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ABOUT HEI 
 

The Health Effects Institute is a nonprofit corporation chartered in 1980 as an independent research organization to 
provide high-quality, impartial, and relevant science on the effects of air pollution on health. To accomplish its 
mission, the institute 

• Identifies the highest-priority areas for health effects research; 

• Competitively funds and oversees research projects; 

• Provides intensive independent review of HEI-supported studies and related research; 

• Integrates HEI’s research results with those of other institutions into broader evaluations; and 

• Communicates the results of HEI’s research and analyses to public and private decision-makers. 

HEI typically receives half of its core funds from the U.S. Environmental Protection Agency and half from the 
worldwide motor vehicle industry. Frequently, other public and private organizations in the United States and around 
the world also support major projects or research programs. HEI has funded more than 330 research projects in North 
America, Europe, Asia, and Latin America, the results of which have informed decisions regarding carbon monoxide, 
air toxics, nitrogen oxides, diesel exhaust, ozone, particulate matter, and other pollutants. These results have appeared 
in more than 260 comprehensive reports published by HEI, as well as in more than 1000 articles in the peer-reviewed 
literature. 

HEI’s independent Board of Directors consists of leaders in science and policy who are committed to fostering the 
public–private partnership that is central to the organization. The Health Research Committee solicits input from HEI 
sponsors and other stakeholders and works with scientific staff to develop a Five-Year Strategic Plan, select research 
projects for funding, and oversee their conduct. The Health Review Committee, which has no role in selecting or 
overseeing studies, works with staff to evaluate and interpret the results of funded studies and related research. 

All project results and accompanying comments by the Health Review Committee are widely disseminated through 
HEI’s Web site (www.healtheffects.org), printed reports, newsletters and other publications, annual conferences, and 
presentations to legislative bodies and public agencies. 
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1. INTRODUCTION 
In the United States and around the globe, the rapid expansion of oil and natural gas production 
from shale and other tight (i.e., low permeability) geologic formations brings significant 
opportunity along with questions and 
controversy about potential effects on people and 
the environment. With funding from private 
foundations, the Health Effects Institute (HEI) 
convened a Special Scientific Committee to 
develop a strategic plan for guiding research that 
will answer questions about potential adverse 
human health, ecologic, environmental, and 
social impacts of 21st century oil and gas 
development in the Appalachian Basin (Figure 
1).  
 
The phrase “21st century” in this report refers to 
the Committee’s focus on oil and gas 
development as practiced now and as likely to be 
modified in the future in response to advancing 
technology, changing regulations, and other 
factors. The Committee is considering potential 
impacts related to all stages of oil and gas 
development and production that may have 
impacts on the people, communities, and ecology 
of the region, including exploration, well pad 
construction, drilling and completion, 
production, well closure, and site reclamation as 
well as all ancillary facilities (e.g., compressor 
stations, processing facilities, and gathering 
pipelines) and waste management (e.g., deep 
well injection, landfilling, and recycling of 
wastewater) associated with the production of oil 
and gas.1 Except where otherwise noted, the 

                                                 
 
 
1 Potential impacts beyond the region near oil and gas development fall outside the Committee’s scope of review 
(e.g., effects related to distribution and use of oil and gas beyond gathering pipelines, contribution to global climate 
change). 
 

Purpose of this report 
This interim report lays the groundwork for the creation of 
the Committee's Strategic Scientific Research Plan to 
help guide future research to improve understanding of 
potential adverse impacts of 21st century oil and gas 
development in the Appalachian Basin. The phrase “21st 
century” refers to oil and gas development as practiced 
now and as modified in the future in response to 
advancing technology, changing regulations, and other 
factors. Although the Committee’s focus is on research 
needed to support credible data-driven decision-making 
about potential adverse impacts on people and the 
environment, the Committee recognizes that oil and gas 
development can also generate potential benefits at the 
local, regional, national, and global levels.   
What you will learn from this report 
 The origin and purpose of the initiative  
 The Committee's approach and status of its work 
 A summary of the types of adverse impacts that 

are potentially related to oil and gas development 
in the Appalachian region based on the 
Committee’s research expertise, review of 
hundreds of papers, consultations with many 
knowledgeable individuals, and tours of gas well 
sites 

 The Committee's next steps toward development 
of the Research Plan 

What the Committee asks of you 
As the Committee turns its attention to research planning, 
it requests your recommendations for scientific research 
and the criteria that may be used to prioritize research 
alternatives.  
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phrase “oil and gas development” is used in this report to refer to all of these elements of the oil 
and gas industry in the Appalachian Basin. 
 
The Committee’s Strategic Scientific Research Plan will be the result of an impartial, 
interdisciplinary review and is intended to benefit people living and working in the Appalachian 
region who want to better understand potential impacts of ongoing oil and gas development.  
This interim report, a brief summary of the Committee’s work to date, lays the groundwork for 

the Committee’s Strategic Scientific Research 
Plan. More extensive summaries of the 
literature were developed by members of the 
Committee to support its research planning 
deliberations, and they will be available on the 
HEI website 
(http://www.healtheffects.org/UOGD/UOGD.h
tm) in early 2015. With the release of this 
interim report, the Committee seeks public 
input on research needs and criteria for 
prioritizing these needs as it takes the next 
steps to develop the Research Plan.  

1.1 ORIGIN AND PURPOSE OF THIS RESEARCH 
PLANNING INITIATIVE 
 

 Oil and natural gas development has been 
occurring in the Appalachian region for more 
than a century, yet the recent development of 
unconventional resources represents only a 
fraction of what is expected in coming years 
(U.S. Energy Information Administration 
2014a). In response to concerns about oil and 
gas extraction in the Appalachian region, 26 
leaders from government, industry, 
academia, environmental groups, and civil 
society established the Pennsylvania-based 
Shale Gas Roundtable 
(http://iop.pitt.edu/shalegas/).  In 2013, this 
group emphasized the need for “efforts to 
increase balanced research and rigorous 
monitoring of the possible impacts of 
unconventional oil and gas development.”   
HEI’s Special Scientific Committee, which 
produced this Interim Report, was formed as 
a direct result of the Roundtable’s 

This initiative is funded entirely by private foundations 
in Pennsylvania and West Virginia, including: 
 
 Richard King Mellon Foundation 
 Henry L. Hillman Foundation 
 Claude Worthington Benedum Foundation 
 Henry C. and Belle Doyle McEldowney Fund of The 

Pittsburgh Foundation 
HEI sponsors do not participate in the selection, oversight, 
or review of HEI science. HEI’s reports do not necessarily 
represent their views. 
 

Figure 1. The Appalachian Basin. Source of data: 
http://www.eia.gov/pub/oil_gas/natural_gas/analysis_publication
s/maps/maps.htm  

http://www.healtheffects.org/UOGD/UOGD.htm
http://www.healtheffects.org/UOGD/UOGD.htm
http://iop.pitt.edu/shalegas/
http://www.eia.gov/pub/oil_gas/natural_gas/analysis_publications/maps/maps.htm
http://www.eia.gov/pub/oil_gas/natural_gas/analysis_publications/maps/maps.htm
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recommendation and brings an impartial, geographically diverse, interdisciplinary perspective to 
questions about potential impacts. 
 
This interim report summarizes some of the Committee’s initial steps toward crafting a Strategic 
Scientific Research Plan to be released in 2015.  The Research Plan will provide an effective 
foundation for future research, communication, and decision-making by providing an 
independent, priority-based assessment of key research questions. The Research Plan will 
include research priorities based on explicit criteria rather than a list of research ideas. It will be 
designed with the understanding that research planning must periodically be revisited as industry 
practice evolves, the regulatory environment changes, and scientific understanding grows.  The 
Plan will be a high quality and credible guide to be used by research funders and the scientific 
community to inform priority-based funding decisions as well as by regulators, oil and gas 
developers, environmental organization leaders, public health experts, and other stakeholders to 
inform policy in this important arena.  

1.2 EVOLUTION OF OIL AND GAS DEVELOPMENT IN 
THE APPALACHIAN BASIN  

The Appalachian Basin (Figure 1) extends from Alabama northward to New York and from 
which oil and gas have been extracted since the 19th century, starting with the first commercial 
gas well drilled in the United States in Fredonia, New York, in 1821, and the first commercial oil 
well drilled in the Appalachian Basin, near Titusville, Pennsylvania, in 1859. Some controversy 
arose about environmental impacts that led to a federal court case in the late 1970s (United States 
v. Minard Run Oil Co., No. 90-12, 1980 U.S. Dist. LEXIS 9570 (W.D. Pa. Dec. 16, 1980), but 
these concerns rarely rose to the level of public interest evident since the late 2000s, when rarely 
a day passes that a newspaper headline somewhere does not make reference to some aspect of oil 
and gas development, frequently hydraulic fracturing (Figure 2).  

  
Given the historic presence of oil and 
gas development in the region, why is 
this new development receiving so 
much attention now? The scale and rate 
of development, with nearly 12,000 
new wells drilled in Pennsylvania, West 
Virginia, and Ohio since 2004, differ 
markedly from previous development, 
to an extent that has changed the 
dynamics of the world energy market. 
This dramatic expansion of oil and gas 
development stems from technologic 
changes involving increased use of 
hydraulic fracturing combined with 
horizontal drilling to develop low-
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permeability geologic formations that could not be developed profitably without them. This 
evolving technology influences where development is economically feasible and enables a 
substantial increase in the rate of development, the intensity of industrial activity, the 
requirements for water, chemicals, sand, and other materials, and the productivity that can be 
achieved. These new and modified practices in turn influence the potential for positive and 
negative consequences on oil and gas workers, people in nearby communities, the structure and 
function of their communities, and the local, regional, national, and possibly global environment.  
People living and working near such development — and even people elsewhere who might be 
affected by regional air quality impacts now or by similar development locally in the future — 
have raised many questions about these potential impacts that the Research Plan will address.   

1.2.1 Technologic Advances Leading to Rapid Oil and Gas Development in 
the Appalachian Basin     
 
The Appalachian Basin’s oil and gas resources have historically been extracted by drilling 
vertical wells into underground reservoirs where oil or gas is trapped. This oil or gas flows 
readily into the vertical well. The development of these conventional resources predominated in 
the northeastern United States and elsewhere across the country through the mid-1900s. Around 
1950, improvements in drilling technology and the expanding use of modern well stimulation 
techniques to enhance oil and gas recovery prompted the commercial use of such methods in 
conventional fields across the United States and worldwide (King 2012).  Hydraulic fracturing is 
one such well-stimulation technique that has been used for decades in the Appalachian Basin. 
Fracturing requires large volumes of water mixed with proppants (sand or other man-made 
material that keeps the cracks created by the hydraulic fracturing open) and smaller amounts of 
chemicals. Beginning in the 1980s, hydraulic fracturing allowed for the initial development of 
unconventional resources in the Appalachian Basin, with the recovery of coalbed methane gas 
and tight sandstone (“tight sand”) gas. These unconventional resources differ from conventional 
resources in that their lower permeability limits the flow of oil or gas into the wellbore without 
well stimulation (Figure 3).   
 
The oil and gas in these reservoirs originated from “source rock,” which is the geologic 
formation where it was originally formed from decaying organic matter. Even with the use of 
hydraulic fracturing to extract oil and gas from conventional and some unconventional 
formations, it was widely known that a great deal of oil and gas remained in the source rock, 
with no economically viable method of extracting it. Years of experimentation with horizontal 
drilling combined with high-volume hydraulic fracturing of unconventional formations yielded 
success in the Barnett Shale gas fields of Texas and Oklahoma. High-volume hydraulic 
fracturing differed from early hydraulic fracturing with its requirement for millions instead of 
thousands of gallons of water per well. These new techniques of horizontal drilling combined 
with high-volume hydraulic fracturing (Box 1) improved well yields that, in turn, changed the 
economics of extraction and began to open up development opportunities that had not been 
economically viable in the past. Experience with drilling horizontal wellbores several thousand 
feet long and using high-volume hydraulic fracturing led to the widespread development of 
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unconventional oil and gas fields such as the Barnett Shale, Marcellus Shale, and the Bakken 
Shale (Pierobon 2013).  
 
 

 
Figure 3.  Relationship between the permeability of a geologic formation and the need for hydraulic 
fracturing or high-volume hydraulic fracturing.  The least permeable geological formation is “source rock” where 
the oil or gas was formed and has remained in place for millennia because of this low permeability. “Reservoir rock” 
includes a range of subsurface, porous rock bodies of varying degrees of permeability in which oil or gas or both are 
stored at some distance from the source rock. Well stimulation methods have been used since the late 19th century to 
facilitate oil and gas flow from reservoir rock. Hydraulic fracturing was introduced in the mid-20th century as a new 
well stimulation method and has been commonly used to mobilize oil and gas from various types of conventional and 
unconventional reservoir rocks. Modified from R. Kleinberg, “Unconventional Fossil Fuels” in M.J. Aziz and A.C. 
Johnson, Introduction to Energy Technology: Depletable and Renewable, Wiley-VCH (in-press). 
 
The successful extraction of oil from 
the Barnett Shale prompted similar 
and ongoing development of the 
natural gas–rich shale formations of 
the Appalachian Basin. Commercial 
production from unconventional gas 
wells began in 2005 in the Marcellus 
Shale (Geology.com 2005) and in 
2011 in the Utica Shale 
(http://oilandgas.ohiodnr.gov/produc
tion). From these beginnings, 
development of the Marcellus and 
Utica shales has continued in 
Pennsylvania, Ohio, and West 
Virginia, with about 12,000 wells 
drilled since 2004 (Marcellus Center 
for Outreach and Research; 
http://www.marcellus.psu.edu/resour
ces/maps.php). Neighboring states — 
New York, Maryland, and Virginia 
— are still considering whether and 
how these resources might be developed.  

What is “conventional” and “unconventional” in the oil and gas 
industry? 
The terms “conventional” and “unconventional” are widely but not 
consistently used, creating confusion.  Most people use them to distinguish 
between the geological formations from which oil and gas are extracted. 
Others use them to classify how oil and gas wells are drilled today. Still 
others talk about them in the context of emerging oil and gas technology and 
development.  In this report, the Committee uses them as follows: 

 A conventional geologic formation is one with relatively high 
permeability, where the oil or gas have migrated to a reservoir and are 
held there by a confining rock unit that prevents further migration. Oil 
and gas flow readily into the wellbore from conventional formations.  

