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A B O U T  H E I

The Health Effects Institute is a nonprofit corporation chartered in 1980 as an independent 
research organization to provide high-quality, impartial, and relevant science on the effects of air 
pollution on health. To accomplish its mission, the Institute

• Identifies the highest-priority areas for health effects research

• Competitively funds and oversees research projects

• Provides an intensive independent review of HEI-supported studies and related research

• Integrates HEI’s research results with those of other institutions into broader evaluations

• Communicates the results of HEI’s research and analyses to public and private decision-
makers.

HEI typically receives balanced funding from the U.S. Environmental Protection Agency and the 
worldwide motor vehicle industry. Frequently, other public and private organizations in the United 
States and around the world also support major projects or research programs. HEI has funded 
more than 380 research projects in North America, Europe, Asia, and Latin America, the results 
of which have informed decisions regarding carbon monoxide, air toxics, nitrogen oxides, diesel 
exhaust, ozone, particulate matter, and other pollutants. These results have appeared in more than 
260 comprehensive reports published by HEI, as well as in more than 2,500 articles in the peer-
reviewed literature.

HEI’s independent Board of Directors consists of leaders in science and policy who are 
committed to fostering the public–private partnership that is central to the organization. The 
Research Committee solicits input from HEI sponsors and other stakeholders and works with 
scientific staff to develop a Five-Year Strategic Plan, select research projects for funding, and oversee 
their conduct. The Review Committee, which has no role in selecting or overseeing studies, works 
with staff to evaluate and interpret the results of funded studies and related research.

All project results and accompanying comments by the Review Committee are widely 
disseminated through HEI’s website (www.healtheffects.org), reports, newsletters and other 
publications, annual conferences, and presentations to legislative bodies and public agencies.
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A B O U T  T H I S  R E P O RT

Research Report 216, Scalable Multipollutant Exposure Assessment Using Routine Mobile 
Monitoring Platforms, presents a research project funded by the Health Effects Institute and 
conducted by Dr. Joshua S. Apte of the University of California, Berkeley, and his colleagues. This 
research was funded under HEI’s Walter A. Rosenblith New Investigator Award Program, which 
provides support to promising scientists in the early stages of their careers. The report contains 
three main sections:

The HEI Statement, prepared by staff at HEI, is a brief, nontechnical summary of the study 
and its findings; it also briefly describes the Review Committee’s comments on the study.

The Investigators’ Report, prepared by Apte and colleagues, describes the scientific 
background, aims, methods, results, and conclusions of the study.

The Commentary, prepared by members of the Review Committee with the assistance 
of HEI staff, places the study in a broader scientific context, points out its strengths and 
limitations, and discusses the remaining uncertainties and implications of the study’s findings for 
public health and future research.

This report has gone through HEI’s rigorous review process. When an HEI-funded study is 
completed, the investigators submit a draft final report presenting the background and results of 
the study. This draft report is first examined by outside technical reviewers and a biostatistician. 
The report and the reviewers’ comments are then evaluated by members of the Review 
Committee, an independent panel of distinguished scientists who are not involved in selecting 
or overseeing HEI studies. During the review process, the investigators have an opportunity to 
exchange comments with the Review Committee and, as necessary, to revise their report. The 
Commentary reflects the information provided in the final version of the report.
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H E I  S TAT E M E N T 
Synopsis of Research Report 216

New Approaches to Air Pollution Exposure Assessment 
Using Mobile Monitoring

1

BACKGROUND

It is challenging to estimate exposures to 
outdoor air pollutants that vary highly over 
short distances and over short periods of 
time. Researchers are increasingly measur-
ing air pollution using mobile monitoring 
by affixing monitoring devices to vehicles 
traveling systematically and repeatedly along 
road networks. Data collected this way can be 
used to produce maps of street-level exposure 
estimates. Questions remain, however, about 
the validity and use of these data in different 
locations and for different purposes. Dr. 
Joshua Apte and colleagues at the University 
of California, Berkeley, sought to improve 
mobile monitoring approaches and to test their 
suitability in a high-income country (United 
States) and a low- and middle-income country 
(India). Their study was funded through HEI’s 
Request for Applications 16-1: Walter A. 
Rosenblith New Investigator Award.

APPROACH

Apte and colleagues considered the fol-
lowing overarching research questions: Does 
large-scale mobile monitoring produce useful 
results? What insights about traffic-related 
air pollution dynamics and patterns can be 
revealed by mobile monitoring? What are the 
potential limitations of mobile monitoring? 
The study builds on previous research by the 
investigators through which they collected a 
large amount of mobile monitoring data using 
Google Street View cars equipped with tools 
to measure several traffic-related pollutants, 
including black carbon, nitrogen oxides, and 
ultrafine particles.

First, they evaluated the extent to which 
observations from mobile monitoring collected 
during weekday work hours represented long-
term observations of black carbon measured at 
fixed-site monitors in Oakland, California. For 
this analysis, they used two existing datasets, 

namely, over 300 hours of mobile measurements and 
data from about 100 fixed-site monitors that provided 100 
days of continuous measurements to assess temporal and 
spatial variability. 

What This Study Adds
•	 This study evaluated the use of mobile monitoring 

for several air pollution mapping and exposure 
assessment applications.

•	 Apte and colleagues compared measurements 
collected through mobile monitoring with mea-
surements collected at fixed-site locations and used 
the mobile monitoring data to develop maps of 
estimated potential exposure. 

•	 They evaluated and compared such data and 
approaches in Oakland, California, and Bangalore, 
India. 

•	 In both locations, they produced relatively repro-
ducible maps of traffic-related air pollution with data 
from relatively few repeated drive passes.

Next, they explored and evaluated several approaches 
for mapping air quality in Oakland using those mobile 
monitoring data. Specifically, they compared an 
approach using repeated, full-coverage sampling (i.e., 
mobile monitoring on all roads, sampled many times) 
with alternative strategies that included using data from 
fewer roads or fewer sampling days, and supplementing 
the data with spatial prediction models. The investigators 
also evaluated the feasibility of mobile monitoring in 
a different setting by collecting over 400 hours of data 
over 19 months in the Malleshwaram neighborhood of 
Bangalore, India. 

KEY RESULTS 

The investigators found that patterns of black carbon 
obtained using mobile monitoring in Oakland were very 
similar to the concentrations observed at the fixed moni-
toring sites. In addition, mobile measurements captured 
road-level variability and measurements along highways 
that were not available from the fixed-site monitors. 

This Statement, prepared by the Health Effects Institute, summarizes a research project funded by HEI and conducted by Dr. Joshua 
S. Apte at the University of California, Berkeley, and colleagues. Research Report 216 contains both the detailed Investigators’ Report 
and a Commentary on the study prepared by the Institute’s Review Committee.                     
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Next, Apte and colleagues produced maps of pol-
lutant concentrations on sampled road segments using 
all available data (see Figure, left panel) and reduced 
datasets (middle and right panel). Visual inspection 
suggested that the various modeling approaches 
captured key features of the long-term concentrations 
of nitrogen oxide and black carbon. Maps developed 
using data from fewer roads or drive days resulted 
in negligible decreases in model predictions and 
performance even with substantial decreases in data 
requirements. The map produced with the full dataset, 
however, (i.e., many dozen drive passes on all roads, 
total drive time about 1,300 hours) contained localized 
pollution hotspots at intersections and locations with 
emissions sources that were not apparent in the other 
maps. 

The campaign in Bangalore showed similarly that 
the highest concentrations were observed along high-
ways, and the lowest concentrations were observed on 
smaller, residential streets. Concentrations of ultrafine 
particles were about four times higher, and those for 
black carbon about 100 times higher, in Bangalore than 
in Oakland. Despite differences in fleet composition, 
population density, and mean pollutant concentrations 
between the two locations, mobile monitoring pro-
duced relatively stable maps with data from about 10 
drive days in both locations, with diminishing returns 
to precision with additional sampling beyond that.

Results of this study also showed that some pollut-
ants appear to be better suited for collection through 
mobile monitoring than others. Generally, pollutants 
with a high degree of spatial variation and a low degree 
of temporal variation were the best suited to this kind 
of approach. 

Whether the results are generalizable to other 
pollutants or other locations (including to wider areas 
within California, Bangalore, or elsewhere) remains to 
be determined. The Committee also wondered about 
the suitability of mobile-measured air pollution data 
for use in epidemiological analyses or for regulatory 
purposes. For example, measurements collected in 
the middle of the road are likely different from those 
collected at roadsides or at other locations that might 
be closer to where people live. Additionally, the data 
used in this study were collected only during daytime 
hours on weekdays and do not reflect patterns during 
the times of day when people might be more likely 
to be at home (i.e., in the evenings, at night, and on 
weekends).

In summary, this study showed that mobile moni-
toring can be used to produce relatively reproducible 
maps of traffic-related air pollution with data from 
relatively few repeated drive passes, contributing 
interesting insights about collecting and working with 
mobile-measured air pollution data.

INTERPRETATION AND 
CONCLUSIONS 

In its independent eval-
uation of the Investigators’ 
Report, the HEI Review Com-
mittee commended the inves-
tigators for conducting one 
of the largest, most extensive 
studies examining the poten-
tial applications, strengths, 
and limitations of mobile mon-
itoring. The rich datasets used 
by the investigators allowed 
them to explore and identify 
the relative trade-offs between 
intensive, repeated mobile 
monitoring and several alter-
native approaches. The study 
showed that mobile moni-
toring produced relatively 
reproducible maps for several 
traffic-related air pollutants 
with data from relatively few 
repeated drive passes, in two 
very different settings.

Subsampled Data
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Statement Figure. Maps showing daytime median concentrations of nitrogen oxide 
in Oakland, CA, during 2015–2017, based on all available data (left), data from 
four randomly selected days (middle), and data from 30% of the arterial and 
residential roads (right). Source: Investigators’ Report Figure 3.
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INVESTIGATORS’ REPORTINVESTIGATORS’ REPORT

Scalable Multipollutant Exposure Assessment Using Routine Mobile Monitoring 
Platforms
Joshua S. Apte1,2, Sarah E. Chambliss2, Kyle P. Messier2,3, Shahzad Gani2, Adithi R. Upadhya4, 
Meenakshi Kushwaha4, and V. Sreekanth5

1Department of Civil & Environmental Engineering, University of California, Berkeley; 2Department of Civil, Architectural 
& Environmental Engineering, University of Texas; 3Environmental Defense Fund, Austin, Texas; 4ILK Labs, Bangalore, 
Karnataka, India; 5Centre for the Study of Science, Technology & Policy, Bangalore, Karnataka, India

ABSTRACT

Introduction  The absence of spatially resolved air pollu-
tion measurements remains a major gap in health studies of 
air pollution, especially in disadvantaged communities in the 
United States and lower-income countries. Many urban air 
pollutants vary over short spatial scales, owing to unevenly 
distributed emissions sources, rapid dilution away from 
sources, and physicochemical transformations. Primary air 
pollutants from traffic have especially sharp spatial gradients, 
which lead to disparate effects on human health for popu-
lations who live near air pollution sources, with important 
consequences for environmental justice. Conventional fixed-
site pollution monitoring methods lack the spatial resolution 
needed to characterize these heterogeneous human exposures 
and localized pollution hotspots. In this study, we assessed 
the potential for repeated mobile air quality measurements 
to provide a scalable approach to developing high-resolution 
pollution exposure estimates. We assessed the utility and 
validity of mobile monitoring as an exposure assessment 
technique, compared the insights from this measurement 
approach against other widely accepted methods, and inves-
tigated the potential for mobile monitoring to be scaled up in 
the United States and low- and middle-income countries.  

This Investigators’ Report is one part of Health Effects Institute Research 
Report 216, which also includes a Commentary by the Review Commit-
tee and an HEI Statement about the research project. Correspondence con-
cerning the Investigators’ Report may be addressed to Dr. Joshua S. Apte, 
Department of Civil and Environmental Engineering and School of Pub-
lic Health, 661 Davis Hall, University of California, Berkeley, CA, 94720; 
email: apte@berkeley.edu. No potential conflict of interest was reported by 
the authors.

Although this document was produced with partial funding by the Unit-
ed States Environmental Protection Agency under Assistance Award CR–
83998101 to the Health Effects Institute, it has not been subjected to the 
Agency’s peer and administrative review and therefore may not necessarily 
reflect the views of the Agency, and no official endorsement by it should 
be inferred. The contents of this document also have not been reviewed by 
private party institutions, including those that support the Health Effects 
Institute; therefore, it may not reflect the views or policies of these parties, 
and no endorsement by them should be inferred.

Methods  Our study had five key analysis modules (M1–
M5). The core approach of the study revolved around repeated 
mobile monitoring to develop time-stable estimates of cen-
tral-tendency air pollution exposures at high spatial resolution. 
All mobile monitoring campaigns in California were completed 
prior to beginning this study.  In analysis M1, we conducted an 
intensive summerlong sampling campaign in West Oakland, 
California. In M2, we explored the dynamics of ultrafine par
ticles

-
 (UFPs*) in the San Francisco Bay Area. In analysis M3, 

we scaled up our multipollutant mobile monitoring approach 
to 13 different neighborhoods with ~450,000 inhabitants to 
evaluate within- and between-neighborhood heterogeneity. In 
M4, we evaluated the coupling of mobile monitoring with land 
use regression models to estimate intraurban variation. Finally, 
in M5, we reproduced our mobile monitoring approach in a 
pilot study in Bangalore, India.

Results For M1, we found a moderate-to-high concordance 
in the time-averaged spatial patterns between mobile and 
fixed-site observations of black carbon (BC) in West Oakland. 
The dense fixed-site monitor network added substantial 
insight about spatial patterns and local hotspots. For M2, a 
seasonal divergence in the relationship between UFPs and 
other traffic-related air pollutants was evident from both 
approaches. In M3, we found distinct spatial distribution of 
exposures across the Bay Area for primary and secondary air 
pollutants. We found substantially unequal exposures by race 
and ethnicity, mostly driven by between-neighborhood con-
centration differences. In M4, we demonstrated that empirical 
modeling via land use regression could dramatically reduce 
the data requirements for building high-resolution air quality 
maps. In M5, we developed exposure maps of BC and UFPs 
in a Bangalore neighborhood and demonstrated that the mea-
surement technique worked successfully. 

Conclusions We demonstrated that mobile monitoring can 
produce insights about air pollution exposure that are exter-
nally validated against multiple other analysis approaches, 
while adding complementary information about spatial 
patterns and exposure heterogeneity and inequity that is not 
readily obtained with other methods.  

* A list of abbreviations and other terms appears at the end of this volume.

mailto:apte@berkeley.edu
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INTRODUCTION

Air pollution affects billions of people worldwide (Apte et 
al. 2015; Burnett et al. 2018; Cohen et al. 2017). Ambient pol-
lution measurements play a crucial role in both air pollution 
epidemiology and air quality management, yet the global scope 
of ground-based air pollution observations is limited (Apte et 
al. 2021; Carvalho 2016). For many regions in low- and mid-
dle-income countries (LMICs), especially in populous parts 
of Asia and Africa, robust air quality monitoring is largely 
absent (Apte et al. 2021; Martin et al. 2019). For example, 
India has fewer than 250 continuous air quality monitoring 
stations providing routine data for a population of 1.2 billion. 
Even in the United States, ground-based monitoring is sparse 
relative to the needs of exposure assessment, with a median of 
one to four ambient monitors per million urban inhabitants. 
Urban air pollution concentrations can vary sharply over 
short distances (<< 1 km) owing to unevenly distributed emis-
sions sources, dilution, and physicochemical transformations 
(Karner et al. 2010; Marshall et al. 2008; Zhang et al. 2004). 
Accordingly, even where present, conventional fixed-site 
pollution monitoring methods lack the spatial resolution 
needed to characterize heterogeneous human exposures and 
localized pollution hotspots. This challenge might increase in 
the future as large regional sources are controlled while local 
or idiosyncratic emissions remain.

Some of the enduring mysteries of air pollution epidemi-
ology relate to the health effects of multipollutant mixtures of 
traffic-related air pollution. A large body of evidence suggests 
that within-urban exposure gradients may have substantial 
human health impacts that are often not fully quantified 
(Crouse et al. 2015b; HEI 2010, 2022; Jerrett et al. 2005). 
Near-roadway populations are frequently observed to expe-
rience health effects in excess of what would be predicted 
by background levels (HEI 2010). Many primary pollutants, 
including UFPs, elemental carbon (EC), BC, nitrogen oxides 
(NOx, including nitric oxide [NO] and nitrogen dioxide [NO2]), 
and coarse particles, are sharply elevated above background 
levels in these environments, as are noise levels (Apte et al. 
2011; Boogaard et al. 2010; HEI 2010; Karner et al. 2010). 
There is suggestive toxicological and epidemiological 
evidence to conclude that elements of these mixtures have 
important human health effects (HEI 2010, 2022). Neverthe-
less, at the population scale, the strongest and most consistent 
health effects are generally found for particulate matter with 
aerodynamic diameter ≤2.5 µm (PM2.5) and ozone, which are 
predominantly secondary pollutants without sharp gradients. 
Here, a “chicken-and-egg” problem exists for air pollution 
exposure assessment and epidemiology. Pollution standards 
are informed by epidemiological evidence. Routine monitor-
ing is expensive. Most monitoring therefore considers regu-
lated pollutants with well-understood health effects. In turn, 
large epidemiological studies historically have emphasized 
pollutants for which routine monitoring data exist. Alterna-
tive scalable population exposure assessment techniques can 

therefore contribute to a richer understanding of the human 
health effects of the many regulated and unregulated air pol-
lutants that vary over fine spatial scales.

Another compelling concern relates to environmental 
justice and the systematic racial and ethnic inequality in air 
pollution exposures and their associated health effects. For 
decades, environmental justice advocates have documented 
the unequal environmental burdens placed on racial and 
ethnic minorities in the United States. These disparities have 
frequently arisen as the result of inequitable or even explicitly 
racist planning decisions that concentrated traffic, industries, 
and other locally unwanted pollution sources in lower-in-
come, less-White communities (Bullard 1993, 2020; Lane et 
al. 2022; Morello-Frosch et al. 2001; Rothstein 2017). Because 
air pollution levels vary spatially over length scales that are 
comparable to the spatial scales of racial segregation in U.S. 
cities, fine-scale intraurban pollution gradients can contribute 
a substantial fraction of the overall nationwide disparity in 
air pollution exposures for primary air pollutants (Clark et 
al. 2022; Jbaily et al. 2022; Lane et al. 2022; Liu et al. 2021). 
Even for pollutants with a strong secondary contribution, 
such as PM2.5, recent modeling studies suggest that nearly 
all major source sectors in the U.S. economy create racially 
disparate air pollution exposures (Tessum et al. 2021). How-
ever, intraurban air pollution disparities by race and ethnicity 
tend to be especially large for primary pollutants, given that 
these pollutants have sharper spatial gradients (Clark et al. 
2017, Clark et al. 2022; Demetillo et al. 2021; Lane et al. 2022; 
Liu et al. 2021). Thus, whereas a small number of centralized 
monitors in a city may be adequate to assess long-term trends 
in compliance with air quality standards, this conventional 
monitoring approach is not fully capable of characterizing 
systematic disparities in air pollution exposure. 

Advances in air pollution exposure assessment 
approaches over the past 2 decades have helped address 
limitations of data coverage and spatial resolution, which 
are associated with central-site ambient monitoring. These 
methods include satellite remote sensing, chemical transport 
models, land use regression (LUR) models, low-cost sensor 
networks, and direct personal exposure measurements. 
Although each approach has distinct positive attributes, 
important limitations remain. First, satellite remote sensing 
instruments and chemical transport models are spatially 
coarse (>1–10 km resolution) and cannot characterize the 
fine-scale gradients (10–300 m) that drive population expo-
sure to local emissions, such as traffic. Satellites are unable 
to measure some pollutants of key health concern (e.g., 
UFPs and EC). Dispersion models and chemical transport 
models are only as reliable as their underlying emissions 
inventories, and thus cannot reveal unexpected sources. 
LUR models are capable of estimating levels at high spatial 
resolution. However, these models provide limited temporal 
information, require local training datasets to be available 
or collected, and struggle to predict the tails of air pollution 
distributions, especially where idiosyncratic local sources 
exist. 
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Scalable new methods to measure how air pollution con-
centrations vary within cities and over time could therefore 
provide important insights applicable to epidemiology, 
atmospheric science, management, environmental justice, 
and public awareness. Two such measurement approaches 
that have become increasingly common over the past half-
decade are dense low-cost sensor networks, and routine (i.e., 
repeated or high-frequency) mobile monitoring using fleet 
vehicles. These two measurement-based approaches to map 
pollution are potentially quite complementary (Chambliss 
et al. 2020). Dense networks of continuously operating fixed 
sensors can provide time-resolved (i.e., sub-hourly resolu-
tion) data, but at a finite number of observation locations. 
For example, the crowdsourced PurpleAir PM2.5 network 
reports data every 2 minutes at thousands of unique locations 
across California alone. However, even such a dense network 
is usually spatially incomplete. In contrast, routine mobile 
monitoring can provide “wall-to-wall” coverage of an entire 
urban domain by repeatedly sampling air pollution on every 
city block (Apte et al. 2017), thus providing a very dense map 
of exposure estimates that are averaged over time from several 
repeated sampling runs. Some relative advantages of mobile 
monitoring include the ability to measure multiple pollutants 
at once (especially those pollutants for which robust low-cost 
sensors do not exist) and to produce high-resolution exposure 
estimates without the need to establish hundreds to thousands 
of dedicated fixed monitoring sites. Thus, this study aimed to 
test the proposition that routine mobile monitoring using fleet 
vehicles may be a highly scalable, efficient, and affordable 
approach for obtaining high-resolution air pollution exposure 
data. 

The proposal that gave rise to this report was drafted in 
2017 and was inspired by our pilot studies from 2015–2016 
using Google’s Street View mapping vehicles to develop very 
large mobile monitoring datasets of urban air pollution. Our 
pilot study with the Google Street View sampling approach 
in Oakland, California (Apte et al. 2017) revealed stable, 
fine-scale pollution patterns at 104 –105 times greater spatial 
resolution than would be possible with conventional ambient 
monitors. To be clear, the use of vehicles for mobile air pol-
lution sampling is not new — it dates back to the 1970s and 
likely to work by Haagen-Smit in the 1950s (Apte et al. 2011; 
Boogaard et al. 2010; Bukowiecki et al. 2002; Padró-Martínez et 
al. 2012; Westerdahl et al. 2005; Whitby et al. 1975). However, 
many earlier mobile monitoring studies had been constrained 
by limited statistical power and the absence of an efficient 
approach for systematic data analysis (Brantley et al. 2014). 
These classical mobile monitoring efforts often involved 
purpose-built mobile labs with finicky instruments and relied 
on specialized research staff (either professional scientists or 
graduate students) as drivers. As a result, data were generally 
collected during short, intensive campaigns, rather than on a 
routine basis. Accordingly, relatively few mobile monitoring 
datasets had sufficient repetition frequency (i.e., statistical 
power) to reveal consistent long-term spatial patterns or to 
evaluate changes in spatial patterns over time. 

In contrast, the concept of routine monitoring emphasizes 
using fleet vehicles (e.g., Street View cars) that are equipped 
with robust instruments that require only infrequent attention 
by trained personnel. The vehicles are then operated on a 
routine regular basis by a professional driving staff within a 
fixed spatial domain (i.e., driving about their daily business 
in a city). In this scheme, it is possible to rapidly amass a large 
monitoring dataset on nearly every urban road at high-repeat 
frequency. Data reduction algorithms convert repeated 1-Hz 
samples into stable, precise time-averaged concentrations at 
high resolution (e.g., 30 m). Preliminary analysis suggested 
that one routinely operated vehicle with instrumentation 
costing $50,000–$100,000 could provide precise 30-m annual- 
average exposure estimates for ~250,000 people; at scale, 
fewer than 500 such vehicles could provide high-resolution 
exposure data for the ~110 million inhabitants of the 25 larg-
est urban areas in the United States (Apte et al. 2017). Given 
the potential of this approach, this study therefore aimed to 
further evaluate the robustness and validity of this sampling 
approach using external datasets and, in parallel, explore 
approaches to further improving the efficiency and scalability 
of mobile monitoring. Quite fortuitously, our work did not 
occur in isolation: since the publication of our pilot study 
from Oakland in 2017, dozens of new mobile monitoring 
efforts using similar repeated sampling approaches have been 
conducted in cities around the world. 

SPECIFIC AIMS

In this study, we explore the potential of repeated mobile 
monitoring to be used as a robust, routine, and scalable 
approach for characterizing spatial gradients of urban air pol-
lution and their resulting implications for human exposure, air 
quality management, environmental justice, and other societal 
impacts. Although routine mobile monitoring has begun to gain 
increasing favor as a useful monitoring tool, this relatively new 
measurement approach has not been sufficiently evaluated in 
terms of its validity and capabilities. We therefore sought to 
address the following five inter-related aims:

Aim 1. Validate mobile monitoring as an exposure assess-
ment technique via comparison against fixed observation 
networks. Because fixed-site observations are often treated 
as the reference standard for air pollution measurements, 
we sought to compare how the spatial patterns from mobile 
monitoring aligned with those derived from both available 
regulatory fixed-site data as well as specially built sensor 
networks. 

Aim 2. Compare insights from mobile air pollution measure-
ments against the insights that can be derived from other 
spatially resolved air pollution assessment techniques.   
Here, we sought to understand how the insights from mobile 
monitoring might complement and diverge from those that 
can be derived from other exposure assessment techniques, 
including regulatory observations, dense lower-cost sensor 
networks, and statistical exposure models. 
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Aim 3. Investigate the potential for scaling of mobile mon-
itoring techniques through direct observation and through 
models.  We sought to understand how mobile monitoring 
could be applied to increasing large study domains (not just 
neighborhoods, but full cities and regions) while minimizing 
the amount of sampling effort that would be required to 
accomplish this goal. 

