Predicting and evaluating how changes
in exposures change health risks

Tony Cox

April 29, 2018



Goals

Predict changes in public health effects caused by
changes in exposures

— Not associations or slopes, but changes over time

Evaluate changes in effects caused by changes in
exposures in hindsight (accountability)

— Model data on changes, not just levels

Use trustworthy methods, get objective answers

— Do not rely on untested assumptions or counterfactual
comparisons (Dublin)

— Use automated algorithms to avoid p-hacking

— Discover who benefits, how, and how much from reduced
exposures to air pollution



Causal questions
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e Statistical inference question: T — ; o S —
— How does the conditional probability 2007 1 2 158 174 % 75| 489
distribution for observed daily death B 3 = - I CE L

IS Y 2007 1 4 164 64.6 37 68 879

count (AllCause75) depend on 2007 1 5 136 6.1 40 61 475
observed values of other variables? 2007 1 6 152 8.8 3 6 3

. 2007 1 7 160 19.1 41 76 40.9

e P(deaths | tmin, PM2.5, etc.) 2007 1 8 148 138 41 83 337

H . 2007 1 9 188 14.6 41 84 ara

° Causal queStlon' 2007 1 10 169 396 41 78 63.2
— How does the conditional probability ﬁgg; 1 1;_ Eg ;gi j’;’ gg 2?3
distribution for observed daily death ot = o6 17 57 e 204

count (AllCause75) change in response
to changes in values of other variables?

e P(deaths | tmin, do(PM2.5), etc.)
— How would exogenously reducing

PMZ2.5, tmax, etc. change elderly
mortality, AllCause75?

e Seeing # doing! (Pearl, 2009)
e This talk: Illustrate machine learning

(ML) techniques for predicting causal
impacts with minimal assumptions



Causal questions
N

Statistical inference question: S — : - S —
— How does the conditional probability ﬁgg; 1 § Eg E: jj ;: éjg
distribution for observed daily death 27 . o 616 7 S
count (AllCause75) depend on 2007 1 5 136 6.1 40 61 475
observed values of other variables? o : b s » ol B

e P(deaths | tmin, PM2.5, etc.) 2007 1 8 148 138 a1 83 337

H . 2007 1 9 188 14.6 41 84 375

Causal queStlon' 2007 1 10 169 396 41 78 63.2
— How does the conditional probability ﬁgg; 1 1;_ 123 ;gi j’;’ gg 2?3
distribution for observed daily death o | = s e R s 104

count (AllCause75) change in response
to changes in values of other variables? *® Real data set for LA area (South Coastal Air Quality

e P(deaths | tmin, do(PM2.5), etc.) Management District )
— How would exogenously reducing e 1,461 days of data (1/1/07- 12/31/10)
PM2.5, tmax, etc. change elderly « Data described by Lopiano et al., obtained from
mortality, AllCause757? them, https://arxiv.org/abs/1502.03062
Seeing # doing! (Pearl, 2009) * Original data sources: CARB for PM2.5
This talk: Illustrate machine learning (www.arb.ca.gov/agmis2/aqdselect.php), CDPH for
(ML) techniques for predicting causal mortality counts, EPA for meteorological variables
impacts with minimal assumptions « Download full data set from http://cox-

associates.com/CausalAnalytics/ LA data example.xIsx
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Alternative concepts of causality

Associational/attributive/(counterfactual)

— |ARC: Regression, RR, burden-of-disease, PAR
e Usually depends on untested assumptions

 Predictive: Causes help to predict their effects

Probabilistic .
Assogiati — Can be discovered and tested from data
ssociational . )
Attributive e Conditional independence tests, X > Y —> Z
Counterfactual e (Gra nger tests, tra nsfer entropy
Structural  Manipulative: Changing causes changes effects
Predictive — Randomized control trial (RCT)
Manipulative

— Generalization/transportability

e Mechanistic: Changes propagate via networks
of laws
— Invariant laws (CPTs)
— Composition of effects, well-behaved errors

Mechanistic/explanatory

IARC = International Agency for Research on Cancer
RR = relative risk; PAR = population attributable risk; CPTs = Conditional probability tables or trees