 An unconventional geologic formation is one with relatively low 
permeability (e.g., Marcellus and Utica shales) such that oil and gas 
do not flow readily into the wellbore without the application of a well-
stimulation technique. 

Oil and gas are being extracted from wells drilled into both types of geologic 
formations. Wells in conventional formations (referred to in this report as 
“conventional wells”) vastly outnumber wells in unconventional formations 
(referred to in this report as “unconventional wells”). However, the scale of 
development associated with wells in unconventional formations has been 
the primary source of many of the concerns the public has raised today. 
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Much public attention has been focused on the use of horizontal drilling and hydraulic fracturing 
to extract gas from the Marcellus Shale and, to a lesser extent, the Utica Shale. However, the 
Appalachian Basin is home to other unconventional resources (Figure 4), and the extent to which 
oil and gas will be extracted from them depends on their viability, the future price of and demand 
for energy, and the regulatory environment. In addition, horizontal drilling and hydraulic 
fracturing technologies might be used in the future to improve recovery from conventional oil 
and gas resources throughout the Appalachian Basin (and elsewhere in the United States). 

 
Figure 4. Extent of oil and gas resources in the Appalachian Basin (in gray). : (Left) shale plays (i.e., 
accumulations of shale gas) (data from 2011), (Middle) coalbed methane fields and basins (data from 2006, 2007 
respectively), and (Right) tight gas plays (data from 2010). Source of data: US Energy Administration (U.S. Energy 
Information Administration 2014b) http://www.eia.gov/pub/oil_gas/natural_gas/analysis_publications/maps/maps.htm  

1.2.2 Contrast Between 21st Century and Earlier Oil and Gas Development  
 
Oil and gas development in the Appalachian Basin before the recent rapid development of the 
Marcellus Shale involved conventional, and sometimes unconventional, geologic formations 
from which oil and gas were extracted either without hydraulic fracturing or with a form of 
hydraulic fracturing that required tens of thousands of gallons of water per well instead of the 
millions of gallons of water per well used today to support high-volume hydraulic fracturing 
combined with horizontal drilling.  Figure 5 shows the active conventional and unconventional 
oil and gas wells in Pennsylvania and West Virginia. As can be seen the conventional wells 
greatly outnumber the unconventional wells. Why, then, have the unconventional wells attracted 
disproportionate attention and controversy? These wells are far more productive than their earlier 
counterparts, but they also have a potential for more and different kinds of negative impacts (see 
Box 1).     

 

Shale Gas Coalbed Methane Tight Gas 

http://www.eia.gov/pub/oil_gas/natural_gas/analysis_publications/maps/maps.htm
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Box 1. What is new about oil and gas development in the 21st century?   
 

Hydraulic fracturing, horizontal (or directional) drilling, and extraction of oil and gas from unconventional formations, such as 
tight sandstone and shale, are not by themselves new. 
 
What is new is the use of high-volume (millions of gallons of water per well) hydraulic fracturing combined with horizontal 
drilling (thousands of feet drilled within the target formation) as fracturing methods continue to evolve. This combination of 
technologic innovations has made previously uneconomical oil and gas resources valuable enough to develop.  
 
Today’s oil and gas wells, with their horizontal segments, intersect more of the targeted oil- or gas-bearing rock than earlier 
vertical wells, which consequently requires the following: 
 

 Larger well pads with extensive amounts of equipment that must be transported to and from the pad; 
 More raw materials that must be transported to the well pad for drilling, cementing and hydraulically fracturing the 

target bedrock formation to produce the oil or gas; 
 More liquid and solid waste from multiple wells drilled on one well pad that must be captured, transported, and 

treated, for reuse or ultimate disposal; and 
 Longer period of industrial activity required at a single well pad when multiple wells developed on it.   

 
In addition, today’s oil and gas development sometimes takes place in regions unaccustomed to this scale of development, 
including regions that range from densely populated to undeveloped forest lands containing the headwaters of many 
streams and rivers. Development also occurs in areas where groundwater is the primary source of drinking water. 

 

 
 
Conceptual layout comparing a vertical well with a horizontal well in the Marcellus Shale. More gas can be recovered 
from the horizontal well because it allows for multiple stages of fracturing in the productive zone of the shale formation. Only 
one vertical well is drilled per well pad versus multiple horizontal wells from a single modern well pad. Note: The illustration 
is not to scale, and actual fracture distances vary by depth and the type of resource under development. Illustration by 
William Kappel. 
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Figure 5.  Active unconventional (yellow) and conventional (purple) oil and gas wells in Pennsylvania and 
West Virginia. Reprinted with permission from Vengosh et al. 2014. Copyright 2014 American Chemical Society. 
 
Because of the isolated nature of oil and gas reservoirs, earlier extraction of conventional 
resources often involved short-term drilling with relatively small drill rigs (e.g., some mounted 
on a truck). Little or no well stimulation was required to facilitate the flow of oil or gas into 
vertical wells, there was minimal intrusion of equipment and personnel, and existing pipelines 
were used to transport the oil or gas. In contrast, the very large, continuous nature of 
unconventional formations requires longer periods of drilling with larger rigs (as tall as 150 feet), 
large amounts of ancillary equipment, followed by high-volume hydraulic fracturing. These 
operations occur around the clock.  This new extraction process involves hundreds of truck trips 
per day to and from a well pad, although trends toward more piping of water to well pads and 
more recycling of flowback water have been noted.  Finally construction of new pipelines, 
compressor stations, and processing facilities are also required to support the new oil and gas 
production. 
  
Within the Appalachian basin, the use of the new extraction processes first occurred in 
northeastern Pennsylvania but has rapidly expanded to include western Pennsylvania, eastern 
Ohio, and northern West Virginia. Many people living in these regions are familiar with 
conventional oil and gas development but not with the pace and scale of recent development of 
unconventional resources. However, in some areas such as northeastern Pennsylvania (Figure 5), 
the occurrence of large-scale oil and gas extraction is unprecedented.  Development of natural 
gas resources in the Appalachian Basin and elsewhere in the United States is expected to 

Areas with 
limited 
previous oil 
and gas 
development  
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continue increasing over the next 25 years, highlighting the importance of better understanding 
its positive and negative effects.   
 

 
 

2. THE COMMITTEE’S APPROACH AND THE 

SCOPE OF REVIEW 
The Committee’s primary objective is to define a priority-based Strategic Scientific Research 
Plan to guide research in order to better understand the potential adverse human health, social, 
ecologic, and environmental impacts of 21st century oil and gas development in the Appalachian 
Basin. The following section of this interim report describes the Committee’s general approach 
and scope of review. 

The future of natural gas in the United States and the Appalachian region  
The United States Energy Information Administration (EIA) predicts a continued and 
dramatic rise in domestic natural gas production through 2040, with unconventional 
resources — shale gas and tight gas — responsible for much of the increase.  

In 2012, natural gas production from the Marcellus Shale met 16%  of domestic demand 
east of the Mississippi River. EIA predicts that this percentage could rise to 39%  by 
2022 before declining, although still providing about 31%  of demand through 2040. 
Along with this rising production may come modified transportation patterns, with much 
of the eastern United States (i.e., east of the Mississippi River) obtaining gas from the 
Marcellus region instead of Texas, Louisiana, Oklahoma, and the Gulf of Mexico (EIA, 
2014). 

 
Historical and projected natural gas production in the United States by source. 
Source: U.S. Energy Information Administration 2014a.  
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2.1 GEOGRAPHY 
 
The committee is focused on the Appalachian Basin (Figure 1). Much of the discussion about 
potential impacts from the development of Appalachian Basin oil and gas centers on locations 
where this development is expanding rapidly in Pennsylvania, Ohio, and West Virginia, but the 
Committee recognizes the potential for future oil and gas development in other Appalachian 
states. In devising its Strategic Scientific Research Plan, the Committee will adopt a broader 
perspective toward development of all types of oil and gas resources throughout the Appalachian 
region. The Committee further understands that components of its Research Plan will likely be 
relevant to understanding potential impacts in other regions and will endeavor to create a plan 
that serves as a template for the evaluation of oil and gas development outside the Appalachian 
basin.   

2.2 OIL AND GAS OPERATIONS AND POTENTIAL 
IMPACTS UNDER REVIEW 
 
The Committee’s research planning to better understand potential impacts on people, 
communities, and ecologic systems must begin with a clear conception of the oil and gas 
operations and types of potential impacts that the Committee will review and address in its 
research plan. This section explains these operations and also provides a more detailed 
description of the types of potential impacts under review.  

2.2.1 Oil and Gas Operations 
 
The extraction technique of high-volume hydraulic fracturing combined with horizontal drilling, 
which together allow for the current wave of unconventional oil and gas development, are only 
part of the oil and gas operations that have elicited questions about potential impacts. The 
Committee is considering potential impacts related to all stages of oil and gas development and 
production that may have impacts on the people, communities, and ecology of the region, 
including exploration, well pad construction, drilling and completion, production, well closure, 
and site reclamation as well as all ancillary facilities (e.g., compressor stations and processing 
facilities) and waste management (e.g., deep well injection, landfilling, and recycling of 
wastewater) associated with the production of oil and gas.  These stages and the average time 
required for each one to develop and produce oil or gas from a single well with high-volume 
hydraulic fracturing are described in Box 2. The development stage for a single well, beginning 
with exploration and ending with well completion, generally occurs over a period of months, 
while the production stage can continue for years to decades.  However, potential impacts 
associated with well development can persist for a longer period; for example, when multiple 
wells are drilled at different times on a single well pad or when multiple well pads are 
constructed at different times in the same region. Accidents during development can also have 
long-lasting effects (e.g., uncontrolled surface spills that adversely affect shallow groundwater or 
nearby surface water bodies). 
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Box 2. Timeline: Average duration of each stage in the life cycle of a high-volume hydraulically fractured well 1 

Stage Activities Time Required 

Ex ploration 
Seismic reflection testing to 
support selection of a site for oil 
or gas dev elopment 

1 to 2 months 

Regionally  (ov er 5 square miles), a 3-dimensional surv ey  takes a month 
or tw o (not including permitting). Locally  (less than 5 square miles), a 
number of 2-dimensional lines or a small 3-dimensional surv ey  w ill take 
day s-to-w eeks of measurement activ ity  during equipment set-up, local 
data collection, and subsequent equipment remov al. 

Site 
preparation 2 

Construction of w ell pads, access 
roads, w ater-supply  sy stems for 
drilling and fracturing, and 
gathering pipelines. 

w eeks to 1 
month 

Depends on the distance from local roadw ay s, erosion mitigation 
measures, and time required to deliv er drilling supplies and arrange 
equipment on the w ell pad. Designing a w ater supply  sy stem for drilling 
and fracturing may  add additional construction time. 

Drilling 

Drilling of the topset (v ertical part) 
of a w ell and setting and 
cementing of casings 

1 to 2 w eeks Depends on the depth of the topset and the length and number of 
casings and amount of cement needed. 

Drilling of a transition curv e and 
horizontal w ell and setting and 
cementing of casings 

3 to 4 w eeks 
or more 

Depends on the depth of the w ell, the length of the horizontal leg, the 
length and number of casings, and amount of cement needed. 

Total drilling time if more than 
one w ell is installed on a single 
w ell pad 

6 months or 
more Actual time depends on the number of w ells 

Well 
completion 
(includes 
hy draulic 

fracturing and 
flow back) 

Hy draulic fracturing of horizontal 
w ell  

w eeks to ~ 1 
month 

A w eek or more to deliv er and set-up hy draulic fracturing equipment, and 
sev eral w eeks to perform staged hy draulic fracturing. Each stage 
requires 30 to 45 minutes, but re-setting subsurface equipment, 
perforating the casing, and packing off the nex t stage for fracturing takes 
4 to 6 hours. Re-fracturing in the future is possible, but the likelihood and 
timing depend on many  technological and economic factors. 

Preparing the w ell for production 
(or shut-in for later production) 

day s to 1 
w eek 

Sev eral day s to a w eek to remov e fracturing equipment, flush (flow back) 
the w ell of residual materials (i.e., cuttings, proppant, and other debris), 
and set the production casing. This step can take longer if gas 
condensates or oil are produced along w ith the natural gas, resulting in 
additional equipment needs related to processing and transmission.  

Total hy draulic fracturing time if 
more than one w ell is installed on 
a single w ell pad  

3 months or 
more Actual time depends on the number of w ells and fracturing stages 

Production 

Ex traction of oil and gas   y ears to 
decades 

Years to decades; high-v olume production for sev eral y ears follow ed by  
reduced production, depending on the depletion curv e.   

Processing of oil and gas 
(compressor stations, gathering 
facilities, and processing plants) 

y ears to 
decades Years to decades; continuous operation 

Closure and 
post-

production 

Well closure sev eral 
w eeks 

Sev eral w eeks to position supplies, material, and drilling rig for closure. A 
w eek or more to load the w ell w ith brine (to stop gas and fluid flow ), 
remov e some of the casings, and cement the w ell. 

Site restoration; site restoration 
can occur during production, 
depending on state law  and local 
custom 

Indeterminate Restoration depends on the lease agreement and w hether the site is to 
be maintained for future dev elopment. 

Waste 
Management 

Storage, possible treatment and 
reuse, transport, disposal of liquid 
and solid w aste on or off the w ell 
pad 

y ears to 
decades 

About a couple of months for w astes from drilling and hy draulic 
fracturing; y ears to decades for w astes from oil and gas production and 
processing, w ith quantities diminishing after the first months.  

1 Ex cept w here otherw ise indicated, this timeline is for oil and gas dev elopment and production from a single w ell; how ev er, a single w ell pad often 
includes multiple w ells. Therefore, the activ ity  durations at a single w ell pad w ith multiple w ells w ould ex ceed w hat is reported here. The total time 
is not proportional to the number of w ells because some processes occur in parallel. 
2 This timeline does not necessarily  include the time required for constructing gas compressor stations, processing facilities, and w aste 
management facilities. 
3 The amount of time required for hy draulic fracturing depends on the number of times that re-fracturing is technically  and economically  v iable.  