Aim 4. Develop a dense mobile monitoring air pollution 
dataset for an Indian city.  Through a case study in an 
Indian city, Bangalore, we sought to investigate whether 
mobile monitoring might represent a viable path forward 
for adding air pollution data in lower-resource settings that 
currently lack robust air pollution monitoring infrastructure.  

Aim 5. Evaluate the utility of mobile monitoring.   In this 
overarching and cross-cutting aim, we sought to evaluate the 
utility of mobile monitoring for a range of exposure assess-
ment, environmental justice, and air quality management 
applications by considering the following questions. Does 
mobile monitoring produce useful results? In what ways and 
for what exposure assessment applications is mobile moni-
toring effective? What policy and societally relevant insights 
are revealed by mobile monitoring? What complementary or 
additional insights can be revealed by mobile monitoring? 
What are the potential limitations of mobile monitoring for 
these applications?

METHODS AND STUDY DESIGN

The study design incorporated five inter-related analysis 
modules (M1–M5), each of which contributed to multiple 
study aims. Analyses M1–M4 focused on measurements 
collected in the San Francisco Bay Area, whereas analysis M5 
assessed transferability of the mobile monitoring approach 
to an LMIC context (Bangalore, India). Table 1 indicates how 

each analysis contributes to the five overarching study aims. 
Table 2 provides further details on the methods and results. 
Each of the five analyses is summarized below.

Analysis M1: Intensive comparison of mobile and fixed-
site monitoring in Oakland, California. We conducted an 
intensive experiment to evaluate the capabilities of mobile 
monitoring in the representation of time-stable spatial patterns 
by comparing repeated mobile air pollution measurements 
against a large set of continuous fixed-site measurements 
from a sampling campaign in West Oakland, California. For 
this analysis, we leveraged data that had been collected in 
2017, prior to the start of this study.  First, as part of the West 
Oakland “100 × 100” Study, Caubel et al. (2019) deployed 
approximately 100 custom-built low-cost aerosol BC detectors 
(ABCDs) that provided 100 days of continuous measurements 
at 97 near-road and 3 background fixed sites during the sum-
mer of 2017 and shared the resulting data with us. In parallel, 
two concurrently operated Google Street View cars were 
equipped as mobile laboratories that collected over 300 hours 
of in-motion BC measurements using a photoacoustic extincti-
ometer (PAX). We evaluated the degree to which the repeated 
mobile measurements were capable of representing time-stable 
(campaign average) concentrations measured at each of the 
fixed-site monitors. The complete results of this analysis were 
reported by Chambliss and colleagues (2020). 

Analysis M2: Spatiotemporal analysis of ultrafine par-
ticle dynamics using mobile and fixed sensors in the San 
Francisco Bay Area. We evaluated how the spatiotemporal 
patterns of UFPs are correlated with other traffic-related air 
pollutants that are more routinely monitored, such as NOx, 
BC, and carbon monoxide (CO). In the San Francisco Bay 
Area, concentrations of UFPs have been routinely monitored 
by the regulatory network since about 2011, providing a 
unique opportunity to compare insights about the association 

Table 1. Relationship Between Aims 1–5 and Analyses M1–M5

Aim 1
Validate 
Method

Aim 2
Compare to 

Other 
Methods

Aim 3
Scale 

Method

Aim 4 
Test in 
India

Aim 5
Evaluate 
Utility

M1: Intensive comparison of mobile and fixed-site 
monitoring in Oakland, California

✓ ✓ ✓

M2: Spatiotemporal analysis of UFP dynamics using 
mobile and fixed sensors in the San Francisco Bay 
Area

✓ ✓ ✓

M3: Assessment of local- and regional-scale air pollu-
tion disparities in the San Francisco Bay Area using 
mobile monitoring

✓ ✓

M4: Scaling hyperlocal air quality mapping through 
mobile monitoring and LUR

✓ ✓ ✓

M5: Mobile monitoring in Bangalore, India  ✓ ✓ ✓
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Table 2. Summary of Objectives, Approaches, and Results for Analyses M1–M5

M1: Comparison of Mobile and Fixed-Site 
Monitoring in Oakland

M2: Spatiotemporal Analysis of UFPs

How Analysis Addresses 
Overall Research Aims

Aim 1: Validate mobile monitoring against 
fixed-site measurements
Aim 2: Compare insights from mobile monitor-
ing with those from fixed measurements
Aim 5: Evaluate relative strengths of mobile 
and fixed-site sampling approaches 

Aim 1: Evaluate whether mobile monitoring 
corroborates an observation from regulatory 
data
Aim 2: Compare insights on UFP dynamics 
from mobile monitoring and regulatory moni-
toring
Aim 3: Evaluate how mobile monitoring offers 
complementary information on seasonal pat-
terns of UFP concentrations

Key Measurements BC
Mobile measurements: PAX on Google Street 
View cars
Fixed-site measurements: Custom low-cost 
ABCD on buildings and utility poles

UFPs, NO, NO2 + supplementary species
Mobile measurements: NO, NO2, UFPs + BC on 
Google Street View cars
Regulatory measurements: NO, NO2, UFPs + BC, 
CO at 4 fixed monitoring stations

Period of Measurements May 19, 2017–Aug. 27, 2017 Mobile measurements: May 2015–Dec. 2017
Regulatory measurements: Full year, 2015 

Geographic Coverage of 
Measurements

West Oakland, California (Figure 1)
Mobile measurements: ~ 170 km of road net-
work, 10 km2

Fixed-site measurements: 100 fixed locations 
within the neighborhood

Mobile measurements: West Oakland and 
Downtown Oakland (Figure 1)
Regulatory measurements at 4 sites: Sebastopol 
(rural), Livermore (suburban), Redwood City 
(urban), and Laney College (near road)

Populations Covered West Oakland, CA (~28,000 people) Mobile measurements: West Oakland and 
Downtown Oakland (~50,000 people)
Regulatory domain: Entire San Francisco  Bay 
Area (~7 million)

Statistical Analysis and 
Modeling Approaches

Fixed-site: Time-averaged concentrations at 
each site
Mobile data: Time averages of repeated drive 
passes within a spatial buffer distance of each 
fixed site
Assessment of the concordance between mobile 
and fixed-site averages using R2, MAE, and 
other metrics of agreement

Mobile measurements: Seasonal weekday, day-
time spatial patterns determined by computing 
medians of repeated drive-pass–mean concen-
trations along 30-m road segments
Regulatory measurements: Seasonal diurnal 
profiles of hourly regulatory data

Key Results Repeated mobile monitoring can reproduce 
time-averaged, fine-scale spatial patterns of BC 
with good fidelity, precision, and accuracy rela-
tive to a fixed-site sensor network

Data from mobile monitoring corroborates a 
surprising insight from regulatory data: Patterns 
of UFPs and NOx are coupled in the winter 
months (indicative of a common primary traf-
fic source), but sharply decoupled in the win-
ter. UFPs in the Bay Area appear to be substan-
tially driven by secondary formation during the 
summer months

Continued next page
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Table 2, continued. Summary of Objectives, Approaches, and Results for Modules M1–M5

M3: Assessment of local- and regional-scale air 
pollution disparities in the San Francisco Bay 
Area using mobile monitoring

M4: Scaling hyperlocal air quality mapping 
through mobile monitoring and LUR

How Analysis Addresses 
Overall Research Aims

Aim 2: Compare insights between mobile mon-
itoring and LUR models for assessing popula-
tion exposure and disparities for NO2

Aim 5: Evaluate utility of mobile monitoring 
for assessing population exposure distributions 
and racial and ethnic exposure disparities at 
large scale 

Aim 3: Explore whether and how statistical 
LUR-K models can make mobile monitoring 
more scalable by replacing labor-intensive mea-
surements with statistical predictions trained 
on a more limited set of observations

Aim 5: Evaluate the utility of dense “data-only” 
mobile monitoring approach that covers every 
city block vis-à-vis an alternative approach 
where mobile monitoring data are used only for 
training an LUR-K model

Key Measurements NO, NO2, BC, UFPs NO, BC

Period of Measurements May 2015–Dec. 2017 May 2015–May 2017

Geographic Coverage of 
Measurements

The 13 communities across the San Francisco 
Bay Area (93 km2) that are mapped in Figure 1

West Oakland, Downtown Oakland, East Oak-
land (Figure 1)
~ 490 km of road network, 30 km2

Populations Covered ~ 450,000 people; in this analysis data were 
explicitly aggregated to census-block geogra-
phies to permit assessment of the demographic 
factors and social disparities associated with air 
pollution gradients

~ 103,000 people in these three neighborhoods

Statistical Analysis and 
Modeling Approaches

Aggregation of repeated drive-by on-road mea-
surements to estimate median long-term week-
day, daytime median concentrations for sur-
rounding U.S. Census blocks
Computation of cumulative population- 
weighted exposure distributions for full popu-
lation and by race and ethnicity 
Partitioning of total spatial variation in popula-
tion exposure into within- and between-neigh-
borhood components
Assessment of relative racial and ethnic dis-
parities at different moments of the cumulative 
exposure distribution

Computation of long-term weekday, day-
time road segment median concentrations for 
repeated drive-pass mean concentrations at the 
30-m road segment scale
Development of LUR-K models to evaluate abil-
ity to make out-of-sample spatial predictions at 
unmonitored locations
Monte Carlo simulations of spatial and tempo-
ral coverage in mobile mapping to assess the 
trade-off between the amount of data collected 
and fidelity of LUR-K models

Key Results Repeated mobile monitoring can represent 
exposure heterogeneity across a large urban 
region
Across the entire Bay Area region, within-
neighborhood gradients account for a large 
(~30% for UFPs and NO2) to dominant (>50% 
for BC and NO) fraction of the overall hetero-
geneity in the population-concentration distri-
bution
Mobile monitoring captures a much wider 
range of variation in the NO2 exposure distribu-
tion than does a common nationwide NO2 LUR 
model
Substantial racial and ethnic disparities are 
driven mostly by intra-neighborhood segregation

The best-performing LUR-K models we devel-
oped are limited in their ability to capture full 
spatial heterogeneity we measured with data-
only maps (max R2 ~ 0.65)
An advantage of LUR-K modeling is that there 
is very little penalty in model performance that 
arises from using a simulated mobile monitor-
ing campaign with 10–50 times less data. It is 
possible to drive only a fraction of roads a few 
times and develop models that are nearly as 
good as the best models we trained.
Data-only maps from repeated driving are supe-
rior to LUR-K models in terms of detecting idio-
syncratic or unexpected spatial features and 
hotspots

Continued next page
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Table 2, continued. Summary of Objectives, Approaches, and Results for Modules M1–M5

M5: Mobile monitoring in Bangalore, India

How Analysis Addresses 
Overall Research Aims

Aim 4: Test mobile monitoring approach in an Indian city
Aim 5: Evaluate the utility of mobile monitoring in the Indian context

Key Measurements BC, UFPs, CO2

Period of Measurements July 2019–March 2020 

Geographic Coverage of 
Measurements

Residential neighborhood in Bangalore (Malleshwaram) and supplemental transects in the Cen-
tral Business District and between urban core and rural periphery

Populations Covered ~ 100,000 people live in the middle-income neighborhood of Malleshwaram

Statistical Analysis and 
Modeling Approaches

Computation of long-term weekday, daytime road segment median concentrations for repeated 
drive-pass mean concentrations at the 30-m road segment scale
Monte Carlo simulations to assess the trade-offs between the number of repeated mobile moni-
toring visits and the fidelity of the resulting spatial concentration maps

Key Results Mobile monitoring resolves time-stable spatial patterns with high fidelity in Malleshwaram and 
elsewhere in our domain
Localized pollution gradients are sharp and reach very high concentrations in the near-road 
environment
Observed a convergence to time-stable spatial patterns with fewer than 20 repeated mobile sam-
pling runs over 1 year
Some questions about the degree to which on-road concentrations are representative of popula-
tion exposures away from roadways, especially given the persistent traffic congestion in parts of 
the Bangalore road network
Slow traffic speeds in Bangalore present logistical challenges for mobile monitoring

ABCD = aerosol black carbon detector; BC = black carbon; LUR = land use regression; MAE = mean absolute error; PAX = photoacoustic extinc-
tiometer; UFPs = ultrafine particles. 

between UFPs and other traffic-related pollutants from both 
mobile and fixed-site perspectives. For this assessment, we 
integrated seasonally resolved maps from spatially intensive 
mobile monitoring in Oakland and time-resolved regulatory 
monitoring data of UFPs, NOx, and other traffic-related air 
pollutants from multiple fixed sites across the San Francisco 
Bay Area, which include near-highway, urban, suburban, and 
rural sites. Taking a seasonal perspective, we examined the 
role that new particle formation plays in producing spatio-
temporal patterns of UFPs that differ from other traffic-related 
pollutants that are often used as a proxy for UFPs. The 
complete results of this analysis were reported by Gani and 
colleagues (2021).

Analysis M3: Assessment of local- and regional-scale air 
pollution disparities in the San Francisco Bay Area using 
mobile monitoring. Disparities in air pollution exposure 
arise from variation at multiple spatial scales: along urban-to-
rural gradients, between individual cities within a metropol-
itan region, within individual neighborhoods, and between 
city blocks. We systematically compared spatial variation in 
concentrations of NO, NO2, BC, and UFPs at several scales, 
from hyperlocal (<100 m) to regional (>10 km), with a view to 

assessing consequences for outdoor air pollution experienced 
by residents of different races and ethnicities. To do so, we 
used the mobile monitoring dataset collected previously 
using Google Street View cars deployed in diverse communi-
ties across the San Francisco Bay Area. Overall, we collected 
full-coverage street-by-street monitoring in 13 distinct neigh-
borhoods (93 km2 and 450,000 residents) in four counties of the 
San Francisco Bay Area. We assessed how spatial variation at 
the within- and between-neighborhood levels affected racial 
and ethnic disparities and overall heterogeneity in population 
exposures. In addition, we compared our measurements with 
a widely used national empirical model of NO2 to assess how 
insights from hyperlocal in-situ measurements differ from 
more conventional model-based assessments of exposure het-
erogeneity and disparity. The complete results of this analysis 
were reported by Chambliss and colleagues (2021).

Analysis M4: Scaling hyperlocal air quality mapping 
through mobile monitoring and land use regression.  We 
explored and evaluated approaches to reduce data require-
ments for mapping a city’s air quality using mobile monitors. 
To do so, we compared the increasingly common approach 
of repeated, full-coverage sampling with a set of hypothetical 
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alternative sampling strategies, whereby LUR models are 
developed using a more spatially and/or temporally limited 
set of monitoring data. To do so, we performed a set of data 
experiments on our extensive dataset of repeated air pollution 
sampling in Oakland, California. We considered two concep-
tually different approaches to reduce the sampling require-
ments for mapping urban air quality. First, we explored a 
“data-only” approach in which we attempted to minimize 
the number of repeated visits needed to reliably estimate 
concentrations for all roads. Second, we combined mobile 
measurements with an LUR-kriging (LUR-K) model to predict 
pollutant concentrations at unobserved locations; here, mea-
surements from only a subset of roads and/or repeat visits are 
considered. For each set of simulated sampling scenarios, we 
evaluated trade-offs between sampling effort and the fidelity of 
the resulting exposure datasets. The complete results of this 
analysis were reported by Messier and colleagues (2018).

Analysis M5: Mobile monitoring in Bangalore, India.     
We sought to evaluate how repeated mobile sampling pro-
tocols developed in the United States could transfer to the 
distinct setting of mapping air pollution in dense cities in 
LMIC. Here, we considered the case study of Bangalore, India. 
In one of the few large-scale wall-to-wall monitoring exercises 
conducted in India, we constructed a mobile air quality 
laboratory and collected over 400 hours of on-road data over 
a period of 19 months in Bangalore. Over 22 repeat mea-
surements, we covered diverse road segments ranging from 
highways to small streets, from peri-urban to business district 
to a residential neighborhood. We compared the insights we 
derived in Bangalore with those from the San Francisco Bay 
Area and other high-income settings. 

DATA COLLECTION AND QUALITY ASSURANCE

Mobile Data Collection Instrumentation and Procedures: 
Bay Area Campaign (Analyses M1–M4)

To measure air pollution in the San Francisco Bay Area, 
two Google Street View cars were equipped with the Aclima 
mobile platform (Aclima, Inc., San Francisco, CA), which 
consists of fast-response air pollution instruments, an inlet 
system for particle- and gas-phase species, and a high-perfor-
mance data acquisition and telemetry system. As noted above, 
these data were all collected prior to the start of this study. 
Full details of the sampling system have been described 
by Apte and colleagues (2017). The cars were equipped to 
measure the following species: NOx, BC, and UFPs. The monitors 
employed were fast-response (1-Hz) laboratory-grade ana-
lyzers. NO was measured using chemiluminescence (Model 
CLD64, EcoPhysics AG, Switzerland). NO2 was measured 
using a 450 nm cavity-attenuation phase-shift spectroscope 
(Model T500U, Teledyne Inc., San Diego, CA). BC was mea-
sured using a photoacoustic extinctiometer (PAX, Droplet 
Measurement Technologies, Boulder, CO) (Arnott et al. 1999). 
UFPs were measured using a water-based condensation 
particle counter with an effective minimum detection size of 

particle diameter > 2.5 nm (Model 3788, TSI Inc., Shoreview, 
MN). Each car was equipped with two independent global 
positioning system receivers with nominal ~1 m precision. 
The independent gas and aerosol inlet systems were designed 
to minimize self-sampling and particle-sampling losses. 
Extensive predeployment testing indicated that self-sampling 
was only observed to occur in rare circumstances when the 
car was reversed into its own exhaust plume after idling for 
a period at a fixed location during low-wind conditions. As 
described in detail by Apte and colleagues (2017), Aclima 
employed multiple calibration and quality assurance proto-
cols, including frequent field calibration and/or zero-checks 
for all instruments, periodic manufacturer-based recalibra-
tion, cross-comparison of instrumentation between the two 
vehicles, and post hoc corrections to ensure synchronization 
and consistent response times among all sample streams. 

The two Google Street View cars collected data used for 
this study between May 2015 and December 2017. A brief 
description of the sampling objectives and study design 
follows. Cars were based out of a garage that served as a 
calibration facility in San Francisco, California (marked 
in Figure 1) for ~ 90% of the study. For brief periods in 
May–July 2015 and July–August 2017, cars were parked 
overnight at alternative facilities in Mountain View and San 
Bruno, California. Drivers started and ended daily shifts at 
the garage, collecting data during daytime driving shifts that 
lasted 6–8 hours. Each day, our study team provided drivers 
a daily sampling assignment, typically a sequence of 1–5 km2 
polygons, within which the driver was tasked with driving 
every road at least once in an order of their choice. Our study 
design had two main emphases, which we illustrate in maps 
in Figure 1. First, we focused intensive sampling in a set of 
three socioeconomically diverse neighborhoods in Oakland, 
California (Figure 1b): West Oakland (~10 km2); Downtown 
Oakland (5 km2), and, to a somewhat lesser extent, East Oak-
land (15 km2). With a focus on these three neighborhoods, we 
sought to develop an intentionally oversampled dataset, with 
many dozen repeated samples over more than 1300 hours of 
sampling over the 32 months of data collection. This espe-
cially intensive sampling program facilitated methodological 
investigations of mobile sampling study design and allowed 
for assessment of how spatial patterns of air quality differed 
among communities. Nearly all measurements were collected 
during daytime (8 a.m.–6 p.m.) hours on weekdays. In West 
Oakland, we focused on additional intensive measurements from 
May–August 2017 to coincide with our deployment of 100 
fixed-site BC sensors. During this focused 3-month period, we 
collected ~ 304 hours of valid data during extended daylight 
hours (6 a.m.–8 p.m.) on 46 weekdays and 12 weekend days.

We complemented our intensive Oakland measurements 
with an additional ~1000 hours of measurements in 10 addi-
tional diverse neighborhoods (63 km2, Figure 1a) distributed 
throughout the San Francisco Bay Area. These study areas, 
ranging in size from 2.4 to 15.7 km2 land area, were selected 
to provide a range of land uses (e.g., industrial, commercial, 
dense residential, and light residential), atmospheric and cli-
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Figure 1. Maps of Bay Area study domain (93 km2, ~500,000 individuals). (a) Individual neighborhood-sized study areas were 
distributed throughout the San Francisco Bay Area, spanning diverse conditions from the urban core of San Francisco, Oakland, and 
Berkeley to suburban and rural areas, such as Livermore and Palo Alto. Map notes the approximate locations of four multipollutant 
fixed monitoring sites operated by the Bay Area Air Quality Monitoring District (BAAQMD) that we used in the analysis M2. We report 
on the within- and between-neighborhood heterogeneity in pollutant concentrations across the overall study domain in analysis M3. 
(b) We focused especially intensive repeated monitoring within the inset Oakland Intensive Focal Area, comprising the West Oakland 
and Downtown Oakland neighborhoods. From 2015–2017, most 30-m road segments in this study design were sampled on 200–400 
unique drive passes. (Panel a is adapted from Chambliss et al. 2021.) Map data for panel b © 2018 Google.)

mate conditions (upwind vs. downwind; marine-influenced 
vs. continental, share of open or green space, traffic density, 
demographic composition, and historical housing policy). 
Study areas were distributed within the counties of San 
Francisco, Alameda, San Mateo, and Santa Clara in the San 
Francisco Bay Area, with one background location in Sonoma 
County. 

Our overall sampling program in Oakland (analyses M1, 
M2, and M4) and across the wider San Francisco Bay Area 
(analysis M3) was designed to minimize time-of-day or sea-
sonal sampling biases. To do so, we undertook several design 
features. Study areas were repeatedly visited on a rotating 
schedule designed to assess long-term average concentrations 
indicative of typical weekday, daytime conditions. During 
a visit, the driver would follow a Google Street View–based 
driving protocol to visit every road segment within the 
neighborhood at least once, driving with the normal flow of 
traffic, with a typical speed of 25–35 km/hr on nonhighway 
road segments (Apte et al. 2017; Chambliss et al. 2021). For 
large study areas, a smaller subunit would be assigned for full 
coverage in a single day’s driving, with full sampling occur-
ring over multiple days. Visits to each area and subunit were 
distributed over different times of day and different seasons. 
When sampling a particular area, drivers were instructed 
to avoid following the same route each day. When multiple 
smaller subunits were sampled in a day, we randomized the 
sequence to avoid unintentional time-of-day biases. Across 
the full Bay Area domain, the median cumulative sampling 

time of each census block was 19 minutes, collected during a 
median of 47 unique visits over 20 days. Sampling coverage 
in Oakland neighborhoods, which were more intensively 
sampled, was approximately 2 to 3 times higher than the 
average neighborhood in the study. The statistical methods 
section, below, describes our evaluation of the temporal rep-
resentativeness of our measurement coverage. 

Mobile Data Collection Instrumentation and Procedures: 
Bangalore Campaign (Analysis M5)

Our measurement package in Bangalore consisted of 
instruments for measuring BC, UFPs, PM2.5, carbon dioxide 
(CO2), meteorological parameters, and a global positioning 
system (GPS). We measured BC via filter-based light absorp-
tion (Hansen et al. 1984) using a microAethalometer (model 
AE51, Aethlabs, San Francisco, CA). We corrected raw 
BC measurements for filter-loading and vibration artifacts 
following the method described by Apte and colleagues 
(2011). We measured UFPs using a battery-operated, iso-
propanol-based condensation particle counter (Model 3007, 
TSI, Inc., Shoreview, MN). This instrument measures particle 
number concentrations for particles >10 nm in diameter. To 
extend the concentration range of the instrument beyond the 
manufacturer’s specified limit of 105 particles/cm3, we used 
a custom-fabricated diluter that reduced concentrations 5.5-
fold (Apte et al. 2011; Ban-Weiss et al. 2009). We tested the 
diluter regularly to ensure stable performance. We attempted 
to measure PM2.5 using a DustTrak aerosol photometer (Model 
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8530, TSI Inc., Shoreview, MN). However, performance of 
the PM2.5 measurements was not satisfactory, as this device 
appeared to be strongly influenced by Bangalore’s particular 
combination of high relative humidity and combustion-dom-
inated aerosol composition to produce implausible and 
evidently unreliable concentration estimates. We therefore 
did not report these measurements here (Kushwaha et al. 
2022). We measured concentrations of CO2 via nondispersive 
infrared spectroscopy (Model 840, LI-COR Biosciences, 
Lincoln, NE). Because CO2 is a strong tracer of fossil fuel 
combustion, we used CO2 concentrations as an indicator of 
the degree to which our measurements were influenced by 
the fresh exhaust of traffic emissions. To estimate the local-
ized CO2 increment, ∆CO2, associated with local combustion 
emissions (as opposed to atmospheric background levels), we 
computed a daily time series with equation ∆CO2 = CO2,measured 

– CO2,min. Here CO2,min reflects the daily minimum in on-road 
CO2 concentration encountered in a sampling run. For all 
instruments, we performed a factory calibration at the outset 
of the study, and all of the particle-phase instruments were 
zero-checked daily with a high-efficiency particulate air filter. 
Finally, we geolocated the position and speed of our mobile 
sampling vehicle with a Garmin GPSMap 64s, with a nominal 
precision of ~ 3 meters. 

We integrated these four instruments into our mobile 
platform, a compressed natural gas-powered hatchback 
car (Maruti-Suzuki Celerio), which we selected as being an 
especially low-emissions vehicle model available locally. 
The instruments were mounted near the rear, passenger-side 
window, and oriented with short sampling lines to sample 
out the open window. To minimize the vibration that instruments 
could suffer due to poor road conditions, instruments were 
cushioned and strapped with bungee cords. 

