Accountability and Attribution: Origin and Applications

Jonathan M. Samet, MD, MS
Distinguished Professor and Flora L. Thornton Chair
Department of Preventive Medicine
USC Keck School of Medicine

HEI Annual Conference
May 1, 2017
Morton Levin’s Attributable Risk Formula

• Estimate the Relative Risk (RR)

• Estimate the prevalence (P) of each risk factor.

• Calculate population attributable risk (PAR)

\[
\text{PAR} = \frac{P(\text{RR} - 1)}{1 + P(\text{RR} - 1)}
\]
The “Red Book”

Elements of Quantitative Risk Assessment (QRA)

- Hazard ID
- Dose-response
- Exposure assessment
- Risk characterization
Applications

SAMMMEC

Smoking-Attributable Mortality, Morbidity, and Economic Costs

Table 12.4 Annual deaths and estimates of smoking-attributable mortality (SAM) for adults 35 years of age and older, total and by gender, United States, 2005–2009

<table>
<thead>
<tr>
<th>Disease</th>
<th>Males</th>
<th>Females</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Deaths</td>
<td>SAM</td>
<td>Attributable fraction (%)</td>
</tr>
<tr>
<td>Lung cancer</td>
<td>88,750</td>
<td>74,300</td>
<td>83.74</td>
</tr>
<tr>
<td>Other cancers</td>
<td>102,940</td>
<td>26,000</td>
<td>25.26</td>
</tr>
<tr>
<td>Total—Cancers</td>
<td>191,670</td>
<td>100,300</td>
<td>52.33</td>
</tr>
<tr>
<td>Coronary heart disease</td>
<td>218,870</td>
<td>61,800</td>
<td>28.24</td>
</tr>
<tr>
<td>Other heart disease</td>
<td>75,670</td>
<td>13,400</td>
<td>17.71</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>53,610</td>
<td>8,200</td>
<td>15.30</td>
</tr>
<tr>
<td>Other vascular disease</td>
<td>14,480</td>
<td>6,000</td>
<td>41.43</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>35,200</td>
<td>6,200</td>
<td>17.61</td>
</tr>
<tr>
<td>Total—Cardiovascular and metabolic diseases</td>
<td>397,840</td>
<td>95,600</td>
<td>24.03</td>
</tr>
<tr>
<td>Pneumonia, influenza, tuberculosis</td>
<td>25,300</td>
<td>7,800</td>
<td>30.83</td>
</tr>
<tr>
<td>COPD</td>
<td>61,450</td>
<td>50,400</td>
<td>82.04</td>
</tr>
<tr>
<td>Total—Pulmonary diseases</td>
<td>86,750</td>
<td>58,200</td>
<td>67.10</td>
</tr>
<tr>
<td>Total—Cancers, cardiovascular and metabolic diseases, pulmonary diseases</td>
<td>676,240</td>
<td>254,100</td>
<td>37.58</td>
</tr>
<tr>
<td>Prenatal conditions</td>
<td>5,970</td>
<td>346</td>
<td>5.80</td>
</tr>
<tr>
<td>Sudden infant death syndrome</td>
<td>1,370</td>
<td>236</td>
<td>17.26</td>
</tr>
<tr>
<td>Perinatal conditions</td>
<td>7,240</td>
<td>582</td>
<td>7.93</td>
</tr>
<tr>
<td>Residential fires</td>
<td>336</td>
<td>284</td>
<td></td>
</tr>
<tr>
<td>Secondhand smoke</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: https://www.ncbi.nlm.nih.gov/books/NBK294316/
Applications

GBD
Global Burden of Disease

Source: https://vizhub.healthdata.org/_gbdccompare/
Applications

SAMMEC

Smoking-Attributable Mortality, Morbidity, and Economic Costs

GBD

Global Burden of Disease

Table 12.4. Annual deaths and estimates of smoking-attributable mortality (SAM) for adults 35 years of age and older, total and by gender, United States, 2005-2009