 
 

 3 



~ DRAFT ~ 
The Potential Impacts of 21st Century Oil and Gas Development in the Appalachian Basin: 
First Steps Toward a Strategic Research Plan  
 

12 
 
 

Oil and gas industry practices are evolving rapidly and vary as a function of individual operator 
practice, local regulations, and the geology of the type of oil or gas being extracted. For example, 
naturally occurring radioactive material is more prevalent in Marcellus shale than Utica shale 
and, as a result, is not likely to be a concern in all parts of the Appalachian Basin. In some cases, 
industry practice is changing in direct response to local concerns that have been raised about its 
potential impacts. In setting research priorities, the Committee will consider the degree to which 
new practices are evolving in ways that may mitigate or enhance adverse impacts. 

2.2.2 Potential Stressors and Impacts 
 
Figure 6 summarizes the Committee’s scope of review, including oil and gas development 
stages, the potential stressors resulting from them, and the potential impacts resulting from the 
stressors. Individual stressors may lead to multiple impacts. Land development, for example, 
might lead to landscape disruption and habitat fragmentation as well as damage to community 
characteristics, reduced infrastructure capacity, and economic stress, which may in turn affect the 
health and well-being of individuals, communities, and ecosystems. The figure illustrates some 
of the relationships among oil and gas operations, stressors, and impacts and is not intended to be 
an exhaustive compilation.  
 
The Committee recognizes the need to distinguish between potential stressors that arise under 
routine and unexpected conditions (e.g., wastewater spills, vehicle collisions, and well casing 
leaks). When considering chemicals found in soil, water, air, and other environmental media 
(e.g., sediment), the Committee also understands the need to distinguish among potential 
stressors that arise from natural sources, oil and gas development, and other anthropogenic 
sources. Even under routine conditions there may be periodic excursions when levels of any 
chemical exposure or other stressor might be higher than average, and the Committee recognizes 
that these excursions might need to be accounted for in exposure measurement and health 
studies. 
 
The Committee’s evaluation of potential human health effects includes consideration of both 
short- and long-term effects from exposure to one or more potential stressors associated with oil 
and gas development. These include, but not limited to, chemical and radiation exposures 
through water, air, and soil; increased light, noise, and odors; and societal changes. Stresses on 
regional resources and infrastructure are also being examined. The evaluation of potential 
ecologic impacts is similar to that being conducted for the human health effects, except that it 
involves consideration of habitat loss and fragmentation and changes in ecologic community 
structure (i.e., the organization of and interaction among species that occupy a given area). 
Potential impacts might be short-lived (e.g., drilling of a single well near an occupied dwelling or 
a forest) or might persist for decades (e.g., many wells fragmenting a forest or the presence of a 
processing plant in a rural community). The Committee is focusing its review on the full range of 
aspects of oil and gas development that could affect the communities, people, and ecologic 
systems of the Appalachian region. The review is also identifying stressors that might contribute 
to effects beyond the local area, such as the release of methane to the atmosphere, but the 
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Committee is not directly evaluating issues such as global climate change, which are already the 
subject of intense study by other entities.   
 

 
Figure 6.  The Committee’s scope of review. (Left) 21st century oil and gas development refers to all stages of 
development from exploration through well closure and reclamation, and includes waste management and all 
ancillary facilities such as compressor stations, treatment facilities, and gathering pipelines, but excludes intermediate 
and interstate pipelines; (Middle) Potential stressors are changes to the environment that might lead to adverse 
impacts on human health, communities, and ecologic systems; (Right) Potential impacts are adverse changes that 
may harm the health and well-being of individual oil and gas workers and members of communities near oil and gas 
development, the well-being of communities, and the health of ecologic systems. Potential impacts beyond the 
community and ecologic region near oil and gas development fall outside the Committee’s scope of review (e.g., 
effects related to distribution and use of oil and gas beyond gathering pipelines, and contribution to global climate 
change). 

2.3 GATHERING EVIDENCE OF POTENTIAL IMPACTS 
 
Since June 2014, the Committee has been gathering evidence of potential adverse human health, 
social, environmental, and ecologic impacts from all stages of oil and gas development to inform 
development of its Strategic Scientific Research Plan. The Committee consulted the peer-
reviewed scientific literature to develop an understanding of potential impacts from 21st century 
oil and gas development in the Appalachian Basin. However, given the rapidly changing 
industry, this literature cannot be expected to include all of the information that the Committee 
needs to define a sound and relevant Research Plan. For this reason, the Committee is looking 

 

21st Century Oil and Gas 
Development

1
  

 

Stressors
2
 

 

Potential Impacts
3
 

 Exploration 
 Site preparation 

(construction of well pads, 
access roads, and gathering 
pipelines) 

 Drilling (vertical and 
horizontal portions of a 
well) 

 Well completion, including 
hydraulic fracturing and 
flowback 

 Production, including oil 
and gas processing (on-site 
and off-site) 

 Waste management 
 Closure and post-

production 

 Chemical and radiological 
releases to the environment 

 Changes in quality of 
environmental media (e.g., 
air, groundwater, surface 
water, soil, sediment, food) 

 Consumptive water use 
 Land development 
 Seismic activity 
 Community change 
 Increased truck traffic 
 Waste management 

(characterization, storage, 
tracking, treatment, and 
disposal) 

 Light, noise and odor 
 Accidents (e.g., spills, leaks, 

explosions, failed well casing) 

 Reduced quality of environmental 
media (e.g., air, groundwater, surface 
water, soil, sediment, food) 

 Water scarcity 
 Landscape disruption and habitat 

fragmentation 
 Seismic damage  
 Safety hazards (e.g., gas explosions, 

traffic accidents, workplace hazards) 
 Damage to community characteristics 

(e.g., loss of cultural heritage, 
connection to land, and aesthetics; 
changing social norms; community 
conflict)  

 Reduced community infrastructure 
capacity (e.g., transportation, schools, 
hospitals) 

 Economic stress (e.g., reduced 
property values) 

 Public health concerns (e.g., 
ineffective waste management, STDs 
from community change) 

 Stress (e.g., from noise, light, odor, 
split estates, reduced sense of well-
being) 
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beyond the peer-reviewed literature to develop an understanding of current and possible future 
industry practice as it pertains to potential adverse impacts.  

2.3.1 Scientific Literature and Technical Reports 
 
The Committee reviewed more than 800 articles and reports with information relevant to oil and 
gas development in the Appalachian region (Appendix C), and some Committee members 
prepared synopses that will be posted at HEI’s website 
(http://www.healtheffects.org/UOGD/UOGD.htm) in early 2015. 
 
Some of these reported studies and data directly relate to developing Appalachian Basin 
resources, while others provided information from other geologic basins of potential relevance to 
the Appalachian Basin. In compiling its review, the Committee gave priority to peer-reviewed 
articles from the scientific literature as well as reports and data from non-governmental research 
institutions and government agencies that oversee oil and gas development and production in the 
Appalachian region. Findings from some of the currently available literature might not be 
relevant under future development conditions given the changes in oil and gas industry practice 
and its regulation, but they might be important for understanding previous and potentially long-
lasting impacts of past and current practices. The Committee’s review and evaluation of the 
scientific literature will continue as it formulates the Strategic Research Plan.  

2.3.2 Briefings by Experts  
 
Committee members bring relevant knowledge and experience to research planning, with 
expertise in many disciplines ranging from geophysics and petroleum geology to epidemiology, 
medicine, aquatic ecology, and sociology. Nevertheless, the Committee consulted subject matter 
experts to develop a deeper understanding of current industrial practice. Specifically, experts 
have briefed the Committee through meetings and webinars on unconventional oil and gas 
geology and industrial practices in the Appalachian Basin and on trends in industry practice, 
particularly fracturing methods.  

2.3.3 Public Workshops 
 
As part of its review, the Committee, with organizational support provided by the University of 
Pittsburgh Institute of Politics, is hosting three public workshops to hear from a wide variety of 
experts and government officials, as well as from industry, community, and environmental 
groups, to ensure that it considers the full range of issues and questions.  The first public 
workshop occurred in June 2014 in Pittsburgh, Pennsylvania, where participants included 
academic scientists, federal and state officials, representatives of industry working actively in the 
region, and leaders from nongovernmental organizations evaluating ecologic and human health 
concerns, some of whom are working directly with local communities proximate to natural gas 
operations to understand potential impacts. The workshop also included a series of technical 
talks that addressed the technology of oil and gas development; potential implications for human 

http://www.healtheffects.org/UOGD/UOGD.htm
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health, communities, and the environment; and recommendations for scientific research to 
understand these implications. A second public workshop is being held on December 10, 2014 in 
Wheeling, West Virginia, in conjunction with the release of this interim report, and before the 
Committee turns its attention to research planning. This workshop will provide another 
opportunity for stakeholder input and will include technical presentations on potential social 
impacts of oil and gas development and on current and possible future industry practice.  The 
final public workshop will be held following release of the draft Strategic Scientific Research 
Plan in mid-2015 to provide for more input from stakeholders.  

2.3.4 Tour of Gas Well Sites  
 
In August 2014, the Ohio County Health Department in northern West Virginia provided HEI 
staff with a roadside tour of gas well sites, compressor stations, and a large processing plant in 
West Virginia. In September 2014, Gulfport Energy Corporation provided the Committee with a 
tour of well pads in southeastern Ohio set up for drilling a 17,000-foot well (combined vertical 
and horizontal length) and for high-volume hydraulic fracturing (Figure 7).  These two tours 
conveyed important information about current industry practice; however, the Committee 
recognizes that they cannot be relied upon to understand the tremendous variability in practice 
over time and among various developers and regions. In addition, some of the committee 
members have also toured and worked on many additional facilities as part of their other 
professional activities.   

 

 
 

Figure 7.  HEI’s Special Scientific Committee on 
Unconventional Oil and Gas Development in the 
Appalachian Basin inspects a hydraulic fracturing 
operation in southeastern Ohio on September 8, 2014. 
The company developing these wells hosted the tour.  

Figure 8.  Gas well–related traffic and a gas-
processing facility as observed by HEI staff 
during an August 1, 2014, roadside tour of well 
pads and gas-processing facilities in northern 
West Virginia. Staff of the Ohio County Health 
Department in Wheeling, WV hosted the tour. 

(a) 

(b) 
 



~ DRAFT ~ 
The Potential Impacts of 21st Century Oil and Gas Development in the Appalachian Basin: 
First Steps Toward a Strategic Research Plan  
 

16 
 
 

2.4 THE COMMITTEE’S REVIEW IN THE BROADER 
CONTEXT OF ENERGY POLICY 
 
Although the Committee’s focus is on research needed to bring credible data-driven analysis to 
answering questions about potential adverse impacts on people and the environment in the 
Appalachian region, the Committee recognizes that oil and gas development can also generate 
potential benefits at the local, regional, national, and global levels. The energy needed in the 
United States and around the world will inevitably come from a range of sources, and the actual 
benefits and impacts resulting from energy generation and use will hinge on the combination of 
energy alternatives actually used. Agencies and others at the regional, national, and international 
levels are actively engaged in the complex task of evaluating various energy source 
combinations, including a consideration of the climate change potential of various scenarios. 
Given those broader analyses, the Committee has sought to answer a more focused but critical 
question to inform future energy policy choices — which potential adverse impacts of oil and 
gas development warrant priority consideration for scientific study?  This report presents the 
Committee’s first steps toward answering this question. 

3. POTENTIAL STRESSORS AND IMPACTS  
 
This section briefly summarizes the Committee’s review of the potential stressors and impacts of 
oil and gas development in the Appalachian Basin on people and the environment. The summary 
is based on the Committee’s review of hundreds of peer-reviewed scientific papers and reports, 
all of which are listed in Appendix C. More extensive synopses of the literature were developed 
by members of the Committee to support its research planning deliberations; the synopses will be 
available on the HEI website (http://www.healtheffects.org/UOGD/UOGD.htm) in early 2015. 
 
This section is not intended to convey the potential impacts that the Committee regards as most 
important. Rather, it reflects the impacts that have received attention in the peer-reviewed 
literature; consequently, it might not include all the potential stressors and impacts that might 
ultimately receive attention in the Committee’s research planning. For example, much literature 
has focused on potential impacts during the well development phase, notably well construction, 
drilling, and fracturing. The section reflects this focus with, consequently, less discussion of 
potential impacts from the production and post-production phases. Also, industry practices can 
vary considerably across the region as a function of local geology, regulatory requirements, and 
company practices. These variations can affect the potential stressors and impacts that might 
occur. 

  

http://www.healtheffects.org/UOGD/UOGD.htm
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3.1 ENVIRONMENTAL STRESSORS 
 

This section summarizes potential environmental stressors that may arise from 21st century oil 
and gas development. The discussion of potential stressors is organized by the stage of oil and 
gas development and production to gain a better understanding of when and how each potential 
stressor occurs. First, however, a brief subsection summarizes potential stressors involving 
emissions to air because they are present during many or all stages of oil and gas development 
and production.   

3.1.1 Potential Stressors Related to Air Emissions  
 
There are several recent reviews on air impacts from unconventional oil and gas development, 
production, and processing (Allen 2014; Field et al. 2014a; Moore et al. 2014a). Data on air 
emissions exist for many sources of air pollution associated with the industry, including diesel 
engines, natural gas engines, natural gas turbines, and natural gas–fired heaters, allowing for 
preliminary assessments of air quality impacts. Many oil and gas studies to date have focused on 
measurements of total emissions near well pads but were not organized by stage of development.  
 
At the local level (i.e., near the well operations), multiple studies have reported evidence for 
increased emissions of particulate matter (PM), volatile organic compounds (VOCs), and air 
toxics in both Appalachian and other areas (Gilman et al. 2013; Helmig et al. 2014; Milton et al. 
2014; Pétron et al. 2012; Rich et al. 2013; Pekney et al. 2014; Bunch et al. 2014; McCawley 
2013; Zielinska et al. 2010). These emissions are specific to certain stages of development.   
 