Machine learning can help to avoid model-
dependent conclusions and p-hacking

e Information-based algorithms: Automated, data-driven,
minimal assumptions, empirically testable (usually)
— Effects are not conditionally independent of their causes
— Changes in causes help to predict changes in their effects
e Granger causality for time series data; DAG models

— Non-parametric methods minimize modeling assumptions
* Trees
e Bayesian networks
e Causal directed acyclic graph (DAG) models
— Model ensembles address model uncertainty
e RandompForest algorithm
e Causal partial dependence plots

DAG = directed acyclic graph



Automated analysis with these methods is
now practical: Enter data, click to analyze

<« & | O cox-associates.com:
Bettor Dacisions Through Advanced Analytics
Select data source
Samples My Uploads Upload .csv .xlsx .xls file. First row must be column names.
Ryze ‘ Data~ ‘ Uploaded ~ Upload File No fi
Bayesian LA
LAwithLags [LA]
Causal
asthma
T Opti mutagens » selection, all columns are used in order. Dependent variable must be first, drag to reorder.
banking
Describe mtcars
< iris down
Granger
Optional: Select/deselect all columns. To delete multiple items in selection box, use Control or Shift key to select them, then press DELETE key
Importance
Optional: Select integer/character variables to make discrete:
Plot3D
AllCauseT5s tmin tmax month day year
Predict Show|10 ¥ |entries
Regression AllCauseTs PM2.5 tmin tmax MAXRH
Sensitivity 1 151 38.4 36 T2 68.8
2 158 17.4 36 15 48.9
Tree
3 135 19.9 44 [f] 61.3
4 164 64.6 37 68 87.9
5 136 6.1 40 61 47.5
6 152 18.8 39 69 39




Automated analysis with these methods is
now practical: Enter data, click to analyze

Optional: Select integer variables to make discrete:

AllCause75 tmin tmax month day year

e Show | 10 v |entries Search:
Describe AllCause75 PM2.5 tmin tmax MAXRH month day year
Correlations 1 151 38.4 36 T2 68.8 1 1 2007

2 158 17.4 36 75 48.9 1 2 2007
Tree

3 139 19.9 44 75 61.3 1 3 2007
Regression

4 164 64.6 37 68 87.9 1 4 2007
Importance

5 136 6.1 40 61 47.5 1 5 2007
Sensitivity

: 6 152 18.8 39 69 39 1 6 2007

Bayesian 7 160 19.1 41 76 40.9 1 7 2007
el 8 148 13.8 41 83 33.7 1 8 2007




Analyze

Bayesian

Causal

Correlations

Describe

Granger

Importance

Plot3D

Predict

ression

Sensitivity

Tree

Automated analysis is now practical
for all of the foregoing methods

Executive Report:

What are the potential causal drivers of < AllCause75 > in this data set?

The following were identified (by a Bayesian Network machine-learning algorithm ) as potential causes of = AllCause75 = in this data set:
Neighbors of < AllCauseT5 = are: tmin, month, tmax

Potential causes of = AllCause75 = are defined as its neighbors in a Bayesian Network.

The exposure variable [ PM2.5 ] is NOT a significant predictor for [ AllCause75 ] (p =0.10 } in a Quasi-Poisson regression model.
[ tmin ]is a significant predictor for [ AllCause75 ] (p = 0.00 ) in a Quasi-Poisson regression model.
[ menth ] is a significant predictor for [ AllCause75] (p = 0.00 ) in a Quasi-Poisson regression model.

Significant predictors of < AllCouse75 = are defined here as those with regression coefficients significantly different from zero in o Quasi-Poisson regression model.
How important are these causal drivers?

From most to least important {using importance table ), the relative importances of these potential causes are as follows:

Variable Importance(%IncMSE)

month 168.28
tmin 62.27
tmax 34.07
PM2.5 5.83

Avariable's importance is measured here as the increase in mean squared error in predicting < AllCause75 = if the variable is dropped.

