Is NO₂ a Marker for Effects of Traffic Pollution or a Pollutant on Its Own?

JENNIFER L. PEEL, PHD, MPH

JENNIFER.PEEL@COLOSTATE.EDU

COLORADO STATE UNIVERSITY

MAY 4, 2015

HEI ANNUAL MEETING

PHILADELPHIA, PA

Outline

- NO₂ standards, trends
- Review recent evidence health effects of NO₂
- Discuss NO₂ as a marker for traffic-related pollution vs. a pollutant of interest on its own
- Research needs
- Conclusions

Nitrogen Oxides

- Emitted from motor vehicles (along with CO, CO₂, hydrocarbons, PM, benzene, formaldehyde, acetaldehyde, 1,3-buadiene,...)
 - NO₂ quickly formed

• Also emitted from:

- Power plants
- Industrial point sources
- Any combustion process
- Forest fires
- Lightening

Nitrogen Dioxide: A Criteria Pollutant

United States

- One of the six criteria pollutants regulated by the US EPA
- Annual primary standard: 53 ppb (1971)
- o 1-hour primary standard: 100 ppb (2010)
- No areas of US are currently out of attainment for NO₂

European Union

- Annual primary standard: 20 ppb
- 1-hour primary standard: 105 ppb

WHO guideline (outdoor air)

- Annual primary standard: 20 ppb
- o 1-hour primary standard: 100 ppb

Nitrogen Dioxide: Decreasing trends in some developed countries

http://www.epa.gov/airtrends/nitrogen.html

Nitrogen Dioxide

 2008: Most recent finalized US EPA integrated science assessment (ISA)

• NO₂ currently under review; 2nd external review draft ("DRAFT: Do Not Cite or Quote")

EPA Integrated Science Assessments: Causal designations

- Causal
- Likely to be causal
- Suggestive, but not sufficient, to infer a causal relationship
- Inadequate to infer a causal relationship
- Not likely to be a causal relationship

2008 EPA ISA Determination

Short-term exposure		
Respiratory effects	Likely	
Cardiovascular effects	Inadequate	
Total Mortality	Suggestive	
Long-term exposure		
Respiratory effects	Suggestive	
Cardiovascular effects	Inadequate	
Reproductive and developmental effects	Inadequate	
Total mortality	Inadequate	
Cancer	Inadequate	

Short-term Exposure

Respiratory effects

- Additional evidence reported, particularly for asthma exacerbation
- Strengthened by controlled human exposure studies (increased airway responsiveness and allergic inflammation), personal NO₂ measurements

Cardiovascular

- Recent evidence for triggering of acute myocardial infarction, cardiac repolarization
- Results of copollutant models are inconsistent

Short-term Exposure

Total mortality

- Recent evidence from numerous geographic locations
- Limited evaluation of confounding by other pollutants
- Limited understanding of underlying biologic processes

Respiratory effects

- Evidence strengthened for asthma incidence
- Still limited experimental evidence
- Residual concerns about confounding by other pollutants
- Jacquemin et al. EHP 2015; ESCAPE; NO₂ associated with increase in asthma incidence

Cardiovascular effects

- New evidence for development of heart disease
- Some experimental evidence for systemic inflammation and oxidative stress
- Limited by exposure assessment
- May be confounded by short-term exposure to NO₂ and by other traffic-related pollutants, noise, stress
- Chan et al. EHP 2015; NO_2 associated with increased blood pressure among women in the Sister Study, but effects were smaller than for $PM_{2.5}$

Reproductive and developmental effects

- Numerous recent studies, especially for adverse birth outcomes
- \circ Fertility and miscarriage: Frutos et al. 2015 review; evidence for adverse effects of NO_2 as well as other pollutants , but no prospective studies
- Cognitive effects in children:
 - Sunyer et al. 2015: EC, UFP, NO₂ (both indoor and outdoor) associated with smaller growth in cognitive measurements in Barcelona
 - ★ Lertxundi et al. 2015: PM_{2.5} and NO₂ exposure during pregnancy associated with decreases in psychomotor development in children at 15 months in Spain
- Limited control for other pollutants, understanding of biologic mechanisms

Total mortality

- Numerous recent studies from different geographic locations
- Typically modeled NO₂
- Faustini et al. 2014 review: evidence for effects of NO_2 independent of $PM_{2.5;}$ stronger effects for cardiovascular mortality
- Fischer et al. EHP 2015: NO_2 associated with total and cause-specific mortality (not for circulatory disease); not always robust to control for PM_{10} ; did not have $PM_{2.5}$
- Some residual concern about confounding (noise, stress, copollutants)

Cancer

- Filippini et al. 2015 review: traffic density, NO₂, and benzene associated with increased risk of childhood leukemia (postnatal exposure; stronger evidence for benzene)
- Hystad et al. 2015: NO₂ associated with increased risk of breast cancer (no association for road proximity)
- Hart et al. 2015 EHP: NO₂, BS, PM_{2.5} and traffic measures associated increased risk of adult lung cancer
- Hamra et al. 2015 EHP review: NO₂ associated with increased risk of lung cancer, robust to adjustment for confounding
- IARC: air pollution and PM are human carcinogens; NO₂ not specifically implicated, but traffic-related pollution was
- Limited understanding of biologic mechanism