At the regional level, there is substantial evidence that oil and gas activities have increased 
concentrations of ozone precursors, especially petroleum hydrocarbons (Katzenstein et al. 
2003;Gilman et al. 2013) and potentially NO2 (Caulton et al. 2014), but published data do not 
indicate that unconventional oil and gas development has led to increased ozone levels in the 
Appalachian basin. In fact, monitoring data collected in urban areas indicate that ozone levels in 
most of the Eastern United States have decreased over the last decade due to implementation of 
regulations that have reduced emissions of VOCs and NOx from power plants, motor vehicles, 
and other sources.  These regulations have not yet been fully implemented; continued 
implementation is expected to further reduce ozone levels.  Emissions from unconventional oil 
and gas development may offset some of these reductions as opposed to leading to higher ozone 
levels.  Therefore, the fact that ozone levels are decreasing does not mean oil and gas activities 
are not affecting ozone levels. Roy and colleagues (2013) performed simulations to investigate 
the effects of development in the Marcellus formation on regional ozone levels. Simulations for 
the year 2020 showed that the best estimate emissions scenario raised maximum daily eight-hour 
ozone concentrations by as much as 5 parts per billion by volume (ppbv) on high ozone days 
relative to a scenario with no Marcellus development.   
 
At the global level, questions have arisen about the emissions of methane, a potent greenhouse 
gas, at all stages of the production, development, distribution and use cycle for natural gas.  
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These important questions are already the subject of extensive efforts to characterize their 
emissions (e.g. Allen et al 2013; Brandt et al 2014; Alvarez et, 2014)  given that attention, and 
the fact that the scope far exceeds potential impacts in the Appalachian region, this Committee 
did not specifically address global emissions questions other than to note the potential for 
emissions at each stage of the process.   

3.1.2 Potential Stressors Related to the Development Phase 
 
The oil and gas development phase consists of the following general stages: exploration, site 
preparation, drilling, and well completion, including hydraulic fracturing. Potential stressors 
specific to each stage are summarized in this section.  
 
As noted earlier, a variety of potential air quality impacts can arise during the site preparation 
stage that then continue for several or all stages of the development phase (Table 1). Heavy duty 
diesel engines used in construction equipment and trucks can emit nitrogen oxides (NOx), 
particulate matter (PM), volatile organic compounds (VOCs), and air toxics2, although newer 
diesel engine technology is significantly reducing these emissions. Dust is also a potential air 
quality concern during the construction phase.  

Table 1. Important air emission sources during the development of a 21st century oil and 
gas well. 

Source Category NOx VOCs PM Air 
Toxics 

Climate 
Forcersa 

Quality of Emissions 
Data 

Diesel engines in drill rigs, frac pumps, trucks, 
generators, etc. ● ● ● ● ● Medium 

Natural gas engines in drill rigs, frac pumps, vehicle, 
generators, etc. ● ● ● ● ● Medium 

Dust from vehicle traff ic, site construction, etc.   ●   Fair 

Fugitive emissions during drilling, hydraulic fracturing, 
and completion  ●  ● ● Fair 

Completion venting  ●  ● ● Fair 

Storage tanks  ●  ● ● Fair 

Waste impoundments  ●  ● ● Poor 

Flares ● ● ● ● ● Poor 

a Gases or particles that alter the Earth’s energy balance by absorbing or reflecting radiation. 

                                                 
 
 
2 A l ist of 186 hazardous air pollutants is specified in the Clean Air Act Amendments of 1990. The l ist includes VOCs 
such as benzene, formaldehyde, and other pollutants, such as diesel PM 
(http://www.epa.gov/ttn/atw/188polls.html). 
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Exploration  
 
During the exploration stage, developers seek 
optimal locations for developing oil and gas 
wells. Seismic reflection surveys can be used 
for this purpose. These surveys produce a three-
dimensional image of subsurface geology by 
measuring seismic wave vibrations that are 
propagated into the earth, with vibrators 
mounted on trucks or shallow explosive 
charges, and reflected back to the surface. The 
three-dimensional image or two-dimensional 
cross section can show the geologic section, and 
naturally occurring structure (faults and folds) in the rock formations. These surveys can involve 
several potential stressors, including noise, vibration, vehicle emissions, habitat fragmentation, 
and landscape pattern changes.   
 
Site Preparation: Construction of Well Pads, Access Roads, Water Supply System, and 
Pipelines 
 
The construction phase involves creation of access roads, 
well pads, rights-of-way for pipelines, etc.  The impacts 
are similar to those associated with other large-scale 
construction projects. Land disturbance during this stage 
can lead to changes in wildlife habitat, surface water 
hydrology and the capacity to handle stormwater events. 
Stormwater from oil and gas sites can cause erosion and 
can carry pollutants (e.g., oil and gas from vehicles and 
machinery, phosphorus from soil disturbance, and 
suspended sediment) both to surface water and shallow 
groundwater (Rahm and Riha 2014; Olmstead et al. 2013). 
 
 
Well Construction and Drilling 
 
Well construction includes the selection of various steel casings and cement layers whose 
primary goal is to protect the wellbore’s integrity for decades (Figure 9). These components are 
selected based on site-specific subsurface conditions, including the type of rock layer, 
temperature, expected pressures, and composition of the fluids encountered at depth. The 
efficacy of well construction best practices is specific to each well, and the extent to which best 
practices are employed is not well-known.  
 
Well integrity issues have been reported in conventional and unconventional oil and gas wells at 
various developmental stages (e.g. construction, production, and post-production) and in various 

What happens during this stage? 
Site preparation includes the 
construction of well pads, access roads, 
gathering pipelines, and water-supply 
systems for drilling and fracturing 
 
How long does it take? 
Several weeks to a month, depending on 
various factors: 
 Distance from local roadways 
 Erosion mitigation measures 
 Location of water supply 

 
 

 

What happens during this stage? 
Seismic reflection testing, which is used to support 
selection of a site for oil or gas development. 
How long does it take? 
 Regionally (over 5 square miles), a 3-

dimensional survey takes a month or two (not 
including permitting). Locally (less than 5 square 
miles), a number of 2-dimensional lines or a 
small 3-dimensional survey will take days-to-
weeks of measurement activity during equipment 
set-up, local data collection, and subsequent 
equipment removal. 
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geographic settings (Davies et al. 2014; Vidic et al. 2013). Leakage of gas in a Marcellus well 
was caused by channeling through the cement (Figure 10), for example, in a case where the 
cement did not have the properties specified in the design (Moore et al. 2012). 
 
In parts of the Marcellus region, there 
is evidence of thermogenic3 methane 
migrating into freshwater aquifers 
from shale and from leakage from 
more shallow sources (biogenic4 
methane) using geochemical tracers 
(Vengosh et al. 2014, Osborn et al. 
2011, Jackson et al. 2013a, Molofsky 
et al. 2011, Molofsky et al. 2013, 
Warner et al. 2012). In Pennsylvania, 
naturally occurring thermogenic 
methane has been found to be 
widespread in shallow groundwater 
(Baldassare et al. 2014; Molofsky et 
al. 2013), but increased levels of thermogenic methane in Marcellus area water wells have been 
linked in some cases to inadequate cement seals, failures of the annulus, faulty casings, and 
underground gas well failure (Osborn et al. 2011; Darrah et al. 2014). However, (Hammack et al. 
2014) sampled for two months before and for eight months after the hydraulic fracturing of six 
wells in the Marcellus region, monitoring gas migration using a variety of techniques, and, to 
date, they have found no evidence of gas migration or brine migration from the Marcellus shale 
formation to shallower formations. The potential for gas migration is dependent not only on well 
construction, but also on underlying geology, topography, and preexisting fracture systems 
(Vengosh et al. 2014).  
 
Another potential environmental impact concerning wellbore integrity during the drilling process 
is the possible migration of saline formation fluids into freshwater aquifers. Indirect studies, 
however, have suggested that increased drilling activity is not associated with changes in the 
isotopic composition of shallow aquifers (Vengosh et al. 2013); the Committee was unable to 
find more direct studies. Contamination at the ground surface also could potentially reach 
freshwater aquifers by way of an inadequately cemented wellbore. 
 
 

                                                 
 
 
3 Thermogenic methane is produced by intense heat and pressure applied to organic-rich bedrock such as the 
Marcellus shale. In order for thermogenic methane to reach groundwater aquifers, it must migrate through a 
natural fracture system or through pathways created by compromised wellbore integrity (See Figure 10).  
4 Biogenic methane is produced by microbes as they decompose organic matter, which is usually from surficial 
sources (e.g., naturally buried organic material, landfills, or septic systems).  

What happens during this stage? 
 
 Drilling and construction of one topset (vertical part) of a well 
 Drilling and construction of one transition curve and horizontal 

well 
 
How long does this stage take for one well? 
 
 Topset: A week or two of drilling, depending on the depth of 

topset well and the  length and number of casings and amount of 
cementing needed 

 Transition curve and horizontal: About three to four weeks or 
more of drilling and setting and cementing of casings; actual 
duration depends on depth of well and length of horizontal leg.   

 
The time required increases with multiple wells 
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Figure 10. Routes for fluid leaks in a 
cemented wellbore. (1) Between the cement 
and the surrounding rock formations. (2) 
Between the casing and the surrounding 
cement. (3) Between the cement plug and the 
casing or production tubing. (4) Through the 
cement plug. (5) Through the cement between 
the casing and the rock formation. (6) Across 
the cement outside the casing and then 
between this cement and the casing. (7) Along 
a sheared wellbore (i.e., one that has been 
displaced [sheared] sufficiently by movement 
in the ground so as to split the casing). Davies 
et al. 2014 
 

Figure 9. Idealized diagram of vaious types of well 
casing. The conductor casing provides a solid 
foundation for equipment attached to the top of the 
well. The surface casing provides the primary 
protection for fresh water aquifers and must extend to 
a depth that protects the deepest drinking water 
aquifer. The intermediate and production casing cover 
the wellbore to the depth needed or to the rock layer 
with productive gas. Al Granberg/ProPublica. 
Reproduced from Granberg 2009. 
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Drilling an oil or gas well produces waste in the form of drilling muds and drill cuttings. These 
wastes can contain original components of drilling fluids as well as brine, rock, naturally 
occurring radioactive materials, and other chemical components present in the target and 
overlying formations. There is also the potential for spills of drilling fluids onto the ground 
surface.  A discussion of the on-site waste storage and transport of waste to offsite treatment 
locations can be found, in the Waste Management section.  
 
Diesel engines used in drill rigs, generators and other equipment are known to emit air pollutants 
(see above). Elevated methane emissions have also been measured at well pads during the 
drilling phase (Caulton et al. 2014). Methane is not directly toxic to humans; however, it is a 
climate forcer and thus has a direct impact on global air quality and climate.  Gas vented during 
the drilling phase can also contain air toxics, such as single ring aromatics Field et al. 2014b.  
Although methane emissions from oil and gas infrastructure are an important global concern, as 
noted above, they are beyond the scope of the Committee’s review.   
 
Drilling occurs 24 hours a day, seven days per week until the well is completed, usually on the 
order of weeks depending on the number of wells. This constant activity is associated with the 
potential stressors light, noise, and traffic flow, which are particularly noticeable at well pads in 
rural areas.  
 
Well Completion (Including Hydraulic Fracturing and Flowback) 
 
Once the targeted depth of the well is reached and 
the casing is cemented in place, the well is ready to 
be completed. The completion process involves 
perforating the casing, cleaning the perforations, 
hydraulically fracturing the targeted rock formation, 
and “flowing back the well” to remove materials 
used for hydraulic fracturing and to determine its 
economic viability.   
 
Hydraulic fracturing requires large amounts of water, 
on the scale of 1 to 6 million gallons per well. The 
transport of this water to the site can be 
accomplished by way of trucks or pipelines. 
Pipeline-related impacts will be discussed in Section 
3.2. The other potential impacts of freshwater use for 
hydraulic fracturing include issues related to 
transport by truck (e.g., emissions, traffic accidents, 
noise, and road wear) and unsustainable water use. 
Although water scarcity is typically not an issue in 
the Appalachian region, fracturing operations use a 
substantial amount of surface water and have been 

What happens during this stage? 
 Hydraulic fracturing of horizontal well 
 Preparing the well for production (or shut-in 

for later production 
How long does it take for one well? 
 Hydraulic fracturing: A week or more to 

resupply the site with fracturing equipment 
and materials and to setup and test the 
equipment. Several weeks to do 'staged' 
hydraulic fracturing, depending on the 
number of stages and length of the 
horizontal. 

 Preparing for production: Several days to a 
week to remove fracturing plugs, flush 
(flowback) the well of residual materials (i.e., 
cuttings, proppant, and other debris), and set 
the production casing. (This step can take 
longer if gas condensates or oil are produced 
along with the natural gas, resulting in 
additional equipment needs related to 
processing and transmission)  

 
The time required increases with multiple wells 
 



~ DRAFT ~ 
The Potential Impacts of 21st Century Oil and Gas Development in the Appalachian Basin: 
First Steps Toward a Strategic Research Plan  
 

23 
 
 

shown to dramatically reduce base flows in small streams (Rahm and Riha 2014).  
Hydraulic fracturing fluids combine large volumes of water with chemicals and proppant to 
achieve maximum production of oil or gas. The mixture of chemicals depends on the geology of 
the rock being fractured and on the purpose of the fracturing stage (e.g., maximizing proppant 
suspension, placing propping materials firmly in induced fractures,). Recent research has 
identified the detailed chemical composition of selected fracturing fluid samples (Stringfellow et 
al. 2014). Some of these chemicals can have carcinogenic, endocrine-disrupting, and other toxic 
properties (Stringfellow et al. 2014; Colborn et al. 2011; Kassotis et al. 2013); however, whether 
the chemicals affect the environment or human health depends on the magnitude, frequency, and 
duration of exposure. 
 
The on-site mixing and storage of fracturing fluids and related chemicals creates the potential for 
spills and the subsequent contamination of surface water and groundwater. Multiple studies have 
shown that spills and, in particular, spills of fracturing fluids, flowback fluids, and produced 
water (see below) are the most frequently reported violations in Pennsylvania (Considine et al. 
2012; Rahm and Riha 2014).  The occurrence and frequency of spills appears to correlate with 
the density of hydraulically fractured wells in the Marcellus region (Figure 11). Limited 
measurements are available to assess the environmental contamination resulting from fracturing 
fluid spills.   
 