<table>
<thead>
<tr>
<th>Disease</th>
<th>Males</th>
<th>Females</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Deaths</td>
<td>SAM</td>
<td>Deaths</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Attributable fraction (%)</td>
<td></td>
</tr>
<tr>
<td>Lung cancer</td>
<td>88,730</td>
<td>74,300</td>
<td>83.74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>84.50</td>
<td></td>
</tr>
<tr>
<td>Other cancers</td>
<td>102,940</td>
<td>26,000</td>
<td>25.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25.26</td>
<td></td>
</tr>
<tr>
<td>Total—Cancers</td>
<td>191,670</td>
<td>100,300</td>
<td>52.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>52.33</td>
<td></td>
</tr>
<tr>
<td>Coronary heart disease</td>
<td>218,870</td>
<td>61,800</td>
<td>28.24</td>
</tr>
<tr>
<td>Other heart disease</td>
<td>75,670</td>
<td>13,400</td>
<td>17.71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17.71</td>
<td></td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>53,610</td>
<td>8,200</td>
<td>15.30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15.30</td>
<td></td>
</tr>
<tr>
<td>Other vascular disease</td>
<td>14,480</td>
<td>6,000</td>
<td>41.43</td>
</tr>
<tr>
<td></td>
<td></td>
<td>41.43</td>
<td></td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>35,200</td>
<td>6,200</td>
<td>17.61</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17.61</td>
<td></td>
</tr>
<tr>
<td>Total—Cardiovascular and metabolic diseases</td>
<td>397,840</td>
<td>95,600</td>
<td>24.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24.03</td>
<td></td>
</tr>
<tr>
<td>Pneumonia, influenza, tuberculosis</td>
<td>25,300</td>
<td>7,800</td>
<td>30.83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30.83</td>
<td></td>
</tr>
<tr>
<td>COPD</td>
<td>61,450</td>
<td>50,400</td>
<td>82.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>82.04</td>
<td></td>
</tr>
<tr>
<td>Total—Pulmonary diseases</td>
<td>86,730</td>
<td>58,200</td>
<td>67.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>67.10</td>
<td></td>
</tr>
<tr>
<td>Total—Cancers, cardiovascular and metabolic</td>
<td>676,240</td>
<td>254,100</td>
<td>37.58</td>
</tr>
<tr>
<td>diseases, pulmonary diseases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>37.58</td>
<td></td>
</tr>
<tr>
<td>Prevalent conditions</td>
<td>5,970</td>
<td>346</td>
<td>5.80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5.80</td>
<td></td>
</tr>
<tr>
<td>Sudden infant death syndrome</td>
<td>1,370</td>
<td>236</td>
<td>17.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17.26</td>
<td></td>
</tr>
<tr>
<td>Perinatal conditions</td>
<td>7,340</td>
<td>582</td>
<td>7.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7.93</td>
<td></td>
</tr>
<tr>
<td>Residential fires</td>
<td>336</td>
<td>284</td>
<td>284</td>
</tr>
</tbody>
</table>

Environmental Public Health Tracking

Fig. 1 Conceptual model for staged development of air pollution health impact assessment for environmental public health tracking

Available at: http://www.springerlink.com/content/1873-9326
Rationale for accountability studies

• There is (was) a call for it.
• Strengthen basis for causal inference ($\beta_+ \text{ vs. } \beta_-)$.
• Assess consequences of specific interventions.
• Provide “validation” of risk assessments.

+ and - refer to whether air pollutant concentrations are increasing (more emissions or higher-pollution location) or decreasing (intervention or clean air policies).
Interventions and Dose-Response

Response

Exposure

Range of uncertainty

β “plus”

Observational data
Interventions and Dose-Response

β “minus”

Observational data

Intervention data

Range of uncertainty

Response

Exposure
“Evaluating the extent to which air quality regulations improve public health is part of a broad effort—termed **accountability**—to assess the performance of all environmental regulatory policies.”

September, 2003
What did Communication 11 propose?

- Chain of accountability
- Conceptual framework
- Research recommendations
Regulatory Action

Compliance, effectiveness

Atmospheric transport
chemical transformation and deposition

Human time activity in relation to indoor and outdoor air quality

Emissions

Ambient Air Quality

Exposure/Dose

Human Health

Uptake, deposition, clearance, retention

Susceptibility factors; mechanisms of damage and repair, health outcomes
Communication 11: Recommendations

- Developing and implementing new study designs
- Identifying targets of opportunity
 - PM and O_3 NAAQS implementation
 - Air Toxics Control Plan
 - Targets at local level
- Developing surveillance systems
Accountability: Communications 14 and 15

HEI’s Research Program on the Impact of Actions to Improve Air Quality: Interim Evaluation and Future Directions

Annemoon M. van Erp and Aaron J. Cohen

Proceedings of an HEI Workshop on Further Research to Assess the Health Impacts of Actions Taken to Improve Air Quality

2009

2010
accountability research air pollution

Accrual in air pollution and mortality in the United States - Dominici - Cited by 31
... perspectives on the public experience of air pollution - Bickerstaff - Cited by 53
... and bottom-up approaches to implementation research - Sabatier - Cited by 566

