Contribution of Nucleation Events to Ultrafine Particle Exposures

Allen L. Robinson, Peter J. Adams, Spyros N. Pandis
Center for Atmospheric Particle Studies (CAPS)
Carnegie Mellon University

Health Effects Institute 2015 Annual Conference May 3-5, 2015
Sheraton Philadelphia Society Hill Hotel Philadelphia, PA
Atmospheric Aerosol Size Distribution

ULTRAFINE PARTICLES
< 100 nm

Number
(dN/dlogDp), cm^-3 \times 10^3

Volume
(dV/dlogDp), \mu m^3/cm^3

Diameter (micrometers)

0.01 0.1 1 10

Nucleation Mode
Aitken Mode
Accumulation Mode
Condensation Submode
Droplet Submode
Coarse Mode
Ultrafine versus PM$_{2.5}$

Graph showing the relationship between ultrafine particles and PM$_{2.5}$ concentrations.

Stanier et al. AST 2004; Cabada et al. AE 2004
Sources of ultrafine particles

Primary
- Gasoline
- On-road Diesel
- Non-road Diesel
- Biomass Combustion
- Industrial Emissions
- Cooking

Secondary -- Nucleation
- Binary (H$_2$SO$_4$ + Water)
- Ternary (H$_2$SO$_4$ + NH$_3$ + Water)
- Ternary (H$_2$SO$_4$ + Org + Water)
- Ion Induced
Typical Urban PM Size Distribution

Schenley Park Distribution vs. Time 10-Aug-2001

Particle Number

log \(\frac{dN}{d \log D_p} \)
Ultrafine PM from Traffic

Urban background site in Pittsburgh
Nucleation and Growth

Schenley Park Distribution vs. Time 11-Aug-2001

Particle Number

\[\log \frac{dN}{d \log D_p} \]
Regional Nucleation

Pittsburgh
Regional Nucleation: Pittsburgh & Philadelphia (250 mi apart)
Nucleation happens a lot
Westervelt et al. ACP 2013; Ma and Birmili Sci Tot Env 2015
Drivers – Photochemistry and lower background

Condensational Sink (cm$^{-2}$)

Fall
(9/01-11/01)

UV x SO$_2$

Center for Atmospheric Particle Studies
Particle Growth Rate

Particle Size (nm)

00:00 06:00 12:00 18:00 24:00

10 nm/hr
Particle Growth Rate

Mass Fraction (10-60 nm Particles) Zhang et al. EST 2004
Ultrafine as core for accumulation mode

- Small, source-specific core of primary PM (<100 nm; ~10% of mass)
- Thick coating of secondary PM that condensed over several days (200-300 nm; ~90% mass)
Survival Probability

- Competition between
 - Condensational growth (sulfuric acid / organics)
 - Coagulational scavenging
- Small nuclei suffer compared to primary particles
 - Takes longer to grow
 - More diffusive \rightarrow higher collision probability
Survival and Growth

- Survival: 2% (1 nm to 100 nm); 45% (30 nm to 100 nm)
- Size resolution matters in modeling CCN formation
Ultrafine Exposure in Leibnitz

5-100 nm

Fraction of Particle Number

Regional Urban Bck Roadside

26.0 14.0 51.9

Fresh Traffic

74.0 38.5 6.74

Nucleation

47.5 16.5 22.8

Aged traffic / Urban Sources

Regional Background

Ma and Birmili Sci Tot Env 2015
Ultrafine Exposure in Leibnitz

Total Number

5 - 20 nm

Fraction of Particle Number

Regional
Urban Bck
Roadside

Regional
Urban Bck
Roadside

Fresh Traffic

Nucleation

Aged traffic / Urban Sources

Regional Background
More nucleation in summer

Urban background site

Nucleation
Aged traffic / Urban Sources
Regional Background
Conclusions

• Nucleation important source of ultrafine at urban sites
 • ~15-30% of exposure at urban background sites
• Nucleation has distinctive temporal and seasonal patterns
• Ultrafine particles rapidly change size (condensation)
• Ultrafine particles are rapidly lost (coagulation)
• Both processes occur on timescale of ~hours
• Both processes challenge ability to apply linear statistical models (factors) to explain ultrafine concentrations, size, variability
Acknowledgments

• Andrei Khlystov, Dan Westervelt, Charles Stanier, Laura Posner, Jaegun Jung

• EPA STAR US (R82806101)
• DOE NETL (DE-FC26-01NT41017)