 
 
Figure 11. Density of unconventional well drilling and occurrence of reported environmental violations in 
Pennsylvania. Warm colors (red) represent areas of higher density of unconventional well drilling; cooler colors 
(blue) represent areas of lower density. Unconventional wells with reported violations of a release to the environment 
are shown by yellow dots. Violations include discharge of industrial waste to streams; drill cuttings, oil, brine and/or 
silt, discharged without a permit; and polluting substances discharged to waterways. Reprinted with permission from 
Vengosh et al. 2014. Copyright 2014 American Chemical Society. 
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.  
After fracturing fluids are mixed, they are injected at high-pressure into the subsurface in a series 
of stages that causes microfractures in the shale formation in the immediate vicinity of the 
horizontal wellbore. This step has been suggested as a mechanism for induced seismic events 
(i.e., seismic events attributable to anthropogenic sources). Only one incident of seismic activity 
that can be considered earthquake activity in North America (in Oklahoma) has been likely 
linked to hydraulic fracturing (National Research Council 2013). As reported by multiple 
reviews, hydraulic fracturing is typically responsible for earthquakes of very small magnitude 
(micro-seismic events) and not potentially damaging activity (Davies et al. 2013; National 
Research Council 2013; Jackson et al. 2014). This activity should be distinguished from the 
seismic activity that has been associated with deep-well injection of waste waters (see the Waste 
Management section below). In addition, the creation or existence of fractures does not 
necessarily lead to faulting, or fault movement, that can cause seismic events that, in turn, might 
be related to earthquake activity. 
 
Groundwater contamination directly related to fracture networks created by hydraulic fracturing 
is possible, but not likely. Research to date in the Marcellus region and beyond suggests that 
fractures can extend to a maximum of 600 m above the horizontal wellbore — a height that in 
most circumstances is well below freshwater aquifers (Figure 9; Davies et al. 2012; Fisher and 
Warpinski 2011). However, evidence also suggests that the migration of fractures and fracturing 
fluid in the subsurface can be facilitated by pre-existing fracture networks. No evidence was 
found of fractures created by the hydraulic fracturing process leading to thermogenic methane or 
target rock brine contamination in water wells. A number of recent articles have reviewed this 
topic (Vengosh et al. 2014; Flewelling and Sharma 2013; Jackson et al. 2013b). A more likely 
pathway for groundwater contamination during hydraulic fracturing is a change in wellbore 
integrity caused by fracturing pressures, which can in turn potentially open migration pathways 
for thermogenic or biogenic methane from below and other fracturing-related chemicals from 
above into groundwater (Soeder et al. 2014). See the Well Construction and Drilling section 
above for additional discussion of methane migration.  
 
The pumps that pressurize fracturing fluids are powered by diesel engines, which emit NOx, 
VOCs, PM, air toxics, and climate forcers (see above). One respirable pollutant that is unique to 
the fracturing stage is silica, which is a proppant mixed with water and other chemicals to create 
fracturing fluid. Typically millions of pounds of sand are used in each well, and the importance 
of controlling worker exposure to silica has been recognized 
(https://www.osha.gov/dts/hazardalerts/hydraulic_frac_hazard_alert.html). 
 
Fracturing of the target geologic formation can take as long as several weeks for a single well, 
depending on the number of stages fractured in a horizontal well (Box 1). In the first one to two 
weeks after a well has been hydraulically fractured, a period of “flowback” occurs, when 
fracturing fluid constituents (10 to 40% of the original fracture fluid volume in the Marcellus 
formation) return to the surface along with brines (salt) and total dissolved solids characteristic 
of the target formation. This flowback water must be stored on site, possibly treated for re-use, or 
treated partially or not at all and transported for treatment, reuse, or disposal elsewhere. Potential 
impacts during flowback include chemical volatilization (e.g., methane, VOCs, and air toxics) 
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that affect air quality (via completion venting), spills, leakage to groundwater from holding 
ponds, flooding from storm events, and spills or accidents during fluid handling on site and 
transportation offsite. Wastewater might be disposed of off-site in underground injection wells, 
and this form of disposal can also induce seismic activity in the subsurface by activating 
naturally occurring faults (National Research Council 2013). Flaring of gas can also emit NOx, 
VOCs, methane, and air toxics. Concerns about groundwater are similar to those for fracturing 
fluids (see above). To date, there is no evidence of groundwater contamination via migration of 
flowback water through fractures created by the hydraulic fracturing process (Vengosh et al. 
2014).  
 
Like drilling, hydraulic fracturing occurs 24 hours a day, seven days a week until complete, 
usually on the order of weeks to a month. Also like drilling, this activity is associated with the 
potential stressors light, noise, and traffic flow, which are particularly noticeable at well pads in 
rural areas. There have also been some reports of odors associated with hydraulic fracturing. 

3.1.3 Production 
 
The production stage of a well usually covers several years to decades of operation. After the 
initial flowback period (one to two weeks after hydraulic fracturing), and despite the fact that no 
water is used during this stage, water continues to 
return to the surface, usually in diminishing 
quantity, and its chemical makeup is more affected 
than flowback water by the geologic formation that 
was fractured. This water is known as produced 
water and can be more contaminated than flowback 
water. Produced water typically has higher total 
dissolved solids than flowback water does and 
contains hydrocarbons, heavy metals, and possibly 
naturally occurring radioactive materials. In 
addition, radium (a naturally occurring radioactive 
material) has been measured in produced water at concentrations above those of standards for 
drinking water  and industrial effluent (Haluszczak et al. 2013; Rowan et al. 2011).  
 
Wellbore integrity issues increase with the age of oil and gas wells (Brufatto et al. 2003), 
creating risks for groundwater contamination and leakage of methane and other VOCs as 
discussed in the Well Completion section.   
 
Facilities and equipment associated with the production stage can emit air pollutants (Robinson 
2013). Compressor stations, wellhead compressors, gathering and processing plants, and 
ancillary equipment such as heaters, dehydrators, separators, liquid storage tanks, flares, and 
pneumatics each emit some or all of the following: NOx, VOCs, PM, air toxics, and climate 
forcers (Table 2). Unlike the drilling and fracturing stages, this stage – and associated emissions 
- can continue for years to decades. Potential impacts include changes in local, regional and 
global air quality.   

What happens during this stage? 
 Production of oil or gas from the well 
 Compression and processing  

 
How long does this stage take? 
 High-volume production lasts for 

several years, depending on depletion 
curve 

 There are one or more decades of 
reduced production 
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Table 2.  Important air emission sources during the production stage of a 21st century oil and gas 
well.   

Source Category NOx VOCs PM Air 
Toxics 

Climate 
Forcersa 

Quality of 
Emissions Data 

Natural gas engines and turbines used to drive 
compressors ● ● ● ● ● Medium 

Vents at compressor stations, processing 
facilities, w ell sites, etc.  ●  ● ● Medium 

Fugitives associated with liquid unloading, 
pressurized equipment, etc.  ●  ● ● Poor 

Processing and treatment equipment such as 
heaters, dehydrators, and separators ● ● ● ● ● Fair 

Blow down venting  ●  ● ● Poor 

Storage tanks  ●  ● ● Poor 

Gas-driving pneumatics  ●  ● ● Fair 

Flares ● ● ● ● ● Poor 
a Gases or particles that alter the Earth’s energy balance by absorbing or reflecting radiation. 

 
In addition to impacts on air quality, equipment and facilities used during the production stage 
can involve large, industrial operations – many much larger than any single well pad - that 
generate noise, light, and other stressors for years to decades, long after stressors associated with 
the development phase have ceased.  

3.1.4 Waste Management 
 
Waste management includes the storage, treatment, re-use, transport, and disposal of liquid 
wastes (such as flowback and produced water), and solid wastes (such as drilling muds and 
cuttings). Waste management is an integral part of all stages of oil and gas development and 
production, although the quantity and characteristics of 
waste vary among stages. Some of this management 
occurs at the well pad, but much of it occurs elsewhere 
(e.g., at underground injection wells and landfills), with 
the result that waste management can affect a 
geographic area well beyond the well pad.  
 
Flowback and produced water are sometimes stored on-
site in tanks or lined holding ponds, but this latter 
practice may be changing in favor of transport offsite or 
recycling. Wastewater production in the Marcellus 
region has increased significantly in recent years as a result of high-volume hydraulic fracturing 
technology (Vidic et al. 2013). Because of the large volumes of contaminated wastewater 
associated with hydraulic fracturing, this part of the water life cycle poses the greatest risk of 
surface water contamination (Rozell and Reaven 2012). In addition to potential impacts related 

What happens during this stage? 
 Storage, possible treatment and re-use, 

and disposal of oil and gas wastes 
 
How long does this stage take? 
 Solid waste products, such as drill 

cuttings, are stored and removed after 
drilling. Produced water is generated 
throughout the lifetime of a well, 
although the amount of water produced 
decreases with increasing well age.  
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to flowback and produced water (see discussion of flowback water above), wastewater 
management includes impacts related to disposal of chemical precipitants and desalinization 
wastes from recycling and onsite treatment processes. The treatment of Marcellus wastewater 
has been associated with increased formation of toxic disinfection by-products, and discharges of 
insufficiently treated wastewater have been linked to increased levels of salts, naturally occurring 
radioactive materials, and toxic metals in receiving streams (Vengosh et al. 2014; Warner et al. 
2013).  
 
Liquid waste products (e.g., flowback and produced water) from oil and gas operations may be 
disposed of in underground injection wells, and this disposal practice can be a source of seismic 
activity. Moderate earthquakes (magnitude 2.0-4.5) associated with injection wells have occurred 
in areas currently undergoing oil and gas development (e.g. Ohio, Arkansas, and Oklahoma) 
(National Research Council 2013; Davies et al. 2013; Ellsworth 2013; Jackson et al. 2014). 
 
Although they are acknowledged sources of low-level radiation, solid waste products (e.g. drill 
cuttings, and sludge) have not been extensively characterized in the literature. Limited evidence 
has found radionuclides from the uranium and thorium decay series’ and elevated beta radiation 
in samples of non-Appalachian pit sludge (Rich and Crosby 2013).  

3.1.5 Post Production and Well Closure 
 
A closed well should be properly secured so that petroleum or salt water cannot escape to the 
environment. This is commonly accomplished 
using a cement plug in the wellbore. Few of 
the newer wells in unconventional 
Appalachian formation have been closed to 
date. However, there are many improperly 
abandoned wells in the Appalachian basin 
from earlier conventional development that 
can potentially affect aquifers by acting as 
pathways for the migration of methane and 
other VOCs (see discussion of methane 
migration in the Well Construction section).  
 
3.1.6 Summary of Potential 
Environmental Stressors  
 
In sum, the various stages of well development, production, and closure have the potential to 
produce discharges and emissions that may produce ecologic, health, and social impacts.  These 
include: 

• Water quality stressors that can include spills and wellbore leaks that, if not properly 
controlled, may affect aquifers and nearby surface waters; discharge of improperly 
treated wastewaters to surface waters  

What happens during this stage? 
 Well closure 
 Site restoration 

 
How long does it take? 
 Well closure: Several weeks to position supplies, 

material, and drilling rig for closure of the well. A week 
or more to load the well with brine (to stop gas and fluid 
flow), remove some of the casings, and cement the 
well. 

 Site restoration: Indeterminate time, because 
restoration depends on the lease agreement and 
whether the site is to be maintained for future 
development. 
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• Water usage, which can stress local aquifers and surface water supplies 
• Air emissions, which can include a wide range of pollutants emitted from drill sites, 

producing wells, supporting infrastructure, along roadways serving sites, potentially 
affecting local and regional air-sheds. 

• Noise, vibration, light, and odor, which can affect surrounding areas. 
 
In the following sections the Committee reviews the evidence on how these stressors may cause 
ecologic, health, and social impacts.  

3.2 ECOSYSTEMS 
 
This section explains how the stressors described in Section 3.1, and summarized in Table 3 
below, might affect aquatic and terrestrial ecosystems in regions undergoing oil and gas 
development.  

3.2.1 Potential Impacts on Aquatic Ecosystems 
 
Impacts Related to Changes in Water Availability 
 
The hydraulic fracturing process uses large amounts of water, on the scale of 1 to 6 million 
gallons per well. As mentioned in Section 3.1, withdrawal of this water from surface water and 
freshwater aquifers is typically not an issue in the Appalachian region and comprises only a 
fraction of the region’s industrial water use. In certain circumstances, however, water usage in 
oil and gas development may affect the structure and function of aquatic ecosystems. Water 
withdrawals from low-flow or drought-condition streams can decrease available habitat for local 
species (Brittingham et al. 2014). In contrast, the release of wastewater (treated or untreated) in 
arid areas may create new habitat or cause changes in the type of available habitat. The only 
study found relating to water consumption identified no changes in macroinvertebrate or fish 
communities upstream or downstream of permitted water withdrawal locations for high-volume 
hydraulic fracturing in Pennsylvania (Shank 2013).  
 
Impacts Related to Changes in Water Quality (Including Sedimentation) 
 
A variety of processes associated with oil and gas development can lead to changes in water 
quality (see Section 3.1 for a description of potential water contaminants related to oil and gas 
development). Laboratory studies of the native Pennsylvania mayfly and other model species 
found Marcellus- formation-produced water to be acutely and chronically toxic and that multiple 
dilutions were required to decrease toxicity (Stroud Water Research Center 2013). Produced-
water toxicity has been attributed to the chemical composition of source water and its overall ion 
concentration (Stroud Water Research Center 2013) — an observation that aligns with research 
on conventional oil and gas produced waters (e.g., Fucik 1992, Mount et al. 1992, O’Neil et al. 
1992, Fisher et al. 2010). Increases in metals, chloride, and conductivity in local streams have 
also been associated with non-Appalachian oil and gas development (Burton et al. 2014).  
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Ecologic impacts related to water quality can occur as a result of planned or accidental releases 
of wastewater into surrounding streams, although Olmstead and colleagues (2013) did not find 
any systematic impacts of well pad spills on water quality. Even when the event is planned, as 
with permitted discharges of treated wastewater, impacts on local ecosystems are still possible. 
Wastewater discharges in the Marcellus region have been linked to statistically significant 
changes in stream chemistry and sedimentation (Ferrar et al. 2013b, Olmstead 2013, Warner et 
al. 2013, Skalak et al. 2013). Changes in stream conditions (e.g. conductivity) caused by oil and 
gas wastewater discharges have caused lethal and non-lethal responses in fish (Papoulias and 
Velasco 2013).  
 