Accountability: Targets of Opportunity
Aug 26, 2004 ... Continually changing air pollution regulations in the United States, ...
Accountability research concerning these air toxics might include ...
www.healthyeffects.org/accountability.htm - Cached - Similar

Health Effects Institute - Home Page
Research Report 142, Air Pollution and Health: A European and North ... HEI publishes
Evaluation of Accountability Research Program -- September 2009 ...
www.healthyeffects.org/ - Cached - Similar

[PDF] US EPA: ACCOUNTABILITY RESEARCH: ASSESSING THE IMPACT OF AIR ...
File Format: PDF/Adobe Acrobat - Quick View
Accountability research in air science is inherently multidisciplinary. ... air pollution sciences
that link sources to air quality as well as ...
www.epa.gov/airsce/quick-finder/accountability.pdf

Air regulation support research | Research and Development | US EPA
US EPA: Accountability Research: Assessing the Impact of Air Quality Regulations ...
Accountability research in air science is inherently multidisciplinary. ...
www.epa.gov/airsce/quick-finder/accountability.htm - Cached

Multi-Pollutant Accountability
A meeting of Lead Authors for the NARSTO multi-pollutant accountability assessment was held in ...
Research Triangle Park, North Carolina. ... A workshop on modeling issues in multi-pollutant ...
air quality management was held in Denver on ...
www.narstw.org/mppac.src - Cached - Similar

NEJM -- Evaluating the Effects of Ambient Air Pollution on Life ...
by D Krewski - 2009 - Cited by 2 - Related articles
Jan 5, 2009 ... Air pollution is an important determinant of population health; quality ...
regulations: concepts and methods for accountability research. ...
content.nejm.org/cgi/content/full/363/4/413 - Similar
PubMed Analysis: Accountability

Search terms: "social responsibility"[MeSH Terms] OR ("social"[All Fields] AND "responsibility"[All Fields]) OR "social responsibility"[All Fields] OR "accountability"[All Fields]
PubMed Analysis: Accountability AND Research

Number of Citations

Publication Year

Search terms: (*)social responsibility*[MeSH Terms] OR (*social*[All Fields] AND *responsibility*[All Fields]) OR *social responsibility*[All Fields] OR *accountability*[All Fields]) AND (*research*[MeSH Terms] OR *research*[All Fields])
PubMed Analysis: Accountability AND Environment

Search terms: ("social responsibility"[MeSH Terms] OR ("social"[All Fields] AND "responsibility"[All Fields]) OR "social responsibility"[All Fields] OR "accountability"[All Fields]) AND ("environment"[MeSH Terms] OR "environment"[All Fields])
PubMed Analysis: Accountability AND Air Pollution

Publication Year

Number of Citations

Search terms: ("social responsibility"[MeSH Terms] OR ("social"[All Fields] AND "responsibility"[All Fields])) OR "social responsibility"[All Fields] OR "accountability"[All Fields] AND "air pollution"[MeSH Terms] OR "air"[All Fields] AND "pollution"[All Fields] OR "air pollution"[All Fields])
Respiratory Disease Associated with Community Air Pollution and a Steel Mill, Utah Valley

C. Arden Pope III, PhD

Abstract: This study assessed the association between hospital admissions and fine particulate pollution (PM$_{10}$) in Utah Valley during the period April 1985–February 1988. This time period included the closure and reopening of the local steel mill, the primary source of PM$_{10}$. An association between elevated PM$_{10}$ levels and hospital admissions for pneumonia, pleurisy, bronchitis, and asthma was observed. During months when 24-hour PM$_{10}$ levels exceeded 150 μg/m3, average admissions for children nearly tripled; in adults, the increase in admissions was 44 per cent. During months with mean PM$_{10}$ levels greater than or equal to 50 μg/m3 average admissions for children and adults increased by 89 and 47 per cent, respectively. During the winter months when the steel mill was open, PM$_{10}$ levels were nearly double the levels experienced during the winter months when the mill was closed. This occurred even though relatively stagnant air was experienced during the winter the mill was closed. Children’s admissions were two to three times higher during the winters when the mill was open compared to when it was closed. Regression analysis also revealed that PM$_{10}$ levels were strongly correlated with hospital admissions. They were more strongly correlated with children’s admissions than with adult admissions and were more strongly correlated with admissions for bronchitis and asthma than with admissions for pneumonia and pleurisy. (Am J Public Health 1989; 79:623–628.)

