

National Institute for Public Health and the Environment Ministry of Health, Welfare and Sport

> Advances in contributions of toxicology to the understanding of particle component toxicity

Prof.dr. Flemming R. Cassee

Paracelsus: everything is toxic, the dose makes the poison

Deposition after inhalation

Size affects the internal dose

F.R. Cassee | HEI webinar 2020

F.R. Cassee | HEI webinar 2020

Retention of insoluble iridium particles in rat lungs 24 hrs post-exposure, extensive lavage

Alveolar Macrophages

F.R. Cassee | HEI webinar 2020

Kreyling et al, 2002: Oberdorster et al 2004

Size matters in terms of

- Deposition
- Clearance
- Retention
- Biodistribution
- Smallest particles can reach other organs explaining sytemic effects

• They come from different sources

Stone, Cassee et al, EHP, 2017

Particle size dependent translocation!

Clinical exposures

Exposure mice

Miller et al. (2017). ACS Nano

Sources and fractions in PM

Past decade focus in road traffic tailpipe exhaust

But what about

- Biological fraction
- Wear particleAviation

Secondary Sulfate and Nitrate Organic Carbon Compounds Elemental Carbon Core

PM from road traffic versus aviation

• Is all PM equally toxic?

Average relative ROS activity in bronchials cells

PM from road traffic versus aviation

• Is all PM equally toxic?

Average inflammatory mediators in 16HBE cells

Amsterdam Schiphol airport human study

5-hour exposure to air next to the airport, 2 freeways and a runway intersection near Amsterdam

Lammer et al., Environ. Int, 2020

Variability in runway use, based on noise and wind

AMSTERDAM

NIEUW-WEST

OSDORP

Sloten

49

Schiphol-Oost

22

Nieuw S

The Inte

De Aker

110

(11)

Oude Meer

Set up

Table 4.2 Baseline characteristics

	Subjects (n=21)	Min - max
Age (years)	22.5	19.0 - 27.0
Gender (female)	17 (14)	
BMI (kg/m2)	22.6 (2.4)	19.3-26.1
FVC (% of predicted)	113 (11)	88 - 134
FEV1 (% of predicted)	106 (13)	85 - 132
FeNO (ppb)	15.0	8.0 - 58.0
Blood pressure		
Systolic (mmHg)	123 (12)	
Diastolic (mmHg)	77 (9)	
Heart rate (c/min) ^a	65 (8)	48.00 - 79.00
Saturation (%)	99.0	97.00 - 100.0

Data from measurements performed during the screening visit presented as mean (SD)

Spirometry FeNO ECG & blood pressure

Exposure summary 32 days

Summary of exposure variables. PNC= particle number counts. Values are averages for a 5-hr period as measured in the exposure cabin.

Exposure day	Mass	PNC	BC	NO ₂	CO
	(µg/m³)	(#/cm³)	(µg/m³)	(µg/m³)	(µg/m³)
Average	23.1	53,469	0.6	28.2	638
SD	8.3	43,776	0.4	12.2	83
Highest	47.5	173,187	1.9	60.2	830
Lowest	10.6	10,520	0.1	12.4	494

Mass concentrations are based on Filter measurements. PNC = particle numbDL= Below the detection limit of the instrument

	PNC	PM	BC	NO ₂	CO
PNC					
PM	-0.11				
BC	0.14	0.38			
NO ₂	0.37	0.13	0.79		
CO	0.08	0.33	0.59	0.57	

Fig. 4. Absolute contribution (particle cm^{-3}) of each of the PMF-resolved factors to the total particle number concentrations (PNCs).

Pirhadi et al., Environ Pollut. 2020 May;260:114027.