How strongly does < PM2.5 > predict or explain < AllCause75 >?
Including < PM2.5 = changes the percentage of explained variance in < AllCause75 > from 40.25 % to 40.80 % in a randomForest analysis. Thus, including < PM2.5 = as a predictor changes the

In multiple linear regression modeling, the percentage of explained variance (adjusted R-squared) in < AllCauseT5 = is 31.44 % when < PM2.5 > is included and is 31.37 % when < PM2.5 > is di
by about 0.07 % in a multiple linear regression analysis.



Automated analysis is practical: trees
and conditional probability tables

"Cox Associates Consulting =

Better Decisions Through Advanced Analytics

Classification Tree

Descri

Dependent variable: AllCause75
Correlations Tree generated using party package
Tree

Regression

Importance

Sensitivity
p < 0.001

<2008 > 2008

Ba an ‘9]
y =146.018| |y = 131.838| |y = 141.867
Analyze
<2007
Predict month 7
p < 0.001 y=145.162| [y =137.976| |y = 133.213| |y = 127.207
Plot3D
y =159.871| |y = 146.711 y=123.533| |y = 130.719
Granger
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Automated analysis: Bayesian network

Model:
Hill Climbing
Data
Describe ——
‘ Run ‘
Correlations
Output

Tree

. Bayesian Network diagram.
Regression

Metwork discovered by bnlearn using model hc

Importance An arrow between two variables shows that they are informative about each other.

Sensitivity

Bayesian

Analyze

Predict

Plot3D

Granger MAXRH

Admin

month

AllCause75)

tmin

@

y

Conditional probability
table (CPT) or tree at
each node

Assumptions:

e Causes are informative
about their effects
(Arrow directions here do
not yet indicate causality)
e Effects are not
conditionally
independent of causes

* Direct causes are
adjacent to their effects

* Arrows reflect
information, possible
direct and indirect causal
pathways

Automated non-parametric model: Bayesian network (BN) 11



Automated discovery: Arrows unclear

Model:
Hill Climbing - Conditional probability

Data
table (CPT) or tree at

B | each node

Correlations

Output .

= P Assumptions:

Regression Bayesian Network diagram. ° Causes are informative

Importance —\|erc‘||(r:<:rﬂcjlit:3:ir:;|t:)enrliil::f”;g:n?r?aetlrhceae informative about each other. abOUt thelr effeCtS'

Sensitivty (Arrow directions here do

i month day t ti d t It

o not yet indicate causality)
[ J

- Cause75 Effe-c'.cs are not
conditionally

Predict .

tmin ? independent of causes
Plot3D .
t e Direct causes are

oraneer MAXRH adjacent to their effects

e Arrows reflect
@ information, possible

direct and indirect causal

pathways

Automated non-parametric model: Bayesian network (BN) 12



month

Regression coefficients unclear

AllGause73)
Data ‘

Regression s

Quasi-Poisson @XRH

Describe

Correlations

PM2.5
Tree \
Dependent variable: AllCause75
Regression

Quasi-Poisson regression model Exposure-response regression coefficient

for PM2.5 as predictor of AllCause75 is

Importance . .
Estimated Coefficients

Sensitivity Estimate  Std.Error  tvalue  Pr(=|t])  Signif

[Intercept)]  3.682 4.997 0.737 0,46133 Slgnlflcantly pOSItlve' Q: Why?
Bayesian PM2.5 0.001 0.000 2.928 @ =
Analyze tmin 0.004 0,001 €092 <0001 " A: PM2.5 helps to correct model
tmax -0.002 0.000 3977 <0.001 ™

specification errors (errors in variables,

Predict

MAXRH -0.001 0.000 -4.098 =0.001 i . .
month treated as a continuous predictor,
Plot3D month -0.010 0.001 -11.972 < (.001 s . d I d d I
day -0.000 0.000 -0.112 0.91102 Omltte agge al y temperatUFES)
Sanesy year 0.001 0.002 0.335 0.73756

Regression coefficients (and associations)
Signif. codes: 0"*** 0.001 "* 0.01** 0.05" 0.1*' 1 mix direct, indirect, selection, confounder,
and non-causal effects