Aspects of oil and gas development that alter the existing landscape (e.g., construction of well 
pads, access roads, pipelines, compressor stations, processing plants) can lead to increased 
erosion and sedimentation (via stormwater runoff) as well as changes in the pathways and 
constituents of surface water (Brittingham et al. 2014). Sediment concentrations in Appalachian 
streams can, in turn, affect native populations of aquatic species such as brook trout (Weltman-
Fahs and Taylor 2013; Smith et al. 2012) by decreasing available prey and negatively interacting 
with stages of the life cycle. Few studies have directly addressed the relationship between oil and 
gas-related activities, other than wastewater management, and erosion and sedimentation 
(Williams et al. 2008; McBroom et al. 2012). Some studies have associated increased oil and gas 
development with increased levels of turbidity (Entrekin et al. 2011) and total suspended solids 
(Olmstead et al. 2013; Burton et al. 2014) in streams of the Marcellus shale and beyond.  
 
Impacts Related to General Oil and Gas Development 
 
A limited number of studies have examined the relationship between the cumulative stressors of 
oil and gas development and ecologic impacts. Changes in land-use patterns related to oil and 
gas development have been associated with negative responses in macroinvertebrate 
communities (Burton et al. 2014). Additionally, increased density of gas wells has been linked 
with increased fish (red fin) mortality in non-Appalachian settings (Stearman et al. 2014). 
Increases in water temperature and barriers to migration and movement (e.g., culverts for new 
roads or temporary dams for water withdrawals) are key concerns for the Eastern brook trout 
(Smith et al. 2012, Weltman-Fahs and Taylor 2013) — a species of ecologic and economic 
importance in the Appalachian region. The Committee did not find studies of the impacts of 
physical stressors (e.g., light, noise, or naturally occurring radioactive material) on aquatic 
ecosystems. 
 
3.2.2 Potential Impacts on Terrestrial Ecosystems 
 
Habitat Change, Loss, or Fragmentation 
 
Well pads and other oil and gas facilities and infrastructure (e.g., compressor stations, processing 
facilities, roads, and pipelines) contribute to the creation of new, emerging patterns of land use 
and the introduction of multiple stressors, such as noise, light, and chemicals, released through 
normal operations and accidents. These patterns of land use and other stressors can lead to 
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habitat fragmentation,5 habitat loss,6 and other habitat changes. The ecologic impacts of habitat 
loss and fragmentation range from changes in community structure and composition, to direct 
mortality (see below). 
 
Well pads in the Appalachian region are typically constructed on 3 to 7 acres of land; roads and 
other associated infrastructure take an additional 7 to 9 acres (Johnson et al. 2010; Brittingham et 
al. 2014). Oil and gas infrastructure has been constructed on a variety landscapes, including 
agricultural land, core forest habitat, and soils with a high risk for erosion and sedimentation 
(Drohan et al. 2012; PA DCNR, 2014). Erosion-related violations have been reported on a 
number of oil and gas well sites since 2008, although the number of annual violations has 
decreased since that time (Rahm and Riha 2014). A report from the Marcellus region predicts 
that between 700,000 and 1,750,000 acres of Appalachian forest habitat might be converted to 
gas and oil infrastructure or to edge habitat resulting from such development, with most of the 
conversion (70%) resulting from pipeline construction (Johnson 2014; Johnson et al. 2010). As a 
result, regions that were once dominated by deep forest habitats may become fragmented or 
dominated by edge habitats, leading to changes in light, temperature, moisture, and other 
components that can directly and indirectly affect surrounding ecosystems (Brittingham et al. 
2014; Drohan et al. 2012).  
 
Biotic impacts resulting from habitat loss related to oil and gas development include decreases in 
secure habitat, disrupted breeding, and changes in community density and structure (Souther et 
al. 2014). It has been suggested that these impacts increase with increases in land use related to 
oil and gas development (Thomas et al. 2014). Figure 12 shows landscape changes (habitat loss 
and fragmentation) that occurred with construction of an ancillary facility, a gas processing 
plant, and associated pipelines. Habitat fragmentation is well studied in general development 
scenarios (Souther et al. 2014) and has been associated with changes in wildlife behavior, 
reduced reproduction success, and the introduction of invasive and competitive species 
(Brittingham et al. 2014).  

 
Noise and Light 
 
In general, chronic noise and light pollution have been directly related to changes in the behavior 
(including reproduction rates) and spatial distribution of ecologic communities (Barber et al. 
2010; Longcore and Rich 2004). Non-Appalachian studies have identified changes in the density 
of bird communities and the occupation rate of bird habitat near compressor stations used in oil 
and gas development (Bayne et al. 2008; Francis et al. 2011). Similar studies of the Marcellus 
region are forthcoming (Pennsylvania Department of Conservation and Natural Resources (PA 
DCNR) 2014). 
 
                                                 
 
 
5Breaking up a contiguous area of habitat as a result of land uses such as roads, pipelines, and other pathways.  
6The direct loss of habitat due to the footprint of well  pads and other infrastructure.   
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Figure 12. Rapid and dramatic changes in land use resulting from the construction of a large gas processing plant in 
rural West Virginia.  
  

October 2009 

September 2013 
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Change in Competitive Interactions and Introduction of Invasive Species 
 
Heavy equipment and traffic related to oil and gas development can introduce invasive species to 
Appalachian habitats. The Pennsylvania Department of Conservation and Natural Resources (PA 
DCNR) (2014)assessed non-native invasive plant species at 18 representative well pads across 
core forest districts and found 11 species of invasive plant; 14 of the 18 sites had one or more of 
these invasive species.  
 
Habitat change, loss, and fragmentation can also contribute to changes in the relationship 
between terrestrial species. Corridors created by well pads, roads, pipelines, and other linear land 
use can create pathways for predators, parasites, and other organisms that thrive in the newly 
created edge habitat. Certain species introduced in this fashion have been related to negative 
competitive impacts on other specialist species (Thomas et al. 2014; oil and gas development 
related) and can change forest vegetation trajectories (Horsley et al. 2003).   
 
Toxicity and Direct Mortality 
 
Oil and gas development can potentially lead to toxic impacts and mortality in surrounding 
ecologic communities. Multiple studies have linked air pollution from conventional oil and gas 
operations to health impacts on beef cattle (Bechtel et al. 2009a; Bechtel et al. 2009b; Bechtel et 
al. 2009c; Waldner 2008a; Waldner 2008b; Waldner 2008c; Waldner 2008d; Waldner 2008a; 
Waldner and Clark 2009, Waldner and Stryhn 2008). Although no such studies were found for 
the Appalachian region, air pollution from oil and gas operations has been measured in heavily 
forested rural air-sheds in the Marcellus region (Pekney et al. 2014). Conventional oil and gas 
wastewater (flowback and produced water) has been linked with short term plant mortality and 
increases in concentrations of brine in soil when spilled or spread in forested land (Adams 2011; 
Dewalle and Galeone 1990; Auchmoody and Walters 1988). The chemical composition of 
fracturing wastewater today may vary from the time of these reports.  Nonetheless, reports based 
on prior conditions are relevant for understanding past short-term and potentially long-lasting 
impacts.  
 
Impacts on Threatened and Endangered Species Habitats 
 
In addition to potential impacts on important and rare habitats, oil and gas development may 
directly affect populations and the demography of species of high conservation concern. Certain 
species may suffer direct mortality on roads or well pads, and some species with very small 
ranges may suffer genetic threats as these ranges are subdivided (Brittingham et al. 2014). Many 
species of high conservation concern have habitat in the Appalachian region (Johnson 2014); 
some species that are threatened or endangered at the federal or state level have 100% of their 
range within the Marcellus or Utica shale regions (Gillen and Kiviat 2012). The Committee did 
not find studies of direct mortality, community changes, or behavioral changes in these species 
as a result of oil and gas development. However, the Pennsylvania Department of Conservation 
and Natural Resources (2014) is sponsoring a study of the impact of well development on timber 
rattlesnakes (Crotalus horridus), a species of conservation concern. 
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Table 3.  Potential stressors of concern for ecosystems in areas with oil and gas 
development. 

Stressor Concerns 
Aquatic Ecosystems 

Changes in water flow patterns and 
availability  More storm water runoff (e.g., contributing to erosion and sedimentation) 

 More consumption of fresh surface water (e.g., base flow decreasing to the point of dry ing or 
less groundwater input contributing to water temperature rising) 

 Changes to channels and substrates (e.g., cutting, sedimentation, and removal of dead wood) 
Changes in water quality   Changes in temperature (affecting all temperature-related processes but of special concern for 

the surv ival, growth, and reproduction of cold- and cool-water fishes) 
 Introduction of chemicals associated with hydraulic fracturing (e.g., chloride, metals, and other 

water-soluble ions from shale and deep brine water and organic or inorganic components of 
fracturing fluids). Aquatic tox icity  depends on constituents, concentrations, and exposure. 

 Introduction of chemicals associated with other aspects of oil and gas development (e.g., 
chemicals associated with road and pad maintenance, such as deicing, dust control, and 
stabilization, and herbicides for road, pad, and right-of-way maintenance) 

Increased sedimentation Well-known direct and indirect effects on macroinvertebrates and fish, resulting from ground 
disturbance and increased erosion 

More light reaching streams Streamside forest removal can increase water temperature and algal growth 
Introduction of more nutrients Phosphorus and nitrogen in wastewater can fertilize algal and bacterial growth, which in turn 

can affect macroinvertebrates and fish 
Barriers to fish movement Impacts on fish movements and migrations, access to refugia (locations where conditions 

allow for the surv ival of a species or community  of species after extirpation in other locations), 
and the fragmentation of populations 

Terrestrial Ecosystems 

Changes in landscape patterns Impacts on local plant and animal communities, changes in hydrology and soil compaction, 
erosion, quality  of streams, and habitat fragmentation 

Changes in soil density , chemistry , and 
permeability  Tox icity  and direct mortality  to terrestrial species, erosion, and sedimentation 

Noise, light, and human contact Impacts of roads on animal mortality  and changed behavior (e.g., migration patterns) 
Terrestrial community  structure and 
composition Changes to animal communities and composition 

Air and water quality ; water volume Toxicity  and direct mortality  and changes to communities and their composition 

Changes in core and edge habitat Habitat loss, habitat fragmentation, and other biotic community  impacts 
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3.3 HUMAN HEALTH 
 
Oil and gas workers and community members can be exposed to health stressors from oil and gas 
operations. The potential stressors discussed in Section 3.1, and summarized in Table 4, may 
affect people’s health depending on the magnitude, frequency, and duration of exposure to 
affected water, air, soil and other environmental media.  

3.3.1 Exposure to Potential Health Stressors 
 
Human exposure can be defined as contact between a substance in an environmental medium and 
the human body at specific points in space over a specified time.  Common routes of exposure 
include inhalation, ingestion, and dermal contact. Through one or more of these routes, workers 
or members of a local community may be exposed to chemical and physical agents as well as 
sensory stressors (e.g., odor, light, and noise) associated with unconventional oil and gas 
operations, as illustrated in Figure 13. The recent increase in oil and gas development in the 
Appalachian region has been followed by scientific interest in the potential impacts on human 
health, yet few exposure or health studies have evaluated the levels of exposure and whether they 
might lead to adverse health effects (Adgate et al. 2014; Goldstein et al. 2014).   
 
Table 4 provides a brief summary of possible exposures that might arise during routine oil and 
gas operations. Additional exposures might arise during upset conditions; in the extreme, fires 
and explosions would pose an acute hazard to health to workers and nearby community 
members. Other upset conditions such as spills might affect air quality or water quality, posing 
an acute or chronic health concern for workers and others nearby or who are served by an 
impacted water supply.  

 
 

Figure 13. Multi-pathway exposures to chemical agents and physical stressors resulting from oil and 
gas development.  Various pathways and levels of exposure may be associated with the various stages of 
oil and gas development.  Adapted from EPA 2011. 
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Table 4. Potential exposures to health stressors under routine oil and gas development conditions (versus 
non-routine, or upset, conditions) for workers and community members living nearby. 

Activity Stressor Exposure Pathway 
Likelihood of Occurrence 

Workersb Community members 

Exploration Noise, vehicle 
emissions 

Physical exposure, 
inhalation High Depends on prox imity  and other 

factors* 

Site 
Preparation 

Light, noise Physical exposure High Depends on prox imity  and other 
factors* 

VOCs, NOx, PM, air 
tox ics Inhalation High Depends on prox imity  and other 

factors* 

Drilling 

Light, noise, odor Physical exposure High Depends on prox imity  and other 
factorsa 

VOCs, NOx, PM, air 
tox ics Inhalation High Depends on prox imity  and other 

factorsa 

Drilling fluid, dust Dermal contact Depends on personal protective 
equipment (PPE) use Low 

Chemical release to 
water Dermal contact, ingestion Depends on PPE use Depends on water source and 

use 

Chemical release to 
soil 

Dermal contact, 
incidental ingestion,c food 

ingestion 
Depends on PPE use 

Depends on bioaccumulation in 
human food and consumption 

patterns 

Well 
completion 
(including 
hydraulic 
fracturing) 

Light, noise, odor Physical exposure High Depends on prox imity  and other 
factorsa 

Radioactiv ity  Physical exposure Depends on rock formation and 
PPE use Low 

VOCs, NOx, PM, air 
tox ics 

Inhalation 
 High Depends on prox imity  and other 

factorsa 
Silica  Inhalation High; depends on PPE use Low 
Chemical release to 
water Dermal contact, ingestion Depends on personal protective 

equipment (PPE) use 
Depends on water source and 

use 

Chemical release to 
soil 

Dermal contact, 
incidental ingestionc Depends on PPE use 

Depends on bioaccumulation in 
human food and consumption 

patterns 

Production 
and 
processing 

Light, noise, odor Physical exposure High Depends on prox imity  and other 
factorsa 

Radioactiv ity  Physical exposure Depends on rock formation and 
PPE use Low 

VOCs, NOx, PM, air 
tox ics Inhalation High Depends on prox imity  and other 

factorsa 
Chemical release to 
water Dermal contact, ingestion Low Depends on water source and 

use 

Chemical release to 
soil 

Dermal contact, 
incidental ingestion Low 

Depends on bioaccumulation in 
human food and consumption 

patterns 

Waste 
Managementd 

Drilling muds, drill 
cuttings, sludge, 
produced water, and 
other wastes 

Inhalation, dermal 
contact, incidental 

ingestionc 
Depends on PPE use Depends on prox imity  and other 

factorsa 

a Meteorological factors (e.g., wind speed and direction, temperature), topography, and other factors can affect the exposures of nearby 
communities. 
b These classifications are approx imate and are highly  dependent on (1) the use of personal protective equipment, and (2) industry  best 
management practices and health and safety  practices at any given site. 
c Incidental ingestion can occur when contaminated soil adheres to hands or food, and is unintentionally  ingested.  
d Waste management is an integral part of multiple stages of oil and gas development. 



