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Chicken & egg: standards ↔ measurements
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Epidemiology drives policy. Health studies need exposure data.
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The pollutants we understand best are the ones we regulate.



Why? Not just for epidemiology
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Who, what, where, when?
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Analytical challenges
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Figure 2-7. NO2 Monitoring in the San Francisco Bay Area in 2019s  
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BAAQMD; Chambliss et al, PNAS 2021 ; Paolella et al 2018, ES&T Letters



Spatial and temporal scales
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Spatial and temporal scales
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S. Gani et al.: Submicron aerosol composition in the world’s most polluted megacity 6847

Figure 4. Average diurnal profiles of PM1 species by season.
Limited BC data for the monsoon due to instrument downtime.
Composition-based estimate of PM1 (C-PM1) = BC + NR-PM1.

3.2 PM1 composition: seasonal and diurnal variation

The concentrations and fractional contribution to PM1 of
each species varied by season and time of day. Over the cam-
paign, organics comprised 54 % of the submicron mass, inor-
ganics (chloride, ammonium, nitrate, and sulfate) 36 %, and
BC 10 %. There was a strong seasonality in C-PM1 loadings,
with the wintertime average loadings exceeding the relatively
less polluted and warmer summer and monsoon months by
3–4 times. We report the average seasonal concentrations of
organics, sulfate, ammonium, nitrate, chloride, and BC in Ta-
ble 1 and their contribution to C-PM1 in Fig. 3. Within each
season there were distinct diurnal (time-of-day) trends for the
average concentrations by hour of day for NR-PM1 and PM1
components (Fig. 4). These diurnal swings of the average
hourly concentrations were the most prominent for the colder
winter and spring months. In winter, average hourly NR-
PM1 concentrations ranged between 97.4 and 254 µg m�3

(minimum and maximum concentrations for the average di-
urnal cycle). Spring conditions were moderately less pol-
luted, with hourly average concentrations ranging diurnally
from 37.0 to 167 µg m�3. The NR-PM1 concentrations var-
ied much less during summer (range of concentrations for
an average diurnal cycle: 38.7 to 72.4 µg m�3) and the mon-
soon (32.1 to 47.7 µg m�3). For most seasons, the hourly av-
eraged NR-PM1 concentrations peaked around 07:00–08:00
and then again around 21:00–22:00, with the daily mini-
mum typically occurring around 15:00–16:00. However, for
the monsoon months the NR-PM1 average hourly concentra-
tions were similar throughout the day. The diurnal variation
in average hourly concentrations and fractional composition
of NR-PM1 species for each season is presented in Fig. 5.
The day and night averages by season for each PM1 species
along with the summary averages of meteorological parame-
ters are presented in Table 2. We did not observe any marked
day of the week difference in the levels or composition of
C-PM1 (Fig. S3).

Figure 5. Stacked average absolute and fractional diurnal profiles
of NR-PM1 species by season.

Organics were the single largest C-PM1 mass component
for all seasons and at all times of the average diurnal cycle.
Organics consistently contributed to more than ⇠ 50 % of
seasonal C-PM1 mass, with some episodes when their con-
tribution was as high as 80 %. The high organic fraction of
PM is consistent with studies from across the world (Zhang
et al., 2007; Jimenez et al., 2009). The daily averages of or-
ganics at our site varied between 6.4 and 293 µg m�3, with
an annual average of 51.5 µg m�3. The average wintertime
organic concentration was ⇠ 2 times higher than spring and
⇠ 4–5 times higher than summer and the monsoon. While the
wintertime organic concentrations ranged between 53.3 and
166 µg m�3, with the highest concentration during the night,
the diurnal variations were less dynamic for the warmer
months, with the hourly average organic concentrations rang-
ing between 20.8 and 49.8 µg m�3 for summertime. Compar-
ing daytime and nighttime f43 and f44 values for each sea-
son, the bulk organic aerosol was generally more oxidized
during the warmer periods (Fig. S4), presumably owing to
the higher photochemical activity during that time (Ng et al.,
2011a).

Ammonium was the prominent inorganic cation in C-
PM1 and generally balanced all the anionic inorganic species
(chloride, nitrate, and sulfate). Over the campaign, the molar
ratio of the inorganic anions to cations (ammonium) was 0.82
(R2 = 0.96). Ammonium mass concentrations were consis-
tently around ⇠ 10 % of the observed C-PM1. The daily
average of ammonium at our site varied between 1.5 and
37.9 µg m�3, with an annual average of 9.0 µg m�3. The aver-
age ammonium concentration for wintertime was ⇠ 2 times
higher than spring and ⇠ 4 times higher than summer and the
monsoon. Ammonium concentration hourly averages ranged
between 10.9 and 30.8 µg m�3 during the winter and between
4.2 and 8.3 µg m�3 during the summer.