Null deviance: 3148.4 on 1460 degrees of freedom

Admin
Residual deviance: 2126.7 on 1453 degrees of freedom

G NA Strong, consistent association # evidence
for predictive or manipulative causatign



R packages and principles for identifying causal
DAGs from data

e Conditional independence (constraint-based algorithms)

— bnlearn, Tetrad, CompareCausalModels, dagitty packages

e Likelihood principle (score-based algorithms)

— Choose DAG model to maximize likelihood of data

— Included among the algorithms in bnlearn package

e Composition principle: If X > Y — Z, then dz/dx = (dz/dy)*(dy/dx)

e Granger/transfer entropy principle: Predictively useful

information flows from causes to their effects over time
— Transfer entropy, Yin & Yao, 2016, www.nature.com/articles/srep29192

e Model error specification principle

— effect = f(cause) + error

— LINGAM software, https://arxiv.org/ftp/arxiv/papers/1408/1408.2038.pdf

e Homogeneity and invariance principles for causal CPTs

— Liet al., 2015, https://pdfs.semanticscholar.org/a051/9a2c6b85ca65d0df037142f550cf87d4e43f.pdf

— Peters et al., 2015, InvariantCausalPrediction package
http://stat.ethz.ch/~nicolai/invariant.pdf



https://www.nature.com/articles/srep29192
https://arxiv.org/ftp/arxiv/papers/1408/1408.2038.pdf
https://pdfs.semanticscholar.org/a051/9a2c6b85ca65d0df037142f550cf87d4e43f.pdf
http://stat.ethz.ch/%7Enicolai/invariant.pdf

Automated analysis can be improved
with causal knowledge, if available

Output

. Bayesian Network diagram.

) Network discovered by bnlearn using model hc
Describe . . ) ) .
An arrow between two variables shows that they are informative about each other.

Correlations

Tree

Regression

(imin)

Importance 1

[

GEVESEN

Analyze @

Predict

Plot3D

Granger
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Knowledge-based constraints

Potential p-hacking point, but controllable

Better Decisions Through Advanced Analytics

Data
Describe | n p u t
Correlations Constraints and model
Tree Select node below: Source Sink Forbidden Required
ession
Nodes Must.be.source

Importance

AllCauseTs month
Sensitivity

PM2.5 year
Bayesian tmin
Analyze tmax
Predict MAXRH

month

day
Granger

year
Admin

Selected [year] MNodes that must be source

Reset Delete Row Clear All




Battor Dacisions Through Advanced Analytics

Input

Describe
S Constraints and model
ations
Tree Select node below: Source Sink Forbidden Required
Re| on
Nodes Must.be.sink

Importance

AllCause7s AllCause7s
Sensitivity

PM2.5
Bayesian oty
Analyze tmax
Predict MAXRH

month
Plot3D

day
Granger

year
Admin

T Selected [AllCause75] Delete Row Clear All Modes that must be sink
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Automated analysis can be improved
with causal knowledge, if available

Output
b Bayesian Network diagram. |nterpretat|0n:
ata
Network discovered by bnlearn using model hc ¢ N OW[ arrows refl eCt
Describe N ) - o L L o )
An arrow between two variables shows that they are informative about each other.

information and

(month) knowledge-based

constraints for predictive
. @ or manipulative causality
l e CPT or tree at each node
o—— e Causal CPTs or laws are
W’ invariant across studies

Bayesian
* Dynamic Bayesian

Analyze networks (DBNS) include

Predict
lagged values

Plot3D

Granger

Correlations

Constrained automated non-parametric causal model
18



Data

Describe

Correlations

Tree

Regression

Importance

Sensitivity

Bayesian

Analyze

Predict

Plot3D

Granger

Final models can be used to estimate
causal input-output relations

Bayesian network diagram interactive

In the following diagram, drag a node to re-position it. Green is the exposure variable, pink is the target. Use node menu to fix exposure and/or target: If none is fixed, then exposure/target
are the most recent nodes clicked in order. To calculate causal effect multiple times, you may just want to fix one (not both). To use the link menu, it is more convenient not to fix any node
so link selection is always between the last two clicked nodes. Link menu applies to the link between exposure and target. Most menu items are also available by right click node or link
(on computer).

