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Summary

e There are several low-CO, engine strategies being developed that
can drop emissions by up to 40%.

— Emissions and development challenges are summarized — LT, HC,
lean NOx, PN

e Gasoline particulates are emerging as a major emissions issue

— Difficult to remediate without filters

* Rich zones during cold start, hot starts, accelerations, and LT ambient
conditions

— High PAH emissions
— GPF solution

* Lean NOx solutions are focusing on lower-temperature and cold
start

e LT oxidation catalysts are evolving — CH,, HC, CO
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Engines



Technology

Co,

Benefit*

Challenges

Penetration

Implications for
emissions

MATURE

DEVELOPING

GDI ~3-5% 98% by 2022 PN

Atkinson cycle 3-10% | peak power & torque Primarily in Cooler exhaust

(+VVT) hybrids

Adv. start-stop 2-5% Consumer acceptance 45% by 2025 Warm start PN

Particulates at re-start

Dynamic cyl. deactivation 2-10% Noise & vibration 50% in 2025 Reduced idle emissions.

(+ VVL) Hotter exhaust
Faster heat up for DPF regen

Lean-burn gasoline 15 - 25% NOXx, pSCR controls Implemented PN, NOx control, LT exhaust

EU

High CR (~ 17) engines 20 — 25% Knock Adv. Eng.

(+ S/B ~ 1.5, GDI, Atk.)

2-stroke opp. piston Diesel 30 —40% Boost; new design Development Conventional DPF+SCR

Dedicated-EGR 20 — 25% Durability Development

GDCI 20-30% Transient control Research Lean NOx; High HC (- adv.

ox. Cat, HC trap)
Pre-chamber combustion 15-20%  Complexity (2 chambers), Research Lean NOx
particulates
LTC (HCCI, RCCI) Operating load range Research Low NOx and PM emissions.

Complexity — dual fuels

LT and high HC emissions.
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Gasoline particulates



Achieving PN reductions across all real world conditions and
over vehicle lifetime is challenging

_ _ _ Concern area changes with load
Progress made on in-cylinder particulate

formation minimized via optimization of:

* Injection parameters (# injectors, timing,
spray pattern, pressures, etc.)

e Combustion chamber geometry

* Valve events

* Charge motion, etc.

Emission from
intake valve

Emission from
piston surface

Particle Generation

Fraidl et al. (AVL, 2012)

Challenge is to maintain sustainable low PN _
over real world conditions Time (NEDC cycle) ~—>

o Particles may increase with engine aging
» Variation in speed/load

« Ambient temperature With injector

—

« Deposits — Injectors, combustion chamber, deposn\s
valves
Production tolerances
Wear, aging Clean

injectors

e MJL

Variation of fuel, lube oil quality
Variability across fleet
Measurement challenges

_ Particle Generation
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Test drive cycle has a significant impact on tailpipe emissions

Particulates driven mostly by cold start and hard RERIEEE: Keszils 1 Gial. |eie A0e-00-05ke
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Soot composition & reactivity depend on fuel type and engine

load

U. Birmingham, 2014 Cambridge Particle Meeting

Impact of fuel

Impact of engine load

E25

PM composition

speed=1500 rpm; load=8.5 bar IMEP, /=0.9; SOI=100 °bTDC

DMF

ULG 5.5 bar ULG 8.5 bar

Soot
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PM Reactivity
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GDI PN iIs characterized, and somewhat different from diesel.
Smaller primary and aggregate size; less chrystalline. Oxidation catalyzed by ash.
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"= rates particle size is also ~10nm smaller.
= depend
= on ash Gasoline-derived GDI soot appears to be graphitic
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- | content.
i A tgo IS IME m PDF data verify Raman results:
001 p—-——- —l--—_}-_ | | — to 80% — Degree of crystalline structures: GDI soot< Diesel soot
Slow 300 ,53%_}3;3[? | i ) ) — GDI soot shows no distinct change with engine conditions.
D. DnaEF ] | oxidation.
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GDI engines have high PAH emissions.

8- CgH, fleat —8— CH, flaet —8- CyH,; fleat Soot Formation & Growth
B G0 (range) B G0 (range) B G0 (range)
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2013 Ford Focus GDI has PAH
emissions in the upper percentiles of

the whole Toronto fleet.
Univ Toronto, Environ Sci and Techn, 1/16

PAHSs are soot precursors, so GDI
soot may be “immature”.
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E10 GDI PAH emissions ~4X higher on FTP-75 than for similar
PFI pick-up truck. Pm-based PAHs 14X higher. Large PAHs 35-135X higher.

