Multi-pollutant analyses in MAPLE, Medicare and ELAPSE cohorts

HEI Annual Conference
May 2021
Jie Chen on behalf of the ELAPSE, MAPLE and Harvard teams
Background

Most air pollution epidemiological studies have focused on single-pollutant research

Limitations of single pollutant models

• Not clear whether the observed association reflects the effect of the analyzed pollutant
• Not characterizing the complexity of the exposures and their health impacts
Multi-pollutant approaches estimate:

- the independent effect of a single pollutant in the presence of other pollutants

Challenges in interpretation:

- Highly correlated pollutants
- Differential measurement error – the lowest ME show the most consistent association
- Pollutants treated symmetrically despite the hierarchical natural
- Inclusion of multiple pollutants supported by biologic mechanism (e.g., toxicology)

This presentation:

- Share experience in interpreting results from multi-pollutant analyses
• Stacked CanCHEC (1991, 1996, 2001); N = 7.1 million
• The Canadian Community Health Survey (CCHS); N = 0.54 million
• Age ≥25 y at baseline, censored at 89 y
• Follow-up until end of 2016
• Non-accidental mortality

• PM$_{2.5}$, annual average, 1x1km resolution
• O$_3$, warm season
• O$_x$, combined oxidant capacity of O$_3$ and NO$_2$

$$O_x = \frac{((1.07 \times NO_2) + (2.075 \times O_3))}{3.145}$$
Associations between PM$_{2.5}$ and non-accidental mortality

<table>
<thead>
<tr>
<th></th>
<th>N deaths</th>
<th>Single-pollutant model</th>
<th>Two-pollutant model adjusting for O$_3$</th>
<th>Two-pollutant model adjusting for O$_x$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stacked CanCHEC</td>
<td>1,253,300</td>
<td>1.084 (1.073, 1.096)</td>
<td>1.039 (1.027, 1.051)</td>
<td>1.022 (1.010, 1.035)</td>
</tr>
<tr>
<td>CCHS with behavior</td>
<td>50,100</td>
<td>1.086 (1.021, 1.155)</td>
<td>1.016 (0.948, 1.089)</td>
<td>0.995 (0.924, 1.071)</td>
</tr>
</tbody>
</table>

HR per 10 µg/m3 PM$_{2.5}$
Stratified PM$_{2.5}$ by terciles of O$_3$ or O$_x$

Stacked CanCHEC

<table>
<thead>
<tr>
<th></th>
<th>HR for PM$_{2.5}$ in tertiles of O$_3$</th>
<th>HR for PM$_{2.5}$ in tertiles of O$_x$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lowest</td>
<td>1.091 (1.065, 1.118)</td>
<td>0.895 (0.874, 0.917)</td>
</tr>
<tr>
<td>Middle</td>
<td>1.041 (1.020, 1.062)</td>
<td>1.006 (0.985, 1.027)</td>
</tr>
<tr>
<td>Highest</td>
<td>1.099 (1.078, 1.120)</td>
<td>1.086 (1.064, 1.108)</td>
</tr>
</tbody>
</table>
Stratified PM$_{2.5}$ by terciles of O$_3$ or O$_x$

Stacked CanCHEC

<table>
<thead>
<tr>
<th></th>
<th>HR for PM$_{2.5}$ in tertiles of O$_3$</th>
<th>HR for PM$_{2.5}$ in tertiles of O$_x$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lowest</td>
<td>1.091 (1.065, 1.118)</td>
<td>0.895 (0.874, 0.917)</td>
</tr>
<tr>
<td>Middle</td>
<td>1.041 (1.020, 1.062)</td>
<td>1.006 (0.985, 1.027)</td>
</tr>
<tr>
<td>Highest</td>
<td>1.099 (1.078, 1.120)</td>
<td>1.086 (1.064, 1.108)</td>
</tr>
</tbody>
</table>
• The strongest association observed in areas with higher oxidant gases

• The observed impact of oxidant gases on associations for PM$_{2.5}$ concentrations likely reflects spatial variations in atmospheric processes/sources that can impact the toxicity of overall air pollution mixtures (e.g., particle aging/oxidation of organic components) and not a direct biological impact of the oxidant gases themselves
• Pooling eight ESCAPE cohorts and the Danish Nurse Cohort (N = 325,367)
• Large administrative cohorts from seven countries in Europe (N = 28 million)
• Age ≥30 y at baseline
• Non-accidental mortality

• Annual average of PM$_{2.5}$, NO$_2$, BC and warm season O$_3$ at 100x100 m resolution, year 2010
• Two-pollutant linear models for all combinations of PM$_{2.5}$, NO$_2$, BC and O$_3$
Air pollution and non-accidental mortality in the **pooled cohort**