[Exposure: tmin ] [Target: AllCause75 ]

Node « Link «

@ ricausers

.U'Ti)f

Dash line indicates 'Required’ link; Dash-dot line indicates 'Forbidden'. Red node label indicates 'Must be source'; indicates 'Must be sink'. ReRun will add the graphic

Constrained automated non-parametric causal model ensembles
can quantify causal relations 19



Automated estimation of causal input-

Data

Describe

Correlations

Tree

Regression

Importance

Sensitivity

Bayesian

Analyze

Predict

Plot3D

Granger

output relation

Dependent variable: AllCause75
Columns used: AllCause75 tmin month

Direct causal effect of [ tmin ] on [ AllCause75 ] using adjustment set { month

Partial dependence plot (PDP)

The two plots below are for same data, just with different ranges of y-axis

134.0 1345 1350 1355 136.0 136.5

Partial Dependence on "tmin" Partial Dependence on "tmin"
‘ L T " L : ° 7 : L L L L ‘
30 40 50 60 70 30 40 50 60 70
"tmin" "tmin"
Constrained automated non-parametric causal model ensemble result:
Mortality risk decreases slightly with same-day minimum temperature



Data

Describe

Correlations

Tree

Regression

Importance

Sensitivity

Bayesian

Analyze

Predict

Plot3D

Granger

BN = Bayesian network

Automated interpretation of statistical

|mpI|cat|ons of a DAG model

Results from package dagitty

The

Tﬁe
THe
THe
The
THe

*

The

#*

List testable implications of a structural equation model:

AllCause75 _||_ MAXRH | tmin
AllCause75 _||_ PM2.5 | tmin
AllCause75 _||_ tmax | tmin
AllCause75 _||_ year

MAXRH _||_ month | tmin
PM2.5 _||_ month | tmin
PM2.5 _||_ year | MAXRH, tmin
month _||_ tmax | tmin

month _||_ year

tmax _||_ year | MAXRH, tmin
tmin _||_ year

List path coefficients that are identifiable by regression:

coefficient on [MAXRH] -> [PM2.5] is identifiable controlling for:
{ tmin }

coefficient on [MAXRH] -»> [tmax] is identifiable controlling for:
{ PM2.5, tmin }

coefficient on [PM2.5] -> [tmax] is identifiable controlling for:
{ MAXRH, tmin }

coefficient on [month] -> [AllCause75] is identifiable controlling for:

{ tmin }

coefficient on [tmin] -> [AllCause75] is identifiable controlling for:
{ month }

coefficient on [tmin] -> [PM2.5] is identifiable controlling for:

{ MAXRH }

coefficient on [tmin] -> [tmax] is identifiable controlling for:

{ MAXRH, PM2.5 }

Interpretation:

* Sound and complete
inference algorithms
generate all testable
implications of DAG
model learned from data
 Algorithms compute
adjustment sets for
estimating direct and
total effects of changes in
one variable on another
for a given BN/DAG if its
arrows and CPTs are
causal

21



Summary: Machine learning helps avoid p-
hacking and discover predictive causal relations

e Automated (but appropriate/intelligent) analyses
can be carried out with current ML software for
many real air pollution health effects data sets
— Non-parametric
— Information-based
— Causal knowledge-constrained
— Ensembles

— Enabled by existing R packages: randomForest,
bnlearn, dagitty, CompareCausalNetworks, etc.



Some useful extensions

Detecting omitted confounders

Beyond DAGs
— Allow for undirected arcs, cycles

Transportability of results across settings

— Appropriate generalization: Causal conditional
probability tables (CPTs) are invariant, distributions of
risk factors are not

Combining results across studies
— Different constraints from different studies
— Causal CPTs are invariant across studies



Detecting hidden/omitted variables

CAT_bnLearn (M_75,PM2_5,F_75,month,year,All_CVD_18to75,Tavg, Tmin, Tmax,Dewpoint,county)

Bayesian Hetwork diagram.