Two-pollutant models

Outcome	Ρ	PNC ^ª ≤20 nm				PNC ^b >50 nm			
		N = 86				N = 86			
	Est.	95%CI			Est.	95 <mark>%CI</mark>		I	
FVC (mL)	-13.70	-26.64	-	-0.52]	10.22	-13.09	_	34.21
HR (bpm)	-0.29	-0.97	_	0.33		0.49	-0.80	—	1.68
BP _{svs} (mmHg)	-0.37	-0.91	_	0.15	_	0.80	-0.18	_	1.87
BP _{dia} (mmHg)	-0.45	-0.98	_	0.09		1.03	0.03	_	2.07
ECG – HR (bpm)	0.57	-0.14	_	1.33		-0.30	-1.67	_	1.05
ECG – PR (ms)	-0.63	-1.58	_	0.10		0.14	-1.59	_	1.59
ECG – QRS (ms)	0.21	-0.28	_	0.69		0.25	-0.64	_	1.13
ECG – QTc (ms)	1.89	0.41	-	3.55		-0.94	-3.70	_	2.19

Results of the two-pollutant models were corrected for room temperature and relative humidity (MAPCEL), respiratory symptoms, age, gender and BMI.

 $a = per 10,000 particles/cm^3$. $b = per 10,00 particles/cm^3$. Numbers in bold are significant (p < 0.05)

Toxicity of different source-specific PM2.5

- Brake wear (4 different brake pad types)
- Wood combustion (modern technology/efficient combustion and old technology/efficient combustion)

- Diesel combustion (stationary HD diesel engine, Euro III / Euro V combined)
 - TU Eindhoven; Reijnders et al, SAE Technical paper 2013-24-0108, 2013, doi:10.4271/2013-24-0108
- Poultry farm
- Tyre/road wear (spiked tyres, asphalt concrete pavement)

Oxidative potential – source specific PM2.5

Vitamin C depletion in test tube

Brake wear more potent than diesel particles based on PM mass – role of Cu

Ranking based on mice toxicity - inflammation markers

F.R. Cassee | HEI webinar 2020

Conclusions

- Farm PM most potent to induce acute inflammation
- Considerable variability in the toxic potency of brake wear particles.

Gerlofs-Nijland et al. 2019

≠

BioPM

Micro organisms as part of particulate matter

Comparison PM from chicken –pig - goat farms

BioPM activated innate immune receptors and cells

Muzio *et al.*, 2012. MJHID, Vol 4, No 1

Summary of Toll like receptor activation:

BioPM Source / farm	TLRs Potentially different effects due to different activation							
	TLR2	TLR3	TLR4	TLR5	TLR7	TLR8	TLR9	
Chicken	+	-	+	-	-	-	-	
Pig	+	-	+	+	-	-	-	
Goat	+	-	+	-	-	-	-	
PM urban	-	-	-	-	-	-	-	
Ligands	Lipo- protein	Double stranded RNAs	LPS/endo toxin	Flagellin	Single stranded RNAs	Single stranded RNAs	CpG Micro- bial DNA	

" – " minor or no

Inflammation in mice exposed to PM

* significantly different from respective 0 ug BioPM group (p < 0.05)

Inflammation in mice exposed to PM

Chicken versus pig PM

Inflammation dose and source dependent and stronger in allergy model

Liu et al., World Allergy Organ J. 2020 Apr 3;13(4):100114

Conclusions

- Not all PM is equally potent on a per gram mass basis
 - See also Cassee et al., Inhal Toxicol. 2013 Dec;25(14):802-12.
- Differences in toxicity among sources depend on outcome as well as organs
- Combustion in engines: differences between road and air traffic, most likely due to size difference
- Biological fraction in PM understudied, but seems rather potent compared to diesel PM for airway diseases
- Risk is related to both the toxic potency and the level of exposure/dose
- Source apportionment approaches are the way forward to help policies

Acknowledgements

LEIBNIZ-INSTITUT

FÜR UMWELT-

MEDIZINISCHE FORSCHUNG

- Mark R. Miller
- Shea Connell
- Ian Smith
- Roel Schins
- Harm Heusinkveld
- Catrin Albrecht
- Tina Wahle
- Julia Koling
- Costas Sioutas
- Milad Pirhadi
- Amirhosein Mousavi

- Julie Morrisey
- Louise Corscadden

- Jim Wagner •
- Ryan Lewandowski
- Jack Harkema
- Rene Lutter
- Linsey de Groot •
- Marije Lammers
- Anke-Hilse Maitland
- Dingyu Liu
- **Miriam Gerlofs-Nijland**
- Wim de Jong •
- Rob Vandebriel
- Flena Pinelli .
- Rob Mariman .
- John Boere
- Paul Fokkens
- Daan Leseman

- Mohammad H. Sowlat