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Single pollutant HR</th>
<th>HR adjusted for PM$_{2.5}$</th>
<th>HR adjusted for NO$_2$</th>
<th>HR adjusted for BC</th>
<th>HR adjusted for O$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM$_{2.5}$</td>
<td>1.130 (1.106, 1.155)</td>
<td>NA</td>
<td>1.083 (1.054, 1.113)</td>
<td>1.092 (1.062, 1.123)</td>
<td>1.089 (1.061, 1.117)</td>
</tr>
<tr>
<td>NO$_2$</td>
<td>1.086 (1.070, 1.102)</td>
<td>1.050 (1.031, 1.070)</td>
<td>NA</td>
<td>1.074* (1.038, 1.112)</td>
<td>1.053 (1.032, 1.074)</td>
</tr>
<tr>
<td>BC</td>
<td>1.081 (1.065, 1.098)</td>
<td>1.039 (1.019, 1.060)</td>
<td>1.012* (0.977, 1.048)</td>
<td>NA</td>
<td>1.044 (1.024, 1.065)</td>
</tr>
<tr>
<td>O$_3$</td>
<td>0.896 (0.878, 0.914)</td>
<td>0.935 (0.913, 0.957)</td>
<td>0.940 (0.914, 0.966)</td>
<td>0.930 (0.906, 0.955)</td>
<td>NA</td>
</tr>
</tbody>
</table>

N=325,367;
HR for increase in PM$_{2.5}$ – 5 µg/m3, NO$_2$ – 10 µg/m3, BC – 0.5×10$^{-5}$/m, O$_3$ – 10 µg/m3
Air pollution and non-accidental mortality: meta-analysis of 7 administrative cohorts

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Single pollutant HR</th>
<th>HR adjusted for PM$_{2.5}$</th>
<th>HR adjusted for NO$_2$</th>
<th>HR adjusted for BC</th>
<th>HR adjusted for O$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM$_{2.5}$</td>
<td>1.053 (1.021, 1.085)</td>
<td>NA</td>
<td>1.003 (0.982, 1.025)</td>
<td>1.021 (0.997, 1.046)</td>
<td>1.031 (0.999, 1.064)</td>
</tr>
<tr>
<td>NO$_2$</td>
<td>1.044 (1.019, 1.069)</td>
<td>1.042 (1.020, 1.065)</td>
<td>NA</td>
<td>1.041* (1.009, 1.073)</td>
<td>1.040 (1.012, 1.069)</td>
</tr>
<tr>
<td>BC</td>
<td>1.039 (1.018, 1.059)</td>
<td>1.030 (1.012, 1.049)</td>
<td>1.004* (0.985, 1.022)</td>
<td>NA</td>
<td>1.028 (1.005, 1.051)</td>
</tr>
<tr>
<td>O$_3$</td>
<td>0.953 (0.929, 0.979)</td>
<td>0.972 (0.947, 0.996)</td>
<td>0.987 (0.961, 1.014)</td>
<td>0.976 (0.948, 1.005)</td>
<td>NA</td>
</tr>
</tbody>
</table>

N = 28,153,138;
HR for increase in PM$_{2.5}$ – 5 µg/m3, NO$_2$ – 10 µg/m3, BC – 0.5×10$^{-5}$/m, O$_3$ – 10 µg/m3
• Associations observed not only for PM$_{2.5}$, but also NO$_2$

• PM$_{2.5}$ HR reduced with NO$_2$, cannot be interpreted as an artefact related to multi-collinearity (moderate correlation and the width of CI only modestly increased)

• The NO$_2$ association may reflect direct effects of NO$_2$ or correlated combustion-related particles such as ultrafine particles.

• The reduction of the PM$_{2.5}$ HR did not imply that particles had no effect, as adjustment for NO$_2$ also adjusted for particles from the sources shared with NO$_2$, including motorized traffic and other fossil fuel combustion sources.
Medicare

- Open cohort of Medicare enrollees (N = 68.5 million)
- Period 2000 – 2016
- Age ≥ 65 y
- All-cause mortality

- Annual PM$_{2.5}$, NO$_2$ and warm season O$_3$, 1 × 1 km grid, 2000 to 2016
Two-pollutant linear model (Di et al., NEJM, 2017)

<table>
<thead>
<tr>
<th></th>
<th>Single-pollutant model</th>
<th>Two-pollutant model</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM$_{2.5}$</td>
<td>1.084 (1.081, 1.086)</td>
<td>1.073 (1.071, 1.075)</td>
</tr>
<tr>
<td>O$_3$</td>
<td>1.023 (1.022, 1.024)</td>
<td>1.011 (1.010, 1.012)</td>
</tr>
</tbody>
</table>

HR per 10 µg/m3 PM$_{2.5}$ or per 10 ppb ozone
Causal exposure-response curve: air pollution and all-cause mortality (GPS matching)

(Dominici et al., HEI final report, under review)
Summary

<table>
<thead>
<tr>
<th>Statistical methods</th>
<th>MAPLE</th>
<th>ELAPSE</th>
<th>Medicare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear two-pollutant</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Tercile analyses</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPS matching</td>
<td></td>
<td></td>
<td>√</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pollutants</th>
<th>MAPLE</th>
<th>ELAPSE</th>
<th>Medicare</th>
</tr>
</thead>
<tbody>
<tr>
<td>PM$_{2.5}$</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>NO$_2$</td>
<td></td>
<td></td>
<td>√</td>
</tr>
<tr>
<td>O$_3$</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>O$_x$</td>
<td>√</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Attenuated associations between PM$_{2.5}$ and mortality after adjusting for other pollutants
- Results should be interpreted with caution (e.g., spatial variation, emission sources, correlations)
Ongoing work related to multi-pollutant analyses

• Each team will apply multi-pollutant approaches applied by the other two teams
• The Harvard and ELAPSE teams will additionally assess O_x
• The Harvard and MAPLE teams will use the same $PM_{2.5}$ and NO_2 exposure surfaces; the ELAPSE team is not able to assign new exposures
Thanks for listening!