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Overall Goals
Our study was designed to advance four critical areas: 

1) Predicting short- and long-term exposures to ambient fine particulate matter 
(PM

2.5
), nitrogen dioxide (NO

2
), and ozone (O

3
) at high spatial resolution (1 km x 1 

km) for the continental US during the period 2000–2016 and linking these 
predictions to health data. 

2) Developing new causal inference methods for estimating the exposure-response 
curve and adjusting for measured confounders. 

3) Applying these methods to claims data from Medicare and Medicaid enrollees to 
estimate health effects associated with short- and long-term exposure to low levels 
of ambient air pollution.

4) Developing pipelines for reproducible research.



Description of Research Data Platform 

(detailed list and software codes 
are available at 
https://github.com/NSAPH/Nation
al-Casual-Analysis)

https://github.com/NSAPH/National-Casual-Analysis
https://github.com/NSAPH/National-Casual-Analysis
https://github.com/NSAPH/National-Casual-Analysis


PM
2.5 

Monitor Data

Daily 1km x 1km Estimates

Satellite Imaging

Weather data

Land use data

Di Q et al. 2019. An ensemble-based model of PM2.5 concentration across the contiguous United States with high spatiotemporal 
resolution. Environ Int 130:104909, 10.1016/j.envint.2019.104909
Requia WJ et al. 2020. An ensemble learning approach for estimating high spatiotemporal resolution of ground-level ozone in the 
contiguous United States. Environmental science & technology, 10.1021/acs.est.0c01791
Di Q et al. 2020. Assessing NO2 concentration and model uncertainty with high spatiotemporal resolution across the contiguous 
United States using ensemble model averaging. Environmental science & technology, 10.1021/acs.est.9b03358
Publicly Available: 
https://beta.sedac.ciesin.columbia.edu/data/collection/aqdh
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Air Pollution Data  

https://doi.org/10.1021/acs.est.0c01791
https://doi.org/10.1021/acs.est.9b03358


Air Pollution Data  

Publicly Available: 
https://beta.sedac.ciesin.columbia.edu/data/collection/aqdh



Data
Sources

Source Dataset Website

NOAA Re-analysis meteorological data http://www.noaa.gov/

NASA MAIAC AOD data https://www.nasa.gov/

Surface reflectance data

NDVI data

OMI Aerosol Index Data
GEOS-Chem simulation outputs

http://acmg.seas.harvard.edu/geos/

U.S. Geological Survey Global terrain elevation data https://lta.cr.usgs.gov/

Census Bureau Road density, population count and area https://www.census.gov/

MRLC National Land Cover Dataset https://www.mrlc.gov/

EPA AQS monitoring data (PM
2.5

 and O
3
) https://www.epa.gov/aqs

CMS Medicare denominator files https://www.cms.gov/

Medicare Current Beneficiary Survey

CDC BMI, smoking rate https://www.cdc.gov/

(detailed list and software codes 
are available at 
https://github.com/NSAPH/Nation
al-Casual-Analysis)

https://github.com/NSAPH/National-Casual-Analysis
https://github.com/NSAPH/National-Casual-Analysis
https://github.com/NSAPH/National-Casual-Analysis


Potential Confounders

• Socioeconomic (SES) indicators from the 2000 and 2010 Census and the 2005–2016 

American Community Surveys (ACS)

• County-level information from the Centers for Disease Control and Prevention’s 

Behavioral Risk Factor Surveillance System (BRFSS). 

• Zip code-level meteorological variables using area-weighted aggregations based on daily 

temperature and humidity data on 4 km2 gridded rasters from Gridmet via Google Earth 

Engine (Abatzoglou 2013; Gorelick et al. 2017).

https://www.census.gov/
https://www.census.gov/programs-surveys/acs/
https://www.census.gov/programs-surveys/acs/
https://www.cdc.gov/
https://www.cdc.gov/brfss/
https://www.cdc.gov/brfss/


Health Data (Medicare)

• All Medicare participants (n=68,503,979) in the continental United States from 2000 
to 2016

• Outcomes: all-cause mortality and cause specific hospitalization

• Individual level information: date of death, age of entry, year of entry, sex, race, 
whether eligible for Medicaid (proxy for SES)

• Zip code of residence and other covariates



SOCIOECONOMICS

HEALTH ENVIRONMENT

Resolved 
and

Linked Data

Harmonizing and Integrating Heterogeneous 
Sources of Data

● Health data were available at  individual 

level, residence is known at postal zip code 

level.