- New endpoints: diabetes
 - Diabetes: Eze et al. EHP 2015 review; concerns about potential confounding by noise, SES

	2008 EPA ISA Determination	Evidence since 2008 ISA*
Short-term exposure		
Respiratory effects	Likely	++
Cardiovascular effects	Inadequate	+
Total Mortality	Suggestive	+
Long-term exposure		
Respiratory effects	Suggestive	+
Cardiovascular effects	Inadequate	+
Reproductive and developmental effects	Inadequate	+
Total mortality	Inadequate	++
Cancer	Inadequate	+

^{*}Note: Not based on EPA designations

Is NO₂ a Marker for Effects of Traffic Pollution or a Pollutant on Its Own?

Yes and yes (and no)

Is NO₂ a Marker for Effects of Traffic Pollution?

- HEI 2010 Report Traffic-Related Air Pollution (HEI Special Report 17, 2010)
- NO₂, CO, EC/BC/BS, PM, ultrafine particle number, benzene often used as makers of traffic pollution
- HEI report: None are ideal as surrogates for traffic

Is NO₂ a Marker for Effects of Traffic Pollution?

- NO₂: has many other sources
 - ∼30% of NO₂ comes from on-road vehicles (plus another ~25% from off-road vehicles)
 - Will not be an ideal marker unless other sources can be ruled out
- NO_2 is often correlated with traffic density (more so than $PM_{2.5}$)
 - Evidence not consistent
 - Varies depending on location, distance to source, other sources
 - Recent data from near-road NO₂ monitors suggest that concentrations near roads are not as high as expected

Is NO₂ a Marker for Effects of Traffic Pollution?

- On-road patterns of NO_2 are similar to those of other traffic-related pollutants
 - NO₂, BC, PM_{2.5}, and benzene all decrease to background within 150 meters
 - Decay in concentration for NO₂ similar to that for ultrafine PM, PM_{2.5}, and VOCs

Distance decay gradients

Figure 3.3. Distance-decay gradients of benzene, methyl tert-butyl ether (MTBE), and π-hexane at the Resources Road (MOE) site in Toronto compared with those observed with NO₂. All gradients decreased consistently with distance from the roadway and correlate with NO₂. The pollutants gradient concentrations (y axis) were normalized by dividing each pollutant by the largest value observed at a given study site. (Reprinted from Beckerman et al. 2008, with permission of Elsevier.)

Is NO₂ a pollutant (of concern) on its own?

- Ambient NO₂: evidence is building
- Indoor environments
 - o WHO guideline for indoor NO₂: 1-hour max 100 ppb
 - o 40 − 1500ppb and higher
 - Evidence from occupational and residential exposure studies
 - **▼** Primarily for asthma exacerbations and respiratory symptoms
- Evidence for threshold? Susceptible populations?
- Residual concerns about confounding
 - Other pollutants, noise, stress

Research needs (to really answer this question)

- Further characterization of the relationships between NO_2 and: BC, benzene, CO, VOCs, $PM_{2.5}$, ultrafine particles, noise, stress in various environments (onroad, off-road, indoors)
- Health effects of other traffic-related pollutants
 - Including effects of short-term long-term exposure to benzene,
 VOCs, air toxics, noise

Research needs (to really answer this question)

New analytic approaches

- Challenges with multi-pollutant models
- Several groups developing new approaches for evaluating multiple pollutants
- Regression trees (Gass et al. 2014), Combined effect of pollutants (Winquist et al. 2014, Sorensen et al. 2014), Causal inference methods (Snowden et al. 2015), others

Causes of variation observed in health effect estimates

Scale of study region? Monitoring location (on-road, near-road, off-road)? Measured vs. modeled NO₂?

• New questions?

- Health effects of traffic likely due to numerous pollutants
- Useful to compare the relative strength of effects of individual components of traffic?
- US 22 million housing units are located within 300 feet of a highway (4 lanes or more), railroad, or airport (American Housing Survey 2009)

Conclusions

- Evidence of adverse health effects continues to build...for both NO₂ and traffic (and other trafficrelated pollutants)
 - Indoor and outdoor NO₂
- Limited supporting evidence for some health outcomes (controlled human exposure, toxicology)
 - Especially relative to PM
 - o Necessary to be causal?
- NO₂ is not an ideal marker for traffic, but may be as good as any we have right now

Conclusions

- NO_2 is likely not acting as a surrogate for $PM_{2.5}$; not as clear for other traffic-related pollutants
 - Varies by location of study, location of monitors
 - Limited health effects studies using on-road monitors
 - Do not have sufficient evidence to evaluate

• What are the relevant questions to move forward?

Questions?

