Toxicology and health effects of non-tailpipe emissions

Dr. Miriam Gerlofs-Nijland

Outline
- Toxicological research methods
- Health studies non-tailpipe
- Exposure
- Research gaps
- Conclusions
Toxicological research

Toxicology
Toxicity of components and the mechanisms (causal)

Risk = hazard x exposure

in vitro (cells) in vivo animals human volunteers

SUSCEPTIBILITY
age
disease

RISK
type/severity
health effects

HAZARD
PM size
PM composition

EXPOSURE
level
duration
What are the most toxic parts of PM?

Health effects related to (groups of) chemical and physical properties

World Health Organization – REVIHAAP project

Cassee FR, Héroux ME, Gerlofs-Nijland ME, Kelly FJ., Inhal Tox 2013

WHO concluded:
Almost everything (?) can be harmful
Understanding toxicity

- Suggested role of non-tailpipe particles in toxicity was based on composition.

- Brake wear related elements such as Cu is linked to adverse health effects (Gerlofs-Nijand et al., 2007; Riediker et al., 2007).

- Role of non-tailpipe particles is also shown by in vitro studies (Gasser et al., 2009; Straffelini et al., 2015; Kazimirova et al., 2016).

- PM from brake and tyre wear significant contributors to oxidative potential, sometimes higher than other sources (Yanosky et al., 2012; Shirmohammadi et al., 2016).
Health studies non-tailpipe emissions - TRWP

- effect on aquatic organisms (ecotoxicology no environmental conditions)
- risk for human health via inhalation low (no information risk food chain)
- data on degradation is scarce (non-realistic materials and conditions)
Exposure, in vitro and in vivo studies - TRWP

- Exposure – road simulator material more reliable data than from effect tests using materials such as particles shaved from tyres or fractured scrap tyres.

- In vitro - DNA damage, inflammatory effects (Gualtieri et al., 2005; Karlsson et al., 2008)

- In vitro - Inflammatory responses (Lindbom et al., 2006/2007; Karlsson et al., 2011)

- In vivo (intratracheal) - Pulmonary toxicity (metal related) (Mantecca et al., 2009/2010)

- In vivo (inhalation) - no TRWP-related effects were observed (Kreider et al., 2012; Gerlofs-Nijland, 2019)

- No-Observable-Adverse-Effect-Concentration (NOAEC) 112 μg/m³ for respirable TRWP. Human equivalent (NOAEC\textsubscript{HEC}) 55 μg/m³ (Kreider et al., 2012, 2019).
Health studies non-tailpipe emissions – brake wear

Biological response of an in vitro human 3D lung cell model exposed to brake wear debris varies based on brake pad formulation

Hana Barosova 1, 2, Savina Chortarea 1, 3, Paulina Peikertova 2, Martin J D Clift 3, 4, Alke Petri-Fink 3, 5, Jana Kukutschova 2, Barbara Rothen-Rutishauser 6

Toxicity and mutagenicity of low–metallic automotive brake pad materials

Katerina Malachova 1, Jana Kukutschova 2, Zuzana Rybkova 3, Hana Sezímova 3, Daniela Placha 4, Kristina Cabanova 4, Peter Filip 5

Inhalation toxicity profiles of particulate matter: a comparison between brake wear with other sources of emission

Toxic effects of brake wear particles on epithelial lung cells in vitro

Michael Gasser 3, Michael Riediker, Loretta Mueller, Alain Perrenoud, Fabian Blank, Peter Gehr, Barbara Rothen-Rutishauser
Different source-specific PM2.5 Gerlofs-Nijland et al., 2019

- PM2.5 sampling different sources
- Exposure nose-only inhalation
- Individual doses
Health effect – hazard identification

- Inflammatory response source-related differences
- Dose-response (farm, diesel combustion)
- BMD approach to assess the differences in potency for each parameter

Gerlofs-Nijland et al., 2019
Risk – exposure * hazard

- Exposure to similar mass concentration of PM from different sources can result in diverse health (severity) of effects

- Important to combine the hazard for different health endpoints with exposure data for a given population to estimate the source-specific risk

- Higher wear rate for pads without copper and higher exposure risk

- Low inhalation dose (0.4 mg/kg) equivalent to exposure 25 µg/m³ per day, which is the EU limit value for PM2.5

- Still in order to improve the ranking, it might be worthwhile to determine more accurate the dose–response at lower dose
Research gaps

- Exposure material may not be representative for real life exposure or all regions of the world
- Sensitive or highly exposed population groups are not considered
- Focus on cardiopulmonary effects, other effects cannot be excluded
- Still only a few effect studies and reliable effect data are necessary to assess the risk of non-tailpipe emission for human health
Conclusions

● More effect studies needed, realistic exposures including sensitive groups

● Risk potential for TRWP seems low

● Toxicity of brake wear emissions depends on the composition and especially NAO containing brake pads reveal increased hazard

● Brake wear particles can be at least as hazardous as other PM sources
 – Support for source specific policy to improve public health