● Exposure is assigned at zip code level

● Potential confounders are mapped from 

zip code tabulation areas (ZCTA) to postal 

zip codes.

● The total number of zip codes included in 

our main analysis with information on all 

outcome, exposure, and confounder data 

was 31,337.



Di et al. 2017



• A 10 units increase in 
PM

2.5
 is associated with 

a 7.3% increase in all 
cause mortality among 
60 million older 
American (evidence of a 
link is even stronger at 
levels of PM

2.5 
below 

the NAAQS)
• African American have a 

risk of death from PM 
2.5

 
exposure that is three 
times higher than the 
national average

Di et al. 2017

Di, et al.  Air pollution and mortality in the Medicare 
population. New England Journal of Medicine. 2017 
Jun 29;376(26):2513-22.



Wu et al. 2020



Statistical Approaches for Estimating Health 
Effects

• Di et al use only traditional approaches. 
• Wu et al 2020, extends the analysis to 2016 using:

Five models to estimate health effects between long-term exposure to PM
2.5

 and all-cause mortality 
among the elderly. 

• Traditional approaches
1. Cox Proportional Hazard Approach
2. Poisson Regression

• Causal inference approaches using generalized propensity scores (GPS)
1. Matching approach
2. Weighting approach
3. Adjustment approach 

We evaluate the 95% confidence intervals (CIs) for all models by m-out-n subsampling blocked 

bootstrap to account for spatial correlation.



Generalized Propensity Score (GPS) 
GPS estimation: modeled the conditional density of exposure (i.e., zip code-level annual average PM

2.5
) on the 14 zip 

code- or county-level time-varying covariates, as well as a dummy region variable and dummy calendar year variable, 

by using gradient boosting machine with normal residuals (Chen and Guestrin 2016; Zhu et al. 2015). 

PM
2.5

~ area-level risk factors + meteorological variables + dummy year + dummy region + ε, where ε ~N(0, σ2).

Area-level risk factors: 

1) Two county-level variables: average BMI and smoking rate; 

2) Eight zip code-level census variables: proportion of Hispanic residents, proportion of Black residents, median 

household income, median home value, proportion of residents in poverty, proportion of residents with a high 

school diploma, population density, and proportion of residents that own their house; 

3) Four zip code-level meteorological variables: the summer (June-September) and winter (December-February) 

averages of maximum daily temperatures and relative humidity.

GPS implementation: following GPS estimation we match/weigh/adjust by GPS

Outcome analysis: post-matching/weighting fit a Poisson regression model 



Causal Inference Approaches

• Can quantify and visualize how closely we are able to approximate a 
randomized study. 
• Visualizing whether the measured confounders are balanced 

across exposed and non-exposed groups (Austin 2019; Imai and 
Ratkovic 2014). 

• Assessing the sensitivity of results to unmeasured confounding 
bias (Rosenbaum 2002). 

• This framework allows us to assess how confident we can make 
statements about causality using observational data under a set of 
explicit assumptions necessary for causal inference.



Results: Cohort Characteristics 

 
Wu X, et al. Evaluating the 

impact of long-term 

exposure to fine 

particulate matter on 

mortality among the 

elderly. Science advances. 

2020 Jul 

17;6(29):eaba5692.



The causal inference framework 
lends itself to the evaluation of 
covariate balance for measured 
confounders. An absolute 
correlation (AC), with values 
<0.1 indicating high quality 
recovering randomized 
experiments. 

Results: Covariate Balance

Wu X, et al. Evaluating the impact of long-term exposure 

to fine particulate matter on mortality among the elderly. 

