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Proportion of population primarily cooking with
biomass or coal (solid fuel) stoves in 2017*
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*These do not account for secondary fuel use or for solid fuel stoves
used for other purposes other than heating



Solid fuel burning generates large amounts of pollutants
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Biomass and coal
stoves are a major
source contributor to

indoor PM, ; &
exposures...

...but not the only
source or even the

largest one.

Secrest et al, Indoor Air, 2017
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Decades of developing ‘interventions’ with different emissions performance
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Two directions for causal inference in household air pollution

(1) Observational research with
personal exposure measurement

(+) Characterize exposure-response
relationships to determine pollution
reductions needed to achieve health

benefit

Ezzati and Baumgartner, Lancet, 2016



Exposure-response associations for household air pollution }

Lower respiratory infections (4+)
Blood pressure (4+ studies)

COPD (3+ studies)

Lung cancer (2+ studies)
Diabetes (1 study)

Blood/DNA biomarkers (2 studies)

All cause & cardiovascular
mortality (1; abstract only)

Sources: WHO-IAQ Guidelines, Smith, 2011; Baumgartner, 2011
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Measuring exposure to PM, : is challenging

» Air monitors are expensive, bulky, limited by
battery life, and not robust to field conditions;
issues of electricity and logistics

» Household (indoor) measurements poorly
correlate with exposure in many settings;
outdoor monitors fail to capture indoor sources

 Biomarker research is limited and
unconvincing




Integrated exposure-response curves for air pollution (PM, ;) and health
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Two directions for causal inference in household air pollution

(1) Observational research with (2) Randomized controlled trials
personal exposure measurement

(+) Characterize exposure-response (+) Free of confounding to measure the pure

relationships to determine pollution intervention effects
reductions needed to achieve health
benefit

(-) Personal exposure assessment is
challenging

(-) Confounders can be hard to
measure well or at all

Ezzati and Baumgartner, Lancet, 2016
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Results from RCTs of clean stove interventions

Smith, 2011

Guatemala (biomass stove)

Tielsch, abstract
Nepal (biomass stove)

Olopade, 2017; 2018
Nigera (fuel gel-gas)
Mortimer, 2017
Malawi (biomass stove)

Wylie, abstract
Ghana (LPG and gasifier)

Rosa, 2018
Rwanda (biomass stove)

Romieu, 2009
Mexico (biomass stove)

Hanna, 2016
India (biomass stove)

Stove provided a benefit to PRIMARY
OUTCOMIE(S) of the trial

Stove provided a benefit to SECONDARY
OUTCOME(S) of the trial

E.g., blood pressure, neurocognitive impacts
in children, severe pneumonia, biomarkers

E.g., blood pressure, birth weight and birth
outcomes, markers of inflammation



{ Incidence of pneumonia in children in the first randomised controlled
trial of a (wood chimney) cookstove in Guatemala
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Incidence of severe pneumonia in children from a cluster randomised
controlled trial of a biomass cookstove in Malawi

Intervention (n=5297) Control (n=5246) Incidence P-
rate ratio value
(95% CI)
# Incidence rate # Incidence rate
Cases Cases
Severe 186 2.33 (2.00- 145 1.80 (1.51- 1.30 (0.99- 0.06
pneumonia 2.67) 2.09) 1.71)
Air
pollution ? ? ? ? ?

Intervention stoves were used for 0.34 cooking events per day by year 2 of follow-up.

Each intervention stove was replaced or repaired 3.1 times over 2 years, on average.

Mortimer et al, Lancet, 2017



Can a single stove realistically meet the complexity of household }
energy use demands?