140
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Particulates during cold-cold start (7 °C) shown to exceed limits

even for PFI vehicles

Reference: Badshah, H. et al. / SAE Int. J. Engines 9(3):2016

= PN from GDI mostly in accumulation > 50nm
mode
— Enrichment at low T, wall & piston wetting
= PN from PFI mostly < 50nm mode
= Particulates mostly “solid”
= Average PN over 180s: 3.1x10%3 for GDI &
2.1x1013 for PFI
= Almost all vehicles exceed limit
— DPF seen to be very effective for Diesels
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PN exposures can be high in parking garages.

PN emissions from modern GDI car as measured by the trail car in a
parking facility. 150,000 to 700,000/cm3. Outside background is
3000/cm3.Timeframe here is 100 sec.
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Partidle diameter

Fartice diameater

Due to high hot-start PN emissions, an HEV might have higher
PN emissions than a conventional vehicle.

« Comparison of conventional and hybrid driving operation at the engine test
bench on NEDC cycle

B-segment vehicle
1.6 liter GDI
Euro 5b

EAEST 1E+b

E+d 18E+4 LEE+E AE+E
drieiogda

500 Conventional vehicle 200

{nm)

(=]

x 10 {rpm)

FULTALY SR B
YNNI N INON N

T

Diluition ratio |-}, Engine speed

|

Tot. PN =26.10*"2 part / km.

Two close coupled
TWC

Uncoated GPF
Fuel: EN 228, 4.8%
EtOH, 31.7%

aromatics, research
octane 97.2, 3 ppm

nnad

Q 200 400 E00 200D

Hybrid vehicle

3
= & sulfur
i | B2
T . 2§ Tot PN =1210*3part/km
= g 1.0E+14
“ £
1.0E+13
« Engine bench simulation of D-segment HEV with | § oex2 &8  B§
50 kW electrical system, 1.3 kW-hr battery E Lo
* Engine used only 28% of time during transients z
and high load. 1.0E+10
« “HEV” on NEDC has 4.6X PN vs. conventional ioes B
Operation. ‘ Diesel with GDlconv. GDiconv. GDI hybrid GDI hybrid

DPF without GPF  with GPF  without GPF  with GPF

e Caution: Not calibrated nor optimized for HEV
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Across engine types, PM may not be a good indicator of PN. At
any given PM level, PN can vary up to 1.5 orders of magnitude.

PM versus engine technology
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Evolution of light duty GPF architectures to meet particulate
regulations

Broad introduction of GPF (uncoated and coated) — EU, Beijing and CARB

EU5/6Db / EU6c/7 / Beijing 6 /
LEV II/1ll (@3-6mg/mi) LEV Il (@1-3mg/mi)

TWC Integration into GPF
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Comparison of soot oxidation on bare and coated GPF

T. Boger et al. Emiss. Control Sci. Technol. 1 (2015): 49-63

Bare GPF Coated GPF
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PM characteristics from Lean GDI engines depends on
combustion mode. GPFs effective for all conditions

Reference: Parks J. et al. (ORNL), SAE 2016-01-0937 PM depends on NOx control strategy
0 LNT cycling produced higher PM than lean-
rich cycling for passive SCR

Engine 2008 BMW 1-series 120i, 2.0L, 4-cyl.,
naturally aspirated

Combustion modes | Lean stratified, Lean homogenous,

Stoichiometric 0 GPFs highly effective even during transients

GPFs 200/12, 5.66"x6”, Bare, Underfloor g vses Lean Stratified
PM depends On e —4—Lean Stratified PaSSIVG %
H —#-Stoichiometric 8 A=0.97
combustion mode Lo Homogeneous SCR g soE7
o Order of magnitude 1648 1 ¥
higher for lean stratified . i . —
g.a. + _ 0 30 60 90 120 150 180 210
mode £ 2 oe
0 Mean particle size ué: 1E+6 ; § s
smaller for stoichiometric £3 g A58 Lean
. ln-! © + g + 5 i d
o Organic C content PM: & oroepE LNT | & tratifie
Lean stratified < L % [es]
. . 350 - Post-GPE £
stoichiometric < Lean — - W 0B brsepi ey
S = 2
homogenous E:;: 250 0 30 60 33“91(?? 150 180 210
g § 200
S 2 150 -
G;'t:ii;;ipitnu:l rcr:la?ssets £3 w0 i 9 Organic content of PM primarily
g Filtration efficiency > ol i am nt paraffins from engine oil
95% over wide o >(leratin 5 50 500 o Little/no PAHs found as reported in
0 ize (nm H H
range P g size fom) stoich. GDI engines
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Lean NOx Control