We conducted mobile monitoring of air pollution in four 
regions in Bangalore (Bengaluru), a large city of more than 
12 million people in the southern state of Karnataka, India 
(Figure 2). The study regions included (1) an urban residen-
tial area in north Bangalore (Malleshwaram) (2) Bangalore’s 
central business district, (3) a peri-urban area, and (4) peri- 
urban–urban transects. In this report, we emphasize our 
results from Malleshwaram for two reasons. First, this neigh-
borhood was a completely sampled domain. Second, because 
of the design of the road network, Malleshwaram was the 
only area in which we were able to execute a block-by-block 
repeated sampling design comparable to our Bay Area mea-
surements. The total road length covered in Malleshwaram 
was ~62 km (of ~150 km of total road length monitored), 
comprising highways (28%), arterial roads (24%), and resi-
dential roads (48%). Road classification was obtained from 
OpenStreetMap.org, the most widely used open-source global 
dataset on road networks. For the ~10% of study roads tagged 
as “unclassified” in OpenStreetMap, we used visual observa-
tions to assign a road type. 

The mobile monitoring campaign ran from July 10, 2019, 
through March 12, 2020, a period of time representative of all 

seasons except the warmest part of summer (i.e., April – May). 
Because of the specific characteristics of our instruments in 
Bangalore, including limited battery life and endurance of 
the instrument’s working fluid, we were generally limited 
to a 4-hour sampling period. Sampling was carried out on 
weekdays between 9 a.m. and 1 p.m. local time, so our maps 
best represent late-morning conditions on weekdays. These 
conditions capture two distinct regimes: Bangalore’s peak 
rush hour and the mid-day pollution minima during periods 
of high atmospheric dispersion. We divided Malleshwaram 
into two subdomains, which were covered on different days. 
Our study design involved collecting approximately one 
weekly sample of the full Malleshwaram domain over two 
consecutive days, resulting in 44 days of data collection and 
22 repeated drive days for each road segment. 
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Figure 2. Bangalore study domains. (a) Maps of the overall study 
domain across Bangalore used for analysis M5, which is situated 
in roughly the northwestern quadrant of Bangalore. Within 
the middle-class residential and commercial neighborhood 
of Malleshwaram (MAL, highlighted in blue inset box), we 
conducted block-by-block mobile monitoring in a manner most 
analogous to our monitoring protocol in the San Francisco Bay 
Area. This study focal area is mapped in detail in (b) showing 
the mixture of a dense residential street grid bounded by 
highways and arterial roads.

Regulatory Air Pollutant Observations in the San 
Francisco Bay Area

To compare our insights from mobile air pollution mon-
itoring with those from conventional fixed-site monitoring, 
we incorporated multiple years of quality-assured hourly 
fixed-site monitoring data from the Bay Area Air Quality 
Management District. Specific analytic applications of these 
data included an assessment of time-of-day sampling bias (anal-
yses M2, M3, and M4), as well as a spatiotemporal assessment 
of UFP dynamics (analysis M2). Although each site differs in 
terms of the specific suite of pollutants monitored, instru-
mentation models were consistent from site to site. Particle 
number concentrations were measured using condensation 
particle counters (CPC, TSI, model 3783). NOx, the sum of NO 
and NO2, was measured using chemiluminescence analyzers 

http://OpenStreetMap.org
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(Thermo Scientific, model 42i). BC was measured using 
aethalometers (Teledyne, model 633, equivalent to a Magee 
Scientific model AE33), and CO was measured using gas filter 
correlation CO analyzers (Thermo Scientific, model 48i). 

In analysis M2, we evaluated the correlation between 
particle number concentrations (a strong proxy for UFP con-
centrations) and other traffic-related air pollutants. For this 
analysis, we selected four Bay Area Air Quality Management 
District fixed sites that were representative of a gradient in 
traffic influence: near-highway (Laney College), urban (Red-
wood City), suburban (Livermore), and rural (Sebastopol). 
Each site measured UFPs, CO, and NOx; two sites additionally 
measured BC. To estimate annual averages, we used 2015 
data, because that year had almost full coverage for these 
measured pollutants at all sites. For other analyses, including 
time-series correlations, we incorporated a full 4 to 6 years 
with available hourly data (typically 2011–2018) for these 
fixed sites. 

Mobile and Fixed-Site Black Carbon Measurements 
During the 100 × 100 Study (Analysis M1)

In analysis M1, described in detail by Chambliss and col-
leagues (2020), we sought to compare mobile and fixed-site air 
pollution measurements in the West Oakland study domain 
during a 100-day period between May and August 2017. To 
do so, we used data from an existing  dense fixed-site network 
(“100 × 100 BC Network”) comprising 100 sites representative 
of residential, industrial, and high-traffic microenvironments 
at an average density of 6.7 sites per km2, as described in 
detail by Caubel and colleagues (2019). The fixed-site net-
work comprised 128 custom-built low-cost ABCDs, which 
were custom-built by Lawrence Berkeley National Laboratory 
(Caubel et al. 2019). In brief, the ABCD operates similarly to 
an aethalometer, which uses a filter-based light absorption 
technique to relate light attenuation on a filter to changes 
in BC mass loading (Hansen et al. 1984). This measurement 
approach for BC is distinct from the photoacoustic detection 
principle for BC used in the Google Street View cars in the 
San Francisco Bay Area measurements (M1–M4). Attenua-
tion measurements were corrected for temperature, relative 
humidity, and loading artifacts before making a final determi-
nation of mass concentration. Post-correction data at a 1-hour 
averaging time showed a fleet average precision of 9.2% and 
accuracy of 24.6% evaluated relative to a commercial BC 
instrument (Aethalometer model AE33, Magee Scientific, 
Berkeley, CA). As configured here, the ABCDs measured at a 
maximum with averaging times of 2 seconds to 1 minute used 
in our analysis.

One or more low-cost ABCDs were installed at each fixed 
site, mounted at a height of 1.5 m on fences, porches, etc., 
at a median distance of 15 m from the nearest road. Of the 
100 sites, 97 were located within 30 m of the road network 
covered by mobile monitoring, and 3 at upwind background 
sites along the San Francisco Bay. Network operation during 
the 100-day period (May 19 through August 27, 2017) was 

detailed in Caubel and colleagues (2019). Two mobile labs 
drove in West Oakland on 57 days during the same 100-day 
period, including 46 weekdays and 12 weekend days, for a 
total of 304 sampling hours. Mobile monitoring was limited 
to daytime hours, with most coverage from 8 a.m. to 6 p.m. 
Mobile labs repeatedly sampled air quality in a “blackout” 
pattern (Apte et al. 2017), covering all roads within subsec-
tions of West Oakland. Subsections of the West Oakland 
domain were driven on a rotating schedule to minimize 
temporal sampling bias. 

The sampling design provided multiple ways in which the 
mobile lab could be located near the fixed-site measurements. 
The principal approach involved opportunistic “drive-by 
colocation”: during normal on-road driving for the mobile 
lab, the mobile lab passed near the fixed-site instruments. 
Over the course of the campaign, this type of brief drive-by 
colocation occurred dozens of times for each monitor. In total, 
88 hours of data were collected for which the mobile lab was 
within 150 m of a fixed-site instrument. For the median site 
in the fixed-site network, the mobile lab passed within 150 
m of that site approximately 120 times over the course of the 
summerlong study.

In addition, the mobile lab was parked periodically near 
two fixed sites with ABCDs and commercial BC instruments 
(Aethalometer model AE33, Magee Scientific). These coloca-
tions provide an in situ comparison among the three detec-
tion methods. We collected a total of 3.7 hours of data during 
this type of intentional stationary colocation. As described 
in detail by Chambliss and colleagues (2020), we performed 
further experiments and analyses to evaluate differences in 
instrumental response and precision between the mobile and 
fixed-site measurement methods for BC. The three ABCDs 
were colocated with both PAXs for 183 hours in a semi-en-
closed garage along the Embarcadero in San Francisco where 
routine mobile lab maintenance was performed. Major nearby 
BC sources included diesel vehicles and marine vessels, and 
concentrations of BC at a 1-minute averaging time ranged from 
<0.1–8 µg/m3. Finally, we conducted manipulation experi-
ments using filtered inlets for both the ABCDs and PAXs. 

STATISTICAL METHODS AND DATA ANALYSIS

DATA REDUCTION PROCEDURES FOR ROAD-BASED 
DATA REPRESENTATION

In analyses M1, M2, M4, and M5, we used mobile air 
pollution measurements to estimate the time-stable average 
pollutant concentrations along roadways, which should be 
considered representative of the weekday, daytime condi-
tions under which we undertook air pollution sampling. To 
develop these time-averaged estimates, we built on the data 
reduction scheme first introduced by Apte and colleagues 
(2017). The first step involved dividing the measurement 
domain into 30-m road segments. For the core Oakland 
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domain, this network had ~20,000 such 
road segments. For the Bangalore study 
areas, this network had ~5,000 such road 
segments. In the original scheme of Apte 
and colleagues (2017), all 1-Hz observa-
tions collected in each road segment were 
weighted equally in computing the mean 
concentration for a given road segment. 
Here, to ensure that each repeated drive 
through a given road segment (a drive 
pass), which had varying numbers of 
highly correlated 1-Hz measurements, 
was represented equally in our analysis, 
we updated our data reduction scheme 
as follows using a method described by 
Messier and colleagues (2018). First, 
we reduced the measurements for each 
drive pass through a 30-m road segment 
(typically ~3–10 seconds) into a single 
drive pass mean concentration. We then 
computed the median of repeated drive 
pass mean concentrations as our core 
metric for analysis. This approach has the 
effect of treating each drive pass as the 
unit of observation, which is conceptu-
ally superior to treating each individual 
time-resolved 1 Hz measurement as an 
independent unit of observation. Because 
this “median of drive pass means” 
approach incorporates information from 
numerous repeated drive passes, it is 
robust to anomalous or idiosyncratically 
polluted drive passes, even as it produces 
a concentration map (e.g., Figure 3a) that 
is highly correlated (R2 > 0.9) with the 
data reduction approach used in Apte 
and colleagues (2017).

In the original scheme of Apte and 
colleagues (2017), a multiplicative time-of-day factor based 
on central-site monitoring was used to adjust for diurnal 
variation in ambient air quality. However, this adjustment 
factor had only a minor (±10%) effect on long-term average 
spatial patterns. Given that temporal adjustment factors can 
introduce their own biases — time-of-day patterns of air 
quality differ spatially within a neighborhood — for analyses 
M1, M2, M3, and M5, we employed a more parsimonious 
approach that simply omitted the time-of-day adjustment. 
Because we completed initial data processing for analysis 
M4 before determining that time-of-day-adjustment was not 
required, analysis M4 retained the multiplicative time-of-day 
adjustment factor approach described in Apte and colleagues 
(2017). 

To ensure that temporal sampling biases did not unduly 
influence our measured spatial patterns, we undertook the 
following assessments. As described in detail by Chambliss 
and colleagues (2021), we used the complete time-series data-

sets from regulatory fixed sites to evaluate the space–time pat-
terns of our final sampling datasets. For evaluation purposes, 
hourly reference site measurements were used to calculate 
two multiplicative adjustment factors: (1) diurnal adjustment, 
the ratio of the daytime (8 a.m.–6 p.m.) median concentration 
to that hour’s measurement, and (2) annual adjustment, the 
ratio of the annual median of daytime weekday daily median 
concentrations to the daytime median of the sampling day. 
These adjustment factors were applied to the mobile monitor-
ing time-series data, and then we mapped the spatial patterns 
of these resulting adjustment factors to evaluate temporal bias 
in the sampling of those six study areas. In principle, a per-
fectly balanced sampling campaign would result in no spatial 
patterns of these adjustment factors. A spatial signature that 
remains in these adjustment factors reflects a temporal sam-
pling bias.
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Figure 3. Examples of alternative data reduction schemes for estimating daytime 
median concentrations over dozens of visits. (a) Median of drive-pass mean 
concentrations, aggregated at the 30-m road segment, for NO concentrations measured 
between 2015–2017, mapped here for West Oakland and Downtown Oakland. (b) 
Census-block mean NO concentrations for West Oakland, Downtown San Francisco, 
and East Oakland, as used for analysis M3. (c) Example of a subsampled map for NO, 
created here using four randomly selected drive days per road segment. For our scaling 
analysis M4, we used such maps directly as a hypothetical “data-only” map. We also 
employed these subsampled maps as inputs to training an LUR-K model. With a small 
number of drive days, these subsampled maps present a noisier estimate of the long-
term average spatial pattern as compared to the full dataset mapped in (a). (d) Example 
of a road network map based on the full dataset but subsampled spatially to represent 
30% of the arterial and residential road network. In our scaling analysis M4, we used 
similar maps as spatially restricted training datasets for developing LUR-K models. 
(Panels a, c, and d are adapted from Messier et al. 2018; panel b is adapted from 
Chambliss et al. 2021; and map data in panes a, c, and d © 2018 Google.)

Using this temporal adjustment approach, we found mini-
mal time-of-day sampling biases in most of our dataset. When 
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considered on average by road class (residential, arterial, or 
highway), we found a maximum of ±5% bias resulting from 
the diurnal adjustment factor in the Oakland dataset, which 
is very small compared to the spatial variability we observed. 
However, some road segments were more strongly affected. 
Highways that were used exclusively to access a particular 
neighborhood from our nighttime garage operations base 
tended to be oversampled in one direction in the morning 
and another direction in the afternoon. For example, Apte 
and colleagues (2017) noted relatively large temporal biases 
in the measurements along the San Francisco Bay Bridge 
approaches, given that this bridge links the garage with sam-
pling sites in Oakland and Berkeley. Thus, caution should 
be used in interpreting concentrations along a small number 
of the highways in our dataset. For our broader Bay Area 
measurements (analysis M3), time-of-day biases in neighbor-
hood-average concentrations were generally <15% for NO2, 
BC, and UFPs, and ~30% for NO. We also assessed seasonal 
biases using the annual adjustment factor described above. 
These biases were moderately larger, <10% by road class, 
and generally within <25% for individual neighborhoods. In 
general, these biases are quite small relative to the very large 
concentration gradients we observed.

Finally, Chambliss and colleagues (2021) provided the 
details of a set of bootstrap resampling exercises we undertook 
to ascertain that our overall estimates of spatial variation in 
pollutant concentrations were not strongly influenced by the 
sampling error, especially relative to the high degree of spatial 
variation in pollutant concentrations. Bootstrap resampling 
generally indicated only mild sensitivity to the particular 
permutations of sampling days at individual locations, which 
suggests that our spatial patterns were robustly estimated. 

Overall, we concluded that our sampling design was not 
strongly influenced by time-of-day biases, but moderately 
influenced by choice of the particular days and seasons we 
sampled in. Do these biases matter? If the goal is to precisely 
quantify the annual average conidtions level of air pollution at a location 
relative to a standard, a ±10%–25% bias may be meaningful. 
However, if the goal is to characterize patterns of air pollution 
within and between neighborhoods, these biases at particular 
locations are quite small relative to the very large concentra-
tion gradients (factors of 2 to 8 times) we observed. Thus, for 
the purposes of assessing spatial patterns of air pollution, we 
assessed that our sampling design was robust to time-of-day 
and seasonal biases. 

DATA REDUCTION PROCEDURES FOR REPRESENTING 
AIR POLLUTION BY CENSUS GEOGRAPHIES 
(ANALYSIS M3)

In analysis M3, we developed estimates of time-averaged 
air pollution concentrations for census block geographies for 
13 communities around the San Francisco Bay Area (Figure 
1a). Communities ranged in size between 95 and 930 census 
blocks (median: 447 blocks), with a total of 6,362 blocks 
sampled. Census blocks are the smallest aggregation unit used 

by the U.S. Census Bureau, with geographies that correspond 
roughly to city blocks in the urban cores. For our study 
domain, the mean census block had a land area of ~14,000 m2 
(roughly equivalent to a 120 m × 120 m square), with a mean 
population of 70 people. 

As described by Chambliss and colleagues (2021), we cal-
culated concentrations for each census block as the median of 
surrounding roads, typically located within 50–100 m from 
the block center point. The geographic assignment of on-road 
measurements to census blocks involved a two-step process. 
First, for each 30-m road segment surrounding every census 
block, we computed the median of drive-pass mean con-
centrations (Messier et al. 2018), as described above. Then, 
we calculated census block concentrations as the median 
of concentrations at every adjacent or intersecting 30-m 
road segment, using a 10-m buffer to capture road segments 
a small distance from the census block edge. Blocks varied 
in size and shape but were virtually always surrounded by 
roads, with a median perimeter of 447 meters. Accordingly, 
our census block estimates integrated measurements from 
15–20 road segments but still revealed substantial fine-scale 
concentration variation (Figure 3b). In some cases — near 
highways and strong point sources — pollution gradients may 
vary over finer spatial scales than those captured by census 
block spatial units. However, the integration of multiple road 
segments provided an increase in the total number of visits and 
total sampling time per spatial unit, which reduced sampling 
error and measurement uncertainty. Although on-road mea-
surements were not a perfect approximation of concentra-
tions throughout a census block, our comparisons in analysis 
M1 of mobile and fixed-site observations in West Oakland 
showed no evidence of bias in on-road concentrations due to 
increased proximity to on-road emissions. 

COMPARISON OF MOBILE AND FIXED-SITE AIR 
POLLUTION MEASUREMENTS (ANALYSIS M1)

Assessment of Instrumental Precision and Uncertainty

Here, we discuss key analytical considerations for the 
comparison of our data between mobile (PAX) and fixed-site 
(ABCD) BC measurement approaches in the Summer 2017 
100 × 100 Study in analysis M1. In comparing measurements 
from two different detection methods, we assumed that both 
methods would respond equivalently to BC particles of 
varying source or age under all relevant environmental condi-
tions. This assumption was reasonable, because (1) the ABCD 
measurements included adjustments for humidity effects and 
a filter loading artifact, (2) the garage colocation measure-
ments showed a strong linear correlation between the two 
analyzers, and (3) previous evaluations validated the relative 
instrumental response of photoacoustic and filter-based BC 
measurements under laboratory and field conditions (Arnott 
et al. 2003; Tasoglou et al. 2018).

This combination of manipulation and colocation experi-
ments provided multiple important insights about the compa-
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rability of measurement techniques used in the mobile (PAX) 
and fixed-site (ABCD) observations. Here, we summarize from 
the detailed discussion provided by Chambliss and colleagues 
(2020). First, for both measurement techniques, the inherent 
instrumental noise at the finest temporal resolution (PAX, 1 
second; ABCD, 2 seconds) often substantially exceeded the 
ambient concentrations of BC that we sought to measure. 
Thus, an instantaneous comparison of BC measurements 
between colocated mobile and fixed samplers was not gen-
erally possible. However, second, as expected, instrumental 
precision improved dramatically with increasing measure-
ment averaging times for both the fixed ABCDs and mobile 
PAXs. We quantified noise as the standard deviation around 
zero (σ0) of measurements made with filtered air. Indicative 
estimates of noise σ0 for the mobile PAXs were 0.59, 0.31, and 
0.16 µg/m3 for 1-second, 10-second, and 1-minute averaging 
times. Considering the ABCDs, indicative estimates of σ0

 were 
0.14 and 0.03 µg/m3 for 1- and 20-minute integration periods, 
respectively, and ~0.001 µg/m3 for a 24-hour integration 
period. For each road segment and sampling site, we esti-
mated instrumental precision and a limit of detection (LOD), 
where the instrumental precision is defined as ±2 × σ0, and 
LOD = 3 × σ0. Finally, despite the effect of instrumental noise, 
colocated PAX and ABCD measurements revealed highly 
comparable and unbiased measurements: for 20-minute aver-
aged data, pairwise comparisons between the measurement 
methods resulted in an R2 = 0.85 to 0.91 with low (<10–15%) 
systematic bias between the two methods. 

A key overarching insight from our investigations of 
instrumental noise and precision is that comparisons between 
mobile and fixed-site measurements benefit substantially 
from time averaging. Crucially, because our repeated mobile 
measurements over the course of the summerlong 100 × 100 
Study resulted in many dozen repeated drive passes near each 
fixed-site monitor, mobile estimates of long-term average BC 
concentrations near each fixed-site monitor were often quite 
precise, even while instantaneous samples were not. For a 
20-minute averaging time, a typical time-integration period 
for the repeated mobile visits to a fixed site over our measure-
ment campaign, our estimate of noise σ0 for the PAX was only 
0.08 µg/m3, with a corresponding instrumental precision of 
±0.16 µg/m3 and LOD of 0.24 µg/m3. While the cleanest road 
segments in our sampling domain had BC levels below this limit 
of detection, time-averaged concentrations at typical locations 
were substantially above this LOD: ~0.5 µg/m3 on nonhighway 
road segments, and 1–2 µg/m3 at pollution hotspots. 

Data Aggregation Techniques

Next, we iteratively developed a data aggregation tech-
nique, described in this section, to address the issue that our 
mobile and fixed-site observations did not overlap perfectly 
in space. Whereas the mobile measurements were collected 
on roadways during in-motion sampling, the fixed-site moni-
tors were located at a median distance of 15 m from the nearest 
road—typically on fences, lamp posts, front porches, and 

streetside building faces at a height of 1.5 meters. As described 
by Chambliss and colleagues (2020), we constructed radial 
spatial buffers of fixed distance from each fixed-site monitor 
to link these two distinct datasets. To process mobile data for 
this comparison, mobile lab GPS coordinates were used to 
estimate the instantaneous distance of the mobile lab from 
each fixed site. The series of time-resolved (1 second) mobile 
measurements made within a given buffer length from a fixed 
site make up a single unique sample visit, for which we calcu-
lated the mean of mobile measurements and the mean of con-
temporaneous fixed-site measurements. For this assessment, 
we included only measurements made between 9 a.m. and 5 
p.m. We parametrically repeated this pairing between mobile 
and fixed-site monitors for buffer distances ranging from 30 
to 150 meters. For larger radial buffers, our estimated mea-
surement precision benefitted from the inclusion of a larger 
number of 1-Hz data points, thereby increasing the number 
of data points that exceed their respective limit of detection. 
In contrast to the reduction in instrumental noise at higher 
radial buffer lengths, however, is the spatial mismatch error 
that arises from including mobile measurements that were 
collected from microenvironments that may differ from those 
where the fixed-site sampler is located. By parametrically 
varying the buffer radius, we were therefore able to gain insight 
into the relative influence of these two sources of error on the 
comparability between mobile and fixed-site measurements. 
For our core analyses, we selected a buffer radius of 95 m, 
which appeared to best balance between these two sources 
of error. At a 95-m buffer length, the 97 fixed sites included 
for analysis received a median (10th–90th percentile range) 
of 73 (27–142) unique drive-by sampling visits over the full 
campaign, with a corresponding total of 29 (10–58) minutes of 
total in-motion sampling at that site. 

ADDITIONAL DATASETS FOR U.S. CENSUS 
GEOGRAPHIES (ANALYSIS M3)

We compared our census block NO2 concentration esti-
mates with block-face-average concentrations of NO2 for 2015 
from a nationwide exposure model. This integrated-empiri-
cal-geographic (IEG) model was produced by the Center for 
Air, Climate and Energy Solutions (CACES) and is estimated 
in a manner conceptually similar to that of an LUR model. 
Nationwide, the IEG model predicted NO2 concentrations 
with a cross-validation R2 of ~0.85 and a normalized root-
mean-square error (NRMSE) of ~20%. 

To develop population-based estimates of exposure con-
centration distributions, we obtained U.S. Census Bureau 
block-level population data via the IPUMS National Histor-
ical Geographic Information System. We used data for the 
year 2010, the most recent year for which block-level data 
were available . Using the racial and ethnic designations 
provided by the U.S. Census Bureau, we categorized popu-
lations identifying as Latino and/or Hispanic in one group 
(“Hispanic”), and then categorized non-Hispanic populations 
by race: Asian, Black, White, and “Other” (including those of 
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Native American, Pacific Islander, multiracial, or other racial 
identity). The racial composition of our study population is 
broadly representative of the Bay Area as a whole, although it 
includes more neighborhoods with a high proportion of Black 
residents (Chambliss et al. 2021). In 2010, approximately 
450,000 people lived in the census blocks that constituted our 
13 mobile-monitoring sampling areas. 

SCALING ANALYSIS: LAND USE REGRESSION AND 
DATA SUBSAMPLING (ANALYSIS M4)

In analysis M4, we investigated approaches to reducing 
the field data collection intensity required for producing 
high-resolution mobile maps, with a view to increasing the 
scalability of mobile monitoring. To do so, we used three 
intensively sampled domains in our San Francisco Bay Area 
study area (West Oakland, Downtown, and East Oakland), 
which had such a high repeated-measurement frequency that 
they permitted us to conduct a series of structured Monte 
Carlo subsampling investigations. As reported in detail by 
Messier and colleagues (2018), we developed models for 
two distinct pollutants, NO and BC. Overall, we collected 
approximately 3.5 million (NO) and 3.7 million (BC) 1-Hz 
observations in a 30-km2 domain with ~19,000 road segments, 
with each road segment sampled a minimum (median) of 10 
(41) times between May 2015 and May 2017. Because the 
overarching insights from the analyses for the two pollutants 
were very similar, we emphasize the results for NO here. 
We considered two broad classes of approaches to reducing 
the measurement frequency requirements for developing a 
high-fidelity estimate of spatial patterns. 

• Data Only. Following Apte and colleagues (2017), this 
model-free approach maps concentrations solely based 
on repeated observations while attempting to minimize 
the number of repeated visits to each road. For this 
scaling approach, all roads must be sampled, but there 
is the possibility of substantially reducing the number of 
repeated samples at each location, at the cost of reducing 
the precision and accuracy of the resulting estimated 
concentrations surface. To implement this approach, 
starting with the full 2 years of observations, we devel-
oped a subsampled dataset with N driving days at each 
30-m road segment from the full 2 years of observations. 
We estimated the long-term concentrations at each 30-m 
road segment as the median of drive pass means for this 
subsample (see Figure 3c).

• LUR-Kriging Mode. For this alternative approach, we 
employed our mobile air pollution measurements as 
training data for a statistical air quality model that com-
bined LUR and LUR-K. By using geographic predictor 
variables (land use) as model inputs, it is possible to 
make model predictions at unobserved locations within 
the sampling domain. Accordingly, the LUR-K modeling 
approach allowed us to reduce sampling repetition and 
explore the consequences of using only a subset of all 
roads in the measurement domain as training domain. 