An arrow between two variables shows that they are informative about sach other.

Boston data

* Daily death counts in
disjoint subpopulations
are correlated

e Latent (hidden)
variables affect both

e F_75 = daily deaths
among women 75 or
older predicts

e F_75 predicts M_75

e All_CVD_18to75
predicts (is informative
about) both

(75

Network discovered by bEnlearn




Information-based causal discovery
algorithms in perspective

e Philosophical underpinnings
— Information flows from causes to effects over time

— Tracking information flows enables data-driven
causal discovery

— Discovery = empirical constraints on possible
models from observed information patterns in data

e Differs from formulating a hypothesis and then testing it:
Causal discovery imposes no a priori hypotheses

e Causal interpretation and orientation of arrows may
require weak knowledge-based constraints



Practical aspects

Study design: ldeally, track changes in exposures, covariates,
and outcomes over time

— Data requirements for causal discovery algorithms: Flexible
(panel, time series, cross-sectional, etc.)

Assumptions: Predictive causation + knowledge-based
constraints provide a useful surrogate for manipulative
causation

Model choices: Learn tree ensembles, networks

— Minimal assumptions, non-parametric, learned from data rather
than assumed a priori

— Use/compare multiple algorithms and principles
Sensitivity to modeling choices: So far, causal model
structure and estimates are robust to choice of algorithms
— CompareCausalNetworks package
— Model cross-validation



Caveats for information-based causal
discovery algorithms

e Key assumptions:

— Data are available to reveal information patterns and flows

* Can be longitudinal or cross-sectional, many epidemiological and quasi-
experimental (QE) designs suffice

— Effects are large enough to be detected using non-parametric algorithms.
e Power calculations reveal detection limits
e (Causal Markov Condition, faithfulness, etc. useful but not essential)

* Limitations:
— Unique identifiability from data not always possible — Must use multiple
plausible models (model ensemble)

* Arrow directions may be unclear, even in principle
* Example: Income and air pollution

— Predictive causation # manipulative causation

— Not yet well vetted for air pollution health effects research

* Well vetted via Kaggle and other competitions in machine learning and causal
learning communities



Conclusions

Advice

— Machine learning/information-based causal discovery is ready
to apply to air pollution health effects data

e Current software makes causal discovery relatively easy

— Focus on predictive and manipulative causation (vs. other, e.g.,
associational/attributive or counterfactual, causation)

— Focus on how well changes over time predict each other

* Include at least 2 weeks of daily temperatures as lagged confounders
in time series studies of daily mortality/morbidity

— Use non-parametric model ensembles to avoid model
specification errors, p-hacking, etc.

Future research

— Vet for air pollution health effects research

— Compare information-based to potential outcomes methods in
Kaggle-type competitions



Suggested readings

WWW.Ccox-associates.com/CausalAnalytics/

Pearl J, 2009. Causal inference in statistics: An overview.
— https://projecteuclid.org/euclid.ssu/1255440554

Laganu V et al., 2016. Probabilistic Computational Causal Discovery
for Systems Biology.

— www.cox-associates.com/CausalAnalytics/CausalDiscoverySystemsBiologylLagani2016.pdf

Cox LA Jr., 2017. Do causal concentration-response functions exist?
A critical review of associational and causal relations between fine
particulate matter and mortality

— www.ncbi.nlm.nih.gov/pubmed/28657395

Cox LA Jr., 2017. Socioeconomic and air pollution correlates of adult
asthma, heart attack, and stroke risks in the United States, 2010-
2013.

— https://www.ncbi.nlm.nih.gov/pubmed/28208075



http://www.cox-associates.com/CausalAnalytics/
https://projecteuclid.org/euclid.ssu/1255440554
http://www.cox-associates.com/CausalAnalytics/CausalDiscoverySystemsBiologyLagani2016.pdf
http://www.ncbi.nlm.nih.gov/pubmed/28657395
https://www.ncbi.nlm.nih.gov/pubmed/28208075

Thanks!
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