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Goals
• Predict changes in public health effects caused by 

changes in exposures
– Not associations or slopes, but changes over time

• Evaluate changes in effects caused by changes in 
exposures in hindsight (accountability)
– Model data on changes, not just levels

• Use trustworthy methods, get objective answers
– Do not rely on untested assumptions or counterfactual 

comparisons (Dublin)
– Use automated algorithms to avoid p-hacking
– Discover who benefits, how, and how much from reduced 

exposures to air pollution
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Causal questions

• Statistical inference question: 
– How does the conditional probability 

distribution for observed daily death 
count (AllCause75) depend on 
observed values of other variables?

• P(deaths | tmin, PM2.5, etc.) 
• Causal question:  

– How does the conditional probability 
distribution for observed daily death 
count (AllCause75) change in response 
to changes in values of other variables? 

• P(deaths | tmin, do(PM2.5), etc.)
– How would exogenously reducing 

PM2.5, tmax, etc. change elderly 
mortality, AllCause75?

• Seeing ≠ doing! (Pearl, 2009)
• This talk:  Illustrate machine learning 

(ML) techniques for predicting causal 
impacts with minimal assumptions 
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• Real data set for LA area (South Coastal Air Quality 
Management District )
• 1,461 days of data (1/1/07- 12/31/10)
• Data described by Lopiano et al., obtained from 
them, https://arxiv.org/abs/1502.03062
• Original data sources:  CARB for PM2.5 
(www.arb.ca.gov/aqmis2/aqdselect.php), CDPH for 
mortality counts, EPA for meteorological variables
• Download full data set from http://cox-
associates.com/CausalAnalytics/ LA_data_example.xlsx
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Alternative concepts of causality
• Associational/attributive/(counterfactual)

– IARC:  Regression, RR, burden-of-disease, PAR
• Usually depends on untested assumptions

• Predictive:  Causes help to predict their effects
– Can be discovered and tested from data

• Conditional independence tests, X → Y → Z
• Granger tests, transfer entropy

• Manipulative:  Changing causes changes effects
– Randomized control trial (RCT)
– Generalization/transportability 

• Mechanistic:  Changes propagate via networks 
of laws
– Invariant laws (CPTs)
– Composition of effects, well-behaved errors

IARC = International Agency for Research on Cancer
RR = relative risk; PAR = population attributable risk; CPTs = Conditional probability tables or trees



Machine learning can help to avoid model-
dependent conclusions and p-hacking

• Information-based algorithms:  Automated, data-driven, 
minimal assumptions, empirically testable (usually)
– Effects are not conditionally independent of their causes
– Changes in causes help to predict changes in their effects

• Granger causality for time series data; DAG models
– Non-parametric methods minimize modeling assumptions 

• Trees
• Bayesian networks
• Causal directed acyclic graph (DAG) models

– Model ensembles address model uncertainty
• RandomForest algorithm
• Causal partial dependence plots
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DAG = directed acyclic graph



Automated analysis with these methods is 
now practical: Enter data, click to analyze
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Automated analysis with these methods is 
now practical: Enter data, click to analyze
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Automated analysis is now practical 
for all of the foregoing methods
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Automated analysis is practical:  trees 
and conditional probability tables
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11Automated non-parametric model: Bayesian network (BN)

Conditional probability 
table (CPT) or tree at 
each node

Assumptions:
• Causes are informative 
about their effects 
(Arrow directions here do 
not yet indicate causality)
• Effects are not 
conditionally 
independent of causes
• Direct causes are 
adjacent to their effects
• Arrows reflect 
information, possible 
direct and indirect causal 
pathways

Automated analysis: Bayesian network



12Automated non-parametric model: Bayesian network (BN)

Conditional probability 
table (CPT) or tree at 
each node

Assumptions:
• Causes are informative 
about their effects. 
(Arrow directions here do 
not yet indicate causality)
• Effects are not 
conditionally 
independent of causes
• Direct causes are 
adjacent to their effects
• Arrows reflect 
information, possible 
direct and indirect causal 
pathways

Automated discovery:  Arrows unclear

?



13

Exposure-response regression coefficient 
for PM2.5 as predictor of AllCause75 is 
significantly positive.   Q: Why?

A:  PM2.5 helps to correct model 
specification errors (errors in variables, 
month treated as a continuous predictor, 
omitted lagged daily temperatures)

Regression coefficients (and associations) 
mix direct, indirect, selection, confounder, 
and non-causal effects

Strong, consistent association ≠ evidence 
for predictive or manipulative causation

Regression coefficients unclear



R packages and principles for identifying causal 
DAGs from data 

• Conditional independence (constraint-based algorithms)
– bnlearn, Tetrad, CompareCausalModels, dagitty packages

• Likelihood principle (score-based algorithms)
– Choose DAG model to maximize likelihood of data 
– Included among the algorithms in bnlearn package

• Composition principle: If X → Y → Z, then dz/dx = (dz/dy)*(dy/dx)
• Granger/transfer entropy principle: Predictively useful 

information flows from causes to their effects over time
– Transfer entropy, Yin & Yao, 2016, www.nature.com/articles/srep29192

• Model error specification principle
– effect = f(cause) + error
– LiNGAM software, https://arxiv.org/ftp/arxiv/papers/1408/1408.2038.pdf

• Homogeneity and invariance principles for causal CPTs
– Li et al., 2015, https://pdfs.semanticscholar.org/a051/9a2c6b85ca65d0df037142f550cf87d4e43f.pdf