To implement this approach, we trained LUR-K models 
using a subset of the full 2-year dataset. We considered 
three alternative approaches to subsampling data to train 
LUR-K models, described briefly here and in detail in 
Messier and colleagues (2018). First, we considered a 
“drive day” sampling scheme: mobile monitors collect 
N days of data for all 30-m road segments in the domain, 
and then an LUR-K prediction for all road segments was 
trained on this temporal subsample of measurements. 
Second, we considered a “road coverage” sampling 
scheme, where all 2 years of data for only a portion of the 
roads in the sampling domain were included for training 
an LUR-K model. Third, we consider “joint” scenarios 
in which LUR-K predictions were developed based on a 
subsampled dataset where a limited number of repeated 
observations were collected on a limited number of 
roads.

To summarize, we simulated a total of four different 
approaches for reducing data requirements for mobile 
sampling: (1) data-only mapping based on a reduced subset 
of drive days, and LUR-K modeling based on (2) a reduced 
subset of drive days, (3) a reduced subset of road coverage, 
and (4) joint scenarios where road coverage and drive days 
were simultaneously reduced. For scenarios (1) and (2), we 
developed 16 scenarios where we randomly selected without 
replacement N = [1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 
35, 40, 45] days with valid measurements within the Oakland 
sampling domain from our full set of 2 years of repeated 
observations, preserving at least 95% of all road segments 
in the domain to ensure our domain did not change substan-
tially from one subsample to the next. For approaches (3) and 
(4), we developed nine scenarios where we subsampled the 
road network to develop a map with varying levels of spatial 
coverage between 10% and 90% of the full set of arterial and 
residential roads in the domain. To ensure spatial contiguity, 
we sampled the dataset by street names. We did not subsam-
ple the small number of highways in the spatial domain. 

For each model scenario, we conducted 100 Monte Carlo 
draws, and for each draw either developed a full data-only 
map or trained an LUR-Kriging model, as appropriate. In each 
case, we evaluated the fidelity of the resulting concentration 
field against the full years of monitoring data across the entire 
domain, with the R2 and NRMSE as our evaluation metrics. 

A summary of the overall LUR-K model development 
approach is provided here, with further details available in 
Messier and colleagues (2018). Models were fitted to predict 
the observed distribution of 30-m median-of-drive-pass mean 
pollutant concentrations, with the goal of capturing the high 
spatial resolution heterogeneity present in the full dataset 
at baseline. After examining the datasets for normality, we 
used log-transformed data for NO and untransformed data for 
BC. Overall model performance was assessed using untrans-
formed data. LUR-K models were selected following a similar 
approach developed for the European Study of Cohorts for 
Air Pollution Effects (ESCAPE) studies (Raaschou-Nielsen 
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et al. 2013), wherein an ordinary least squares LUR was fit 
using a modified stepwise procedure. Variables were added 
based on an increase in model R2; variables were required to 
be statistically significant to enter the model; variables were 
constrained to a priori assumption of physical interpretations 
(i.e., sources are expected to increase pollution therefore 
their coefficients are positive); and variance inflation was 
maintained below 3. 

We used a candidate set of 121 geographic predictor vari-
ables, which included binary road classifications, binary local 
truck routes, local zoning classifications, normalized differ-
ence vegetative index (NDVI), percent landcover, road length, 
population density, and continuous point source variables 
(such as National Priority Listing sites, airports, and ports). 
Continuous variables had a distance hyperparameter, such 
as exponential decay distance (Messier et al. 2012) or buffer 
size, with a minimum buffer size of 50 meters. See Messier 
and colleagues (2018) for the full details of the LUR candidate 
predictor variables. In brief, we constructed 121 candidate 
input variables for each road segment as follows:

• Binary road classification using the OpenStreetMap data-
set, with indicator variables for highways, arterial roads, 
and residential streets

• The total road lengths for highways, major arterials, 
residential roads, and total roads within a given distance 
of each road segment were calculated from the Open-
StreetMap data in 50, 100, 250, 500, 1000, and 2500 
meter buffers

• Binary classification of roads that are designated truck 
routes and roads from which trucks are restricted, based 
on City of Oakland data

• Binary zoning variables representing City of Oakland 
zoning for residential, commercial, and industrial land 
uses

• The average NDVI within buffer radius lengths of 50, 
100, 250, 500, 1000, and 2500 meters 

• Variables for the average percentage coverage of the 
following satellite-based National Land Cover Database 
land cover types: Open, Developed Low, Developed 
Medium, Developed High, Evergreen Forest, Deciduous 
Forest, Mixed Forest, and Impervious Surface. Buffer 
sizes calculated include 50, 100, 250, 500, 1000, and 
2500 meters

• The mean elevation within circular buffers (50, 100, 250, 
500, 1000, and 2500 m) was calculated in Google Earth 
Engine using a 10-m resolution digital elevation model.

• Proxy variables for potentially contributing point sources, 
including ports, airports, National Priority Listing sites, 
and Toxic Release Inventory sites, computed based on 
either (1) a minimum-inverse-distance metric or (2) a 
sum-of-exponentially decaying contributions model 
(Messier et al., 2012, 2018)

We developed a modified K-fold cross-validation scheme 
with spatial clustering to evaluate our model performance. 
In conventional practice, K-fold cross-validation involves 
randomly assigning observational data into K distinct folds, 
which are iteratively used for either model training or eval-
uation. This conventional approach has two key conceptual 
limitations for our application. The first was physical realism. 
Because a key goal was to explore how a spatially restricted 
dataset of vehicle-borne air pollutant observations can be 
used to make predictions at unobserved locations, our train-
ing datasets needed to represent physically realistic driving 
patterns, rather than a randomly selected set of disconnected 
road segments sprinkled throughout a city (in other words: 
our cars drive, they don’t teleport). The second consideration 
was spatial autocorrelation. Because air pollution data are 
spatially autocorrelated, testing our models on spatially 
random cross-validation data would have overestimated our 
predictive ability, because the models would be informed by 
near-neighbor information. 

To address these two conceptual issues, we used a genetic 
algorithm to define K = 10 contiguous, similarly sized 
spatially clustered cross-validation groups to minimize the 
spatial autocorrelation of near-neighbors in the cross-valida-
tion. Owing to the high spatial density of mobile monitoring 
samples, this cluster approach to cross-validation reduces 
the effect of the extremely close neighbors and more rigor-
ously approximates out-of-sample prediction performance. 
In 10-fold cross-validation, the subsampled road segments 
selected for model training were divided into K = 10 spatially 
clustered folds. We then cycled through the 10 possible 
permutations of K–1 = 9 folds, each time training an LUR-K 
model on 9 of the 10 folds, while reserving data from the tenth 
fold for independent model evaluation.

For each set of K = 10 folds, we apply the fitted LUR-K 
model to make predictions in the single held-out spatial 
cluster. In conventional LUR modeling practice, model pre-
dictions would be compared against the data withheld from 
the training dataset for each of the K folds. In contrast, our 
core analyses of LUR-K model performance compared model 
predictions for each road segment within the held-out cluster 
with the long-term median-of-drive-pass-mean concentrations 
at those locations. Whereas the former analysis approach 
provides information on how well the model reproduces the 
training dataset, the latter approach summarizes how well the 
model predicts long-term average concentrations. 

Based on the modified-stepwise model selection procedure 
described above, we fit models for log-NO and BC. For log-NO, 
geographic information system (GIS) covariates selected in 5 
or more of the 10 folds included road-type indicators (e.g., 
highway roads and residential roads), the local truck route 
indicator, NDVI within a 50-m buffer, and elevation. For BC, 
GIS covariates selected in 5 or more of the 10 folds included 
the highway road type indicator, the local truck route indi-
cator, the sum of exponentially decaying contributions from 
U.S. EPA toxic release sites within 5 km, and the sum of expo-
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nentially decaying contributions from port land uses within 
5 km. Although our modeling approach is not necessarily 
intended to produce models that are physically interpretable, 
we note that the set of selected variables and the signs of 
their coefficients generally comport with known sources and 
dynamics of BC and NO. 

RESULTS AND INTERPRETATION

COMPARISON OF ESTIMATES FROM MOBILE AND 
FIXED-SENSOR NETWORKS (ANALYSIS M1)

Spatial Patterns

Figure 4 shows the distribution of daytime (9 a.m.–5 p.m.) 
median concentrations estimated by mobile monitoring and 
by the dense network of 97 ABCD sensor sites during the 

May–August 2017 period. In Figure 4a and b, we contrast the 
spatial patterns revealed by the fixed-site network with the 
more spatially complete patterns from mobile monitoring on 
every road segment. The mobile monitoring map shows the 
same general spatial patterns as fixed-site daytime medians. 
Measurements at the road segment level also reveal localized 
patterns not detected by the fixed-site network, with exam-
ples marked 1–4 on the map in Figure 4b. Mobile monitoring 
provides measurements on highways where placement of 
fixed-site monitors may be infeasible. Mobile coverage near 
example 1 shows the increase in concentration on elevated 
sections of Interstates 880 and 580 compared to the adjacent 
road network, as well as concentration reduction with distance 
from highways. Industrial activity near example 2, including 
a cement plant and metals recycling facility, is reflected in 
elevated concentrations at nearby fixed sites, while mobile 
monitoring also captures several additional highly localized 
hotspots. Road-segment medians also show hotspots corre-
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sponding to specific routes such as the intersection segment 
at example 3, which acts as a funnel for truck traffic to the 
Port of Oakland. Concentration peaks along roads like the 
designated truck route around the Port of Oakland south of 
example 4 may reflect persistent small-scale differences in 
patterns of traffic congestion. Thus, mobile monitoring adds 
local context to the more precise, time-resolved measure-
ments at fixed sites. 

The map visualization in Figure 4b emphasizes how 
mobile monitoring fills in gaps even for an unusually dense 
fixed-site sensor network (median pairwise distance among 
nearest-neighbor fixed sites is ~160 m). As further illustration 
of the potential value of mobile monitoring, 78% of mobile 
monitoring data was collected at a distance greater than 100 
m from any fixed site (Figure 4d). The upper tail (top 5%) of 
the mobile distribution (Figure 4d) shows highway road seg-
ments, many of which exceed 1.25 µg/m3. Fixed-site hotspots 
(>0.80 µg/m3) appear as isolated peaks of 1–2 monitors in 
Figure 4c, matched in Figure 4d by a small share of near-site 
mobile monitoring data and a large share of additional mobile 
monitoring data collected in interstitial areas. Nonetheless, 
the overall median among fixed sites (0.48 µg/m3) closely 
matches the median concentration of nonhighway road seg-
ments (0.44 µg/m3). This similarity suggests that nonhighway 
data collected on-road are broadly representative of near-road 
concentrations despite closer proximity to tailpipe emissions.

Assessment of Correspondence Between Mobile and 
Fixed-Site Median Concentrations

We assessed the fidelity with which long-term average 
daytime fixed site concentrations could be represented by 
drive-by mobile sampling. For each fixed site, we computed 
the median daytime (9 a.m.–5 p.m.) concentration measured 
by the continuously operating ABCD samplers. The corre-
sponding mobile-derived estimate for this long-term average 
concentration was computed as the (temporal) median of all 
visit-level (spatial) means of the time-resolved mobile mea-
surements collected within the spatial buffer radius. Thus, 
the temporally sparse but repeated mobile monitoring visits 
to the area immediately surrounding each fixed monitoring 
site are used to estimate the true time-integrated median 
concentration of each temporally continuous fixed-site 
dataset. In essence, this is a spatial evaluation, as we are 
assessing the ability of temporally sparse mobile measure-
ments to reproduce the spatial pattern of concentrations that 
are measured by fixed-site monitoring. Across the network of 
n sites with valid data (i.e., n = 97 sites for a buffer length of 
95 m), we computed two comparison metrics between these 
pairwise estimates: the ordinary Pearson R2 coefficient of 
determination and the mean absolute error (MAE, expressed 
as µg/m3). 

Figure 5 presents our assessment of spatial correlation at 
multiple spatial scales. At a buffer distance of up to 95 m, 
mobile monitoring reproduces fixed-site daytime median 
concentrations with an MAE within the bounds of the mobile 

instrument’s precision limits (MAE = 0.11 µg/m3, as compared 
to 95% precision ± 0.15 µg/m3). The majority of the fixed-site 
concentration points are clustered within the range of 0.4 to 
0.7 µg/m3 (Figure 5a), typical of residential and commercial 
area concentration. Approximately 20% of points occur at 
concentrations greater than 0.7 µg/m3, indicative of high traf-
fic or industrial activity (cf. Figure 4). Fixed-site and mobile 
in-motion medians are reasonably well correlated (R2 = 0.51), 
despite method differences and temporal sparsity. 

At buffer length scales longer and shorter than 95 m, two 
competing influences are at play. Because the measurement 
sample size — and thus instrumental precision — declines 
substantially at smaller radial buffer lengths, the MAE for 
the mobile-to-fixed site comparison increases sharply (Figure 
5e), and the R2 for this spatial comparison declines to values 
in the range of ~0.35–0.45 (Figure 5d). In contrast, at buffer 
radii longer than 95 m, although sample sizes further increase 
(Figure 5b), there are diminishing returns to the instrumental 
precision (Figure 5c). However, at longer spatial distances, we 
believe that the spatial mismatch errors between mobile and 
fixed-site observations for some sites may become sufficiently 
important that the R2 of the spatial comparison declines again 
toward ~0.35. Thus, for this particular choice of instrument 
(PAX), pollutant (BC), and study setting (West Oakland during 
cleaner summer conditions), there appears to be a local opti-
mum of the spatial scale at ~95 m for comparing mobile and 
fixed-site measurements. 

Next, we explored the degree to which the specific timing 
of a finite number of incompletely randomized mobile drive 
passes might lead to a misestimation of the central-tendency 
concentrations measured from continuous observations at 
each fixed site. To quantify this dimension of sampling error, 
we compared the true daytime median concentrations at each 
ABCD fixed site with the median of subsampled concentra-
tions measured by the ABCD sensors when they were being 
passed by the mobile samplers. These subsampled ABCD 
concentrations reproduced the true daytime median concen-
trations better than our estimates from the mobile monitoring, 
with minimal bias: a R2 of 0.74 and MAE of 0.09 µg/m3. It 
is worth noting here that this extremely temporally sparse 
subsample of ABCD measurements, representing ~70 point-
in-time measurements per site, successfully approximated 
the median of continuous fixed-site measurements. Here, a 
key inference is that a moderate number of very temporally 
sparse mobile measurements, if measured with sufficient 
analytical precision, can reproduce the long-term average of 
continuous measurements. In the particular case of our 100 × 
100 experiment, instrumental precision became the binding 
constraint, especially given the very low summer-daytime BC 
concentrations (~0.5 µg/m3) and the rather high LOD for our 
mobile BC instrument (0.22 µg/m3). It is reasonable to expect 
that the comparison of mobile to fixed site might have been 
even stronger (1) under more polluted conditions (winter in 
Oakland or a more polluted city) or (2) for measuring pollut-
ants for which the 1-Hz instrumental precision was less of 
a measurement issue. 
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Figure 5. Comparison between mobile and fixed-sites observations 
during the 100 × 100 Study (analysis M1) in West Oakland. (a) Using 
a fixed-site radius of 95 m, pairwise correlation between median 
BC concentrations measured by the photoacoustic spectrometer 
(PAX) instrument during mobile monitoring visits (MM) and 
ABCD fixed-sensor measurements made during all daytime hours 
throughout the campaign (ABCD daytime median). Given nearly 
continuous monitoring, the LOD for ABCD daytime medians is 
<<0.01 µg/m3, while the median PAX LOD is 0.22 µg/m3 for this 
radius. (b) Visit count increases with an increasingly large buffer 
radius used to aggregate mobile measurements around each fixed 
site, thereby improving (c) the expected instrumental precision (2σ) 
of the mobile monitoring PAX instrument. (d) and (e) illustrate the 
Pearson R2 and mean absolute error (MAE, µg/m3), respectively, for 
a pairwise comparison between the fixed-site ABCD sensors and 
the aggregated mobile measurements within a variable buffer radius 
given by the abscissa. We interpret the local maximum Pearson R2 
at 95 m (see d) and the accompanying minimum in MAE near this 
distance as reflecting the interplay between two factors. Whereas 
the instrumental precision of mobile measurements improves with 
the greater aggregation afforded by a larger buffer radius (see c), this 
increasing buffer radius imposes a trade-off in terms of increased 
spatial mismatch error between the location of the fixed sensor and 
increasingly distant on-road mobile measurements. (Adapted from 
Chambliss et al. 2020.) 

SPATIOTEMPORAL ASSESSMENT OF THE 
RELATIONSHIP BETWEEN UFPS AND OTHER 
TRAFFIC-RELATED AIR POLLUTANTS (ANALYSIS M2)

In analysis M2, we undertook a detailed investigation of 
the relationship between UFPs and other traffic-related air 
pollutants in the Bay Area, with a view to evaluating this 
relationship from the perspectives of fixed-site and mobile 
monitoring. The detailed results of this investigation are 
presented by Gani and colleagues (2021).

Figure 6a presents diurnal profiles for UFPs and NOx for 
the year 2015 stratified by season and weekday/weekend, for 

four regulatory fixed-sites with continuous UFP monitoring. 
For both UFPs and NOx, annual average traffic-related air pol-
lutant concentrations follow a consistent and strong gradient 
by site. At the near-highway site (Laney College, located ~10 
m from the I-880 highway in Downtown Oakland), annual 
average concentrations were 29,000/cm3 UFPs and 34.7 
ppb NOx. At the urban site (Redwood City), annual average 
concentrations were 11,900/cm3 UFPs and 18.8 ppb NOx. At 
the suburban site (Livermore), annual average concentrations 
were annual average concentrations were 10,100/cm3 UFPs 
and 17.4 ppb NOx. Finally, at the rural site (Sebastopol), 
annual average concentrations were considerably lower: 
3500/cm3 UFPs and 8.4 ppb NOx.

By stratifying the diurnal profiles of UFPs and NOx at each 
site by winter/summer and weekday/weekend (Figure 6a), we 
gained insight into coupling and divergence between the air 
pollutant dynamics of UFPs as compared with NOx. During 
winter conditions, we observed a tight coupling of the diurnal 
(hour-of-day) concentration profiles for UFPs and NOx. For 
the urban, rural, and suburban sites, both UFPs and NOx show 
the double-peaked diurnal profile that is commonly observed 
for primary air pollutants. This profile arises because of the 
competing influence of traffic emissions (which generally 
peak at morning and evening commute times) and the effect 
of dilution into the atmospheric boundary layer, which is 
strongest from midday into the afternoon. Thus, the morning 
and evening peaks arise from traffic emissions that are diluted 
into a shallow atmospheric boundary layer, while a midday 
trough emerges because of the strong effect of daytime dilu-
tion. During winter, the overall shape of the diurnal profiles 
for both pollutants is similar on weekdays and weekends, but 
with lower concentrations on weekends, as might be expected 
from the lower level of traffic emissions on weekends. For the 
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Figure 6. Spatiotemporal dynamics of UFPs in the Bay Area. (a) Concentrations of UFP particle number count (UFP PN) and NOx at 
the four monitoring sites indicated in Figure 1. Diurnal cycles (hour-of-day) mean concentrations are presented for summer and winter 
months on weekdays and weekends. During winter months, both UFPs and NOx follow similar diurnal cycles that are characteristic for 
primary combustion–derived pollutants, with weekend decline in concentrations that are in line with the expected major traffic source 
for both pollutants. During summer months, the UFP diurnal cycles decouple sharply from NOx, and have a daytime peak that is 
highly suggestive of secondary new particle formation. (b) Summer and winter maps of daytime UFP PN and NOx concentrations from 
mobile monitoring in the core Oakland Intensive Focal Area. Whereas the NOx concentrations show the expected seasonal decrease 
in concentrations from winter to summer, UFP concentrations increase from winter to summer months, with the greatest relative 
increases on residential road segments. An overall consequence is much lower spatial variability in UFP exposure during summer 
months than for other primary pollutants. (Adapted from Gani et al. 2021.)

near-highway site, which is strongly influenced by sustained 
truck traffic throughout the day on I-880, wintertime concen-
trations of UFPs and NOx do not experience a mid-day trough, 
but the two pollutants have similar diurnal profiles. Finally, 
Gani and colleagues (2021) reported on additional observa-
tions of other primary traffic-related air pollutants, including 
BC and CO. Wherever these pollutants are measured, they 
show similar wintertime diurnal profiles to NOx and UFPs.

In summertime, we found that the diurnal profiles of UFPs 
and NOx decouple substantially. In particular, UFP profiles 
show a strong divergence from the archetypal diurnal profiles 
that one would expect for a conserved pollutant, whereas NOx 
retains that diurnal profile. Considering the hourly time-se-
ries correlation between UFPs and NOx during winter days, 
winter nights, summer days, and summer nights, the Pearson 
correlation coefficient was lowest at each site during summer 
days (Gani et al. 2021). Summertime diurnal profiles for NOx 
show lower average concentrations than wintertime, as would 
be expected by the substantial seasonal increase in dilution 
during warmer months. In addition, the second daily peak 
disappears from the diurnal profile, given that the evening 
decrease in mixing height happens well after the afternoon 
commute period during the summer months. Concentrations 
of NOx are lower on weekends, as would be expected for a 
traffic-related pollutant. Other primary pollutants, such as BC 

and CO, share this diurnal profile at sites with available data 
(Gani et al. 2021). In contrast to these primary pollutants, the 
principal summertime peak concentration in UFPs during 
summer months happens between 11 a.m. and 3 p.m., a time 
of day when other pollutants are close to their daily minima. 
Additionally, daytime peak UFP concentrations show mini-
mal difference between weekdays and weekends during the 
summer, thus producing higher weekend peak concentrations 
of UFPs in summer than in winter at all monitoring sites. 

In Figure 6b, we map the average spatial patterns of day-
time UFPs and NOx for Oakland by road segment on the basis 
of routine mobile monitoring with Google Street View cars. 
Whereas on-road concentrations in NOx decrease from winter 
to summertime, consistent with the seasonal increase in 
atmospheric ventilation, the on-road concentrations of UFPs 
increased substantially in summertime. For both UFPs and 
NOx, we observed the smallest relative seasonal changes — but 
in opposite directions — for highway road segments, with the 
largest relative seasonal changes seen on residential streets. 
Because residential streets are less strongly affected by highly 
localized sources of air pollution (i.e., traffic on that street) 
than are arterials and highways, residential streets are where 
we would expect to see the largest impact of regional-scale 
processes influenced by seasonality. Daytime concentrations 
of NOx declined by 48% from winter to summer on residential 



 23

J.S. Apte et al.  

streets but increased by 82% from winter to summer for UFPs. 
As further evidence of the seasonally shifting relationship 
between NOx and UFPs, the average on-road ratio of UFP:NOx 
shows little time-of-day variation during winter months, but 
during summer shows a strong three- to fourfold increase 
from the morning into the afternoon hours (Gani et al. 2021). 
This increase in the UFP:NOx ratio during summer afternoons 
is most prominent on residential streets, which are the least 
influenced by traffic, and least prominent on highways. 

In combination, our data from both fixed sites and mobile 
monitoring presents strong circumstantial evidence of a 
major nontraffic source of UFPs, especially during summer 
daytime hours. Unlike other traffic-related air pollutants, 
UFP concentrations can be strongly affected by nucleation, a 
process of new particle formation from atmospheric vapors. 
These nucleation events have been widely observed in urban, 
regional, and background environments spanning a range of 
conditions from pristine to polluted (Boy and Kulmala 2002; 
Costabile et al. 2009; Gani et al. 2020; Kulmala et al. 2004; 
O’Dowd et al. 2010; Sellegri et al. 2010; Vakkari et al. 2011). A 
growing body of evidence shows elevated UFP concentrations 
during periods with increased solar radiation (Betha et al. 
2013; Brines et al. 2015; Hudda et al. 2010; Salma et al. 2011; 
Shen et al. 2011). In a comparative study of multiple cities 
with a Mediterranean climate (Rome, Barcelona, Madrid, and 
Los Angeles), Brines and colleagues reported that while traffic 
was the dominant contributor to UFP concentrations, under 
sunny conditions new particle formation could lead to UFPs 
becoming decoupled from other traffic-related air pollutants.  

To summarize, we found daytime peaks in UFP concentra-
tions at multiple sites during the warmer months that were not 
observed for other primary traffic-related pollutants. To provide 
context, consider that we measured a twofold increase of UFP 
concentrations during mid-day hours relative to the morning 
rush hours, while in contrast we found a twofold decrease 
in NOx and other traffic-related air pollutant concentrations 
during the same period. This is strong evidence that new 
particle formation can complement traffic as a major source 
of ambient UFP exposure. In approximate terms, this finding 
implies that for the half of the year when new particle forma-
tion is common in the San Francisco Bay Area, approximately 
half or more of the UFP concentrations might be attributed to 
new particle formation during the peak hours for this photo-
chemical process. Because the spatiotemporal variation in NOx 
concentrations differs from UFP concentrations, using NOx (or 
other traffic-related air pollutants) as a proxy for UFPs could 
result in inaccuracies in estimating UFP exposure. 

CHARACTERIZING THE HETEROGENEITY OF AIR 
POLLUTION EXPOSURES WITHIN AND AMONG 
NEIGHBORHOOD BY RACE AND ETHNICITY ACROSS 
THE SAN FRANCISCO BAY AREA (ANALYSIS M3)

Description of Multipollutant Exposure Gradients

In analysis M3, we analyzed the spatial distribution of 

population exposure based on the census-block level esti-
mates of BC, NO, NO2, and UFPs in 13 different study areas 
sampled across the Bay Area. Here, we refer to the popula-
tion-weighted distribution of concentrations as an estimate of 
“exposure;” we acknowledge that individual exposure also 
depends on many other factors (e.g., diurnal activity, indoor 
infiltration and dynamics, and physiology). 