Passive SCR with lean gasoline engines shown to achieve >
99% deNOx and 11.5% fuel consumption benefit

Reference: Prikhodko V. et al. (ORNL), SAE 2016-01-0934

Engine: 2008 BMW 1-series 120i, 2.0L, 4-cyl., GDI, naturally aspirated
Test conditions: Load step conditions - Engine alternated between lean (A = 2.0, 2 bar BMEP) and
rich (A = 0.97, 8 bar BMEP) operation

(1) At NH,/NOx = 1.13:
00 r 1 o
L : * NOx conversion = 99.5%
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o . 0 . .
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o i '>'< (3) Increased cycle time leads to decreased NOx
1 . . . . .
o M i © conversion (NH; oxidation during longer lean period)
% ol iy (4) Low CO conversion still a challenge
o P Z
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NO [gnoLeal

MNOx [ppm]

Honda SAE 2015-01-1002
A new Pd-zeolite passive NOx adsorber has impressive cold-

start NOx storage capacity. Desorbs at 250-400C.
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Urea dosing increases PN count by 3-5X. 80% of PN on
WHTC from urea.

I '
1000 1200
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:U-. "fsaﬂ-_ - ;%ﬂ\%
o 300 .
[= 8 "
E 7004 M O
- \5 ?Dﬂﬂ' ;
g
[}
o ﬂa\\
x 250 =250
=]
w \
200 . . . .
0 A 4 6 8 10

CORNING | Environmental Technologies

1/Residence Time (1/s)

CES 2016-01-0995

DEF dosing increases particle count by 460% to
610% over the WHTC

Propose HNCO polymerization, urea pyrolysis, and
urea micro-explosions during evaporation as the
leading causes

Under normal urea dosing over 80% of the total
particle count was found to be DEF-based.
Increasing ET temperature from 300 to 400 °C
decreased the DEF-based particle count by 15% for
an ANR = 1.1.

Coupled with the TGA results, it is plausible that this
volatile fraction of the DEF-based particles were
urea or biuret.
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Oxidation Catalysts



DOCs and DPFs can capture LTC volatile PM via an

adsorption mechanism. Lighter PM eventually breaks through. DOC
efficiency also impacted by adsorption saturation.
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Bimetallic catalysts on dual component support shows
improved low-T CH, oxidation

Reference: A.l. Osman et al. / Applied Catalysis B: Environmental 187 (2016) 408—418

Context
Natural gas is attractive as abundant and clean burning fuel
but total combustion important due to global warming potential

=1
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w
=

o
=

~
=
L

Background

Pd known to be most effective for catalytic CH, combustion -
- Proceeds through (a) dissociation & (b) oxidation via PdO
For enhanced activity:

1) Addition of an O, carrier = TiO,

2) Support acidity = n-Al,O5 or H-ZSM-5

3) Reduced deactivation/sintering - CeO,

4) Use of bimetallic catalyst > Pt

@
=

w
=

.
=

T,, achieved at 200 °C
17.5%TiO2(5 wt% Pd, 2 wt%
Pt, H-ZSM-5(80)

[
=1
L

“'.
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o
. .

Methane Conversion (%)

=

. N
. 200 . 250 300 350 400 450 500 550
K
\J

Temperature (°C)

Improved low T activity achieved "
» Optimized combination of four components — Pd, Pt, acidic
support & O, carrier — shown to enable highly active and stable
catalyst
o Optimum at 17.5% TiO, on ZSM-5(80)
o T10%was observed at only 200 °C
* Role of bimetallic catalyst in improving catalyst stability confirmed
o On addition of platinum, no decrease in the catalyst U : |
activity over 50 h at 250 °C ‘ @ o “ o 0
TiO, (Wt%)
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Summary

e There are several low-CO, engine strategies being developed that
can drop emissions by up to 40%.

— Emissions and development challenges are summarized — LT, HC,
lean NOx, PN

e Gasoline particulates are emerging as a major emissions issue

— Difficult to remediate without filters

* Rich zones during cold start, hot starts, accelerations, and LT ambient
conditions

— High PAH emissions
— GPF solution

* Lean NOx solutions are focusing on lower-temperature and cold
start

e LT oxidation catalysts are evolving — CH,, HC, CO
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