Introduction

On March 20, 1984, the US Environmental Protection Agency (EPA) proposed changes in the national ambient air quality standards for particulate pollution. Total suspended particulates (TSP) was to be replaced with a new indicator of particulate pollution that includes only those particulates with an aerodynamic diameter equal to or less than a nominal 10 micrometers (PM$_{10}$). On July 1, 1987, the EPA announced its final decision. The previous primary TSP standards were to be replaced, effective July 31, 1987, with a 24-hour PM$_{10}$ standard of 150 micrograms per cubic meter (μg/m3) with no more than one expected exceedance per year and an annual

Methods

Study Area

Utah Valley, located in Utah County of Central Utah, is the third largest county in the state with a population of 258,000 in 1987. Approximately two-thirds of the population resides in five nearly contiguous cities situated on a valley floor with an elevation of approximately 1,402 meters above sea level bordered east and west by mountains (Figure 1).

Based on an unpublished 1986 Utah State Department of Health survey, only 5.5 per cent of Utah County’s adults (18 years of age or older) smoke; approximately 90 per cent of its
Respiratory Disease Associated with Community Air Pollution and a Steel Mill, Utah Valley

AJPH 1989; 79 (5): 623-8

C. Arden Pope III, PhD

Abstract: This study assessed the association between hospital admissions and fine particulate pollution (PM$_{10}$) in Utah Valley during the period April 1985–February 1988. This time period included the closure and reopening of the local steel mill, the primary source of PM$_{10}$. An association between elevated PM$_{10}$ levels and hospital admissions was observed when PM$_{10}$ levels were above 150 µg/m3. Regressions on the log of the number of admissions were performed. The results were similar to those obtained in a previous study. During the third quarter of 1987, children aged 5 years and under were considerably more affected by the increased levels of PM$_{10}$.

Introduction

On July 1, 1987, the Environmental Protection Agency (EPA) issued a rule to define a new air quality standard for particulate matter (PM) as fine particulate matter with an aerodynamic diameter equal to or less than a nominal 10 micrometers (PM$_{10}$). On July 1, 1987, the EPA announced its final decision. The previous primary TSP standards were to be replaced, effective July 31, 1987, with a 24-hour PM$_{10}$ standard of 150 micrograms per cubic meter (µg/m3) with no more than one expected exceedance per year and an annual average of 50 µg/m3.

Method

Study Area

The study was conducted in the State of Utah, USA. The study site was the third quarter of 1987. The study sample consisted of five monitoring sites. The elevated PM$_{10}$ concentrations were the result of emissions from the steel mill. The steel mill was the primary source of PM$_{10}$.

Figure 1—Study Area, Utah Valley

FIGURE 1—Study Area, Utah Valley

Health outcomes were examined in Salt Lake County, Utah, USA. The study population included all individuals age 5 years and older who were admitted to the hospital during the period April 1985–February 1988. The study population included all individuals who were admitted to the hospital during the period April 1985–February 1988.

Data from Google Scholar
Air Quality Criteria for Particulate Matter

Available at: http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=87903
8.2.3.4 PM-Mortality Intervention Studies

Although many studies have reported short-term associations between PM indices and mortality, a largely unaddressed question remains as to the extent to which reductions in ambient air PM actually lead to reductions in deaths attributable to PM. This question is not only important in terms of “accountability” from the regulatory point of view, but it is also a scientific question that challenges the predictive validity of statistical models and their underlying assumptions used thus far to estimate excess mortality due to ambient PM.

The opportunities to address this question are rare. However, at the time of the 1996 PM AQCD, one situation presented a good opportunity for a PM intervention study—that being the Utah Valley situation evaluated by Pope. In the Pope (1989) analysis of PM$_{10}$ and children’s hospital admissions in Utah Valley, the study period contained the 13-month steel mill closure mentioned earlier (during which time PM$_{10}$ concentrations averaged 35 μg/m3 versus 50 μg/m3 when the mill was opened). Analyses of children’s respiratory admissions in Utah Valley before and after the steel mill closure provided evidence of decreased morbidity resulting from the lower PM$_{10}$ concentrations during the mill closure.

