 2018
- Mortamais 2019
- Beckwith 2020

• Pujol 2016a

٠

•

- Pujol 2016b
- Malgorzata 2020
- Pujol 2016a
- Pujol 2016b

- Pujol 2016a
 - Brunst 2019

Herting et al., Frontiers in Public Health, 2019

?

•

Outdoor Air Pollution and MRI studies

Columbia Center's Birth Cohort	BREATHE Cohort	Generation R Cohort	CCAAPS
 New York Boroughs 40 children PAHs 	 Barcelona, Spain 263 children School/home, traffic-related, Cu 	 Rotterdam, The Netherlands 2,900 children NO2, PM_{2.5}, PM₁₀, and PM Components 	 Cincinnati, OH 135 children Elemental carbon attributable to traffic (ECAT)

- Generalizability and reproducibility
- Sources and lifetime of exposure(s)
- Identifying susceptibility risk factors

Covariates, Confounders, Mediators, Moderators

- Community factors
- Genetics
- Parental/family factors

Adolescent Brain Cognitive Development Study®

- Largest long-term study of brain development and child health in the U.S.
- 11,873 children ages 9-10 years from 21 research sites across the country
- Annual cognitive and behavioral assessments; brain MRI every 2 years for 10 years

https://abcdstudy.org/

Cserbik et al., Under-review

Ambient PM_{2.5} Exposure and Brain Structure at 9-10 years

The Future: Longitudinal MRI Timing Effects

- Child and adolescent windows of vulnerability?
- Neural system and sex-specific effects?
- Long-term effects?
- May help to identify early brain MRI biomarkers of future behavioral problems

Haller et al., DCN, 2018

Adolescent Air Pollution Exposure Behavior Studies Suggest Long-term Effects

Wang et al., PLOS One, 2017

Roberts et al., Psychiatry Res., 2019

	PM _{2.5} 1-year prior to baseline	PM _{2.5} 2-years prior to baseline	PM _{2.5} 3-years prior to baseline	PM _{2.5} average over follow-up
Models ^b	β (95% CI)	β (95% CI)	β (95% CI)	β (95% CI)
Base ^c	0.36* (0.12, 0.60)	0.32* (0.08, 0.56)	0.33* (0.08, 0.58)	0.30* (0.09, 0.52)
Fully Adjusted ^d	0.32* (0.06, 0.59)	0.28* (0.02, 0.54)	0.28* (0.01, 0.56)	0.26* (0.02, 0.51)

Younan et al., J. Abnorm. Child Psychol., 2017

Harness the power of multi-modal MRI to understand air pollution on neurodevelopment

Potential Moving Forward

Summary

- Air pollution has been correlated with child and adolescent behavior, as well as multiple neuroimaging biomarkers of brain development
- The processes undergoing neuromaturation when the <u>timing of exposure</u> and the <u>timing of brain assessment</u> are likely important in uncovering how air pollution impacts the brain
- Identify who is at risk and identify lifestyle modifiers (e.g. social stress, physical activity, diet)
- Both new and integrated MRI methods can offer insight into brain health, with the potential to detect alterations prior to clinical onset

USC

of Health

Herting Lab Dora Cserbik, MS Sandhya Prathap, MS Claire Campbell, BS Anisa Azad, MS Kimberly Felix, BA Miguel Jaime Robert Kim, BS

ABCD-E

Rob McConnell, MD JC Chen, MD Joel Schwartz, PhD Wes Thompson, PhD Elizabeth Sowell, PhD Daniel Hackman, PhD

Funding

HEI Rosenblith – PI: Herting NIH P30ES007048-23S1 NIH K01MH108761 – PI: Herting NIH R03HD090308 – PI: Herting Rose Hill Foundation – PI: Herting U01 DA041048 – MPI: Sowell/Herting UH3 OD023287 – MPI: Gilliland/Breton