Over these 13 different study areas, the population-weighted 
mean (range of study area means) concentrations were  
0.31 µg/m3 (0.18–0.60) for BC, 4.6 ppb (0.9–10.6) for NO, 8.2 ppb 
(3.3–13.1) for NO2, and 19,100/cm3 (6,900–33,700) for UFPs.

In discussing spatial variation, we refer to gradients among 
neighboring blocks (~100 m) as “hyperlocal,” variation within 
each study area (~1 km) as “local,” and variation among study 
areas (~10 km) as “regional.” Among the four pollutants, NO 
showed the highest-magnitude hyperlocal peaks, with a typi-
cal ratio of 10× between a peak and local median (Chambliss 
et al. 2021). BC, NO2, and UFPs (peak ratios 3.1×, 2.7×, and 
2.6×, respectively) exhibited shallower hyperlocal gradients 
and more diffuse peaks. Within many individual study areas, 
the correlation between block-level concentrations of individ-
ual pollutants was quite variable, with a rather low correlation 
between UFPs and other pollutants (interquartile range Pear-
son’s r ~ 0.4–0.7), but high correlations between NO and NO2 
(r ~ 0.8–0.9). These differences demonstrate the importance 
of measuring multiple pollutants. Furthermore, these patterns 
likely differ from those of other important pollutants like fine 
particulate matter (PM2.5) and air toxics, both in location and 
degree of local and regional variation.

The exposure variation that we were able to quantify here 
reflects the interaction between multiscale gradients of air 
pollutant concentrations (regional, local, and hyperlocal) 
and the spatial distribution of census-block populations. 
Figure 7 shows the full distribution of exposure levels within 
each study area. Comparing median exposures between 
the most- and least-polluted study areas, concentrations 
varied by factors of 4, 5, 6, and 28 for BC, NO2, UFPs, and 
NO, respectively, while within-neighborhood interdecile 
(10th–90th percentile) ranges showed variation up to a factor 
of 4 for BC, NO2, and UFPs, and a factor of 19 for NO. Gen-
erally, neighborhoods with higher BC and NO medians also 
displayed a wider range of exposures, while NO2 and UFP 
ranges remained more consistent across neighborhoods. This 
difference in the spatial patterns between the two exclusively 
primary pollutants (BC and NO) and the two pollutants with 
substantial secondary formation (NO2 and UFPs) is consistent 
with prior mobile monitoring studies (e.g., Apte et al. 2017) 
and expectations about air pollutant dynamics. Chambliss 
and colleagues (2021) described an analysis where we par-
titioned variability into local and regional components by 
decomposing the sum-of-squared deviation from the mean 
(SSD) of each resident versus the study area mean and of all 
study areas versus the grand mean. This analysis found that 
local gradients contributed the majority of exposure variation 
for primary pollutants NO and BC (52% and 63% of SSD, 
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Partioning of variance:
52% of NO SSD is within
individual study areas 

63% of BC SSD is within
individual study areas 

37% of NO2 SSD is within
individual study areas 

28% of UFP SSD is within
individual study areas 

Figure 7. Exposure distributions for the 13 different San Francisco Bay Area neighborhood study areas mapped in Figure 1 (analysis 
M3). Distributions reflect population-weighted exposures based on daytime weekday census-block concentrations. Areas are shown 
in order of descending median concentration. Whisker ends represent 10th and 90th percentiles, box boundaries represent upper 
and lower quartiles, the center bar marks the median, and circle represents the mean. Gray box plots in the NO2 panel represent 
modeled exposure estimates from the CACES national-scale integrated empirical geographic (IEG) regression model. Using a 
partitioning-of-variance technique (sum of squared deviations, SSD), we decomposed the overall heterogeneity in the population-
weighted concentration distributions into within- and between-study area components. For the two pollutants at left (NO and 
BC; both dominated by primary emissions), more than half of the heterogeneity in population exposures occurs within individual 
neighborhoods. In contrast, for the two pollutants at right (NO2 and UFPs; substantial contribution from secondary chemistry), 
between-neighborhood differences account for more of the SSD than within-neighborhood heterogeneity. (Adapted from Chambliss et 
al. 2021.)

respectively), but the minority for NO2 and UFPs (37% and 
28%, respectively). A subset of study areas accounted for a 
disproportionate share of local variation: for example, the 
San Francisco Financial District and East Oakland (24% of 
study population) accounted for roughly 50% of local expo-
sure variation for NO and BC and 40% for UFPs and NO2. 
These study areas represent denser urban settings with a 
greater mix of land uses. In general, we found slightly lower 
spatial variation in population-weighted exposure distribu-
tions within study areas, as compared with the variation in 
measured block-average concentrations. This discrepancy 
arises because populations tend not to be concentrated in the 
census blocks with the most extreme concentrations within 
our study area.   

We compared our estimates of exposure gradients for 
NO2 with those from the IEG model of the CACES for the 
year 2015 (Kim et al. 2020). Compared to the mobile 
monitoring data, the IEG model predicted higher median 
and mean exposure (respectively, 2.8 ppb [36%] and 2.5 ppb 
[30%] higher). However, our mobile monitoring obser-
vations show a substantially greater range of exposures, 
both within and between neighborhoods, as compared to 
the IEG model predictions (overlaid in gray in Figure 7). 

Whereas our mobile NO2 observations show a ratio of 4.6 
between the neighborhood median exposures among the 
highest and lowest study areas, the IEG model shows a 
ratio of only 1.6. Likewise, across the full Bay Area domain, 
we found a population-weighted interquartile range (IQR) 
of 6.1 ppb with mobile monitoring, as compared with a 
population-weighted IQR of 2.2 ppb for the IEG model. 
This result suggests that the national IEG model may miss 
some localized influences and may underestimate total 
population disparity and, by extension, the potential range 
of health risks. In the future, spatially resolved models for 
other pollutants, such as NO, BC, or UFPs, may enable 
further comparison between empirical model predictions 
and mobile monitoring observations.

Assessment of Exposure Disparities by Race and 
Ethnicity Across the Bay Area

To illustrate how mobile monitoring data can provide use-
ful new insights that are not possible with other existing meth-
ods (Specific Aim 5), we undertook an environmental justice 
analysis of our full Bay Area measurements. We assessed how 
the spatial distribution of air pollutant concentrations across 
the Bay Area leads to disparate air pollution exposures by race 
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Percentage of population by race and ethnicity 
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b. Distribution of pop. by concentration decilea. Concentration distributions by race-ethnicity
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Figure 8. Variation in total exposure distributions from analysis M3 by racial or ethnic group, indicated by five distinct colors. The 
white, Asian, Black, and Other race groups only include those identifying as non-Hispanic. The distributions shown in the box-
and-whisker plots (a) include the median (central bar), mean (white circle), upper and lower quartiles (box boundaries) and upper 
and lower 90th and 10th percentiles (whiskers). For NO, NO2, and UFPs, population-weighted mean exposure concentrations are 
lowest for the White population and highest for the Black population. The division of the total-population exposure distribution 
into concentration deciles (b) shows the division of the population within the decile by race and ethnicity, with decile boundary 
concentrations indicated on the y axis and the racial and ethnic color key provided by the box-and-whisker plots. In general, the White 
population is most strongly represented in the lowest concentration deciles. Also evident in (a) and (b) are the broad and bimodal 
exposure distributions for the Asian population. Column (c) presents a comparison analysis for the CACES IEG exposure model, 
which predicts higher but less variable exposures for every racial and ethnic group (cf. Figure 7). Although both mobile monitoring 
measurements (b) and the IEG exposure model (c) predict roughly similar rank-ordering of mean NO2 exposures by race and ethnicity, 
the IEG model substantially underestimates the within-group heterogeneity in exposures. (Adapted from Chambliss et al. 2021.)

and ethnicity. Figure 8a presents estimates of exposure distri-
butions for five major population groups in our study area: 
White (33%), Asian (31%), Hispanic (21%), Black (14%), and 
other (2%). On average, the White population is exposed to 
lower NO, NO2, and UFPs than other groups, with a median 
exposure 16% to 27% below the total population median, 
while medians for the Black and Hispanic populations are 
higher by 8% to 30% depending on pollutant (Figure 8a). 
The spatial detail provided by our method reveals nuances in 
disparity patterns beyond differences in medians. Figure 8b 
illustrates the weighting of each racial or ethnic group by the 
exposure deciles of the total population. Overall, the White 
population is strongly overrepresented in the lowest deciles 
of the concentration distributions. The Asian population is 
overrepresented at the extremes, with the high end driven by 
the communities in Downtown Oakland and the San Francisco 
Financial District, and the low end driven by less-polluted 
coastal locations. The Black and Hispanic populations are 
strongly underrepresented at the low end and concentrated 
toward the higher deciles, giving rise to higher average expo-
sures for those groups. Apart from distinctly higher ranges of 

NO2 and UFP exposure among Black and Hispanic popula-
tions, the range of exposures within racial and ethnic groups 
tends to be large compared with the range among groups. This 
finding holds especially for the Asian population (Figure 8a), 
which is bimodally distributed (Figure 8b) between some of 
the cleanest (coastal) and most polluted (downtown) areas. 

Figure 9 illustrates how populations of each of the four 
largest racial and ethnic groups are distributed with respect 
to pollutant levels by neighborhood. Two key insights emerge 
from this visualization. First, for each pollutant, the shape 
and magnitude of the population–concentration distributions 
differ substantially among racial and ethnic groups. Second, 
Figure 9 highlights the role of regional demographic patterns 
in shaping the distinct distributions of exposure among racial 
and ethnic groups. For example, our Oakland study areas 
comprise most of the Hispanic and Black populations in 
our domain, whereas Oakland’s study areas contribute only 
a small fraction of the White and Asian populations. These 
aggregate exposure profiles reveal an overall pattern of racial 
and ethnic disparities: higher concentration ranges in predomi-
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Figure 9. Population distribution. Distribution of exposure stratified by racial and ethnic groups (not shown is the “Other” racial 
category, population: 10,000). Height on the y axis indicates the population at a given concentration level summed over all study 
areas. Because the racial and ethnic composition differs sharply from neighborhood to neighborhood — a consequence of historical 
segregation patterns — concentration distributions in some study areas contribute much more to specific race and ethnicities (e.g., 
East Oakland for the Hispanic and Latino population and West Oakland for the Black population). Vertical lines show the indicated 
statistics (mean, median, 10th and 90th percentiles) for each race and ethnicity. (Adapted from Chambliss et al. 2021.)

nantly Black and Hispanic neighborhoods result in higher mean 
exposure for those groups. Notably, many of the neighborhoods 
with the highest average pollution exposures in our measure-
ment dataset were subjected to overtly racially discriminatory 
housing policies, such as redlining (Lane et al. 2022).  

Within our study domain, the national IEG model repro-
duced our observation of the lowest mean exposure for the 
White population and highest for the Black population, with 
moderately higher exposure for the Hispanic population 
(Figure 8c). However, the IEG model distributed the study 
populations into much narrower bands of concentrations 
as compared to our observations. Thus, it generally does 
not predict the same magnitude of disparity between mean 
concentrations among racial and ethnic groups and does not 
show a disproportionate share of people of Asian descent in 
the highest exposure categories. Modeled disparities may 
therefore miss an important dimension of racial and ethnic 
exposure disparity.

ASSESSING THE POTENTIAL OF STATISTICAL 
MODELS TO REDUCE SAMPLING EFFORT AND 
INCREASE SCALABILITY OF MOBILE MONITORING 
(ANALYSIS M4)

We examined strategies to efficiently develop air quality 
maps from mobile monitoring data, either via a “data-only” 
scheme that averages repeated measurements or via LUR-K 
models trained on repeated measurements. The overarching 
results of our analysis are that robust LUR-K models can be 
effectively developed even with very sparse mobile monitor-
ing data, but that the data-only approach outperforms LUR-K 
in precision (R2) after a small number of drive days. 

 Figure 10 illustrates representative results and residuals 
for these two approaches (left column: maps of daytime NO, 
right column: residuals of estimated NO in comparison to 
LUR long-term measurement (Figure 3a). Visual inspection 
suggests that each approach recreates some key features of 

·



 27

J.S. Apte et al.  

the long-term observed concentrations. NO concentrations 
are elevated strongly on highways (and modestly on arterials) 
relative to residential streets. Elevated NO levels in Down-
town Oakland are evident in each of the maps. However, the 
full dataset (Figure 3a) contains numerous localized pollution 
hotspots at road intersections, industries, and other emissions 
sources, only some of which are reproduced in the Figure 10 
maps. Similar patterns emerged for the BC maps, which are 
reported on in further detail by Messier and colleagues (2018). 

Figure 10a depicts an example of a data-only map for NO 
concentrations in our Oakland domain (excluding East Oak-
land), which incorporates 4 days of sampling at each location 
(85 total hours of measurement, approximately 6% of the full 
measurement dataset). Even with only 4 days of measurement 
data per road segment, the key spatial patterns of NO are 
evident (median R2 = 0.65; median NRMSE = 1.18), including 
pollution hotspots near some industries and intersections. 
However, there is evident “noise” — errors that appear to be 
approximately randomly distributed in space — that arises 
because of the limited number of samples at each location. 

In Figure 10, panels b–e illustrate four alternative 
approaches to training an LUR-K model to predict concen-
trations at every 30-m road segment. Figure 10b represents a 
scenario in which the LUR-K model incorporates 2 full years 
of measurement data for training. It might seem illogical to 
develop an LUR-K model based on what is already a high-fi-
delity data-only map, but this model represents a conceptu-
ally useful starting point because it is trained on a dataset 
that represents a best-case scenario in terms of data quality. 
Accordingly, this model achieves the best performance (R2 = 
0.60, NRMSE = 1.05) of all LUR-K models in our analysis. The 
predictions capture regional and local variability, but often 
fail to correctly predict fine-scale hotspots. GIS covariates 
selected in each of the 10-folds included road-type indicators 
(highway roads, residential roads, etc.) local truck route indi-
cator, greenness (NDVI) within a 50-m buffer, distance to the 
port, and elevation. 
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Figure 10. Examples of air quality maps constructed using sampling 
and/or modeling approaches. (a) Data-only map drawn from Monte 
Carlo subsample with 4 days at each road segment. Residuals are 
computed as the difference between subsampled 4-day map and 
the long-term concentrations shown in Figure 3a. (b) 10-fold cross-
validation LUR-K prediction (and residual) surface trained on all 
the road segments and the entire 2-year dataset. (c) 10-fold cross-
validation LUR-K predicting (and residual) surface trained the 
full Oakland dataset and 30% subsample of road segments. Note 
the similarity in predictions between (b) and (c). (d) 10-fold cross-
validation LUR-K predictions trained on a 4-day subsample for the 
full Oakland domain of road segments. (e) 10-fold cross-validation 
LUR-K predictions trained on a 4-day subsample and 30% of the road 
segments. The number of training data are given as N, and span a 
range from 92,000 independent points (~25 hour of sampling to cover 
30% of roads in domain four times each) up to the size of the full 
Oakland dataset. For all panels, the R2 is based on the log-transformed 
NO data and the RMSE is calculated in untransformed space. 
Normalized RMSE values are provided in parentheses. (Map data © 
2018 Google; Figure adapted from Messier et al. 2018.)
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One potentially attractive feature of combining mobile 
monitoring with LUR-K models is that effective models may 
be developed using a very limited set of training data. In Fig-
ure 10, panels c–e illustrate that the LUR model performance 
remains essentially similar even when the amount of model 
training data is substantially restricted. In Figure 10c, the 
training dataset is restricted to a subset of roads accounting 
for all highways and a random set of 30% of the nonhighway 
road network (20% of the full dataset hours), resulting in only 
a negligible change in model predictions and performance 
(median R2 = 0.58, median NRMSE = 1.09). In Figure 10d, 
the training dataset is restricted to only 4 days of observa-
tion, resulting in a different model with a slight decrement 
in performance (median R2 = 0.56, median NRMSE = 1.12), 
but with a large drop in training data requirements (6% of 
full dataset; ~80 hours). Figure 10e illustrates an example 
of a model trained on a highly restricted dataset (30% road 
coverage, 4 days of observation) with a dramatic reduction in 
data requirements (2% of full dataset; ~25 hours) and accom-
panied by a slight reduction in model performance (median 
R2 = 0.56; median NRMSE = 1.12).

Figure 11 presents a more systematic evaluation of these 
results for the four approaches to reduce data requirements: 
(1) data-only mapping with reduced sampling frequency, (2) 
LUR-K models with reduced sampling frequency, (3) reduced 
road coverage, and (4) a combination of both lower sampling 
frequency and lower road 
coverage Figure 11a presents 
an evaluation of our results by 
the number of repeated drive 
days. Considering both R2 and 
NRMSE, for fewer than 5 drive 
days over the full sampling 
domain, the LUR-K modeling 
approach tends to outperform 
a data-only map. This result 
arises because a predictive 
model overcomes some of the 
high degree of instability that 
occurs at the road segment 
level when the number of 
repeated samples is very small. 
However, with an increasing 
number of drive days, the per-
formance of the LUR-K model 
saturates very quickly at an R2 
of 0.55–0.6 and an NRMSE of 

~1–1.2. With only a small number of drive days (typically 
~4–6 days), the data-only mapping approach outperforms 
the best LUR-K models (R2 > 0.7), with dramatic increases in 
performance with increasing numbers of drive days before 
saturating with R2 > 0.9 above about 15 drive days. Crucially, 
the data-only mapping approach results in a more spatially 
random set of errors as compared to the LUR-K model (com-
pare for example Figure 10a vs. Figure 10b). 

One potentially important advantage of the LUR-K mod-
eling approach is that models can successfully be trained for 
a full domain while collecting only a small number of road 
segments, whereas by definition a data-only map requires 
measurements on every road segment. Figure 11b presents 
a key insight: the performance of an LUR-K model is quite 
insensitive to the percentage of road segments sampled. Even 
with only 20% to 30% of the surface streets in a domain 
sampled, the LUR-K model performance approaches the per-
formance of the best LUR-K models we could develop, with 
R2 ~ 0.55–0.6 and NRMSE between 1.05 and 1.2. Importantly, 
this reduced spatial coverage can be combined with reduced 
sampling frequency. While sampling this subset of roads just 
once produced a sharp decline in LUR model performance 
(R2 ~ 0.4–0.5), training models on just four repeated samples 
produced models only mildly inferior to models using far 
more repeated samples. Thus, data requirements can be 
relaxed in two dimensions at once — both in terms of the 
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number of repeated samples and in terms of the number of 
roads sampled for training — while training an LUR-K model. 

Figure 11c integrates these insights by presenting our 
evaluation statistics relative to the overall number of 1-Hz 
data samples required for producing a given result. The 
overall number of measurements used for our mapping sim-
ulations varies by more than a factor of 100 between our full 
dataset and our most restricted exercise. Overall, data-only 
maps substantially outperform the best LUR-K models we 
developed. Our LUR-K models approach their upper-bound 
performance quickly and then show little value from 
increased sampling. Over two orders of magnitude of sample 
size (~10–1000 hours of sampling), our LUR-K models con-
sistently had R2 ~ 0.5–0.6. As is evident in Figure 11b and c, 
reducing road coverage is a particularly effective approach to 
reducing the data requirements for training an LUR-K model. 
Thus, the value of this empirical modeling approach may be 
principally in that it can develop moderately good exposure 
predictions based on minimal sampling data, even if it never 
achieves the full potential of the much more measurement-in-
tensive data-only mapping approach. The overall selection 
of approach (data-only mapping vs. predictive model) would 
need to consider the relative costs of potentially laborious 
ongoing data collection versus the availability of the special-
ized skillset and analytical time required to develop models. 

In this analysis, we did not have access to detailed infor-
mation on the types of industrial activities present at specific 
addresses, nor did we have information on smaller-scale 
sites and/or unpermitted commercial and industrial sites. In 
addition, we did not include publicly available information 
on businesses, restaurants, or other points of interest that 
are increasingly used in LUR model development (Lu et al. 
2019, 2021). However, our measurement dataset is clearly 
influenced by localized pollution hotspots. Although some 
of these hotspots are sites that generate their own pollution, 

many also include locations where larger commercial vehicles 
congregate, such as factories and warehouses. Future work 
might also usefully consider whether further improvements 
in predictive model performance could be achieved using a 
more extensive set of spatial covariates, including data from 
ground-based and aerial/satellite imagery (Ganji et al. 2020; 
Qi and Hankey 2021; Qi et al. 2022; Weichenthal et al. 2019) 
and from scrape-able datasets of points of interest, such as 
the Google points-of-interest databases (Lu et al. 2019, Lu et 
al. 2021). Finally, although we did not account for meteo-
rology, we speculate that accounting for the direction of the 
prevailing wind in Oakland might have offered an additional 
improvement in our model performance. 

APPLICATION OF MOBILE MONITORING IN 
BANGALORE, INDIA (ANALYSIS M5)

The spatial mean (median) for the road segments in our core 
study domain in Malleshwaram was ~26 µg/m³ (15 µg/m³) for 
BC, ~81,000/cm³ (62,000/cm³) for UFPs, and 49 ppm (42 ppm) 
for ∆CO2. Given the timing of our sampling, these estimates 
should be taken to represent typical morning-time concentra-
tions on nonsummer weekdays. Mean on-road concentrations 
across the full study area were 47, 22, and 10 µg/m3 for BC; 
116,000, 65,000, and 42,000/cm3 for UFPs; and 69, 44, 34 
ppm for ∆CO2, respectively, for highways, arterial roads, and 
residential roads. Figure 12 presents maps for Malleshwaram 
of the spatial patterns of the median of drive-pass mean 
concentrations for these three pollutants. A clear structure in 
the spatial patterns of the pollutants emerged, with a strong 
rank ordering in concentration by road type (highways > arte-
rials > residential streets), and rather similar spatial patterns 
for all three pollutants. As in the San Francisco Bay Area, 
localized multipollutant hotspots were evident in multiple 
locations throughout Malleshwaram, especially in congested 
traffic areas. Near these hotspots, our estimates of time-stable 

0 - 7
7 - 8
8 -10
10 - 12
12 - 14
14 - 20
20 - 27
27 - 41
41- 65
>65

0 - 26k
26k - 32k
32k - 39k
39k - 47k
47k - 62k
62k - 84k
84k - 104k
104k - 129k
129k - 163k
>163k 

BC (µg/m3) UFP (/cm3)
0 - 23
23 - 28
28 - 32
32 - 37
37 - 42
42 - 48
48 - 58
58 - 69
69 - 85
> 85 

∆CO2 (ppm)

1 km01 km01 km0

a. b. c.

Figure 12. Maps of median of drive-pass mean concentrations of (a) BC, (b) UFPs, and (c) ∆CO2 for analysis M5 in Bangalore, India. 
Concentrations represent the median weekday 9 a.m.–1 p.m. concentration for each 30-m road segment over 22 repeated drive passes. 
Color scales are based on deciles of the road segment concentration distribution for each pollutant. Note the relatively high degree of 
concordance in spatial patterns among the three pollutants, with the lowest concentrations generally observed on residential streets, 
and the highest concentrations at congested highway junctions (compare with the domain maps in Figure 2).
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median concentrations showed rather sharp spatial variation, 
with concentrations varying by a factor of about two- to 
threefold over distances of ~ 100 meters. These sharp spatial 
contrasts were also evident when comparing concentrations 
on quieter residential lanes with those on neighboring arte-
rials one block away. This pattern was especially evident on 
the eastern side of Malleshwaram, where residential lanes are 
less used for pass-through vehicle traffic.

Our measurements of on-road concentrations are con-
sistent with — or somewhat lower than — other reports of 
on-road air pollutant concentrations in India. For example, 
roughly a decade earlier and using very similar instrumenta-
tion sampling from an auto-rickshaw-based mobile laboratory, 
Apte and colleagues reported concentrations of 42 µg/m3 BC 
and 280,000 UFPs/cm3 in Delhi’s traffic conditions (Apte et 
al. 2011). Our measured on-road increments of CO2 were quite 
typical for urban roadway conditions (e.g., Westerdahl et al. 
2005). However, our BC and UFP concentration measurements 
were dramatically higher than what we measured with a sim-
ilar study design in the San Francisco Bay Area. Most spec-
tacularly, on-road concentrations of BC were approximately 
100 times higher in our Malleshwaram domain than in the 
Bay Area. This result likely arises principally from the very 
high share of poorly controlled diesel engines operating in 
the Bangalore vehicle fleet. Estimates of UFP concentrations 
in Malleshwaram were approximately fourfold higher than in 
the San Francisco Bay Area. Here, we caution that the choice 
of condensation particle counters used for measuring UFPs 
in Bangalore likely resulted in an undercount of the total 
number concentration, given the large number of combustion 
particles in the 2.5–10 nm size range that were detectable by 
our instrumentation in California but not India. In comparison 
with earlier results from Delhi, the considerably lower UFP 
concentrations in Bangalore may result in part from a sharp 
difference in the characteristics of the vehicle fleet: Delhi 
has a considerably higher prevalence of vehicles powered by 
compressed natural gas, which tend to have lower particle 
mass emissions but much higher particle number emissions 
(Apte et al. 2011; Hallquist et al. 2013).

Following the methods developed by Apte and colleagues 
(2017), we assessed the stability of our on-road concentration 
estimates in Malleshwaram in two different ways. First, we 
sought to understand the degree to which the overall hetero-
geneity in road segment median concentrations emerged from 
systematic spatial variability versus from stochastic variation 
in the time-resolved measurements that give rise to these 
road segment medians. To assess this question, we computed 
the intra-class correlation (ICC) metric on our concentration 
datasets grouped by 30-m road segments. The ICC metric 
varies from 0 to 1, and higher values of ICC indicate that 
the overall variance in a dataset is attributable to systematic 
differences between groups, rather than random heteroge-
neity within groups. For our application, an ICC of 0.75–1 
would indicate large and systematic spatial differences in 
concentrations, with comparatively smaller contributions to 
heterogeneity from the stochastic variation. Here, we found 

ICC values of 0.81–0.92 for the three pollutants we measured 
in Malleshwaram, indicating that our estimated long-term 
spatial patterns were robust to the stochastic variations in 
concentration among repeated drive passes. (For comparison, 
Apte and colleagues [2017] reported an ICC of 0.8–0.95 for the 
pollutants measured in Oakland.)