Ownership of household energy
devices in rural Chinese homes

3 of 856 homes (0.4%) had 1
household energy device
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Carter et al., Nature Sustainability, 2019



Two directions for causal inference in household air pollution

Observational research with Randomized controlled trials
personal exposure measurement

(+) Free of confounding to measure the pure

(+) Characterize exposure-response
intfervention effects

relationships to determine pollution
reductions needed to achieve health

benefit

(-) Personal exposure assessment is
challenging

(-) Confounders can be hard to
measure well or at all

Ezzati and Baumgartner, Lancet, 2016



Two directions for causal inference in household air pollution

Observational research with Randomized controlled frials
personal exposure measurement

(+) Characterize exposure-response .(+) Free Qf confounding to measure the pure
relationships to determine pollution intervention effects
reductions nheeded to achieve health . _
benefit (-) Not feasible for many health endpoints
(-) Personal exposure assessment is (-) Often plagued by low stove adoption,
challenging continued use of old stoves, and non-

(-) Confounders can be hard to Cooking sources

measure well or at all (-) Limited external validity

(-) Policy is already moving ahead

Quasi-experimental approaches

Ezzati and Baumgartner, Lancet, 2016
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Natural experiment: The effect of the Huai River winter heating policy J
on air pollution and life expectancy
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Cross-sectional evaluation of the Beijing coal ban

224 Heal pump subsidy belore 2017
] Heat pump subsidy after 2017

| District boundary
Township boundary

Beijing designated “coal restricted areas” and
subsidized electric heat pumps and electricity
2017/18: required 2 million people to halt coal
use

Stepped implementation from 2017-2021 in
Beijing and northern China (63 million homes)
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Large-scale intervention programs provide opportunity for evaluation
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Leveraging fuel data to evaluate space-time trends in fuel and health
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Use of imagery and satellite data Small scale
industry, traffic,
for exposure estlmatlon industry, traffic

road dust,
biomass
burning, diesel-
powered
equipment: rural
Ghana

Traffic, roadside £
cooking with |
biomass, dust,
other urban
sources: peri-
urban Dhaka




Use of sensors to evaluate compliance in use of LPG and abandonment
of biomass stoves in the HAPIN trial

An Integrated Sensor Data Logging, Survey,
and Analytics Platform for Field Research and Its

il

Application in HAPIN, a Multi-Center Household s : x T = g
Energy Intervention Trial : i e
Dandel Lawrence Wilson '-2*, Kendra N. Williams *4 and Ajay PFillarisett ®=* * m'h o P
on behalf of the HAPIN Investigators "' 4
240 .
200 - 33
B 180. -
% 130 -IE Bk o i
4 w 1 I A e e i e e
g w0 [ . s
o .I k k
- i I 5 : ! i ; ! ;
6 A AM 10 AM 12 PM 2 Pl 4 PM & PMl
Use of machine learning techniques v
to develop algorithms that detect
rises in surface temperature Weekly email sent to trial researchers that
associated with stove use events identifies potentially non-compliant

Wilson et al., Sustainability, 2020 households



Low-cost air pollution sensors for large-scale long-term monitoring

Environment International

journal homepage: www.elsevier.com /locate/envint

Full length article

Can commercial low-cost sensor platforms contribute to air quality @mm
monitoring and exposure estimates?

Muria Castell **, Franck R. Dauge *, e ff: M

David Broday ", Alena Bartonova® :-‘*-Ef-: % Environmental Research -
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Validating novel air pollution sensors to improve exposure estimates for @c_m”m
epidemiological analyses and citizen science
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Michael Jerrett™, Davic' e . o .
Environment International

Ronald C. Cohen”, Estel #
Tom Cole-Hunter”, Man

journal homepage: www .glsevier.com/locate/envint

Review
The rise of low-cost sensing for managing air pollution in cities @mm

Prashant Kumar *®*, Lidia Morawska ©, Claudio Martani ?, George Biskos ='¢, Marina Neophytou ",
Silvana Di Sabatino ', Margaret Bell/, Leslie Norford ¥, Rex Britter '



Policy and research implications

Actions to reduce household air pollution are warranted, not least because
exposures are very high

Leveraging natural experiments and policy evaluation can move focus beyond
single stove interventions to assess more complex, contextualised, and realistic
energy interventions

Evaluation of whether clean energy programs policies achieve intended benefits
and avoid harm, and whether benefits reach the most vulnerable, remains a need

Big data still in its infancy in household air pollution; data availability and logistics
in low-resource settings are a challenge
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