Characterization of GDI PM during start-stop operation with alcohol fuel blends

Presenter: John Storey

Melanie DeBusk, Shean Huff, Sam Lewis, Faustine Li, John Thomas, and Mary Eibl

Oak Ridge National Laboratory

Effects of Fuel Composition on PM Health Effects Institute Workshop

Chicago, IL December 8, 2016

Kevin Stork and Michael Weismiller Fuel and Lubricant Technologies Vehicle Technologies Office, DOE

ORNL is managed by UT-Battelle for the US Departmethis presentation does not contain any proprietary, confidential, or otherwise restricted information.

GDI Vehicle PM Emissions: Impact of cold start, fuels

Will start-stop technology impact GDI PM emissions? Does bio-fuel impact PM?

- 2010, 2012: Observed high PM during cold start, ethanol reduced PM
- 2014: Detailed HC speciation showed changes in PAHs on PM

ational Labo

2

GDI Vehicle PM Emissions: Impact of cold start, fuels

Will start-stop technology impact GDI PM emissions? Does bio-fuel impact PM?

- 2010, 2012: Observed high PM during cold start, ethanol reduced PM
- 2014: Detailed HC speciation showed changes in PAHs on PM (SAE 2010-01-2129; 2012-01-0437; 2014-01-1606)
- 2014-2015: Obtained and evaluated 2014 Malibu e-Assist vehicle
- Bio-fuel may impact both fuel and lube contribution to PM
- Focus on Start-Stop effect on PM mass, soot and number
 - Tier 3 regulations will lower PM mass standard
 - PM soot ≈ black carbon, a potent contributor to climate change
 - Particle number is regulated in Europe currently

GDI Vehicle on ORNL's Chassis Dynamometer

Fuels splash- blended

- E0 = EEE Tier 2 cert
- E20 = EEE + 20% EtOH
- iBu12 = EEE + 12% i-BuOH

Cold start dominates mass for all three fuels - Filter Mass Measurements

- FTP Composite: weighted average of cold and hot
- Start-stop only increases hot cycle PM for isobutanol

Cold start dominates mass for all three fuels - Filter Mass Measurements

- FTP Composite: weighted average of cold and hot
- Start-stop only increases hot cycle PM for isobutanol

Soot emissions show similar trends to PM mass - Micro-Soot Sensor Measurements

- Soot emissions taken second-by-second
- Integrated over cycle and with exhaust flow to get mg/mile
- Wide variability in Hot, despite up to 27 runs

Soot emissions show similar trends to PM mass - Micro-Soot Sensor Measurements

Cold Start

Hot start

- Soot emissions taken second-by-second
- Integrated over cycle and with exhaust flow to get mg/mile
- Wide variability in Hot, despite up to 27 runs

Particle number emissions trend lower for Start-Stop - Engine Exhaust Particle Sizer Measurements

- EEPS Total Particle Number includes PM< 23 nm
- (#/cc) taken second-by-second (DR ~ 100)
- Integrated over cycle and with exhaust flow to get #/mile

Particle number emissions trend lower for Start-Stop - Engine Exhaust Particle Sizer Measurements

- EEPS Total Particle Number includes PM< 23 nm
- (#/cc) taken second-by-second (DR ~ 100)
- Integrated over cycle and with exhaust flow to get #/mile

ANOVA (Analysis Of Variance)

Soot	F	р
Fuel (E0, E20, IB12)	5.19	0.0072
Mode (SS, no SS)	19.18	0
Fuel * Mode	14.54	0

Particle Number	F	р
Fuel (E0, E20, IB12)	1.31	0.273
Mode (SS, no SS)	1.78	0.1837
Fuel * Mode	56.86	0

- Null hypothesis: there is no difference between fuels or startstop modes
 - p< 0.05 means you reject the null hypothesis
 - o p< 0.05 is statistically significant</p>
- For soot production, Fuel, Mode, and their interaction produced a significant difference in soot.
- For particle number, Fuel and Mode did not produce a significant effect. But their interaction did.

EEPS shows variability for same time intervals

- Variability between hot cycles observed (5 shown above)
- Wide bands, even with 9 cycles
- Data analysis ongoing to look at specific transients

EEPS maps relate size, number to soot production

E ry

Chemistry of GDI PM HCs

Collection and direct thermal desorption/pyrolysis of soot

- GDI PM collected from filter
 - Light suction on glass capillary
 - ~0.5 mg needed (70 or 90 mm)
- Transfer to pre-cleaned thimble
- TDP-GC-MS (2 chromatograms)
 - 1st Step Desorption to 325 °C
 - 2nd Step Pyrolysis direct to 500 °C

GDI Vehicle PM Emissions: Impact of cold start, fuels

Does bio-fuel impact PM HCs?

- 2014: Collected soot under rich conditions with 3 fuels, E0, E30, iBu48
- Detailed HC speciation showed changes in PAHs on PM

(SAE 2014-01-1606)

Injection matters: Differences in adsorbed HCs apparent for two different platforms

17

Start-Stop Study: E20 fuel has lowest measured PM and PAH

- FTP cold-hot weighted mass data for start-stop
- Ethanol appears to reduce PAH formation in the soot

Start-stop study: GC-MS didn't detect lube HCs on filter

Summary: GDI vehicle PM depends on fuel and mode

- Lowest Cold Start PM mass, soot and number = E20
- Hot start PM affected differently

Lowest value:	No Start-Stop	Start-Stop
PM Mass	E0 ≈ E20	E20
Soot Mass	iBu12	EO
Particle #	iBu12	EO

- Largest particles contribute to soot emissions in first 300 s
- PAHs affected by alcohols
- Injection technology has improved both mass and chemistry
- "Uncontrolled" burns may be associated with PAH
- How about lubricant contribution?
 - Not conclusive, no lubricant found in PM organic fraction by GC-MS
- Why is this research important?
 - Start-up has highest PM emissions for GDI
 - Start-stop could impact particulate filter operation if GPF needed in 2025
- Takeaway: Operation and fuel both have to be considered for PM control strategies

Acknowledgements

- Kevin Stork and Michael Weismiller DOE Vehicle Technologies Office, Fuel and Lubricant Technologies Program
- "This research was supported in part by an appointment to the Higher Education Research Experiences Program at Oak Ridge National Laboratory" (Faustine Li, Mary Eibl)
- Much helpful discussion with Matti Maricq, Imad Khalek, Dave Kittelson, Alla Zelenyuk
- Contact: John Storey
 <u>storeyjm@ornl.gov</u> 865-946-1232