Science advances. 2020 Jul 17;6(29):eaba5692.



Using five distinct 
statistical approaches, we 
found that a decrease of 
10 μg/m3 PM

2.5
 leads to a 

statistically significant 
6%–7% decrease in 
mortality risk.

Based on these models, 
lowering the air quality 
standard to 10 μg/m3 
would save 143,257 lives 
(95% confidence interval 
115,581–170,645) in one 
decade 

Wu X, et al. Evaluating the impact of long-term 

exposure to fine particulate matter on mortality 

among the elderly. Science advances. 2020 Jul 

17;6(29):eaba5692.

Results



Strengths of Causal Inference Methods

• Separate the design stage from the outcome analysis, 
→ mimicking a randomized experiment under a set of explicit 
identification assumptions
→   increasing the objectiveness of causal analysis.

• Guide researchers to explicitly state all assumptions, 
→ using sensitivity analysis tools to understand how likely the 
identification assumptions are held (e.g., covariate balance, E-value, 
etc.).

• More robust to model misspecification compared to traditional regression 
approaches.



Limitations of Causal Inference Methods

• Often require increased computational resources due to the complexity of 
algorithms.

• Some methods require steeper learning curves for new researchers due to the 
logic complexity and are often less familiar to many researchers.

• Methods based on GPS are still affected by unmeasured confounding bias.
• Propagation of exposure error in health effects analyses under a causal 

inference framework is challenging. 
→ error in the exposure also affects the propensity score (see Wu et al. 
2019) 



Methods for Estimating Non-linear Exposure 
Response Functions 

• Applied the proposed GPS matching method to estimate the effect of 
long-term exposures to PM

2.5
, NO

2
, and O

3
 on all-cause mortality

• To estimate the Exposure Response Curve (ERC)
• Used a Kernel smoothing approach, a non-parametric approach.
• Defined the baseline rate as the estimated hazard rate corresponding to 

an exposure level equal to the 1st percentile of the distribution of that 
pollutant.

• To avoid extrapolation at the support boundaries, exclude the highest 1% 
and lowest 1% of pollutants exposures when plotting the ERC curves. 

• We evaluate the 95% confidence intervals (CIs) for all models by m-out-n 
subsampling blocked bootstrap to account for spatial correlation.



Single vs. Multi-Pollutant ERC

For each of the three pollutants we present two ERC:

1. Multiple pollutant models adjusting for other two pollutants as potential 
confounders.

• GPS model: includes the 14 zip code- or county-level time-varying 
covariates and in addition the two other pollutants. 

2. Single pollutant models without adjusting for other pollutants.
• GPS model: includes only the 14 zip code- or county-level time-varying 

covariates. 



Results for Non-linear Exposure Response Function; PM
2.5

multiple pollutant models adjusting for other two pollutants as potential 
confounders

single pollutant models without adjusting for other pollutants

● Evidence of a harmful causal relationship between mortality and long-term PM
2.5

 exposures adjusted for NO
2
 and 

O
3
 across the range of annual average between 2.77 and 17.16 (included > 98% of observations). 

● The curve is almost linear at low exposure levels → aggravated harmful effects at exposure levels even below the 

national standards.



Results for Non-linear Exposure Response Function; NO
2
 

single pollutant models without adjusting for other pollutants.multiple pollutant models adjusting for other two pollutants as potential 
confounders

● Harmful impact of long-term NO
2
 exposures to mortality adjusted for PM

2.5
 and O

3
 across the range of 

annual average between 3.4 and 80 ppb (included > 98% of observations). 

● Within low levels, the causal impacts of NO
2
 exposures on all-cause mortality is non-linear with statistical 

uncertainty.



Results for Non-linear Exposure Response Function; Ozone 
single pollutant models without adjusting for other pollutants.multiple pollutant models adjusting for other two pollutants as potential 

confounders

● The exposure-response curves of long-term O
3
 exposures on all-cause mortality adjusted for PM

2.5
 and NO

2
 is almost 

flat below 45 ppb, which shows no statistically significant effect. 
● We observed an increased hazard when the O

3
 exposures are higher than 45 ppb.



