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AIRPORTS: AN UNDERESTIMATED LOCAL          
SOURCE OF ULTRAFINE PARTICLES

✤ Aviation emissions impact local, regional and global air quality.

✤ Until recently, the focus was on few hundred meters or several kilometers 
from the airport complex.

✤ Dodson et al. 20094  (Warwick, RI):  aviation emissions contributed 24− 
28% of the total black carbon (BC) measured at five sites 0.16− 3.7 km 
from the airport.

✤ Fanning et al. 2007 (LAX):  measured particle numbers concentrations in 
the 10− 100 nm range and found significant increases above background 
at 1.9, 2.7, and 3.3 km

✤ Several other studies estimated contribution to NOx (Carslaw et al. 2006) 
and SO2  (Yu et al. 2004) emissions.



AIRPORTS: AN UNDERESTIMATED LOCAL 
SOURCE OF ULTRAFINE PARTICLES

✤ Two recent studies have refined our understanding 
of aviation emission impacts on local air quality, 
particularly, in the context of particle number 
concentrations.  

✤ Hudda et al. 2014, Env. Sc. & Tech

✤ Keuken et al. 2015, Atmos Environ.



LAX: Los Angeles International Airport
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Locations of highest 
baseline PN 
concentrations on all 
transects 

• align to the prevailing 
winds, and 

• the incoming flight 
trajectory
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August 15, 2013
0830-1530 hours

IMPACT OCCURS REGULARLY  
Most hours of the day - all monitoring runs - 

pattern reflects the day’s meteorological conditions



August 16, 2013
0945-2050 hours

IMPACT OCCURS REGULARLY  
Most hours of the day - all monitoring runs - 

pattern reflects the day’s meteorological conditions



August 23-24, 
2013
1200-0130 hours

IMPACT OCCURS REGULARLY  
Most hours of the day - all monitoring runs - 

pattern reflects the day’s meteorological conditions



SUMMARY OF RECENT STUDIES:    
HUDDA ET AL. 2014

✤ Large 
Impact 
Area

✤ Local = 
15 -20 km



SUMMARY OF RECENT STUDIES: 
HUDDA ET AL. 2014

✤ Large Impact Magnitude

✤ LAX Impact ≈ 1/4 of that from LA freeways



✤ 2-3 times 
higher PN 
when wind 
is blowing 
over the 
airport

SUMMARY OF RECENT STUDIES: 
KEUKEN ET AL. 2015

EC, PN day, PN night



✤ Impact on PN concentration can be detected at a site 40 
km from Schiphol - 20% higher

SUMMARY OF RECENT STUDIES: 
KEUKEN ET AL. 2015



THE WIND DIRECTION 
CONSIDERATION
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CONSIDERATION



✤ Variable wind direction makes detection of the 
signal challenging but the signal can be detected

✤ A network of sites and longer sampling 
campaigns needed

✤ Mobile monitoring is an efficient alternative

THE WIND DIRECTION 
CONSIDERATION



IMPLICATIONS FOR EXPOSURE 
ASSESSMENT - I PHYSICAL PROPERTIES

✤ Regarding physical properties:

✤ Elevated PN are mostly comprised of ultrafine particles.

✤ Keuken et al. found that 10-20 nm particles dominate size 
distribution at a site that was 7 km

✤ Hudda et al. are looking at the spatial pattern of physical 
properties of this aerosol over the large area

✤ 5-10% higher deposition efficiency over urban ultrafine aerosol

✤ Significant impact in terms of number concentration or other 
expressions for assessing ultrafine exposure, like, surface area.



IMPLICATIONS FOR EXPOSURE 
ASSESSMENT - II CHEMICAL PROPERTIES, 
MULTIPOLLUTANT MIXTURE

✤ Is this a unique ultra fine particulate matter mix?
✤Sulphur content is not regulated in aviation like in automobile 

fuel (600ppm vs 15ppm)
✤Characterize a “aviation signature” that includes other 

pollutants at long downwind distances
✤Signal easily detected in PN concentration; signal-to-noise ratio 

low in other pollutants, or ?
✤Emission profile different for landing, take-offs, idling - need to 

quantify contribution of each activity to this impact?
✤Is there a signature mix - does it vary by distance to the source - 

what are the most important components of the mix from 
exposure point of view at a large community wide level? 



IMPLICATIONS FOR EXPOSURE 
ASSESSMENT - II NOISE

✤Residential exposure to aircraft noise has been studied

✤Association with hospitalization, CVD (Correia et al. 2013)

✤Considered PM2.5 and Ozone as confounders

✤Association with risk of stroke, coronary heart disease, and 
cardiovascular disease (Hansell et al. 2013)

✤Considered PM10 and road traffic noise as confounders

✤Both found a significant increase in risk

✤Should ultrafine be considered a confounder in future airport 
studies or is it an opportunity to study health risks of ultrafine?



IMPLICATIONS FOR EXPOSURE 
ASSESSMENT - III ULTRAFINE RISK

✤ An opportunity to study ultrafine health risk

✤ Large subject population

✤ Chronic exposure - possible cohort

✤ Relatively stable acute exposures

✤ Consider airport-related emissions as an explanatory 
variable for past studies and improve previous models



IMPLICATIONS FOR EXPOSURE 
ASSESSMENT - IV MODELLING EXPOSURE

✤ Inclusion in Land Use Regression models

✤ Distance to airports, Deviation of prevailing wind direction from azimuth 
to the airport/active runway, Flight Activity, etc. 

✤ A combination of several variables required to truly capture the impact

✤ Example, Weichenthal et al. 2015. 

✤ Included distance from Pearson airport in Toronto; R2  was 0.22, 0.26 for 
single predictor model

✤ “suggests that airports have a measurable impact on ambient UFPs after 
adjusting for other factors, including proximity to highways and major 
roads.”
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