Two more recent mortality intervention studies have examined: (1) the impact of a ban on coal sale in Dublin, Ireland (Clancy et al., 2002); and (2) the impact of a regulation to use fuel oil with low sulfur content in Hong Kong (Hedley et al., 2002). These regulations were enforced
Integrated Science Assessment for Particulate Matter

The objective of the Dominici et al. (2007, 097361) study described above was motivated by accountability research, the idea of measuring the impact of policy interventions. However, unlike the intervention studies conducted in Hong Kong (Hedley et al., 2002, 040284) and Dublin, Ireland (Clancy et al., 2002, 035270) that were reviewed in the 2004 PM AQCD (U.S. EPA, 2004, 056905), this study was not designed to estimate a reduction in mortality in response to a sudden change in air pollution. In fact, the figure of observed trend in PM$_{10}$ levels presented in the Dominici et al. (2007, 097361) study indicates that the decline in PM$_{10}$ levels during the study period was very gradual, with much of the decline appearing in the first few years (median values of \sim33 μg/m3 in 1987 to \sim25 μg/m3 in 1992, then down to \sim23 μg/m3 in 2000). A flaw in the use of the time-series study design for this type of analysis is that it adjusts for long-term trends, and, therefore, does not estimate the change in mortality in response to the gradual change in PM$_{10}$. The apparent change, though weak, in the PM$_{10}$ risk estimates may also reflect a potential change in the composition of PM$_{10}$ (i.e., PM$_{10-2.5}$ or PM$_{2.5}$). The study listed a number of PM$_{10}$-related air pollution control programs that were implemented between 1987 and 2000. Some of these programs, such as the Acid Rain Control Program, did result in major reductions in emissions, and, therefore, could have contributed to the results observed, but the analytic approach used in the study does not allow for a systematic analysis of the effect of air pollution policies on the risk of mortality.
Integrated Science Assessment for Particulate Matter

Includes Errata Sheet created on 2/10/2010

Available at: https://cfpub.epa.gov/ncea/isa/recordisplay.cfm?deid=216546
5. Interventions in the context of AQGs

Previous editions of the AQGs have mainly focused on providing guidance in the form of pollutant-exposure specific recommendations, usually as ‘not to be exceeded’ concentration levels of air pollutants. Some informative text on application of guidelines in policy formulation, including risk management and implementation of the guidelines, has also been proposed; however this has largely been done without a systematic review of the underlying scientific evidence evaluating their effectiveness.

For the next update of the guidelines, it may be possible to formulate recommendations concerning specific measures or interventions shown to decrease the levels of air pollutants and improve health. These recommendations could be useful to countries, policy makers or other end-users of the guidelines on how to progress towards meeting the WHO goals. If and to what extent the available scientific evidence justifies including this particular topic as part of the updated AQGs was discussed during the third day of the expert meeting.

Jacob Burns from the University of Munich presented the study design and preliminary results of an ongoing Cochrane systematic review, conducted in collaboration with researchers from the Health Effects Institute (HEI), assessing the effectiveness of interventions in improving air quality (mostly PM$_{2.5}$ and PM$_{10}$) and/or health effects. This review includes evidence from 47 studies in 18 countries across the world, categorized according to the source of PM as vehicular, industrial, residential or multiple sources; and assesses the effect of these interventions on both non-health (i.e. mainly changes in pollutant concentrations) and health outcomes (i.e. mortality, hospital admissions due to cardiovascular or respiratory events, emergency department admissions and pre-term birth weight). Modelling studies were not included in the review as the project did not have the scope to evaluate the quality of the models.
5. Interventions in the context of AQGs

Previous editions of the AQGs have mainly focussed on providing guidance in the form of pollutant-exposure specific recommendations, usually as ‘not to be exceeded’ concentration levels of air pollutants. Some informative text on application of guidelines in policy formulation, including risk management and implementation of the guidelines, has also been proposed; however this has largely been done without a systematic review of the underlying scientific evidence evaluating their effectiveness.

For the next update of the guidelines, it may be possible to formulate recommendations concerning specific measures or interventions shown to decrease the levels of air pollutants and improve health. These recommendations could be useful to countries, policy makers or other end-users of the guidelines on how to progress towards meeting the WHO goals. If and to what extent the available scientific evidence justifies including this particular topic as part of the updated AQGs was discussed during the third day of the expert meeting.

PM$_{2.5}$ and PM$_{10}$ and/or health effects. This review includes evidence from 47 studies in 18 countries across the world, categorized according to the source of PM as vehicular, industrial, residential or multiple sources; and assesses the effect of these interventions on both non-health (i.e. mainly changes in pollutant concentrations) and health outcomes (i.e. mortality, hospital admissions due to cardiovascular or respiratory events, emergency department admissions and pre-term birth weight). Modelling studies were not included in the review as the project did not have the scope to evaluate the quality of the models.
Has accountability been useful?

• For developing a research agenda?
• For providing evidence that is useful for evidence-based regulation?
• For benefitting public health?
Who Knew

That accountability could be so complicated?