HOW THE BUILT, NATURAL, AND SOCIAL ENVIRONMENT IMPACTS HEALTH AND WELL BEING

HEALTH EFFECTS INSTITUTE ANNUAL MEETING

Dr. Lawrence D. Frank, AICP, PhD
Professor and Bombardier Chair, University of British Columbia
President, Urban Design 4 Health, Inc.
Source: “The Hidden Health Costs of Transportation” APHA
Written by UD4H, Inc. 2010.
3 Policy Levels

Regional Accessibility

Walkable, Complete Neighborhoods

Pedestrian Environment (Micro-scale)
n_E = 473 participants (red)

n_C = 76 participants outside 500 m study area (blue)
After (Counterflow Lanes)
Results

- Study Participants After the Greenway Was Constructed Showed these Changes:
 - 32% increase in bike trips
 - 23% decrease in automobile trips
 - 33% decrease in time spent in cars after the greenways
 - 16% increase in the number of days engaged in moderate physical activity.
 - 10% decrease in the number of days in poor physical or mental health
 - 8% decrease in sedentary time
 - 21% reduction in GHG emission for those within 300 Meters of the Greenway
Tools to Quantify Health Impacts of Built Environment Changes

- San Diego Healthy Works Tool (CPPW / ARRA)
- California Public Health Assessment Model (CHPAM)
 - Southern California Association of Government’s (SCAG) Regional Transportation Plan (RTP)
- National Public Health Assessment Model (NPHAM)
- National Environmental Database (NED)
- Monetizing Los Angeles region active transportation health outcomes
Evidence Links
Built Environment to Health

- regional accessibility
- walkable neighborhoods
- pedestrian micro-scale

predicts

✓ Physical Activity
✓ Body Mass Index
✓ Obesity
✓ Diabetes
✓ Cardiovascular Disease
✓ Mental Health
✓ Cancers
Funders: California Strategic Growth Council (Lead) Office of Policy Research, SCAG, SACOG

Key Elements:

- Quantitative statistical models of built environment & health
 - BMI, likelihood of being obese, likelihood of having high blood pressure/heart disease/type 2 diabetes

30 counties / 25 million People
Large sample sizes
- 53,733 California Household Travel Survey participants
- 40,617 California Health Interview Survey participants

Cohort-specific model development
- 4 age groups (seniors, adults, teens, children)
- For adults, three HH income groups (<$50k, $50-100k, >$100k)

California-specific evidence base
- CHIS and CHTS data were collected from a representative cross-section of Californians

Variability in built environment characteristics
- 30-county study area covers a broad range of built environments and travel behaviors across California
Modeling Los Angeles Region - Predictions

<table>
<thead>
<tr>
<th>Adults: Ages 18-64</th>
<th>2040 Trend</th>
<th>Adopted Plan</th>
<th>Glendale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recreation Physical Activity - Minutes Daily</td>
<td>14.6 min</td>
<td>+ .4%</td>
<td>+ 9%</td>
</tr>
<tr>
<td>Walking - Minutes Daily</td>
<td>12.1 min</td>
<td>+ 33%</td>
<td>+ 10%</td>
</tr>
<tr>
<td>Biking - Minutes Daily</td>
<td>1.6 min</td>
<td>+ 26%</td>
<td>+ 12%</td>
</tr>
<tr>
<td>Auto - Minutes Daily</td>
<td>64.8 min</td>
<td>- 4.4%</td>
<td>- 6%</td>
</tr>
<tr>
<td>Obese Population (%)</td>
<td>26.3%</td>
<td>- 1.3%</td>
<td>- 3%</td>
</tr>
<tr>
<td>High Blood Pressure (%)</td>
<td>21.5%</td>
<td>- 1.2%</td>
<td>- 1%</td>
</tr>
<tr>
<td>Heart Disease (%)</td>
<td>4.4%</td>
<td>- 1.0%</td>
<td>0%</td>
</tr>
<tr>
<td>Diabetes - Type 2 (%)</td>
<td>6.1%</td>
<td>- 1.0%</td>
<td>- 11%</td>
</tr>
</tbody>
</table>

California Public Health & Activity Model – Scenario Planning for Southern California Association of Governments
Variable Examples:

San Diego

Health Communities Atlas

WALKABILITY

TRANSPORTATION INFRASTRUCTURE
All adult health metrics improved

- 68% increase minutes of daily transportation walking
- 15.4% reduction in high blood pressure
- 9.6% reduction in type II diabetes
Background: Exposure to nature and green space help to:

– Encourage physical activity
– Reduce stress
– Promote restoration
– Improve air quality

Project: Green Prescription, Sacramento Tree Foundation

Purpose:

– Identify the health impact of urban tree canopy
– Understand health-related benefits of tree planting

Results: neighborhood tree canopy associated with:

- **Adults**
 - More vigorous physical activity
 - Less obesity/overweight status
 - Less asthma
 - Better general health
 - Better social cohesion

- **Teens**
 - Less obesity/overweight status
 - Better general health
 - Fewer depressive symptoms

- **Children**
 - Less obesity/overweight status
 - Better general health

“GREEN PRESCRIPTION”

Goal: Develop a nationally applicable health impact tool that empower communities and developers to quantify localized health impacts of alternative land use and transportation investment scenarios

Funder: U.S. Environmental Protection Agency

Key Elements:

- Statistical regression models of **built, natural, and social environment effects on health**
 - Direct connection with modeled land use, walkability and health outcomes

- **Block group** level analysis and model predictions
 - Models developed from California statewide travel and health surveys
Residential Density and Mix of Housing Type

If I were to move, I'd like to find a neighborhood...

A. that is a lively and active place, even if this means it has a mixture of single family houses, townhouses, and small apartment buildings that are close together on various sized lots.

B. with single family houses farther apart on lots 1/2 acre or more, even if this means that it is not an especially lively or active place.
High Walkability

Prefers a Walkable Community Design

Low Walkability

Prefers Auto-Based Community Design

Built Environment

Preferences

Maximum

Minimum

Neighborhood

1

2

3

4
Quadrant 1: Unmatched
Walkability -- Low
Preference -- Walk

Quadrant 3: Matched
Walkability -- Low
Preference -- Auto

Quadrant 2: Matched
Walkability -- High
Preference -- Walk

Quadrant 4: Unmatched
Walkability -- High
Preference -- Auto
PREFERENCE VS NEIGHBORHOOD DESIGN

<table>
<thead>
<tr>
<th>Walkability & Preference Groups</th>
<th>Percent Taking a Walk Trip (n)</th>
<th>Average Daily Vehicle Miles Traveled (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preference for Neighborhood Type</td>
<td>Walkability of Current Neighborhood</td>
<td>16.0% (188)</td>
</tr>
<tr>
<td>I</td>
<td>Low</td>
<td>33.9% (446)</td>
</tr>
<tr>
<td>II</td>
<td>High</td>
<td>3.3% (246)</td>
</tr>
<tr>
<td>III</td>
<td>Low</td>
<td>7.0% (43)</td>
</tr>
<tr>
<td>IV</td>
<td>High</td>
<td>7.0% (43)</td>
</tr>
</tbody>
</table>
It’s All About Energy

On 350 calories — one apple tart or a “special” slice of Ray's Pizza — a cyclist can travel 10 miles, a pedestrian 3.5 miles, and an automobile 100 feet.

Transportation Alternatives, Bicycle Blueprint, 1998
THE GLOBAL WARMING GAMBLE

Policy Levers to Reduce Transportation - Related CO2 emissions
Questions?

Larry Frank, PhD
lawrence.frank@ubc.ca
ldfrank@ud4h.com

www.UD4H.com