Results for Multi-Pollutant Analysis (Constant 
HR)

Pollutants Models GPS Matching Poisson

PM
2.5

Adjusted for NO
2
 and O

3
1.036 (1.023, 1.065) 1.056 (1.049, 1.063)

Unadjusted for NO
2
 and O

3
1.063 (1.050, 1.077) 1.067 (1.060, 1.075)

 Adjusted for NO
2
 only 1.044 (1.031, 1.057) 1.055 (1.048, 1.062)

NO
2

Adjusted for PM
2.5

 and O
3

0.997 (0.992, 1.001) 1.009 (1.006, 1.012)

Unadjusted for PM
2.5

 and O
3

0.996 (0.992, 1.001) 1.017 (1.014, 1.020)

O
3

Adjusted for PM
2.5

 and NO
2

1.004 (0.995, 1.012) 0.994 (0.990, 0.998)

Unadjusted for PM
2.5

 and 

NO
2

1.007 (0.999, 1.015) 0.996 (0.992, 1.000)

 

The HRs, per 10 µg/m3 increase in PM
2.5

,  relate three air pollutants to all-cause mortality among Medicare enrollees (2000–2016). These 
estimated HRs are obtained using both the GPS matching method and multivariate Poisson regression method under the assumption of a 
constant linear HR.



Results for Multi-Pollutant Analysis

Overall, adjusting for the other two pollutants:

• slightly attenuated the causal effects of PM
2.5

 

• slightly elevated the causal effects of NO
2
 

• results for O
3
 remained almost unchanged



Pipelines for Reproducible Research
• Study relied entirely on publicly available data. 
• Relied instead on privacy-protected but publicly available Medicare 

health data including almost 97% of the US population older than 65 
years over the years 2000–2016.

• Made the software code and workflows available in open, trusted 
digital repositories. 

• Reproducibility instructions and open-source software are hosted on 
GitHub and are publicly available, 
https://github.com/NSAPH/National-Casual-Analysis

• Developed statistical R package CausalGPS, available on CRAN, 

2903 downloads:

https://github.com/fasrc/CausalGPS

https://github.com/NSAPH/National-Casual-Analysis
https://github.com/NSAPH/National-Casual-Analysis
https://github.com/fasrc/CausalGPS


Overall Study Strengths

1. The massive and representative study population
2. The numerous sensitivity analyses
3. The transparent assessment of covariate balance that indicates the quality of 

causal inference for recovering randomized experiments
4. This work relies on publicly available data, and we provide code that allows for 

reproducibility of our analyses.

→ Conditional on the required assumptions for causal inference, collectively our 
results indicate that long-term PM

2.5
 exposure is likely to be causally related to 

mortality



Overall Study Assumptions
1) No unmeasured confounders

2) Model misspecification

3) Measurement error

4) Spatial correlation

5) Hybrid study design 



Overall Study Assumptions
1) No unmeasured confounders 

• We account for individual- and area-level potential confounders. 

• To mitigate unmeasured confounding bias, we assessed the results’ 

sensitivity by including year as a surrogate for some unmeasured 

confounders that might have covaried over time with PM
2.5

 and mortality 

and, thus, confounded their association. 

• Also conducted further sensitivity analyses to unmeasured confounding 

by calculating the E-value → our results are robust to unmeasured 

confounding bias.



Overall Study Assumptions

2) Model Misspecification
• The causal inference approaches require the estimation of the GPS.

• Assuming all causal inference assumptions hold, these approaches are more 

robust to outcome model misspecification, and allow for the transparent 

evaluation of covariate balance. 

• However, it is important to note that if the models are accurately specified and 

all assumptions are met, the traditional approaches have the potential to 

inform causal relationships as well.

 



Overall Study Assumptions 
3) Measurement error

• Air pollution exposures were estimated from prediction models, which, while very 
good, are not perfect. 

