MOSES Review Panel: Strengths and Limitations of the MOSES Study

James Merchant
Chair

Members of the MOSES Review Panel

- James Merchant, Chair, Professor and Founding Dean Emeritus, College of Public Health, University of Iowa
- Jesus Araujo, Associate Professor of Medicine, Director of Environmental Cardiology, David Geffen School of Medicine, UCLA
- Nadia Hansel, Associate Professor of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University
- David Jacobs, Professor,
 Epidemiology & Community Health,
 University of Minnesota
- Susanne May, Associate Professor, Department of Biostatistics, University of Washington

- Jana Milford, Professor,
 Department of Mechanical
 Engineering, University of
 Colorado-Boulder
- Greg Wellenius, Associate
 Professor, Department of
 Epidemiology, Brown University
- External consultant: Charles
 Weschler, Adjunct Professor, EOHSI
 Exposure Science, Rutgers
 University

Study Design: Strengths

- Well designed and executed-- high quality study
- Excellent collaboration with extensive oversight by HEI
 - Fidelity to protocol
 - Centralized analyses for certain endpoints
- Cross-over design with clean air and two ozone concentrations
- 90 participants—large for most human chamber exposure studies
 - Good power for primary outcomes
- Modeled after a clinical trial, focusing on primary and secondary outcomes

Study Design: Limitations

- Healthy older, not elderly adults
 - Average age 60
 - BMI = 25, FEV1 = 104% predicted, exclusions for CVD conditions and medications: Very healthy panel
 - Mostly Caucasian: represents a small segment of general population
- Acute exposures only, limited range of exposure concentrations (by design)
- Designed as a clinical trial with primary outcomes
 - Difficult to maintain this design given many relevant secondary outcomes
 - Could also be analyzed as an observational epidemiologic study analyzing both primary and secondary outcomes

Exposures

Strengths

- Ozone generation and measurements were excellent
- Well justified 70 ppb and 120 ppb concentrations

Limitations

- Primary ozone (by design)
 - Almost no reaction products or interactions with particles or other pollutants, as would happen in the real world

Exposures

Limitations (Continued)

- One night hotel stay may not eliminate effects of daily exposure to background concentrations of ozone and other pollutants
- Should assess participants' prior exposures to ozone and other pollutants 1-3 days before
 - Could affect the outcomes
 - Chamber exposures may sometimes be lower than daily ambient exposures
- Very low particle counts differed among sites
 - Likely due to different instrument size cut-offs

Statistical Analyses

Strengths

- Assigned data coordination and independent analysis team
- Analyses generally well designed and executed

Recommendations

- Look into conducting analyses by site
 - Rochester appeared to have higher values for CVD outcomes
- Further analyses needed regarding:
 - Prior exposures
 - Diary information
 - Health outcomes during exposures

Cardiovascular Effects: Strengths

- Comprehensive array of endpoints
 - Primary endpoints were well powered
 - Covered variety of mechanistic pathways
 - Common laboratory analyses and ECG interpretation
- Confidence in mostly negative results across the board
 - Only endothelin-1 was increased
 - No changes in markers of systemic inflammation

Cardiovascular Effects: Limitations

- Large variability in outcome measures could obscure effects
- Should assess certain endpoints in more detail
 - Possible ST segment changes were perhaps too easily dismissed
 - Would like more details on arrhythmias
 - Only one measure of lipid peroxidation
 - CVD outcomes during exposure were not (yet) reported
 - Unexplained decrease in nitrotyrosine

Pulmonary Effects: Strengths

- Standardized protocols following well-accepted procedures
- Increase in lung function with clean air
 - Previously observed in panel studies
 - Likely related to exercise and/or diurnal variation
- Confirms pulmonary effects beginning at 70 ppb ozone
 - Attenuation of increase with clean air
- Concentration-related increase of PMN in sputum

Pulmonary Effects: Limitations

- Respiratory symptoms during exposure were not (yet) reported
- Should analyze for a subgroup of "high responders"
 - Based on changes in lung function and PMN in sputum
 - If such a group exists, redo analyses and look for possible CVD effects
 - If not, confirms lack of CVD effect

Conclusions

- Study confirms respiratory effects at 70 ppb ozone
- No evidence of cardiovascular effects at low levels in this highly selected population

Caveats:

- These are very healthy older, not elderly, adults
- Represent small segment of the general population
- Limited to acute, relatively low exposures of primary ozone
- Not combined with particulate exposure (by design)
- Need to explore prior exposures (up to 3 days)
- Need to explore possibility of a "responder" subgroup