– Peters et al., 2015, InvariantCausalPrediction package  
http://stat.ethz.ch/~nicolai/invariant.pdf
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Automated analysis can be improved 
with causal knowledge, if available
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Knowledge-based constraints
Potential p-hacking point, but controllable
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Constrained automated non-parametric causal model

Interpretation:
• Now, arrows reflect 
information and 
knowledge-based 
constraints for predictive 
or manipulative causality
• CPT or tree at each node
• Causal CPTs or laws are 
invariant across studies
• Dynamic Bayesian 
networks (DBNs) include 
lagged values

Automated analysis can be improved 
with causal knowledge, if available
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Constrained automated non-parametric causal model ensembles 
can quantify causal relations

Final models can be used to estimate 
causal input-output relations 



20

Constrained automated non-parametric causal model ensemble result:  
Mortality risk decreases slightly with same-day minimum temperature

Automated estimation of causal input-
output relation
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Automated interpretation of statistical 
implications of a DAG model

Interpretation:
• Sound and complete
inference algorithms
generate all testable
implications of DAG
model learned from data
• Algorithms compute
adjustment sets for
estimating direct and
total effects of changes in
one variable on another
for a given BN/DAG if its
arrows and CPTs are
causal

BN = Bayesian network



Summary: Machine learning helps avoid p-
hacking and discover predictive causal relations

• Automated (but appropriate/intelligent) analyses 
can be carried out with current ML software for 
many real air pollution health effects data sets
– Non-parametric 
– Information-based
– Causal knowledge-constrained
– Ensembles
– Enabled by existing R packages: randomForest, 

bnlearn, dagitty, CompareCausalNetworks, etc.
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Some useful extensions

• Detecting omitted confounders
• Beyond DAGs

– Allow for undirected arcs, cycles
• Transportability of results across settings

– Appropriate generalization:  Causal conditional 
probability tables (CPTs) are invariant, distributions of 
risk factors are not

• Combining results across studies
– Different constraints from different studies
– Causal CPTs are invariant across studies
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Detecting hidden/omitted variables
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Boston data
• Daily death counts in 
disjoint subpopulations 
are correlated
• Latent (hidden) 
variables affect both
• F_75 = daily deaths 
among women 75 or 
older predicts 
• F_75 predicts M_75
• All_CVD_18to75 
predicts (is informative 
about) both



Information-based causal discovery 
algorithms in perspective

• Philosophical underpinnings
– Information flows from causes to effects over time
– Tracking information flows enables data-driven 

causal discovery
– Discovery = empirical constraints on possible 

models from observed information patterns in data
• Differs from formulating a hypothesis and then testing it:  

Causal discovery imposes no a priori hypotheses
• Causal interpretation and orientation of arrows may 

require weak knowledge-based constraints
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Practical aspects
• Study design:  Ideally, track changes in exposures, covariates, 

and outcomes over time
– Data requirements for causal discovery algorithms:  Flexible 

(panel, time series, cross-sectional, etc.)
• Assumptions:  Predictive causation + knowledge-based 

constraints provide a useful surrogate for manipulative 
causation

• Model choices:  Learn tree ensembles, networks
– Minimal assumptions, non-parametric, learned from data rather 

than assumed a priori
– Use/compare multiple algorithms and principles

• Sensitivity to modeling choices:  So far, causal model 
structure and estimates are robust to choice of algorithms
– CompareCausalNetworks package
– Model cross-validation
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Caveats for information-based causal 
discovery algorithms

• Key assumptions:
– Data are available to reveal information patterns and flows

• Can be longitudinal or cross-sectional, many epidemiological and quasi-
experimental (QE) designs suffice

– Effects are large enough to be detected using non-parametric algorithms. 
• Power calculations reveal detection limits 
• (Causal Markov Condition, faithfulness, etc. useful but not essential)

• Limitations:  
– Unique identifiability from data not always possible → Must use multiple 

plausible models (model ensemble)
• Arrow directions may be unclear, even in principle
• Example:  Income and air pollution

– Predictive causation ≠ manipulative causation
– Not yet well vetted for air pollution health effects research

• Well vetted via Kaggle and other competitions in machine learning and causal 
learning communities
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Conclusions
• Advice

– Machine learning/information-based causal discovery is ready 
to apply to air pollution health effects data

• Current software makes causal discovery relatively easy
– Focus on predictive and manipulative causation (vs. other, e.g., 

associational/attributive or counterfactual, causation)
– Focus on how well changes over time predict each other

• Include at least 2 weeks of daily temperatures as lagged confounders 
in time series studies of daily mortality/morbidity

– Use non-parametric model ensembles to avoid model 
specification errors, p-hacking, etc. 

• Future research
– Vet for air pollution health effects research
– Compare information-based to potential outcomes methods in 

Kaggle-type competitions
28



Suggested readings
www.cox-associates.com/CausalAnalytics/

• Pearl J, 2009. Causal inference in statistics: An overview.
– https://projecteuclid.org/euclid.ssu/1255440554

• Laganu V et al., 2016. Probabilistic Computational Causal Discovery 
for Systems Biology.

– www.cox-associates.com/CausalAnalytics/CausalDiscoverySystemsBiologyLagani2016.pdf

• Cox LA Jr., 2017. Do causal concentration-response functions exist? 
A critical review of associational and causal relations between fine 
particulate matter and mortality 
– www.ncbi.nlm.nih.gov/pubmed/28657395

• Cox LA Jr., 2017. Socioeconomic and air pollution correlates of adult 
asthma, heart attack, and stroke risks in the United States, 2010-
2013.
– https://www.ncbi.nlm.nih.gov/pubmed/28208075
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Thanks!
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