• The PM
2.5

 exposure prediction model developed by Di et al. indicated excellent model 
performance, with a 10-fold cross-validated R2 of 0.89 for annual PM

2.5
 predictions. 

• Di et al. assessed the robustness of the results to the exposure predictions by 
repeating the analysis based on PM

2.5
 exposure data obtained from 1928 EPA ambient 

monitors. 
• While this subset does not represent the entire population, analysis based on 

nearest monitoring site led to a HR estimate that was only slightly lower than the 
one obtained using the exposure prediction model (i.e., 1.061, 95% CI [1.059 to 
1.063] vs. 1.073, 95% CI [1.071 to 1.075]). 



Overall Study Assumptions 
3) Measurement error (continued)

• How to propagate exposure error under a causal inference framework for a continuous 
exposure under a causal inference framework is still an area of active research.

• Wu et al. proposed a regression calibration approach for GPS analysis under 
categorical exposures. 

• The proposed approach was applied in the context of long-term PM
2.5

 exposure 
and mortality using Medicare data in the Northeastern US. When accounting for 
exposure error, there was a higher and still statistically significant association 
between exposure to PM

2.5
 and mortality, although with larger CIs.

• Currently working on extending this to continuous setting.
• Potential measurement error in covariates is also important to account for and is 

subject of future research.

Josey KP, et al. Estimating a Causal Exposure Response Function with a Continuous Error-Prone Exposure: A Study of Fine Particulate Matter and 
All-Cause Mortality. 2021, arXiv preprint https://arxiv.org/abs/2109.15264

Ren B, et al. Bayesian modeling for exposure response curve via gaussian processes: Causal effects of exposure to air pollution on health outcomes. 
2021, arXiv preprint https://arxiv.org/abs/2105.03454

https://arxiv.org/abs/2109.15264
https://arxiv.org/abs/2105.03454


Overall Study Assumptions 

4) Spatial Correlation 
• The model parameterization assumes that zip code-specific information is spatially 

independent, given covariates. 
• Since we adjusted for numerous zip code-level predictors of mortality, including SES and 

meteorological variables, this assumption likely holds. 
• Any remaining spatial dependence is partially accounted for by our bootstrapping 

procedure 
• By randomly sampling zip codes for each bootstrap replicate, we were able to break 

down spatial dependence given covariates. Therefore, it is unlikely that our results are 
impacted by spatial correlation. 

• We adjusted for potential spatial confounding that is not captured by zip code-level 
observed covariates by including a dummy region variable.



Overall Study Assumptions
5) Hybrid study design

• Medicare claims are available at individual level, and they include information 
on age, sex, race, eligibility to Medicaid (a proxy for low income). 

• To increase confidence in our results, we conducted a study by Makar et al. 
where we linked Medicare claims data to data from the Medicare Current 
Beneficiary Survey (MCBS) at the individual level. 

• MCBS provides information on an extensive list of individual-level 
behavioral risk factors (over 100 potential measured confounders at the 
individual level).

• We found that the estimated hazard ratios remain unchanged.



Conclusions
• Our work provides comprehensive evidence on the association between exposure 

to PM
2.5, 

NO
2
, and O

3
 and various health outcomes.

• We observe a causal link between long-term exposure to PM
2.5

 and mortality, even 
at PM

2.5
 levels below 12 μg/m3

,
 and mortality among Medicare enrollees (65 years 

of age or older) (Wu et al. 2020). 
• This work relies on newly developed causal inference methods for continuous 

exposures (Wu et al. 2018b).
• Developed statistical software: over 2900 downloads!

• In the multi-pollutant analyses adjusting for the other two pollutants:
• slightly attenuated the causal effects of PM

2.5
 

• slightly elevated the causal effects of NO
2
 

• results for O
3
 remained almost unchanged

• Our studies are based on publicly available data sources, and we have made all code 
publicly available → maximizes reproducibility and transparency.
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Questions



Additional Slides



Uncertainty of Exposure Models at Low 
Levels

• Found that the exposure error is smaller, not larger, at concentrations below 12 µg/m3