Second, following the method from our analysis M4, we 
conducted Monte Carlo resampling of our data-only maps of 
BC and UFPs to assess how much repeated sampling would 
be needed to converge to the spatial patterns we measured 
with our full dataset of 22 repeated drives. Figure 13 pres-
ents the results of this analysis, which are analogous to the 
results presented for the Oakland data-only maps in Figure 
11. The gain in R2 with the inclusion of each additional ride 
data increased rapidly until about 7 sampling days for both 
BC and UFPs and slowly thereafter. At ~10 sampling days, 
R2 was 0.9. Similarly, NRMSE curves showed that the error 
rapidly decreased with the inclusion of each additional sam-
pling day, with NRMSE < 20% after ~10 days for UFPs and 
~15 days for BC. Despite the considerably different setting 
(Bangalore vs. Oakland) and the dramatically higher pollutant 
concentrations in India, these subsampling results suggest 
that mobile monitoring produces stable maps after about 10 
drive days, with diminishing returns to precision from addi-
tional sampling beyond this level of repeated sampling. These 
conclusions about data-only maps are thus in line with the 
conclusions of Apte and colleagues (2017) (~10–20 drive days 
were usually sufficient) and from our analysis M4 presented 
above (diminishing returns were reached after 10–15 drive 
days; see Figure 12a). 

DISCUSSION AND CONCLUSIONS

Our study had the overarching aims of assessing and 
validating the suitability of routine mobile monitoring for 
large-scale multipollutant air pollution exposure assessment, 
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and to then apply this technique at scale. Specifically, we 
sought to (1) validate whether routine mobile monitoring 
could reproduce observed patterns of air pollution measured 
at fixed sites, (2) compare the insights derived from mobile 
monitoring with those from other measurement and modeling 
methods, (3) explore how statistical modeling could be paired 
with mobile sampling to further improve the efficiency and 
scalability of this exposure assessment technique, and (4) 
pilot the usage of mobile monitoring to fill data gaps in a 
lower-resource, low-data setting (Bangalore, India). Finally, 
(5) we sought an integrative assessment of cross-cutting ques-
tions related to the utility and efficacy of mobile monitoring 
vis-à-vis applications of mobile monitoring to atmospheric 
science, exposure assessment, environmental justice, air 
quality management, and other societally useful ends. 

Table 2 summarizes analyses M1–M5 of this study, and 
how they relate to our specific aims. In analysis M1, we 
conducted an intensive summerlong sampling campaign 
in West Oakland, CA, where two Google Street View cars 
repeatedly mapped block-by-block air quality while driving 
around an exceptionally dense grid of 100 stationary BC 
monitors. In analysis M2, we explored the dynamics of UFPs 
in the San Francisco Bay Area and examined converging 
lines of evidence from both mobile and fixed-site monitoring 
about the association between UFPs and other traffic-related 
pollutants. In analysis M3, we scaled up our multipollutant 
mobile monitoring approach to 13 different neighborhoods 
with nearly 500,000 inhabitants, evaluated how the within- 
and between-neighborhood heterogeneity in concentrations 
affected population exposure and environmental disparities, 
and compared our insights with those from a widely used 
empirical exposure model. In analysis M4, we evaluated the 
advantages and trade-offs for coupling mobile monitoring with 
statistical LUR models to estimate intraurban variation in air 
pollution in a data-efficient manner. Finally, in analysis M5, 
we reproduced our mobile monitoring approach in a pilot 
study in Bangalore, India.

VALIDATION OF MOBILE MONITORING DATASETS

In analyses M1 and M2, we compared the insights we 
derived from mobile sampling with those from fixed-site 
sampling. Our detailed methods comparison during the 100 
× 100 Study (see Chambliss et al. 2020 for details) (analysis 
M1) revealed that mobile monitoring was capable of cap-
turing much — but not all — of the high-resolution spatial 
variation in air pollution that was observable by a dense 
fixed-site network for measuring BC. Our analysis revealed 
mobile monitoring could capture the overall concentration 
gradients with moderate-to-high reliability from the cleanest 
to most polluted locations in our West Oakland sampling 
domain during some of the lowest-concentration conditions 
in the year (daytime during the summer). There were many 
advantages for considering this mobile-to-fixed site compar-
ison for BC measurement, as opposed to other pollutants. 
BC is a primary conserved pollutant that provides us with 

sharp spatial gradients to compare our methods. While a 
robust low-cost sensor exists for BC (Caubel et al. 2018), NO 
and NO2 remain difficult to reliably measure with a low-cost 
sensor, and UFPs cannot yet be measured with one. However, 
the relatively high signal-to-noise ratio for our mobile mea-
surements of BC meant that our mobile measurements had 
high associated measurement uncertainty. Our analysis also 
revealed this imprecision was the key factor in degrading 
our comparison between mobile and fixed-site observations. 
Indeed, had we conducted this validation study during a 
different time period (e.g., during nonrainy winter days) or 
in a more polluted setting, such as Bangalore, it is likely that 
we would have found an even higher degree of concordance 
between mobile and fixed-site observations.

Analysis M1 also revealed several complementary aspects 
of mobile and fixed-site monitoring used in combination. 
As shown in Figure 4, our mobile monitoring provided a 
large amount of spatial coverage (and associated represen-
tativeness) that was missing from the fixed-site monitoring 
network. This finding is especially notable given that the 
100 × 100 Study monitoring network was likely the densest 
neighborhood-scale BC monitoring effort undertaken to date 
(Caubel et al. 2019). This analysis also highlights the utility of 
a fixed-site network in providing distributed real-time obser-
vations, which are especially valuable in the context of noisy 
mobile BC measurements that have especially poor precision 
when considered on a time-resolved basis (Chambliss et al. 
2020). 

It is instructive to note here that we used fixed-site moni-
toring here in a limited capability, whereby the measurement 
datasets were used independently. Nonetheless, there is 
substantial potential to integrate mobile and fixed-site data 
into a hybrid monitoring product that combines the distinct 
advantages of each sampling paradigm (i.e., dense spatial 
coverage and continuous temporal coverage, respectively). 
However, the data analysis methods for fusing air quality 
datasets that are, respectively, temporally and spatially sparse 
are still not highly developed and remain an important area 
for further research. In new work not supported by HEI, we 
are developing new methods for spatiotemporal modeling 
that can fuse mobile and fixed-site sensor data. The data from 
our 2017 100 × 100 Study provided a unique opportunity to 
demonstrate and evaluate these new methods. 

In analysis M2, we found strong alignment between mobile 
and fixed-site observations in studying the seasonal vari-
able association between UFPs and NOx. From both mobile 
and fixed-site data, we found a tight association in the spatial 
patterns and diurnal cycles of UFPs and NOx during winter 
months, with strong evidence that traffic is a major source 
during winter conditions. In the summer months, mobile 
and fixed-site data again are in concurrence, but the result 
diverges from the winter data. Here, we found that daytime 
UFP concentrations in the Bay Area appear to be strongly 
influenced by secondary new particle formation events, 
with little association between UFPs and other traffic-related 



 32

Scalable Multipollutant Exposure Assessment Using Routine Mobile Monitoring Platforms

pollutants, such as NOx. A consequence is that the intraurban 
spatial gradients of UFPs are strongly attenuated during sum-
mer daytime conditions. This result illustrates how routine 
mobile monitoring can reveal facets of exposure patterns that 
are not well characterized by short-term studies. The result 
also further demonstrates the value in future monitoring 
efforts of combining detailed mobile mapping with a small 
number of fixed-site monitors that can provide time-resolved 
data. In the absence of the routine fixed-site UFP monitor-
ing data in the Bay Area, which is quite rare for regulatory 
agencies to undertake in the United States, we likely would 
have not been able to explain this unique feature of the spatial 
patterns in our mobile dataset. 

A related question — albeit one that we did not investigate 
directly in this project — is whether the spatially resolved 
concentration fields that we mapped in this project would 
in fact constitute a valid exposure measure that would 
provide utility for epidemiological studies. The preliminary 
evidence on this topic is positive. To date, our San Francisco 
Bay Area concentration datasets from this study have been 
used as exposure measures for four epidemiological studies. 
Using electronic health records for a population of ~41,900 
adults living in a ~25-km2 area of Oakland, our collaborators 
found clear and statistically significant associations between 
road-segment level estimates of NO, NO2, and BC and adverse 
cardiovascular events among the older population (Alexeeff 
et al. 2018). Second, in a study of ~8,800 births in the San 
Francisco Bay Area, our collaborators found an elevated risk 
of preterm birth for children born to Black and Latina mothers 
(Riddell et al. 2021). Third, for electronic health records of 
pregnant women (N = 1,095) living in Downtown and West 
Oakland, our collaborators identified statistically significant 
associations between pollutant exposure (especially NO2

 

and UFPs) and preeclampsia (Goin et al. 2021). Finally, for 
~25,700 older subjects living in the Oakland domain, our col-
laborators found statistically significant associations between 
BC and (especially) NO2 exposures and multiple measures of 
healthcare expenditures captured by electronic health records 
(Alexeeff et al. 2022). These studies illustrate how hyperlo-
calized exposure measures can enable health studies even on 
very small and spatially localized populations and support 
the inference that our on-road concentration measures may 
provide a useful measure of air pollution exposures. Recently, 
several other Canadian and European studies have utilized 
mobile monitoring data as an exposure assessment strategy 
for assessing within-urban and even within-country spatial 
variations in air pollution exposure (Bouma et al. 2023; 
Weichenthal et al. 2020). 

Of course, there are limitations in the use of mobile 
monitoring data for epidemiological exposure estimates. 
First, there are concerns of temporal representativeness. Our 
mobile monitoring campaigns were designed to represent 
daytime spatial patterns on weekdays, which are not neces-
sarily representative of conditions at night or on weekends, 
and therefore not completely representative of annual aver-
age conditions. Although we found in analysis M1 that BC 

concentrations measured on-road had good correspondence 
with measurements at building facades in Oakland, for 
populations who live far from roads, as is more common in 
rural and suburban areas, on-road measurements may not be 
especially useful in estimating exposures. More broadly, it 
may be infeasible to provide mobile monitoring for the very 
large populations used for some large epidemiological cohort 
studies of air pollution (e.g., ACS, Pope et al. 2002; Medicare, 
Di et al. 2017; and CanCHEC, Crouse et al. 2015a). Finally, 
people don’t spend their full lives at home, so the benefits 
of more spatially precise exposure assessments from mobile 
monitoring may be offset by an additional misclassification 
error that arises from not accounting for population mobility. 
In sum, although mobile monitoring may enable new types of 
epidemiological studies by capturing sharp spatial gradients 
over small spatial areas, the potential of mobile monitoring 
data for epidemiological studies is not fully resolved with this 
study and is likely context-dependent.

COMPARISON OF INSIGHTS FROM MOBILE 
MONITORING WITH OTHER MEASUREMENT 
APPROACHES

Whereas routine mobile monitoring excels at providing 
spatially intensive exposure measurements (i.e., block-by-
block coverage), the mobile monitoring approach does not 
automatically guarantee spatially extensive measurements. 
For extensive air pollution mapping, approaches such as 
satellite remote sensing and LUR modeling can provide large-
scale exposure estimates. National and global exposure model 
datasets using remote sensing and/or LUR are increasingly 
common and often publicly available. In analysis M3, we 
investigated how the widely used CACES IEG exposure mod-
els (Kim et al. 2020) performed in estimating NO2 at the scale of 
census blocks. Here, we compared our insights from the full-
scale mobile monitoring of NO2 across 13-neighborhood Bay 
Area domain of ~500,000 people (Figure 1a) with the CACES 
IEG predictions. Whereas the census-block predictions of the 
CACES NO2 model performed quite well in reproducing the 
rank-ordering of the neighborhood-median NO2 concentra-
tions that we measured by mobile monitoring (Figure 7), the 
model missed nearly all of the within-neighborhood exposure 
heterogeneity that we measured. This finding suggests that 
traditional national-scale LUR models may struggle to predict 
local-scale heterogeneity within individual communities. 

We found that the national-scale CACES IEG model per-
formed adequately in estimating the scale of average racial 
and ethnic group NO2 disparities that we measured across 
our study domain (Figure 8). This somewhat surprising result 
arises because between-neighborhood segregation is a stron-
ger driver of the systemic inequality in air pollution than is 
the hyperlocal within-neighborhood heterogeneity (Figure 9). 
To put this differently: if one lives in a racially segregated U.S. 
city, the demographics of one’s own city block are likely to be 
quite similar to the demographics of the next few city blocks 
in either direction, but demographics might be quite different 

.
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for a neighborhood a few miles away. In contrast, our data 
show how air pollution levels can vary sharply over length 
scales of even just a few city blocks. This hyperlocal variation 
therefore matters considerably more for heterogeneity in the 
overall population exposure than it does for estimating racial 
and ethnic exposure disparities (Chambliss et al. 2021). Other 
recent work has affirmed this conclusion using other lines of 
evidence. Clark and colleagues illustrated using the CACES 
IEG models that estimates of racial and ethnic group exposure 
inequalities in NO2 and PM2.5

 are highly scale-dependent at 
coarser scales of aggregation (e.g., counties and states), but 
show little sensitivity at the finest spatial scales (e.g., U.S. 
census blocks, block groups, and tracts) (Clark et al. 2022). 
Demetillo and colleagues have demonstrated that compara-
tively coarse satellite remote sensing estimates (length scales 
of several km) of NO2 are capable of resolving substantial 
racial and ethnic group exposure inequalities, even though 
NO2 concentrations themselves vary over considerably finer 
scales (Demetillo et al. 2020, Demetillo et al. 2021). 

ASSESSMENT OF MOBILE MONITORING IN 
BANGALORE, INDIA

Our measurements in Bangalore, India (analysis M4) 
demonstrated that mobile monitoring is a viable technique 
for estimating fine-scale concentration gradients in an LMIC 
city. Our mapping exercise revealed fine-scale patterns of 
spatial heterogeneity in air pollutant concentrations within 
our study neighborhood of Malleshwaram that were highly 
reminiscent of what we measured in the San Francisco Bay 
Area, albeit at dramatically higher concentrations. The high 
coherence in spatial patterns among the three pollutants we 
measured, as well as good metrics of measurement stability 
(e.g., ICC by road segment), provide confidence that the 
observed spatial patterns are likely to reflect true conditions, 
rather than measurement artifacts. Another key aspect of the 
success of this part of the study likely relates to our process. 
Our study team in Bangalore was led by co-authors Kushwaha, 
Upadhya, and Sreekanth. Although highly experienced in air 
pollution measurement and spatial statistics, the field team 
was conducting a mobile monitoring study for the first time 
as part of this report. Working together as a team, we adapted 
the data collection and analysis protocols from Oakland to the 
Indian context and undertook substantial learning-by-doing 
to develop a workable study protocol for Bangalore. While 
the difficulty of this endeavor should not be understated, the 
fact that we successfully developed these results in Bangalore 
provides evidence that this mobile monitoring approach can 
be successfully adapted to LMIC contexts. 

Some key limitations from our Bangalore mobile moni-
toring experience should also be emphasized here. First, the 
relatively low traffic speeds in Bangalore (typically ~10-15 
km/hr, slower during rush hour) limit the amount of data that 
can be collected in a single sampling session, which erodes the 
efficiency of the mobile monitoring approach. For our study, 
the practical impact of these low traffic speeds was amplified 

by the limited battery life (~ 4 to 5 hours) of our portable 
instruments. Second, our data collection approach required 
study personnel to join the vehicle’s driver for each sampling 
run to aid in wayfinding and ensure adequate instrument per-
formance. This consideration meant that our data collection 
ended up being especially labor-intensive and physically 
taxing. These logistical considerations should not be over-
looked in designing future studies, but some aspects could 
be resolved with a more refined mobile laboratory and instru-
mentation package. Third, given that very dense traffic can be 
quite common in some parts of Bangalore, the interpretation 
of our data is somewhat difficult. Our measurements are rep-
resentative of on-road concentrations. Our conclusions from 
Oakland in analysis M1 imply that on-road measurements 
can succeed in representing exposure-relevant concentrations 
at the front façade of buildings and homes. However, it is not 
necessarily clear that our Bangalore measurements in espe-
cially congested locales would necessarily be representative 
of exposure concentrations outside of the immediate roadway 
environment, especially when our car was trapped in dense 
gridlock. This concern might be assuaged by the rather mod-
erate on-road ∆CO2 increments we measured (95th percentile 
of road segment averages = 85 ppm ∆CO2). Future work could 
investigate this possible concern by applying a paired mobile 
and fixed-site study design like that from analysis M1 in an 
Indian context. Indeed, it is reasonable to expect that some 
of the measurement precision constraints we experienced 
in analysis M1 might be less of an issue in India, given the 
higher signal-to-noise ratio under polluted conditions and the 
longer averaging times afforded by slower traffic. 

SCALING MOBILE MONITORING: TO MODEL OR TO 
MEASURE?

In analysis M5, we compared the relative strengths of 
data-only mobile monitoring (i.e., a model-free approach of 
repeated sampling) and spatiotemporally restricted observa-
tions to train an LUR model. In general, the latter approach is 
more common in the exposure assessment community, and 
LUR models based on mobile monitoring are increasingly 
common in major health studies (e.g., Brauer et al. 2008; 
Kerckhoffs et al. 2022; Weichenthal et al. 2020; Wu et al. 
2021). Our assessment in analysis M5 suggests that there 
are some clear trade-offs to this hybrid approach that fuses 
mobile measurements with LUR-K models. On the benefits 
side, we demonstrated that relatively little repeated sampling 
(~4–10 days) is required to build stable or parsimonious LUR 
models and that a modest (10%–30%) stratified sample of 
the urban road network was sufficient to adequately train our 
LUR-K models in Oakland (Messier et al. 2018). Thus, there 
are very large potential gains in data-collection efficiency 
in this hybrid modeling approach compared with extensive 
repeated sampling of every road segment. If one were to scale 
up such a modeling approach, it’s conceivable that a rotating 
sampling protocol inspired by this approach in a finite and 
modest number of large and small cities might be sufficient 
to develop a multipollutant mobile-monitoring prediction 
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surface for an entire country’s urban population, which might 
provide substantial benefit for future health studies. On the 
other hand, we learned some significant disadvantages of the 
LUR-K modeling approach relative to the model-free data-only 
mapping approach. One relative benefit of data-only mapping 
is that the data analysis approach itself is far simpler: one 
does not need to undertake the time-consuming extra step 
of developing model covariates, training a model, and then 
rigorously evaluating that model. Another key benefit of data-
only mapping is that the prediction fidelity of a data-only 
map can dramatically exceed that of an LUR-K model (Figure 
11) and the residuals for a data-only map contain relatively 
little spatial bias structure, which is not so for LUR-K models 
(compare Figure 10a with the rest of Figure 10). 

It is worthwhile to contemplate whether the data-only 
repeated mobile mapping approach we demonstrated here is 
truly scalable. In Apte and colleagues (2017), we postulated 
that ~500 air mapping vehicles would be required to generate 
an annual air quality map of the 25-largest urban areas in 
the United States, accounting for 50% of the total U.S. urban 
population. Here, we comment on what it would take to 
accomplish mobile monitoring at such a large scale. First, we 
believe that considerably fewer vehicles may be necessary for 
such a campaign, in part because there may not be a strong 
need to map air pollution in each city annually. For example, 
a once-in-3-years mapping exercise for each city would allow 
for ongoing assessment of the long-term evolution of air 
pollution sources and patterns in each urban area and only 
require 100 air mapping vehicles with some optimization 
of sampling intensity. Second, we estimate required capital 
costs of $150,000 per vehicle at scale to equip each vehicle 
with fast-response monitors for BC, NO, NO2, CO2, and UFPs. 
Although lower-cost sensors are available, the very careful 
attention to calibration and performance that is required may 
not yet be feasible at such a large scale. If the capital costs of a 
vehicle are amortized over a nominal 7.5-year lifespan, the 
capital cost per vehicle-year is ~$20,000/yr. Operational costs 
for a full-time driver ($40/hr salary and benefits, 2000 hr/yr) 
add another $80,000/yr; fueling and maintenance costs for 
the vehicle and instruments add another $50,000/yr. Thus, 
the total cost of a vehicle system’s usage may come closer to 
$150,000/yr.

 In our experience, the routine mapping techniques we 
developed here could be readily transferred from a research 
setting to a more operational setting, perhaps provided by 
private vendors. Beyond the capital and operational costs we 
discussed above, additional costs would include providing 
routine calibration quality assurance and quality control (1 
technician per 10 cars), developing daily drive plans (1 dis-
patcher per 10 cars), routine analysis (1 analyst per 10 cars), 
and central management (1 per 10–20 cars). At average salary 
and benefit costs of ~$200,000/yr per staff member, staffing and 
analysis costs might add $75,000/yr per vehicle. Rounding up, 
the entire enterprise of routine mobile monitoring might cost 
$250,000/yr per vehicle. With a fleet of 100 mapping vehicles 
providing once-in-a-3-year coverage, this would equate to $25 

million in annual expenditures, or approximately $1 million 
per year for each of the 25 largest urban areas in the United 
States. These costs might be quite reasonable. For example, 
consider that the annual monitoring and analysis budgets for 
the Bay Area Air Quality Management District (San Francisco 
Bay Area) and the South Coast Air Quality Management 
District (Los Angeles Area) are ~$10 million/yr and ~$30 
million/yr, respectively. When considering the power of 
such data for identifying emissions hotspots, characterizing 
exposure distributions and environmental inequalities, and 
enabling accountability studies, these expenditures might be 
quite worthwhile. 

It is also instructive to note that this sampling approach is 
labor intensive. Many of the costs associated with this rough 
budgetary sketch do not arise directly from the capital costs 
of the vehicle and instruments, but rather from those of the 
drivers, technicians, analysts, and management. (This same 
feature is true of the budgets of conventional air monitoring 
networks). Thus, the costs of routine mobile monitoring might 
scale to lower levels in LMIC settings where labor costs are 
also generally lower. However, this enterprise would require 
unique skills and expertise that are often in short supply in 
LMIC settings. The prospects for scaling this approach more 
generally in a setting like India are perhaps somewhat less 
favorable than in the United States, especially given the highly 
constrained public budgets for environmental protection. 

OTHER LESSONS LEARNED 

It is worthwhile to convey a few final lessons learned 
during the execution of this study. First, as has been noted 
by others (e.g., Brantley et al. 2014), subtle aspects of study 
design are exceptionally important in designing a mobile 
monitoring data collection scheme that can robustly estimate 
time-averaged pollution patterns. In general, it is far prefera-
ble to design a measurement campaign to have spatiotempo-
rally balanced measurements from the outset, rather than to 
attempt to “nudge” a measurement distribution that was not 
collected in a temporally representative manner. One reason 
why it is advantageous to combine mobile and fixed-site 
multipollutant monitoring is that continuous time series from 
multiple fixed sites can aid in the assessment of the temporal 
representativeness of mobile monitoring data (Chambliss et 
al. 2021).

There is some irony that much of this study relied on 
Google Street View cars. In our study, these vehicles were 
operated under the direction of our research team, permitting 
a carefully balanced and repeated study design. However, 
more generally, these vehicles are tasked to revisit the same 
locations to collect imagery only very infrequently, typically 
every few years, which would pose challenges for interpret-
ing very temporally sparse air pollution data. Other vehicle 
fleets, such as urban taxis, which tend to have more random 
and frequent drive patterns, might be better suited to the task 
of the routine mobile monitoring. However, there may also be 
value in simply having vehicle fleets that are dedicated to the 
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task of routine mobile monitoring, thereby permitting more 
carefully designed sampling strategies. 

A second observation is that not all pollutants are 
equally suited to mobile monitoring. In general, pollutants 
with a high degree of spatial variation and a low degree of 
temporal variation appear to be the best suited to the type 
of routine mobile-monitoring approach we employed here. 
In the environments we considered in this study, it appears 
that urban primary pollutants fit this description. However, 
other important pollutants, such as PM2.5, do not match this 
description well. Efforts to develop representative maps of 
PM2.5 via mobile monitoring often encounter two difficulties. 
First, the spatial variation in PM2.5 is generally small: whereas 
the time-stable patterns of many primary pollutants may vary 
by a factor of 2–8× across even a small neighborhood, the 
spatial variation in PM2.5 across an entire urban domain might 
be only 1.3–2×. This is because, for most urban areas, the 
regional background aerosol is the dominant source of fine 
particle mass (Jimenez et al. 2009). Related to this point, a 
second challenge for mapping PM2.5 via mobile monitoring is 
that episodic variation in regional background concentrations 
affects PM2.5 much more strongly than for more localized 
primary pollutants. Accordingly, with a small number of 
repeated samples, the temporal sampling bias for PM2.5 can be 
quite large. We speculate that these two factors explain why 
comparatively few well-designed mobile monitoring studies 
have reported robust results for PM2.5. Thankfully, there are 
other modern exposure assessment techniques, such as low-
cost sensors and remote sensing, that can provide high-quality, 
spatially resolved estimates of urban PM2.5 concentrations. 

IMPLICATIONS OF FINDINGS

The past decade has witnessed a renaissance in tool devel-
opment for spatially resolved exposure assessment. These tech-
niques include model-based or model-informed approaches, 
including chemical transport models, reduced-complexity 
mechanistic models, and empirical models — all of which 
increasingly leverage aspects of machine learning. Observa-
tional techniques that have progressed rapidly include low-
cost sensors, wearable exposure monitors, chemically resolved 
real-time instrumentation (e.g., mass spectrometry for aerosol 
and gas-phase species), and satellite remote sensing. Increas-
ingly, there is crossover and inspiration occurring within this 
multitude of rapidly developing techniques. Moreover, there 
is a growing appreciation that different research questions 
require different observational strategies. 