~ DRAFT ~ 
The Potential Impacts of 21st Century Oil and Gas Development in the Appalachian Basin: 
First Steps Toward a Strategic Research Plan  
 

36 
 
 

3.3.2 Evidence of Health Effects Associated with Oil and Gas Development 
 
Numerous reviews have been published of the potential human health effects of oil and gas 
development in various regions of the United States (e.g., Maryland Institute for Applied 
Environmental Health 2014, Penning et al. 2014, Adgate et al. 2014, National Research Council 
2014b) and around the world (e.g., Public Health England, 2013). Except for Esswein and 
colleagues (2013; 2014) most of these reviews focused on the health of people living near oil and 
gas operations.  There have been few, broader population-based (traditional) epidemiologic 
studies addressing directly the physical or mental health effects of oil and gas development—
particularly in the Appalachian region. Most studies involve community-engaged research 
(which measures community perceptions of risk, self-reported symptoms, and other anecdotal 
information) or research based on ecological or correlational designs (Steinzor et al. 2012; 2013; 
Saberi et al. 2014; Perry 2013; SWPA EHP, 2013; Ferrar et al. 2013a).   
 
Future studies must be designed based on an understanding of the full range of exposures that 
might be related to oil and gas development. Oil and gas activities extend beyond the well pad as 
truck traffic, compressors, gathering pipelines, processing plants, and other components. There is 
also variability in the populations exposed. Occupational exposure to chemical, physical, and 
psychological stressors can happen on the well pad or at any other stage of development and 
production. Community members may be exposed via air, water, or other physical media. Given 
the industry’s often around-the-clock operations, typical 8-hour occupational threshold limits for 
worker exposures may not apply. Community exposures - though generally lower than those for 
workers – may occur over long time periods that involve multiple discrete periods of exposure 
and may be of special concern for vulnerable populations, including children, pregnant and 
nursing mothers, the elderly, and individuals with underlying chronic illnesses. In both the 
worker and community populations, certain age groups may be more vulnerable than others.   
 
Exposures related to the extraction of oil and gas can involve a combination of potential health 
stressors. The effects of individual stressors are often not well understood, and even less is 
known about their cumulative effects. The need for efficient methods to evaluate the biologic 
significance of exposure to multiple stressors has been reviewed extensively (e.g., Sexton 2012, 
Goldstein et al. 2014). But at this time, insufficient data are available in most instances to 
quantify exposures to multiple stressors and to predict health effects from these exposures. This 
problem is exacerbated in the case of oil and gas development where the problem of missing 
chemical-mixture toxicity data is compounded by the small number of studies that include 
reliable measurements of worker and community exposure collected at locations and over time 
periods relevant to understanding potential risks to health. 
 
A significant amount of oil and gas development is occurring in sparsely populated areas, 
limiting the possible sample size and statistical power of epidemiological studies to detect health 
effects. On the other hand, in some areas outside the Appalachian region, development is 
occurring in highly populated regions (e.g. Dallas-Fort Worth) making it difficult to parse the 
contributions of other pollution sources. Additionally, exposure metrics have not been well 
defined. Oil and gas technologies vary from place to place depending on geology, and other 
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factors and processes - including safety measures - have changed over time, making it difficult to 
generalize across regions, categorize exposures, or predict health consequences in the context of 
an epidemiologic study.  
 
Oil and Gas Workers 
 
Chemical Hazards. Many community concerns about oil and gas operations focus on chemical 
exposures. Oil and gas workers actively use these chemicals or work in proximity to them, and 
consequently face the potential for higher exposures than people living nearby. In addition, they 
face more physical hazards that can contribute to morbidity and mortality. Only a few reliable 
studies have been published about unconventional gas workers and the rapid pace of changing 
technology makes occupational studies challenging to conduct or interpret. Areas of particular 
safety concern include greatly increased traffic, use of substantial volumes of liquids at 
operationally high pressure, fracturing fluid additives, particulate silica; and the need for 
intermittent human activity in hazardous operations. 
 
A unique concern for unconventional gas workers, distinct from the rest of the oil and gas 
industry, is the substantial use of fine crystalline silica as a suspended proppant in the fracturing 
fluid. Workers can be exposed to this silica during local transport and especially during mixing 
or blending into the fracturing fluid (See Figure 14).  
 

 
 
Figure 14.  Generation of silica dust in a hydraulic fracturing operation. (Source: 
http://blogs.cdc.gov/niosh-science-blog/2012/05/23/silica-fracking/).  
 

The National Institute of Occupational Safety and Health (NIOSH) conducted exposure studies 
demonstrating the presence of a respiratory hazard from silica for workers in five states, 
including Pennsylvania (Esswein et al. 2013). The data reveal that the potential for overexposure 
does exist in specific operations and needs to be mitigated by best practice. Respiratory exposure 

http://blogs.cdc.gov/niosh-science-blog/2012/05/23/silica-fracking/
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to crystalline silica is a cause of silicosis (a fibrotic lung disease), increased risk of autoimmune 
disorder, susceptibility to infection such as tuberculosis, of kidney disease, and lung cancer 
(Esswein et al. 2013). Silicosis has a substantial latency between the initial exposure and the 
onset of detectable disease processes, meaning it will take time and determination to understand 
the risk to oil and gas workers. Hazard reduction engineering and process protections are being 
developed by NIOSH and others, which could reduce workplace exposures and prevent health 
risks such as silicosis if used appropriately.    
 
Diesel exhaust affects workers as well as communities. Diesel exhaust is released from trucks 
(while transporting equipment, water, chemicals, and waste to or from the well site), power 
generators at the work site, and other engines on and off the well pad associated with the 
extraction and production of oil and gas. Diesel exhaust mixes with other PM and with gaseous 
pollutants such as NOx and CO. These air pollutants have well-known health effects, including 
increased mortality from respiratory and cardiac causes as well as from all causes combined, and 
increased incidence of pulmonary conditions, such as asthma, respiratory infections and other 
ailments. Diesel exhaust from older engines has also been classified as a known human 
carcinogen by the International Agency on Research on Cancer.  Emissions of PM, NOx and 
other toxic components from diesel exhaust are on downward trends as newer engines (post 2007 
and 2010 model years) are introduced into the truck fleet. 
 
Rates of COPD also increase with increased exposure to air pollution, and workers may be 
especially at risk due to concentrated exposure opportunities. Diesel exhaust exposure (measured 
as respirable particulates) at unconventional gas extraction sites can exceed regulatory standards; 
NIOSH found 20% of their samples exceeded 20 ug/m3, the regulatory standard in California 
(Esswein et al. 2014). 
 
Low-level ionizing radiation is known to be present both in flowback water and especially in 
returned solids such as drill cuttings and sludge. Total beta radiation activity can substantially 
exceed regulatory guidelines for conventional handling (Rich and Crosby 2013). This potential 
impact of these exposures on the well-being of communities has been discussed in the media and 
elsewhere, but there has been scant discussion concerning workers or assessment of exposures 
associated with specific operations. Workers at sanitary landfills may also be exposed to 
radioactive solid waste from oil and gas operations because of state-mandated requirements to 
accept shipments of large quantities of solid waste. 
 
Workers may be exposed to benzene and other VOCs at the wellhead of any oil and gas 
operation; this exposure is not unique to unconventional gas wells. In unconventional gas 
operations, benzene from deep underground sources can also accompany the production of 
methane or arrive along with substantial quantities of initial flowback water (Esswein et al. 
2014). Previous studies have found elevated worker exposures to benzene during flowback 
operations, but specific health outcomes related to such exposures at well sites have not been 
characterized. Bloomdahl et al. (2014) used mathematical models to predict worker exposure to 
12 VOCs evaporating from flowback water stored in an open reservoir under hypothetical 
conditions. However, actual worker exposure would be determined not only by industrial 
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practice (e.g., the way flowback water is stored and the effectiveness of personal protection 
equipment, the length and frequency of work shifts) but also by meteorological conditions 
affecting the evaporation and dispersion of the VOCs. In the NIOSH investigation (Esswein et al. 
2014), on-site eight-hour time-weighted average measurements of benzene concentrations in 
workers’ personal-breathing-zones during the flowback period showed concentrations above 
NIOSH’s recommended exposure limit (REL) of 0.1 ppm time-weighted average but below 
OSHA’s permissible exposure limits. Other VOCs measured in the study were well-below their 
permissible exposure limits. Certain task-based activities (e.g., those of flowback technicians) 
were associated with increased benzene inhalation exposure based on 15-minute time-weighted 
average personal-breathing-zone measures and concentrations of certain benzene metabolites in 
worker urine (Esswein et al. 2014) No data on the magnitude or frequency of occupational 
exposure to hydrogen sulfide are available; many companies require use of alarmed personal 
hydrogen sulfide monitors to prevent fatalities (Adgate et al. 2014). Similarly, quantitative data 
are not available in the published literature on occupational exposure to diesel exhaust particles, 
drilling and fracturing chemicals, produced water, or noise from oil and gas activities.  
 
Physical Hazards. Oil and gas workers are at risk for a range of possible injuries, including falls; 
lifting injuries; burns; and contact with, being struck-by, or caught-on equipment. Injuries and 
fatalities can also result from vehicular accidents, and such accidents have received more 
attention than other sources of injury in the recent literature. The rate of vehicular fatalities in the 
general oil and gas industry is about eight times greater than that of other occupations (Adgate et 
al. 2014; Retzer et al. 2013). About 70% of fatalities in the private mining sector are caused by 
oil and gas industry operations (Bureau of Labor Statistics US Department of Labor 2014), and 
truck accidents caused 49% of general oil and gas worker fatalities in 2012, representing a far 
greater rate of worker vehicular mortality than in other industries (Retzer et al. 2013). 
Unconventional gas operations can thus be expected to feature a high rate of worker motor 
vehicle injuries and deaths (National Research Council 2014b; Retzer et al. 2013).  In contrast 
with these vehicular and fatality rates, however, the rate of non-fatal injuries is reported to be 
lower than in the construction industry (Bureau of Labor Statistics US Department of Labor 
2014). 
   
Physical hazards are also associated with gases. Direct reading measures indicated that 
hydrocarbon vapors accompanying flowback fluids can be as high as 40% of the lower explosion 
limit (Esswein et al. 2014). Explosions and fires are an important worker hazard and have 
occurred at both conventional and unconventional gas sites, with attendant consequences, 
including death.  
 
Sensory Hazards. Noise is well known to be a hazard in the oil and gas industry. Compressors 
have been measured to produce a continuous 105 dBA (i.e., decibels with A-weighting, which is 
believed to best approximate human response to sound; New York State Department of 
Environmental Conservation). This sound level can produce permanent hearing loss. However, 
industry is trending toward less noisy compressors. Shale shakers, drilling operations, flares, and 
other operations are also often very noisy. Workers are usually closer to the source of noise than 
are residential neighbors, although workers may be better able to protect themselves. In 
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occupational settings (not oil and gas operations specifically), noise exposure has been linked 
with increased rates of myocardial infarction (Basner et al. 2014) and hypertension (Tomei et al. 
2010). Depending on the use and effectiveness of hearing protection equipment, it is likely but 
not known that these problems will pertain to workers at oil and gas sites, too. 
 
Work Schedules and Shift Work. Operations during some stages of oil and gas development 
occur 24 hours a day, necessitating shift work.  No studies characterize the nature and variation 
of the shift work practices and potential health outcomes among workers. 
 
Communities Living Near Oil & Gas Operations 
 
Chemical Hazards. Few studies have characterized the emission and distribution of pollutants 
from the well pads and diesel traffic associated with oil and gas operations. However, some 
source emissions data have been used to predict exposure. For example, a recent study measured 
chemical concentrations in waste streams from oil and gas development in the Marcellus 
formation to make inferences about exposure via water ingestion (Ziemkiewicz et al. 2014). In 
addition, ambient air quality may be monitored for assessing compliance with ambient air 
standards. McKenzie et al. (2012) used such air quality measurements at well-pad perimeters to 
assess human exposure. Data from these and other recent studies, often measured as 24-hour-
average concentrations, do not adequately characterize the intensity, frequency, or duration of 
actual human exposures, because they may not capture the spatial or temporal variability in 
exposure within and across communities (Brown et al. 2014). Such variability in exposure can be 
important in judging whether the exposure might be harmful. These exposure data also might not 
distinguish the influence of oil and gas operations from other sources of chemicals detected in air 
(such as those from wood smoke, farm machinery, or chemical applications on farms.). 
 
Some of the chemicals emitted during oil and gas operations (e.g., diesel exhaust, and benzene) 
have well-known adverse health effects and thus have the potential to affect the health of nearby 
community members. However, well-conducted studies specifically linking oil and gas-related 
exposures to adverse outcomes do not exist, and their absence is an important knowledge gap. 
Also, there has been little or no attention to the potential combined effects of exposure to 
complex mixtures of hazardous compounds (Goldstein et al 2014).       
 
