The Challenge of Modeling the Chemistry of Ozone

Greg Yarwood
gyarwood@ramboll.com
Topics

Chemical life cycle of nitrogen oxide (NO\textsubscript{x}) emission
Chemical controls over NO\textsubscript{x} removal and potential for NO\textsubscript{x} recycling
NO\textsubscript{x} influence on distributions of ozone concentration
Organic nitrate (ON) removal by condensed-phase hydrolysis
Nitrate radical + terpene reactions
Chemical life cycle of NOx emission

- NO
- NO2
- NO3
- N2O5
- O3
- PAN
- HONO
- HNO3
- pNO3
- SOA
- aerosol

Reactions:
- NOx recycling
- ON hydrolysis
- NO3 + terpene
Daytime NO\textsubscript{x} chemical removal: Urban/rural differences

Removing NO\textsubscript{x} stops it from participating in ozone formation

Urban (higher NO\textsubscript{x}): three pathways all active

Rural (low NO\textsubscript{x}): organic nitrate (ON) pathway becomes dominant
NO$_x$ recycling: Distributing NO$_x$ to rural areas

Chemical reactions of ON, HNO$_3$ and PAN can release NO$_x$: termed “NO$_x$ recycling”

Uncertain magnitude of NO$_x$ recycling from ON:
- Extent of ON partitioning to aerosol
- Rate of ON hydrolysis within aerosol

NO$_x$ recycling from PAN mediated by PAN decomposition: $T_{1/2}$ of 40 mins @ 298K vs. 40 hours at 273K
Modeling H4MDA8 Ozone variation with NO\textsubscript{X} and VOC

- Nationwide photochemical modeling (WRF/CAMx)
- Quantify emission reductions from 2006 to attain various potential National Ambient Air Quality Standards (NAAQS)
- Novel application of ozone sensitivity (DDM) allows continuous and independent variation

$$\Delta O_3 = \Delta N^1_N + \frac{1}{2} \Delta N^2_N + \Delta V^1_V + \frac{1}{2} \Delta V^2_V + \Delta N \Delta V^2_N,$$

where

- $S_N^1 = \partial O_3 / \partial NO_x$
- $S_N^V = \partial O_3 / \partial VOC$
- $S_N^{2N} = \partial^2 O_3 / \partial NO_x^2$
- $S_V^2 = \partial^2 O_3 / \partial VOC^2$
- $S_{NV}^{2V} = \partial^2 O_3 / \partial NO_x \partial VOC$

- Provides long (annual, ozone season) simulated ozone time-series at adjustable NO\textsubscript{X} & VOC emission level

H4MDA8 = annual fourth highest maximum daily 8-hour average

Emission reductions and urban ozone responses under more stringent US standards

Nicole Downey a, b, Chris Emery b, Jaegun Jung b, Tanarit Sakulyanontvittaya b, Laura Hebert c, Doug Blewitt c, Greg Yarwood c
Reducing NO\textsubscript{x} changes the ozone distribution

- Emission reductions truncate the high tail of maximum daily 8-hour (MDA8) and hourly ozone
- Emission reductions also can truncate a low tail of suppressed ozone
 - Especially “downtown”
 - More pronounced for hourly than MDA8 ozone
 - More impact for full year than ozone season (not shown)
- As anthropogenic emissions -> zero the distribution of background ozone appears
Ozone exposure (ppb hours) recalcitrant to reducing emissions

![Graphs showing Ozone exposure](image)
ON formation and examples

Precursor
- n-octane
- 1-butene
- toluene

Organic Nitrate

From the Master Chemical Mechanism (MCM) version 3.3.1
Organic nitrates removed by condensed-phase hydrolysis

alpha-pinene derived nitrate (APN)

J. D. Rindelaub et al., 2016

Table 2. The hydrolysis lifetimes of isopropyl nitrate (IPN), isobutyl nitrate (IBN), and the \(\alpha \)-pinene-derived nitrate (APN) at varying pH.

<table>
<thead>
<tr>
<th>pH</th>
<th>IPN</th>
<th>IBN</th>
<th>APN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>28 h</td>
<td>23 h</td>
<td>8.3 min</td>
</tr>
<tr>
<td>1.0</td>
<td>33 days</td>
<td>33 days</td>
<td>44 min</td>
</tr>
<tr>
<td>1.7</td>
<td>35 days</td>
<td>33 days</td>
<td>−</td>
</tr>
<tr>
<td>2.5</td>
<td>33 days</td>
<td>33 days</td>
<td>33 min</td>
</tr>
<tr>
<td>4.0</td>
<td>30 days</td>
<td>28 days</td>
<td>1.3 h</td>
</tr>
<tr>
<td>6.9</td>
<td>> 8 months</td>
<td>> 8 months</td>
<td>8.8 h</td>
</tr>
</tbody>
</table>

Figure 6. The proposed acid-catalyzed hydrolysis mechanism of an \(\alpha \)-pinene-derived nitrate.
Nitrate radical + terpenes: Remove NO\textsubscript{x} and form secondary organic aerosol (SOA)

- Terpenes dominate NO\textsubscript{3} radical loss at night and are important during the day
- Inferred molar yield of aerosol-phase monoterpane ON of 23–44 %
- ON comprised 30–45% of the total reactive nitrogen (NO\textsubscript{y}) budget during Southern Oxidant and Aerosol Study (SOAS)

Figure 4. Average diurnal profile of NO\textsubscript{3}/N\textsubscript{2}O\textsubscript{5} losses 1 June–
Thank You

Reminders:

• NO$_x$ recycling: Distributing NO$_x$ to rural areas
• Ozone *exposure* recalcitrant to reducing NO$_x$ emissions
• Organic nitrates removed by condensed-phase hydrolysis
• Nitrate radical + terpenes: Removing NO$_x$ and forming SOA