We observed some of the highest chloride concentrations
reported anywhere in the world, with episodes when hourly
averages exceeded 100 µg m�3 (more than 40 such hours
across the campaign). The 90th and 95th percentile values
of the hourly concentrations of chloride over the campaign
were 26.7 and 43.8 µg m�3, respectively. The daily average

www.atmos-chem-phys.net/19/6843/2019/ Atmos. Chem. Phys., 19, 6843–6859, 2019



Intraurban variation
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Intraurban variation
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Newer measurement strategies
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Low-cost sensor networks

Satellite remote sensing

Mobile monitoring

Personal measurements



Exposure modeling approaches

9

RCMs: Reduced-complexity modelsEmpirical models (e.g., LUR)

Broad spatial extent + high resolution

Capture very fine scale features


Empirical, not explanatory

Not suited to “what if” scenarios

Can simulate alternate realities

Represent emissions→concentration relationship 

Limited by available input data 
Do not capture finest-scale spatial features



Data fusion and hybrid models
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ABSTRACT: We estimated global fine particulate matter
(PM2.5) concentrations using information from satellite-,
simulation- and monitor-based sources by applying a Geo-
graphically Weighted Regression (GWR) to global geophysi-
cally based satellite-derived PM2.5 estimates. Aerosol optical
depth from multiple satellite products (MISR, MODIS Dark
Target, MODIS and SeaWiFS Deep Blue, and MODIS
MAIAC) was combined with simulation (GEOS-Chem)
based upon their relative uncertainties as determined using
ground-based sun photometer (AERONET) observations for
1998−2014. The GWR predictors included simulated aerosol
composition and land use information. The resultant PM2.5
estimates were highly consistent (R2 = 0.81) with out-of-
sample cross-validated PM2.5 concentrations from monitors. The global population-weighted annual average PM2.5
concentrations were 3-fold higher than the 10 μg/m3 WHO guideline, driven by exposures in Asian and African regions.
Estimates in regions with high contributions from mineral dust were associated with higher uncertainty, resulting from both
sparse ground-based monitoring, and challenging conditions for retrieval and simulation. This approach demonstrates that the
addition of even sparse ground-based measurements to more globally continuous PM2.5 data sources can yield valuable
improvements to PM2.5 characterization on a global scale.

1. INTRODUCTION
Ambient fine particulate matter (PM2.5) concentrations
contribute significantly to global disease burden, causing
3 million premature deaths in 2013.1 Satellite observations,
simulations, and ground monitors provide insight into global
PM2.5 exposure, but availability and quality of these data sources
vary regionally. Exposure assignments, such as for the Global
Burden of Disease2 (GBD), would benefit from more
sophisticated methods to combine these sources into a unified
best-estimate. Geophysical relationships between aerosol
optical depth (AOD) and PM2.5 simulated using chemical
transport models (CTM) have allowed surface PM2.5 to be
globally estimated from satellite AOD observations,3 but
underutilize the insight that ground-based monitors can
provide. Statistical methods, such as Land Use Regression

and Geographically Weighted Regression (GWR), have been
effective at combining the spatial coverage of satellite
observations with the accuracy of ground-based monitors
where monitor density is high, such as in North America,4

China,5 and Europe.6 The global paucity of ground-based
monitors has traditionally restricted application of these
methods on a larger scale.
Major advances in satellite remote sensing include new

retrieval algorithms with high accuracy, long-term stability,
and high resolution.7−13 The ground-based AERONET sun
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Match analysis method to scale of contrast
• National scale 

• Satellite

• Empirical model (LUR, hybrid)

• Mechanistic models (CTM, RCM)


• Within-urban / hyperlocal  
• Empirical models; satellite

• Mobile monitoring

• Low-cost sensors


• Indoor or microenvironmental 
• Personal monitoring

• Low-cost sensors
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Sparse regulatory monitoring
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Most US urban areas have few monitors. How do we assess NAAQS?

CBSA: “core-based statistical area”
The counties that make up an urban area.
NAAQS attainment is often designated at CBSA scale.

PM2.5 monitoring sites

Regulatory

monitor

Wang et al., in prep
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If NAAQS exceedances were based on modeled PM…
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All CBSAs with census tracts with PM2.5 exceeding 9 µg m-3

CBSA: “core-based statistical area”
~ counties that make up a metro area
NAAQS attainment is often designated at CBSA scale Dataset: CACES Empirical Model

data: www.caces.usWang et al., in prep

http://www.caces.us


NAAQS and exposure disparities
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Attaining 9 µg PM2.5 NAAQS would address large exposure disparities
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Sparse monitoring networks may miss hotspots
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Concentrations at unmonitored hotspots can exceed NAAQS

Wang et al., in prep



Do monitors capture PM > NAAQS?
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Dozens of CBSAs have unmonitored hotspots > 9 µg m-3

Highest monitored tract ≥ 9 µg m-3

Highest monitored tract < 9 µg m-3

No monitoring in CBSA
Wang et al., in prep



Existing monitoring misses high PM locations
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Highest monitored tract ≥ 9 µg m-3 Highest monitored tract < 9 µg m-3 No monitors

51 million people in 113 CBSAs have hotspots with PM2.5 > new NAAQS

How will we design monitoring infrastructure of the future under ever-tighter NAAQS?

Wang et al., in prep



Why make new measurements?
• Regulatory context: most legally defensible measure of exposure


• Accountability studies and trend analysis


• Challenge our understanding of relevant sources and processes

• Identify or quantify “unknown unknowns”


• Emerging priorities: Assess exposure to non-criteria air pollutants 
• e.g., air toxics, source-specific indicators, UFP


• Personal, indoor, and microenvironmental exposures

18



Why model exposure?

• Study large populations.


• Simultaneously consider large range of spatial contrasts.


• Cost-effective relative to measurements.


• Use mechanistic models to understand “what-if” scenarios

19

Models and remote sensing are highly scalable.



Key take-homes

• Report precise, detailed information on exposure metrics to maximize 
value for EPA science and policy assessments.


• Traditional ambient monitoring is still essential.

• Emerging methods can add valuable detail and context.

• Models provide powerful scalability. 


• Emerging needs:

• Lots of new measurements and monitoring being funded. How do we capture these data?

• How do we assimilate diverse datasets into standardized, validated products?

• Systematic observations for EJ-focused accountability research.

20

NAAQS science process relies on precisely defined exposure metrics