Routine mobile monitoring, too, has experienced a rapid 
expansion in both method development and practical appli-
cations. At the time this study’s proposal was submitted for 
review at HEI in early 2017, few studies had been published 
exploring the idea of routine mobile monitoring. Our pilot 
study using Google Street View cars for air pollution map-
ping in Oakland was published in mid-2017 and has now 
been cited over 450 times. Since then, a few dozen scientific 
studies using these cars for mobile air pollution monitoring 

have been published, and scientist-led campaigns have been 
conducted in places as diverse as London, Copenhagen, 
Amsterdam, Dublin, Austin, Houston, Los Angeles, Salt Lake 
City, and Denver. Of course, repeated mobile monitoring need 
not be conducted using Google Street View cars as a platform, 
as we demonstrated with our own analyses in Bangalore. 
Using a wide array of platforms and instrumentation, from 
trash trucks with low-cost sensors (deSouza et al. 2020), to 
telemetry-equipped taxis (Yu et al. 2022), to mobile labora-
tories equipped with aerosol mass spectrometers (Gu et al. 
2018; Shah et al. 2018), repeated mobile monitoring is now 
finding widespread application in air quality studies. As one 
metric of the expansion of the scientific literature on mobile 
monitoring, we conducted a Web of Science search for the 
keywords “air pollution” and “mobile monitoring.” Since 
1979, 209 peer-reviewed articles with this specific keyword 
combination have been indexed — 113 were published 
between 2018 and 2022, as compared to 60 papers published 
over the previous 5-year period. Similarly, of the 4,871 papers 
(Web of Science) citing this body of literature, 3,406 have 
been published since 2018. Routine mobile monitoring is also 
increasingly common outside of the academic sphere. Using 
a suite of lower-cost sensors developed by Aclima, Google 
Street View cars are collecting mobile monitoring data during 
ordinary driving for imagery in dozens of cities on multiple 
continents. Aclima has developed its own mobile platforms 
and has attracted substantial government funding — often 
from environmental justice–inspired monitoring initiatives 
— to develop air pollution datasets for cities in California, 
New York, and elsewhere. As of the writing of this report 
(early 2023), the U.S. EPA has selected nine community-led 
mobile monitoring efforts for $4M in funding nationwide, and 
the State of California is preparing a $30M Statewide Mobile 
Monitoring initiative (CA: https://ww2.arb.ca.gov/state-
wide-mobile-monitoring-initiative, NY: https://www.governor.
ny.gov/news/governor-hochul-announces-launch-first-state-
wide-mobile-air-monitoring-initiative).

One key lesson from this emerging body of work is that 
routine mobile monitoring is quite useful for capturing 
time-stable patterns of pollution, especially for pollutants 
with sharp spatial gradients. Because many localized pollu-
tion hotspots are indicative of proximate pollution sources, 
mobile monitoring can provide useful screening-level iden-
tification of potentially unknown sources that may be off 
the “radar screen” of scientists and government agencies. In 
contrast, mobile monitoring approaches likely are less useful, 
at least on their own, for identifying air pollution sources that 
are highly episodic or transient. Although our study provides 
examples of how mobile and fixed-site monitoring data can 
be integrated and compared, future analysis efforts could go 
much further to integrate mobile and fixed-site observation 
data using mechanistic or statistical modeling approaches. 
Again, the specific approach likely needs to be dictated by 
the analytical goals, which may be quite diverse, ranging from 
spatiotemporal exposure prediction to environmental justice 
studies to constraining source emission rates. 

https://ww2.arb.ca.gov/statewide-mobile-monitoring-initiative
https://ww2.arb.ca.gov/statewide-mobile-monitoring-initiative
https://www.governor.ny.gov/news/governor-hochul-announces-launch-first-statewide-mobile-air-monitoring-initiative
https://www.governor.ny.gov/news/governor-hochul-announces-launch-first-statewide-mobile-air-monitoring-initiative
https://www.governor.ny.gov/news/governor-hochul-announces-launch-first-statewide-mobile-air-monitoring-initiative
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There remains a great societal need for continued air 
pollution observations. In the United States efforts to mitigate 
climate change are accelerating, with a strong emphasis on 
transitioning major distributed sources of fossil carbon emis-
sions (such as vehicles and households) to electric-powered 
substitutes. This transition could sharply redraw the spatial 
geography of urban air pollutant emissions and their impacts 
and higher-resolution air pollution observation techniques, 
including mobile monitoring, will be important to quantify 
their impact. At the same time, major environmental policy 
efforts in the United States are increasingly focused on reduc-
ing exposure disparities for historically disadvantaged groups. 
Policy efforts for the clean energy transition and environmental 
justice are increasingly intertwined, as is evident, for example, 
in the recently passed Inflation Reduction Act of 2022 (Levy 
2022). Notably, this act earmarked more than $100 million 
dollars for enhanced air pollution monitoring, with a key focus 
on environmental justice communities. In LMIC, the context is 
different: monitoring networks are not yet fully established and 
can be designed from the ground up to take advantage of more 
recent developments in measurement and modeling (Brauer et 
al. 2019; Gani et al. 2022); at the same time, efforts to control 
pollution are also accelerating. Thus, the lessons learned from 
this study and many other studies of hyperlocal air pollution 
variation in urban areas will be applicable to devising moni-
toring strategies, accountability studies, and epidemiological 
analyses that can assess the real-world impact of these ambi-
tious efforts to protect human health and well-being. 

ACKNOWLEDGMENTS

In addition to the HEI funding that enabled this work to be 
possible, other funders contributed resources to the research 
presented herein. We particularly wish to acknowledge the 
support of Environmental Defense Fund and the Center for 
Air, Climate, and Energy Solutions (CACES), which was sup-
ported under Assistance Agreement No. R835873 awarded by 
the U.S. Environmental Protection Agency (U.S. EPA). This 
work has not been formally reviewed by U.S. EPA. The views 
expressed in this document are solely those of authors and do 
not necessarily reflect those of the Agency. The U.S. EPA does 
not endorse any products or commercial services mentioned 
in this publication. In addition, Google provided in-kind 
support for the mobile monitoring in California.

This work benefitted greatly from the mentorship of Prof. 
Michael Brauer (University of British Columbia) and Prof. 
Adam Szpiro (University of Washington). Many others con-
tributed to the development of the ideas and datasets reported 
in the core journal articles that we published under HEI 
support. Here, we wish to acknowledge Jonathan Gingrich, 
Carlos Pinon, Brian LaFranchi, Jai Asundi, Pratyush Agrawal, 
Crystal Upperman, Melissa Lunden, Allen Robinson, Julian 
Marshall, Chelsea Preble, Julien Caubel, Troy Cados, Ramon 
Alvarez, Thomas Kirchstetter, Jonathan Choi, Steven Ham-
burg, Christopher Portier, Ananya Roy, and Roel Vermeulen. 

We also gratefully acknowledge Maria Harris, Elena Craft, 
Cassandra Ely, Fern Uennatornwaranggoon, Karin Tuxen- 
Bettman, Alexander Cooper, Rebecca Moore, David Herzl, 
Arjun Raman, Mille Chu Baird, Margaret Gordon, Brian Beve-
ridge, Phil Martien, David Holstius, Rivkah Gardner-Frolick, 
Mark Campmier, and the Aclima and Google Street View 
operations teams. 

DATA AVAILABILITY

Data from analyses M1–M4 are publicly available. 
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INTRODUCTION

Accurately estimating people’s exposure to various pollut-
ants is essential for evaluating and understanding the health 
effects associated with the pollutants. Accurate estimates 
of exposure are also essential for identifying disparities in 
exposure so that policies can be developed to reduce such 
disparities if they exist. It is challenging, however, to estimate 
exposures to outdoor air pollutants that vary highly in space 
and time. Most air pollution datasets tend to have adequate 
resolution and accuracy either over space or time, but not 
both. For example, researchers typically conduct targeted, 
short-term sampling campaigns used to develop land use 
regression (LUR*) models or acquire data from fixed-site 
monitoring networks or chemical transport models with 
hourly output, but typically resources are not available 
to obtain both. Fixed-site networks — even those in North 
America and Western Europe — still have relatively limited 
spatial coverage in many areas, particularly in suburban and 
rural locations, and insufficient density to capture small-scale 
(within-city) variations of pollution.

In recent years, researchers have increasingly used routine 
mobile monitoring by affixing monitoring devices to vehicles 
and making measurements while systematically and repeat-
edly traveling a road network. Such mobile monitoring can 
provide a very dense map of street-level exposure estimates 
across a given urban area (Apte et al. 2017; Klompmaker et al. 
2015; Messier et al. 2018; Patton et al. 2015; Weichenthal et 
al. 2016). Although the use of mobile monitoring for mapping 
local concentrations of traffic-related air pollution is becom-
ing more common, many questions remain. For example, how 
do on-road measurements compare to data from fixed sites, 
can the method be scaled up to larger areas, and in which 
contexts is the approach appropriate and feasible? Also, how 
much data need to be collected (in terms of spatial coverage 

and repeated samples) to develop satisfactory, robust maps of 
long-term patterns of air pollution concentrations?

To investigate and develop further the utility of mobile 
monitoring, Dr. Joshua Apte of the University of Texas at 
Austin, submitted an application to HEI titled “Scalable 
Multipollutant Exposure Assessment using Routine Mobile 
Monitoring Platforms” in response to HEI’s Request for 
Applications 16-1: Walter A. Rosenblith New Investigator 
Award. This award was established to provide support for an 
outstanding new investigator at the assistant professor level 
to conduct research in the area of air pollution and health; 
it is unrestricted with respect to the topic of research. Dr. 
Apte proposed to assess the utility of mobile monitoring data 
collected previously by fleet vehicles (i.e., Google Street View 
cars) equipped with instruments to routinely monitor air pol-
lution. His application focused on the utility of the data and 
the scalability of approaches, and it proposed several related 
analyses based in two cities: Oakland, California, USA, and 
Bangalore, India.

HEI’s Research Committee recommended funding Dr. 
Apte’s application because it thought that the work proposed 
was novel and could affect how air pollution health research 
is done in the future. They appreciated his proposed use of an 
existing large-scale mobile monitoring dataset along with new 
measurements to be collected in India that would allow him 
to evaluate approaches in two very different settings. They 
also liked the focus on traffic-related air pollutants, especially 
ultrafine (<0.1 μm) particles (UFPs) for which fixed-site mon-
itoring data are sparse. Additionally, they thought the large 
amount of data that he would analyze and collect had the 
potential to contribute significantly to exposure assessment 
for future epidemiological studies. The study started in 2018 
and continued when Dr. Apte moved to the University of 
California, Berkeley.

This Commentary provides the HEI Review Committee’s 
independent evaluation of the study. It is intended to aid 
the sponsors of HEI and the public by highlighting both the 
strengths and limitations of the study and by placing the 
results presented in the Investigators’ Report into a broader 
scientific and regulatory context.

SCIENTIFIC AND REGULATORY BACKGROUND

Patterns of air pollution around traffic sources are char-
acterized by high spatial and temporal variability related to 
meteorological conditions, varying emission rates, and other 
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factors (HEI 2022; Park and Kwan 2017; Zhou and Levy 2007). 
UFPs, compared to some other air pollutants, have especially 
high spatial and temporal variability. UFPs originate from 
anthropogenic sources — primarily industrial emissions and 
combustion of fossil fuels for transportation, energy produc-
tion, and heating — and from such natural sources as forest fires 
and marine aerosols, such as sea salt (Moreno-Ríos et al. 2022). 
They can also form in the atmosphere when combustion pro-
cesses emit hot, supersaturated vapors that undergo nucleation 
and condensation while being cooled to ambient temperatures 
and through chemical reactions in the atmosphere (Sioutas 
et al. 2005). Their dispersion, transport, and duration of sus-
pension in the atmosphere are affected by environmental and 
meteorological conditions, including topography, local wind 
direction and speed, temperature variations, and precipitation, 
among other factors.

Some of the major challenges in conducting epidemiolog-
ical studies of air pollution exposure and health include the 
difficulty of assigning exposures to study participants accu-
rately and quantifying the influence of exposure measurement 
error on estimated health risks. Those issues are especially 
challenging for some components of particulate matter (e.g., 
UFPs) and gaseous outdoor air pollutants, such as nitrogen 
dioxide (NO2) and ozone that vary highly in space and time 
(HEI Review Panel on Ultrafine Particles 2013).

In the past, many studies relied on data from a few fixed-
site monitors to assign exposure to study participants, partly 
because those were the only data available. To improve expo-
sure assessment resources, researchers have deployed addi-
tional fixed-site monitors in specific areas (e.g., busy streets). 
That approach is particularly needed for measuring UFPs for 
which fixed-site monitoring networks are lacking. Moreover, in 
many locations in low- and middle-income countries (LMICs), 
there are few to no permanent fixed-site regulatory air pollution 
monitors; thus, creative approaches are needed. More recently, 
researchers have started to use satellite data to cover regions 
where no monitors exist and mobile monitoring platforms with 
real-time instrumentation to measure highly resolved spatial 
trends in air pollution concentrations (e.g., Apte et al. 2017; 
Minet et al. 2018; Patton et al. 2014; Riley et al. 2014).  

Mobile monitoring strategies can involve on-road mobile 
measurements made while driving predefined strategic 
routes, or repeated short-term measurements made while in 
a parked vehicle at many locations. Data collected through 
mobile monitoring have been used to develop LUR models 
and other air pollution maps (Klompmaker et al. 2015; Mess-
ier et al. 2018; Patton et al. 2015; Weichenthal et al. 2016). 
Air pollution maps estimated from such monitoring are being 
increasingly applied in epidemiological studies (e.g., Alexeeff 
et al. 2018; Corlin et al. 2018). As noted above, however, 
questions remain about the scalability of mobile monitoring 
approaches and their applications in different contexts. The 
current study was designed to improve on these approaches 
and to test their applicability in a high-income country and 
an LMIC.

SUMMARY OF APPROACH AND METHODS

STUDY OBJECTIVES 

Dr. Apte and colleagues sought to evaluate and assess the 
utility of mobile monitoring for a range of air pollution expo-
sure assessment applications. The study builds on previous 
research by the investigators during which they collected a 
large amount of mobile monitoring data using Google Street 
View cars equipped with tools to measure nitric oxide (NO), 
NO2, black carbon (BC), UFPs, and fine particulate matter <2.5 
μg/m3 in diameter (PM2.5) in Oakland, California.

For this study, they specified the following overarching 
questions: Does large-scale mobile monitoring produce useful 
results? In what ways and for what exposure assessment appli-
cations is mobile monitoring effective? What complementary 
or additional insights can be revealed by mobile monitoring? 
What are the potential limitations of mobile monitoring? To 
address these overarching questions, the investigators pro-
posed the following aims:

1. Validate intensive mobile monitoring as an exposure as-
sessment technique via comparison with observations 
from a network of fixed-site monitors.

2. Compare insights from mobile air pollution measurement 
campaigns with those derived from other approaches 
and data sources, including observations from regulatory 
networks, dense low-cost sensor networks, and statistical 
exposure models.

3. Investigate the potential for scaling of mobile monitoring 
techniques through both direct observation and model-
ing, to better understand how mobile monitoring could 
be applied to larger study domains while minimizing the 
amount of monitoring effort required.

4. Investigate whether mobile monitoring might be a viable 
option for collecting air pollution data in a low-resource 
setting that currently lacks robust air pollution monitor-
ing infrastructure.

5. Probe the rich multipollutant dataset with data mining 
techniques to understand how sources influence popu-
lation exposures.

Aims 1 through 3 were addressed by working with data 
collected previously from fixed-site stations and mobile 
monitoring campaigns for BC, NO, nitrogen oxides (NOx), 
NO2, and UFPs in Oakland, California. Aim 4 was addressed 
by conducting a new mobile monitoring campaign for BC, 
UFPs, PM2.5, and carbon dioxide (CO2) in Bangalore, India. 
Aim 5 was eventually dropped due to time constraints. The 
investigators organized their study into five interrelated 
analysis modules (M1–M5) that each contributed to multiple 
study aims. They are described below and summarized in the 
Commentary Table with key features and findings.
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METHODS

Analysis M1: Intensive comparison of mobile and fixed-
site monitoring of black carbon in Oakland, California

The purpose of analysis module M1 was to evaluate the 
capabilities of mobile monitoring for representing long-term 
spatial patterns of black carbon by comparing repeated mobile 
air pollution measurements with data from a large set of con-
tinuous fixed-site monitors. For this analysis, the investiga-
tors leveraged mobile-monitoring data that they had collected 
and described previously (see Apte et al. 2017 and sidebar) 
along with data from a dense network of low-cost, fixed-site 
BC monitors custom-built and deployed by colleagues at the 
University of California, Berkeley (Caubel et al. 2019).

The BC monitors deployed by Caubel and colleagues were 
installed at 100 sites in residential, industrial, and high- 
traffic microenvironments at an average density of 6.7 sites 
per km2 in West Oakland. The instruments were mounted at a 
height of 1.5 m on fences, porches, or street poles at a median 
distance of 15 m from the nearest road. Of these 100 sites, 97 
were located within 30 m of the road network covered by the 
mobile monitoring described in the sidebar, and three were 
located at upwind background sites along the San Francisco 
Bay. This network was in operation during a 100-day period 
between May and August 2017. Apte and colleagues computed 
the median daytime concentration at each site. They then 
calculated the ordinary Pearson R2 coefficient of determination 
between the median concentration of BC of all drive pass 
means within 95 meters of the 97 custom-built BC detectors 
with valid data. They chose a distance of 95 meters because the 
precision of the fixed-site detectors to estimate on-road concen-
trations decreased notably at distances greater than 95 meters. 
In total, the mobile monitoring vehicles sampled roads within 
95 meters of these fixed-site detectors for nearly 56 hours, with 
a median of 73 drives past each site. Each visit of a mobile 
monitoring vehicle to a fixed site lasted about 17 seconds for a 
median total time of 29.3 minutes at each site.

Analysis M2: Spatiotemporal analysis of traffic-related 
air pollution dynamics using mobile and fixed sensors in 
the San Francisco Bay Area

The purpose of this analysis module was to evaluate how the 
spatiotemporal patterns of UFPs compared with other traffic- 
related air pollutants that are monitored routinely. For this 
module, the investigators made use of the mobile monitoring 
data collected in 10 neighborhoods across the San Francisco 
Bay area, as described in the sidebar. For this analysis, the 
investigators compared particle number concentrations (as 
their proxy for UFPs) obtained through the mobile monitor-
ing with concentrations of NOx obtained at four regulatory 
fixed-site monitoring stations operated by the Bay Area Air 
Quality Management District. Specifically, they used hourly 
data from 2011 to 2018 from regulatory sites representative of 
a gradient in traffic influence, namely, near-highway, urban, 
suburban, and rural.

Analysis M3: Assessment of local- and regional-scale 
air pollution disparities in the San Francisco Bay Area 
using mobile monitoring

This analysis was not part of the original application and 
study plan but was included in the investigators' final report 
to present the totality of analyses that the investigators con-
ducted with mobile monitoring datasets. The purpose of this 
analysis was to describe how variability in concentrations of 
air pollution affected estimates of population exposure and 
environmental disparities in the San Francisco Bay Area. 
This analysis module also made use of the mobile monitoring 
datasets described earlier. Here, the investigators estimated 
long-term pollution concentrations of BC, NO, NO2, and UFPs 
for 6,362 census blocks in 13 communities around the San 
Francisco Bay Area. The communities ranged in size from 95 
to 930 census blocks (median: 447 blocks). The mean census 
block had an area of about 14,000 m2 (equivalent to 120 
meters × 120 meters) with a mean population of 70 people. 
The investigators estimated pollution concentrations for each 
block as the median of observations from roads within about 
100 meters of the block center point.

They used U.S. Census Bureau block-level population data 
for the year 2010, the most recent year for which block-level 
data were available, to describe the populations in the 13 com-
munities. Specifically, they used the racial and ethnic designa-
tions provided by the U.S. census to summarize proportions 
of populations described as Latino or Hispanic in one group 
(“Hispanic”) and then categorized non-Hispanic populations 
by race: Asian, Black, White, and “Other,” including those of 
Native American, Pacific Islander, multiracial, or other racial 
identity. In 2010, about 450,000 people lived in these areas.

The investigators used the pollution and population 
datasets together to describe distributions of the various pol-
lutants within each community and to describe the exposure 
distributions according to the racial and ethnic compositions 
of the population.

Analysis M4: Scaling air quality mapping of NO and BC 
through mobile monitoring and land use regression in 
Oakland, California

The purpose of analysis module M4 was to evaluate the 
advantages and trade-offs of coupling mobile monitoring with 
LUR and Kriging approaches to estimate intraurban variation 
in air pollution in a data-efficient manner. This analysis 
module made use of the mobile monitoring datasets described 
earlier. Here, Apte and colleagues investigated approaches 
to reduce the intensity of field data collection required for 
producing high-resolution pollution maps of NO and BC from 
mobile monitoring data. For this analysis, they focused on 
West Oakland, Downtown Oakland, and East Oakland. They 
considered two broad approaches to data reduction for devel-
oping reliable estimates of spatial patterns, namely a “data 
only” approach and a “land use regression-Kriging model 
(LUR-K)” approach.
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Commentary Table. Key Details of the Five Analysis Modulesa

Analyses That Focus on Comparing Mobile Monitoring with Fixed-Site Monitoring Data

Analysis Module Research Aims Addressed Pollutants 
Examined

Period of  
Measurement

Geographic  
Location Key Findings

M1: Intensive com-
parison of mobile 
and fixed-site moni-
toring in Oakland

Validate intensive real-time 
mobile monitoring as an 
exposure assessment tech-
nique via comparison with 
fixed observation networks. 
Compare insights from 
mobile air pollution mea-
surement campaigns with 
those derived from other 
approaches and data 
sources.

BC May 2017 – 
August 2017

West Oakland Repeated mobile monitoring can repro-
duce time-averaged, fine-scale spatial 
patterns of BC with good fidelity, pre-
cision, and accuracy relative to a fixed-
site sensor network.

M2: Spatiotempo-
ral analysis of traf-
fic- related air pollu-
tion dynamics using 
mobile and fixed 
sensors in the San 
Francisco Bay Area

Validate intensive real-time 
mobile monitoring as an 
exposure assessment tech-
nique via comparison with 
fixed observation networks. 
Compare insights from 
mobile air pollution mea-
surement campaigns with 
those derived from other 
approaches and data 
sources.

BC, CO, 
NOx, UFPs

Mobile mea-
surements: 
May 2015 – 
December 
2017 
Regulatory 
measure-
ments: Full 
year, 2015

Mobile mea-
surements: 
West Oakland 
and Down-
town Oakland 
Fixed sites: 
Sebastopol, 
Livermore, 
Redwood 
City, and 
Laney College

Data from mobile monitoring corrobo-
rates a surprising insight from regula-
tory data: patterns of UFPs and NOx are 
coupled in the winter months (indic-
ative of a common primary traffic 
source), but sharply decoupled in the 
summer. UFPs in the Bay Area appear 
to be substantially driven by secondary 
formation during the summer months. 

Analyses that focus on uses and applications of mobile monitoring data

M3b: Assessment of 
local- and region-
al-scale air pollution 
disparities in the 
San Francisco Bay 
Area using mobile 
monitoring

Validate intensive real-time 
mobile monitoring as an 
exposure assessment tech-
nique.

BC, NO, 
NO2, UFPs

May 2015 – 
December 
2017

13 communi-
ties across the 
San Francisco 
Bay Area

Repeated mobile monitoring can cap-
ture exposure heterogeneity across a 
large urban region. 
Across the entire Bay Area region, 
within-neighborhood gradients account 
for a large to dominant fraction of the 
overall heterogeneity in the population- 
concentration distribution.
Substantial racial/ethnic disparities are 
driven mostly by intra-neighborhood 
segregation.

M4: Scaling air qual-
ity mapping of NO 
and BC through 
mobile monitoring 
and spatial modeling 
in Oakland

Investigate the potential 
for scaling of mobile mon-
itoring techniques through 
both direct observation and 
modeling.

BC, NO May 2015 – 
May 2017

West Oakland, 
Downtown 
Oakland, East 
Oakland 

With LUR-K modeling, it is possi-
ble to drive only a fraction of roads a 
few times and develop models that are 
nearly as good as the best models they 
developed.
Data-only maps from repeated driving 
are superior to LUR-K models in terms 
of detecting idiosyncratic or unex-
pected spatial features and hotspots.

M5: Mobile moni-
toring in Bangalore, 
India

Investigate whether mobile 
monitoring might be a via-
ble option for collecting air 
pollution data in a low- 
resource setting.

BC, CO2, 
UFPs 

July 2019 – 
March 2020

Residential 
neighborhood 
in Banga-
lore (Mallesh-
waram) and 
supplemental 
transects in 
surrounding 
areas

Mobile monitoring produced time-  
stable spatial patterns in Malleshwaram 
and elsewhere in the study domain. 
Observed a convergence to time- 
stable spatial patterns with fewer than 
20 repeated mobile monitoring runs 
over 1 year. 
Slow traffic speeds in Bangalore pres-
ent logistical challenges for mobile 
monitoring.

a Source: Investigators’ Report Table 2
b  As described below, this analysis was not part of the original study plan.
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SIDEBAR
 Prior to applying to this RFA, Apte and colleagues had 

already collected a large amount of mobile-monitoring 
data in the San Francisco Bay Area. Briefly, the investi-
gators had equipped two Google Street View cars with 
instruments for measuring BC, NOx, and particle number 
concentrations (a strong proxy for UFPs). Drivers of the 
vehicles conducted 6–8-hour long shifts between 8 a.m. 
and 6 p.m. between May 2015 and December 2017. They 
were assigned 1–5-km2 areas to cover each day within 
which they were asked to drive each road in that area at 
least once, in any order. They conducted intensive mon-
itoring in West Oakland, Downtown Oakland, and East 
Oakland (totaling over 1,300 hours of monitoring) and 
added an additional 300 hours in West Oakland alone.  
They also sampled 1,000 hours in 10 other neighborhoods 
in the greater San Francisco Bay Area to cover locations 
with various land uses (e.g., industrial, commercial, dense 
residential, and light residential), atmospheric and climate 

conditions, share of open or green space, traffic density, 
and demographic composition.

 The investigators used the air pollution measurements to 
estimate long-term, average concentrations of the pollut-
ants along roadways that represented the weekday, day-
time conditions of the period sampled in these locations. 
For this task, they divided the measurement domains 
into 30-meter road segments (equivalent to about 3–10 
seconds of observation). For the core Oakland domain, 
this network included about 20,000 such segments. First, 
they calculated the mean of all measurements in each 
30-meter road segment for each individual drive pass 
(i.e., the mean of all observations taken during that single 
3–10-second period of a drive pass). Then, they computed 
the median of all repeated drive pass mean concentra-
tions to use as their core metric for analysis. These data-
sets were used in the various analysis modules described 
in the investigators’ report.

For the data-only approach, they mapped concentrations 
of pollutants based exclusively on data from the mobile obser-
vations, with no support from spatial modeling techniques. 
Here, they attempted to minimize the number of repeated 
visits to each road at the cost of reducing the precision and 
accuracy of the resulting estimated concentrations. 

For the LUR-K approach, they applied their mobile- 
measured observations in a statistical model that combined 
LUR and Kriging. Briefly, LUR is a spatial modeling technique 
that uses observations of pollutant concentrations at given 
locations as the dependent variable and data describing such 
characteristics as road density and land use as the indepen-
dent variables, in a multivariate regression model to estimate 
pollutant concentrations at unsampled locations. Kriging, on 
the other hand, is a method of spatial interpolation whereby 
values are predicted at unsampled locations based on mea-
surements taken at nearby locations. As such, for the LUR-K 
approach, pollution concentrations can be estimated at 
unsampled locations and mobile observations are not needed 
from every road in the study domain.

The investigators simulated several variations of approaches 
to reducing data requirements for mobile sampling: 

• Data-only mapping based on mobile monitoring data 
from a reduced subset of drive days (i.e., sampling on 
all highway and nonhighway roads, but only 4 days of 
sampling on each segment).

• Data-only mapping based on mobile monitoring data 
from a reduced subset of roads sampled (i.e., sampling 
on all highways and on a random selection of 30% of the 
nonhighway roads, including all days of sampling).

• LUR-K modeling based on mobile monitoring data from 
the reduced subset of drive days.

• LUR-K modeling based on mobile monitoring data from 
the reduced subset of roads sampled.

• Joint scenario with LUR-K modeling where drive days 
and roads sampled were reduced simultaneously.

Ultimately, they used visual inspection and analyzed 
model residuals, coefficients of determination (R2), and nor-
malized root mean square errors (NRMSEs) to compare and 
evaluate the various approaches.

Analysis M5: Mobile monitoring in Bangalore, India

The purpose of analysis M5 was to investigate their mobile 
monitoring approach in a low-resource setting. This analysis 
was set in Bangalore, India, which is located in the southern 
state of Karnataka, and has a population greater than 12 mil-
lion people. For this analysis module, Apte and colleagues 
combined instruments for measuring BC, UFPs, PM2.5, CO2, 
meteorological parameters, and GPS into a mobile monitoring 
platform mounted in a compressed-natural gas-powered 
hatchback car. They used CO2 concentrations as an indicator 
of the degree to which their measurements were influenced 
by the fresh exhaust of traffic emissions.

The investigators conducted mobile monitoring in four 
regions, including streets in urban residential areas (Mallesh-
waram), the central business district, and in peri-urban areas. 
Drivers conducted shifts of about 4 hours long between 9 a.m. 
and 1 p.m. between July 2019 and March 2020, which covered 
all seasons except the hottest summer months. As such, results 
generally represent late morning conditions on weekdays.

Similar to the analysis process described in analysis 
M1, the investigators used the mobile air measurements to 
estimate long-term, average pollutant concentrations repre-
sentative of the period sampled. As was done in Oakland, 
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they divided the measurement domains into 30-meter-long 
road segments, which in this case was about 5,000 segments. 
Again, they computed the median of the repeated drive pass 
mean concentrations to use as their core metric for analysis.

All modules described above were conducted at various 
times between May 2015 and March 2020. The key findings 
from the analyses are presented below.

SUMMARY OF KEY RESULTS  

ANALYSIS M1: INTENSIVE COMPARISON OF MOBILE 
AND FIXED-SITE MONITORING OF BLACK CARBON IN 
OAKLAND, CALIFORNIA

The investigators found that the spatial patterns of BC 
produced with their mobile monitoring data were similar 
to the daytime medians calculated with observations from 
the 97 fixed-site detectors. The correlation (R2) between the 
measurements at the fixed sites and the mobile measure-
ments sampled within 95 meters was 0.51. The correlations 
varied but were approximately 0.5 for measurements within 
distances of 50–90 meters and were in the range of 0.4 to 
0.3 for measurements within distances of 100 to 150 meters 
(Investigators’ Report [IR], Figure 5d). Although their results 
were influenced somewhat by the choice of days and seasons 
in which they sampled pollutants, they ultimately concluded 
that their mobile monitoring design was sufficiently robust for 
the purpose of characterizing spatial patterns of air pollution. 

Overall, the median concentration of BC measured along 
all nonhighway road segments within 95 meters (i.e., 0.44 
µg/m3) matched closely the median concentration among the 
fixed sites of 0.48 µg/m3, suggesting that the data collected 
on-road were broadly representative of the near-road concen-
trations based on data from fixed sites. The mobile measure-
ments had the advantage of detecting road-level variability 
not available from the fixed-site monitors, as well as estimates 
on highways, where placement of fixed-site monitors would 
likely be infeasible.

ANALYSIS M2: SPATIOTEMPORAL ANALYSIS OF 
TRAFFIC-RELATED AIR POLLUTION DYNAMICS 
USING MOBILE AND FIXED-SITE MONITORS IN THE 
SAN FRANCISCO BAY AREA

The investigators compared diurnal profiles of UFPs and 
NOx stratified by season and weekday or weekend at the four 
regulatory fixed-site locations. During winter conditions, they 
observed generally consistent diurnal (hour-of-day) patterns 
for UFPs and NOx (IR, Figure 6a). The summertime diurnal 
patterns for each pollutant, however, notably differed; obser-
vations for NOx were generally lower than those for UFPs. For 
example, there were daytime peaks in UFP concentrations 
at multiple sites during the warmer months that were not 
observed with NOx. Observations of NOx were also notably 
lower in summer than in winter and lowest on weekend days.

Overall, the investigators concluded that daytime UFP con-
centrations in this area, especially during summer, appeared 
to be influenced strongly by nontraffic sources of UFPs, 
including secondary new particle formation events. Given the 
differences in spatiotemporal patterns of NOx concentrations 
compared to those of UFPs, they suggested that using NOx (or 
other traffic-related air pollutants) as a proxy for UFPs could 
result in inaccuracies in estimating UFP exposure.

ANALYSIS M3: ASSESSMENT OF LOCAL- AND 
REGIONAL-SCALE AIR POLLUTION DISPARITIES 
IN THE SAN FRANCISCO BAY AREA USING MOBILE 
MONITORING

The population-weighted means of the measured pollut-
ants among the 13 communities were: 0.31 µg/m3 for BC, 4.6 
ppb for NO, 8.2 ppb for NO2, and 19,100 cm3 for UFPs. Gen-
erally, correlations between block-level concentrations of the 
individual pollutants were variable, and they observed the 
lowest correlations between UFPs and the other pollutants 
(interquartile range Pearson’s r ranged from 0.4 to 0.7).

In this study area, based on data from the 2010 U.S. Cen-
sus, 33% of the population was Non-Hispanic White, 31% 
was Asian, 21% was Hispanic, and 14% was Black. The 
investigators found that Non-Hispanic White populations 
were exposed to lower concentrations of NO, NO2, and UFPs 
than other groups, with median exposures 16% to 27% below 
the total population median, while Black and Hispanic pop-
ulations were exposed to concentrations 8% to 30% higher 
than the total population medians (IR, Figure 8a).

This analysis found that differences in population expo-
sures to NO and BC were driven mostly by variability in 
concentrations within individual neighborhoods (i.e., very 
local-scale variability; within 1 km), whereas differences 
in exposures to NO2 and UFPs across the area were driven 
principally by differences in larger-scale, neighborhood-level 
mean concentrations.

ANALYSIS M4: SCALING AIR QUALITY MAPPING OF 
NO AND BC THROUGH MOBILE MONITORING AND 
LAND USE REGRESSION IN OAKLAND, CALIFORNIA

Apte and colleagues produced maps of pollutant concentra-
tions on sampled road segments using the various approaches 
described earlier. Visual inspection suggested that each approach 
had generally good face validity and captured key features of 
the long-term concentrations of NO and BC. For example, 
in all cases, concentrations appeared lowest on residential 
streets, and highest on highways and in the downtown area of 
Oakland. Commentary Figure 1 presents maps of NO patterns 
created with the data-only approach using all available data (left 
panel) and reduced datasets (middle and right panel). 

The map produced using the data-only approach with 
the full dataset (i.e., many dozen drive passes on all roads, 
with a total drive time of about 1,300 hours) contained many 



 49

Review Committee 

Commentary Figure 1. Maps showing results of data reduction schemes for estimating daytime median concentrations of NO in 
Oakland, California, during 2015–2017 using a data-only approach. (a) Median of drive-pass mean concentrations using all available 
data (all roads, all drive passes). (b) Four randomly selected drive days per road segment (all roads, fewer drive passes). (c) All drive 
days but subsampled to represent 30% of the arterial and residential roads (fewer roads, all drive passes). Source: IR Figure 3.

a.       b.          c.

localized pollution hotspots at intersections and locations 
with industries or other emissions sources that were not 
apparent in the maps created with the reduced datasets. The 
data-only map produced with a dataset restricted to only four 
drive days of observation, but coverage of all streets (i.e., 6% 
of the full dataset; about 80 hours in total; middle panel of 
Commentary Figure 1), resulted in only a slight decrease in 
performance, but with a substantial drop in mobile-monitoring 
data requirements. The panel on the right of Commentary 
Figure 1 shows the estimated NO concentrations based on all 
available days of observation but limited to only 30% of the 
arterial and residential roads.

The LUR-K approaches developed using either a sampling 
of all roads, but from a reduced subset of drive days, or a sub-
set of roads, but sampled many times, both resulted in only 
negligible decreases in model predictions and performance. 

Finally, the LUR-K model based on a highly restricted 
dataset (i.e., 30% road coverage and only four days of 
observation) also reflected only a moderate reduction in 
model performance despite the substantial reduction in data 
requirements. More details can be found in IR Figures 3 and 
10 for maps created using the various alternative approaches.

Ultimately, the overarching conclusion from this analysis 
was that viable LUR-K models could be developed even 
with little mobile monitoring data. Although the data-only 
approach outperformed the LUR-K in precision with only a 
modest number of repeated samples (i.e., <10 repeated days), 
this was at the cost of having to sample every road for which 
exposure measurements are desired.

ANALYSIS M5: MOBILE MONITORING IN 
BANGALORE, INDIA

Due to various logistical issues, the work in India was not 
as extensive as originally planned, and so the investigators 

focused on the results from Malleshwaram, a large, urban 
neighborhood of Bangalore. This area was the only one for 
which they were able to conduct complete block-by-block 
repeated monitoring comparable to that of their San Francisco 
Bay Area campaign. Their study design involved collecting 
one weekly sample of the entire Malleshwaram area over two 
consecutive days, resulting in 44 days of data collection and 
22 repeated drive days for each road segment. In total, they 
sampled about 150 km of roads across Bangalore, about 62 km 
of which were in Malleshwaram.

The spatial means (and medians) representing morning- 
time concentrations on the nonsummer weekdays for the road 
segments in the Malleshwaram study domain were about 26 
µg/m3 (15 µg/m3) for BC and about 81,000 cm³ (62,000 cm³) 
for UFPs. Similar to the maps for the San Francisco Bay Area, 
the maps produced here again had strong face validity with 
the highest observations observed along highways, lower 
observations on major arterial roads, and the lowest observa-
tions on smaller, residential streets (with similar patterns for 
all three pollutants). The observed concentrations of BC and 
UFPs in Malleshwaram were both much higher than those 
observed in the San Francisco Bay Area, with the observa-
tions for UFPs about four times higher in Malleshwaram than 
in the Bay Area and those for BC about 100 times higher. The 
investigators suggested that this finding is likely due to the 
high proportion of older diesel engines operating in India. 

As was done in analysis M4, the investigators examined 
how many repeated samples would be needed to capture the 
spatial patterns observed with the full dataset of 22 repeated 
drives. Here, they observed that including information from 
each additional drive pass increased rapidly until about 7 
sampling days, and then only minimally thereafter (Commen-
tary Figure 2).

As such, despite the differences in terms of fleet composi-
tion, population density, and mean pollutant concentrations 
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between the two settings of Malleshwaram 
and the San Francisco Bay Area, the reduced 
sampling results in both locations suggested 
that mobile monitoring produced relatively 
stable maps after about 10 drive days, with 
diminishing returns to precision with addi-
tional sampling beyond that. The finding from 
this analysis module, therefore, is consistent 
with those presented earlier for analysis M4 and 
from previous work by these investigators (Apte 
et al. 2017).

Commentary Figure 2. Subsampling analysis for the Malleshwaram 
neighborhood in Bangalore. Source: IR Figure 13.

HEI REVIEW COMMITTEE’S EVALUATION

STUDY DESIGN, DATASETS, AND ANALYTICAL 
APPROACHES

In its independent evaluation of the study, the Review 
Committee noted that at the time of funding, in June 2017, 
this study proposed the largest, most extensive campaign to 
examine the potential applications, strengths, and limitations 
of mobile monitoring. Overall, the HEI Review Committee 
was impressed with the extent to which the investigators 
described, compared, and analyzed the data.

The Committee noted several strengths of the study design. 
For example, Apte and colleagues compiled a large amount of 
data from several sources, including mobile monitoring data 
in several locations (in two countries) and data from several 
fixed-site networks. In addition, the richness of the data 
allowed the investigators to explore many issues, including 
the comparability of long-term observations from fixed-site 
monitors with observations collected through mobile moni-
toring and the utility of mobile monitoring data for describing 
spatial gradients in pollution. Their application of these mea-
surements to estimate potential population-level exposures 
was also appreciated as an enhancement to our understanding 
of environmental inequities within the population. The data-
sets also allowed the investigators to evaluate the feasibility 
of applying these approaches in different settings. The wide 
spatial and temporal extent of data used here also allowed 
the investigators to conduct simulation studies to evaluate 
various logistical and study design considerations that can 
affect the potential benefits and costs associated with mobile 
monitoring. Another strength of the study is the examination 
of the performance of air quality models that integrate mobile 
monitoring data into LUR-K modeling.  

The rich datasets used by the investigators also allowed 
them to explore and identify the relative trade-offs between 
intensive repeated sampling and several alternative 
approaches to data reduction, including reducing the number 
of roads sampled and the number of repeated passes on given 
roads. The Committee agreed with the investigators that 
in both the San Francisco Bay Area and in Malleshwaram, 

mobile monitoring produced relatively reproducible maps for 
several traffic-related pollutants with data from relatively few 
repeated drive passes.

The Committee also noted some limitations to the 
approach. For example, one issue with the mobile monitor-
ing is that the drivers drove some routes and areas always 
in the same order and at the same time of day. This pattern 
of data collection makes it difficult to disentangle whether 
the pollution concentrations in a given location are indeed 
representative of the daytime typical average conditions, or if 
the concentrations for that location in fact represent temporal 
trends much higher than average levels occurring during rush 
hour or lower than average values during a low-traffic time 
of day.

The Committee also wondered whether the results are 
generalizable to other pollutants, longer periods, or to other loca-
tions (including to wider areas within the San Francisco Bay and 
Bangalore areas, as well as to other locations in the United States 
or elsewhere). For example, all the comparisons between mobile 
and fixed-site measurements from analysis M1 pertain to only 
one pollutant (BC), one study area (West Oakland), and cover a 
relatively short period (May-August 2017). Similar analyses of 
other pollutants would be useful in the future. It is also difficult 
to know the extent to which the observed correspondences 
between UFPs and NOx described in analysis M2 would apply 
to other locations with different geographies, mixes of vehicles, 
or kinds of point sources of air pollution. Finally, the monitored 
area in Bangalore (i.e., Malleshwaram) comprised only a few 
square kilometers so might not accurately capture variations that 
might have been observed elsewhere in the very large city or in 
the surrounding regions.

It is important to acknowledge that the limitations above, 
along with a few other issues, might affect the suitability of 
mobile measured air pollution data for use in epidemiological 
analyses when used as the only data source. For example, we 
would expect on-road measurements to be different from 
those observed at fixed-site stations because they are collected 
in the middle of the road rather than at roadsides or other 
locations that might be closer to where people live. This is in 
contrast to measurements from fixed-site monitors, and even 
satellite-based measurements, that can be collected in a vari-
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ety of locations, including away from busy roads. The mobile 
monitoring was also performed only during daytime hours on 
weekdays and does not reflect concentrations during the times 
of day when people might be more likely to be at home (i.e., 
in the evenings, at night, and on weekends). Moreover, most 
cohort studies have information on the residential addresses 
of individuals for the purpose of estimating air pollution 
exposures. Given the intensiveness of mobile monitoring, 
there will often be a mismatch between the period captured 
by the mobile measurements and the window of exposure 
most relevant for epidemiological purposes, especially if the 
focus is on the health impacts of long-term exposures. 

Nonetheless, these measurements did provide additional 
spatial resolution that might not be captured by the limited 
fixed-site monitoring network or area-based satellite mea-
surements. Additionally, mobile measurements might be 
especially useful for estimating exposures for commuters, 
especially cyclists and pedestrians. Overall, the Committee 
agrees with the investigators that there are further opportu-
nities to explore these kinds of rich datasets, especially for 
combining the mobile measured data with fixed-site data to 
develop exposure models for use in epidemiological analyses 
and for identifying disparities in population exposures.

FINDINGS AND INTERPRETATION 

Generally, the Committee found that the report presented 
a comprehensive and thoughtful discussion of the findings 
from the numerous research modules and analyses. Results 
from this study answered important questions and contrib-
uted interesting insights about collecting and working with 
mobile-measured air pollution data. 

The descriptive analyses of BC, NOx, and UFPs provide 
valuable new insights about their spatial and temporal 
patterns, and particularly, how they compare with those 
of other traffic-related pollutants in different contexts. For 
example, the investigators were able to identify that patterns 
of UFPs and NOx shared similar spatial and hourly patterns 
during winter months in the San Francisco Bay Area, a result 
indicating a common primary traffic source during this 
season. However, during summer months the patterns were 
dissimilar, with the suggestion that summer concentrations 
of UFPs in this area were more strongly influenced by new 
secondary particle formation rather than primary emissions. 
The Committee agreed with this conclusion and felt that 
these data highlight nicely the value of combining detailed 
mobile mapping with at least a few fixed-site monitors that 
can provide long-term data. 

The Committee also agreed with the investigators that 
some pollutants appear to be better suited for mobile moni-
toring than others. Generally, pollutants with a high degree 
of spatial variation and a low degree of temporal variation, 
such as NOx, should be among the best suited to this kind 
of approach. In contrast, PM2.5 is likely less suited for this 
approach because it tends to have relatively low spatial 

variability within an urban area. Similar conclusions could 
be made about the kinds of locations that would benefit most 
from mobile monitoring. Specifically, locations with greater 
heterogeneity in local sources will benefit from the richer 
spatial information of a mobile monitoring campaign.

The Committee thought this report highlighted what we 
can learn about spatial patterns of traffic-related air pollution 
and population exposures when mobile monitoring data are 
leveraged. Importantly, mobile monitoring can provide mea-
surements directly on highways where fixed-site monitoring 
is infeasible. This has value for better capture of emissions 
from the vehicle fleet and for reflecting exposures to drivers on 
the road. Apte and colleagues also demonstrated clearly that 
mobile monitoring is able to detect localized pollution hot 
spots, such as at specific intersections and along designated 
truck routes, which would not be captured by measurements 
from fixed-site stations alone. 

The investigators estimated potential population exposures 
by averaging observations collected on surrounding streets to 
the centers of city blocks. Here, they found that across the 
San Francisco Bay Area, Non-Hispanic White populations 
were exposed to lower concentrations of NO, NO2, and UFPs 
than other groups, and Black and Hispanic populations were 
exposed to higher-than-average concentrations of those pol-
lutants. The Committee saw the value in using these data for 
characterizing environmental disparities and was generally 
satisfied with this approach though they acknowledge the 
potential challenge of disentangling differences in concentra-
tion due to time and space as discussed above.

An especially important aspect of this study was a detailed 
analysis to determine how much mobile monitoring data are 
needed to get relatively accurate maps of long-term patterns 
of traffic-related air pollution along roadways. The Committee 
noted that the investigators demonstrated that adequate pol-
lution maps were produced by models supported by LUR-K 
approaches that used relatively limited data from mobile 
monitoring. Importantly, this study showed that sampling on 
every road is not needed for the model output to be effective. 
The investigators also showed that maps produced with 
only mobile monitoring data (i.e., without support from the 
spatial modeling approaches) outperformed the LUR-K in 
precision with only a modest number of repeated samples 
(i.e., fewer than 10 repeated days), but at the cost of having 
to sample every road. Researchers using these methods for 
epidemiological studies will need to evaluate the extent to 
which the added cost of mobile monitoring yields sufficient 
improvements to exposure modeling and prediction.  

A novel aim of this study was the investigators’ efforts 
to implement mobile monitoring in a low-resource setting, 
namely Bangalore, India, with traffic patterns and pollution 
concentrations that are very different from those in the San 
Francisco Bay Area. The investigators demonstrated that with 
sufficient funding and expertise, mobile monitoring was a 
viable technique for estimating fine-scale concentrations of 
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traffic-related air pollution in that area. They noted that key 
challenges of conducting mobile monitoring in this setting 
included the low traffic speeds (typically 10-15 km/h), which 
limited the area that could be covered in a given sampling ses-
sion, and that the instruments used required study personnel 
to accompany the drivers at all times to ensure the instru-
ments were operating properly. Both of those issues limited 
the efficiency of the process, as compared to that undertaken 
in Oakland. The Review Committee perceived the work in 
India as a feasibility study given the small sampling area 
that was ultimately sampled. Therefore, although the Review 
Committee commends the investigators for undertaking this 
analysis, they note that more work is needed to know if this 
is a feasible approach in other LMICs, and perhaps in India 
more broadly. 

Another aim of this study was to investigate the potential 
for scaling mobile monitoring techniques to larger study 
domains (i.e., not just neighborhoods, but across entire cities 
and regions). The analyses with LUR-K modeling demon-
strated how the mobile monitoring data could be leveraged 
for creating spatial models to cover areas where not all roads 
are sampled. The leveraging of measurements collected previ-
ously using Google Street View cars was a unique opportunity 
that the investigators benefited from in their study. However, 
a potential limiting factor for scaling or replicating these 
analyses is that Google Street View cars are not available on 
demand to other researchers or in other locations. Other fleet 
vehicles that regularly drive around cities, such as taxis or 
delivery trucks, are an alternate possibility but might be less 
suitable options for this purpose because they are driven less 
systematically through communities and researchers would 
have no control over the routes covered. 

It is worth noting that mobile monitoring, in addition to 
being time-consuming and laborious, can be costly, especially 
in areas that do not have sufficient resources dedicated to air 
quality monitoring and research. The investigators estimated 
a cost of about $1 million per year (which would include 
vehicles, equipment, and salaries for drivers and analysts) to 
conduct mobile monitoring equivalent to what was done in 
Oakland in a large urban area in the United States. The inves-
tigators noted that costs to do this might be lower in LMICs 
settings where labor costs are generally lower, but personnel 
with the required training and expertise might not be readily 
available. Ultimately, these estimated costs are much higher 
than what might be expected for establishing or expanding 
a network of low-cost, fixed-site monitors to capture more 
detailed data on pollutant concentrations for epidemiolog-
ical or regulatory purposes. A related question, therefore, 
is whether mobile monitoring is really needed in some 
locations, such as in LMICs, or would time and resources 
be better spent in building the basic air quality monitoring 
infrastructure first? Certainly, the answer will depend on the 
pollutant, location, and question of interest.

CONCLUSIONS

In this pioneering study, Apte and colleagues conducted 
very thorough analyses of the various strengths, limitations, 
and potential uses of mobile monitored air pollution data. 
They showed that mobile monitoring data (which provide 
dense spatial coverage) coupled with observations from fixed-
site stations (which provide long-term temporal coverage) 
and spatial modeling approaches can produce robust maps 
of spatiotemporal patterns of traffic-related pollution that can 
capture highly localized hotspots of pollution. On their own, 
however, data from mobile monitoring can have important 
limitations and therefore careful consideration is needed 
before using them in exposure assessment or epidemiological 
analyses. 
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Determinants of Near-Road Ambient Air Quality
ABBREVIATIONS AND OTHER TERMS

 ABCD  aerosol black carbon detector

 BC  black carbon

 CACES  Center for Air, Climate and Energy 
Solutions

 CO  carbon monoxide

 CO2  carbon dioxide

 GPS  global positioning system

 ICC  intra-class correlation

 IEG  integrated empirical geographic

 LMIC  low-middle income country

 LOD  limit of detection

 LUR  land use regression

 LUR-K  land use regression-kriging

 MAE  mean average error

 NO  nitric oxide

 NO2  nitrogen dioxide 

 NOx   nitrogen oxides

 NRMSE  normalized root-mean-square error

 PAX  photoacoustic extinctiometer 

 PM  particulate matter

 PM2.5  fine PM, particulate matter with 
aerodynamic diameter ≤2.5 µm 

 ppb  parts per billion

 RMSE   root-mean-square error

 SSD   sum-of-square deviation

 UFPs   ultrafine particles 
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