Unconventional oil and gas development has been tentatively linked to adverse reproductive 
outcomes in one epidemiologic study (McKenzie et al. 2014). McKenzie et al. (2014) concluded 
that mothers who lived in “high-risk” locations were more likely to give birth to a child with 
congenital heart defects or neural-tube defect than mothers in “low-risk” locations. However, as 
these authors acknowledge, the study was subject to important sources of uncertainty, such as the 
exposure metric, proximity to wells, which was not specific to any particular health stressor. It 
would therefore be inappropriate to rely on this study to reach definitive conclusions about 
adverse health outcomes related to oil and gas development, but it should be considered when 
formulating hypotheses for future study. 
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Physical Hazards. Increased industrial traffic in residential areas may also decrease access to 
outdoor recreational activities for residents who live near affected roads (Ortega et al. 2010). 
This is potentially important because of the known beneficial relationship between exercise and 
reduced mortality (Lee et al. 2014). Rural areas of Appalachia do not necessarily have 
preexisting infrastructure such as sidewalks or wide road shoulders. Furthermore, increased 
traffic associated with drilling operations may increase risk of traumatic road or pedestrian 
injuries (Witter et al. 2013; Maryland Institute for Applied Environmental Health 2014). An 
increase in heavy-duty truck accidents has been reported in Pennsylvania counties with 
substantial unconventional gas activity, and unconventional gas operations in Texas have been 
associated with  a 40% increases in motor vehicle fatalities in affected counties (Maryland 
Institute for Applied Environmental Health 2014).     
 
Sensory Hazards. Residents of the Appalachian region have expressed concern about noise and 
light related to drilling compressors, increased truck traffic, and the process of hydraulic 
fracturing. Noise and bright light can affect sleep quality and cause sleep disturbances 
(Passchier-Vermeer and Passchier 2000). Artificial lighting from operations can intrude into 
homes and may be especially intense during flaring operations. Flaring operations can also be a 
source of disruptive noise.  Heavy truck traffic is a source of noise and vibration when routed 
close to dwellings. Compressor stations are generally further away but can make continuous 
noise and vibration that can intrude into homes. Near neighbors of compressor stations or heavy 
truck traffic roads may express concern about perceived vibration and noise. A study from West 
Virginia reported that homes within 2,500 feet of a compressor station had 52 to56 dBA noise 
levels inside the home during night-time hours. For homes near operations, sound levels were 10 
to14 dBA higher than in control homes (Maryland Institute for Applied Environmental Health 
2014). The dBA scale is logarithmic; an increase of 3 dBA represents an approximate doubling 
of noise levels; an increase of 10 dBA represents an increase of approximately an order of 
magnitude.  The U.S. Environmental Protection Agency recommends that indoor residential 
noise levels should be less than 45 dBA, even during active periods.  
 
Studies in urban residential areas suggest that increased traffic noise is linked to cardiovascular 
disease (Babisch 2011). Other potential health effects include stroke and hypertension (Basner et 
al. 2014). Lighting is required around the clock at some stages of oil and gas development and 
continuous well pad operations. Artificial light exposure can affect processes related to circadian 
rhythm, such as sleeping patterns and energy metabolism. Social changes associated with the 
growth and population influx caused by the unconventional gas industry bring both opportunity 
and some predictable patterns of disease and injury (Adgate et al. 2014). Few studies have 
measured the prevalence of perceived stress in communities affected by unconventional oil and 
gas development, and no published studies have attempted to measure the relationship between 
health and clinically identified stress in such communities. In other settings, psychological stress 
has been associated with cardiovascular disease (Cohen et al. 2007; Dimsdale 2008), immune 
system suppression (Segerstrom and Miller 2004), cellular changes (e.g., telomere shortening) 
(Epel et al. 2004), altered childhood development (e.g., changes in hormone and immune 
pathways) (Wright et al. 2005; Wright et al. 2002; Wright et al. 1998), and depression (Cohen et 
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al. 2007). The psycho-social effects of unconventional oil and gas development as related to 
communities are discussed in Section 3.4.  
 
Self-Reported Health Concerns. Several groups have surveyed health concerns of those who live 
near unconventional gas activities. Although these surveys did not imply causal relationships, 
they did identify issues, including the importance of secondary and psychological stressors 
related to unconventional gas extraction, that will need to be taken into account in any future 
research agenda. The biologic plausibility of these reported symptoms clearly depends on 
potential exposure levels, but measures are scant, and studies to date have been based on designs 
that limited the ability to draw firm conclusions. They have value as hypothesis-generating 
studies. 
 
Populations living near unconventional gas operations (including compressors) most commonly 
report symptoms that can be categorized as dermatologic, neurologic (including sensory and 
sleep), psychological or emotional, or respiratory. Symptom surveys have been conducted with 
convenience samples (i.e., readily available samples rather than ones collected during a 
systematically designed sampling program, such as random sampling) from several regions 
(Ferrar et al. 2013a; McDermott-Levy et al. 2013; Steinzor et al. 2013).     
 
In a survey of 492 persons in 180 randomly selected households in Washington County, 
Pennsylvania, self-reported skin, respiratory and other symptoms as well as diagnoses such as 
hypertension and some respiratory diseases were found to increase with decreasing distance from 
the nearest gas well (Rabinowitz and Slizovskiy 2014).  Other potential outcomes of concern, 
such as adverse reproductive and developmental effects, were not surveyed.  
 
Less formal citizen surveys have suggested that odors may be a trigger for some symptoms, 
although systematic evidence is limited (Steinzor et al. 2012; Steinzor et al. 2013).  There are a 
number of potential odor sources in unconventional gas operations, ranging from diesel exhaust 
to escaped volatile compounds at the well pad. Holding ponds, which are less common in newer 
operations but still present in some operations, contain chemical mixtures that have their own 
odors and that can also be a nutrient source for microorganisms that can generate very offensive 
odors. Aerators in ponds can improve oxygenation and microbial odor characteristics, but may 
also distribute the odors. A recent study from the Barnett shale region (in Texas) found hydrogen 
sulfide levels above odor detection thresholds at the operational fence line (Eapi et al. 2014). 
 
Neuropsychological factors may also contribute to expressed symptoms as well as real physical 
health outcomes. Ferrar et al. (2013a) reported that the belief that physical health had been 
affected was associated the with the report of stress, and with loss of trust in industry 
representatives and government officials, consistent with previous research relating lack of trust 
leading to amplified risk perception (Slovic 1987).    
 
Epidemiological Studies. Exposure assessment to evaluate health risks for people living near oil 
and gas operations have been conducted in only a handful of studies and with inadequate 
exposure metrics. A human health risk assessment in Garfield County, Colorado, for example, 
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estimated subchronic non-cancer hazard indices using proximity to well pads (McKenzie et al. 
2012). In a study of childhood cancer incidence in Pennsylvania, Fryzek et al. (2013) compared 
the incidence of various types of cancer in children living in Pennsylvania counties before and 
after drilling different subcategories of wells (i.e., all gas wells, horizontal wells, horizontal gas 
wells, Marcellus shale wells). Although the specific methods used to quantify exposure differed 
between them, two studies used mothers’ residential proximity to natural gas development as an 
exposure proxy to examine the impact on birth outcomes in rural Colorado (McKenzie et al. 
2014) and Pennsylvania (Hill 2013; not yet published in a peer-reviewed journal). It is unclear 
what is encompassed in measures such as distance, and the potential for exposure 
misclassification is great. McKenzie et al. (2014) describes some of the limitations of their work; 
for example, residential proximity to, or distance from, oil and gas wells does not necessarily 
account for factors such as the stage of well development and production, the duration and 
severity of exposure, the specific technology being used, and other possible sources of the 
chemicals being monitored or to account for meteorological factors. Proximity may also reflect, 
in addition to chemical exposures, noise, light, traffic, and other factors that increase with 
proximity to the well site.  In addition, Fryzek et al. (2013) did not account for the expected 
latency period of childhood cancers, further limiting the utility of the study (Goldstein and 
Malone 2013).   
 
In rural areas, people living near oil and gas operations may also be concerned about reduced 
crop yields as well as impact on farm animals and pets that they attribute to the gas operations 
(Ferrar et al. 2013a; Bamberger and Oswald 2012; 2014). Studies have investigated possible 
links between oil and gas operations and effects on domestic animals (Bechtel et al. 2009a; 
Bechtel et al. 2009b; Bechtel et al. 2009c; Waldner 2008a; Waldner 2008b; Waldner 2008c; 
Waldner 2008d; Waldner 2009; Waldner and Clark 2009; Waldner and Stryhn 2008).   
 

3.4 PEOPLE AND COMMUNITIES 
 
Potentially significant social and psychosocial impacts can be expected to result from large-scale 
unconventional oil and gas development. Such effects result in large part from the scale and 
intensity of development activity in some locations and resulting changes in labor force demand, 
worker in-migration, local population change, demands on infrastructure and services, and 
changes in the character of both social and biophysical landscapes. At the same time there are 
substantial uncertainties about the likelihood and extent of some impacts, given the highly varied 
contexts in which oil and gas development occurs (Jacquet et al. 2014) (Table 5).   
 
The high volume of truck and heavy equipment traffic required to support drilling and well 
completion operations appears across nearly all situations to result in increased concerns and 
dissatisfaction among local residents and public officials with traffic flows and congestion, 
damage to roads and highways, increased accident rates, and reduced traffic safety (Brasier et al. 
2011; Ladd 2013; Ladd 2014; Perry 2012; Schafft et al. 2014; Weigle 2011, Muehlenbachs and 
Krupnick 2013). Also, in more rural and remote settings that experience fairly extensive drilling 
and extraction activity, a variety of effects associated with workforce in-migration and resulting 
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population growth pressures can be anticipated, at least in the near term, when drilling, well 
completion, and pipeline construction activities are most intensive (Jacquet et al. 2014; Murdock 
and Leistritz 1979). For example, areas experiencing major oil and gas development often 
undergo substantial expansion of demand for worker housing, leading to problems with housing 
shortages, increased reliance on temporary and in some cases substandard housing, rising costs 
for rental housing, and increased homelessness (Brasier et al. 2011; Perry 2012; Schafft et al. 
2014; Williamson and Kolb 2011). 
 

Table 5.  Potential stressors and concerns for social systems in areas with oil and gas development 
Stressor Concerns 

Change in population from workforce in-
migration 

Housing shortfalls and housing cost increases 

Increased demand on public infrastructure, utilities, and school systems 

Increased demand on emergency response and medical serv ices 
Increased demand on social and mental health serv ice prov iders 

Negative fiscal impacts on local units of government 

Increased crime and increased fear of crime 
Reduced interpersonal familiarity  and social integration 

Potential for tensions, conflicts, and distrust between established and newcomer populations  

Increased truck and other heavy 
equipment traffic  

Damage to roads and highways, with resulting fiscal impacts on local governments 

Increased problems and concerns involv ing traffic safety 

Increased traffic congestion and travel delays 
Public dissatisfaction over disturbances involv ing increased noise, dust, and traffic  
congestion 

Differing public v iews about the 
”opportunities” and ”threats” resulting from 
resource development 

Increased potential for interpersonal disagreements, tensions, social div isions, and  
community  conflict 

Development-induced environmental 
disturbances and changes to socially  
valued env ironments and landscapes 

Reduced levels of satisfaction among area residents with place and community 

Potential for env ironmental contamination  

Heightened levels of risk perception and associated psychosocial stress effects 
Reduced levels of trust and confidence in agencies and organizations responsible for  
protecting env ironmental quality  and human health and safety 

Increased potential for corrosive community  conflicts 

Increased potential for economic and social stigmatization of local communities 
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Growth-induced demands on a variety of public facilities and services can also be problematic, 
especially during the earlier phases of development, when a rapid increase in primarily 
temporary workers can exceed the existing capacities of rural utility systems, school systems, 
law enforcement, emergency response services, medical and mental health services, and social 
welfare systems (BBC Research and Consulting 2013; Brasier et al. 2011; Jacquet 2014; 
Maryland Institute for Applied Environmental Health 2014; Perry 2013; Theodori et al. 2009; 
Weber et al. 2014; Weigle 2011). Although local governments and service providers may after 
some period of time adapt to and address the demands associated with rapid growth pressures, 
the ability to do so can be limited at first, and possibly over the longer term as well, if taxation 
and revenue allocation structures fail to provide an adequate flow of funds to the affected 
communities (BBC Research and Consulting 2013; Jacquet 2014; Jacquet et al. 2014). 
 
Large-scale development activities can strain the social fabric of affected communities. Where 
such development generates rapid growth, there is considerable potential for reduced 
interpersonal familiarity at the local level, accompanied by changes in social interaction patterns 
and reduced levels of social integration and civic engagement (BBC Research and Consulting 
2013; Freudenburg 1986; Sampson 1991; Smith et al. 2002; Wynveen 2011). These changes are 
also likely to contribute to lowered levels of interpersonal trust, manifested in part by increased 
fear of crime (BBC Research and Consulting 2013; Brasier et al. 2011; Ladd 2013; Theodori et 
al. 2009). Tensions and conflicts between “oldtimer” and “newcomer” populations may also 
arise, exacerbating the erosion of trust among local residents (BBC Research and Consulting 
2013; Brasier et al. 2011; Perry 2012; Wynveen 2011).   
 
Tensions and conflicts among residents who hold highly divergent views about the consequences 
of resource development can also contribute to strained local social relations (Gramling and 
Freudenburg 1992; Jacquet 2014; Ladd 2014; Perry 2012; 2013; Theodori et al. 2009). In the 
case of unconventional oil and gas development occurring in areas where both land and oil and 
gas resources are owned by the same private landowners (as opposed to split estates, where 
surface and sub-surface rights are owned by separate entities), increased potential for wealth 
creation can lead to highly varied outcomes in how residents experience the “opportunities” and 
“threats” associated with the development as well as to quite different views about the 
development’s acceptability (Brasier et al. 2011; Perry 2012; 2013). Some residents are likely to 
experience significant economic benefits from leasing their land for development, access to new 
and higher-paying jobs, or the expansion of local businesses or other income-generating 
activities (Brasier et al. 2011). Others may perceive benefits linked to a broader range of 
opportunities associated with increased tax revenues or may simply consider resource extraction 
to be consistent with their values and views about growth, development, and “progress” (Brasier 
et al. 2011; Ladd, 2013, 2014; Schafft et al. 2013). At the same time, some businesses may be 
negatively affected by wage inflation and increased difficulties in attracting or retaining workers 
(BBC Research and Consulting 2013; Brasier et al. 2011). In addition, some area residents are 
likely to be concerned about and dissatisfied with what they consider to be unacceptable 
alterations to the biophysical environment, local landscapes, valued social and cultural 
conditions, or family and community traditions (Perry 2012; 2013; Weigle 2011).   
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Dissatisfaction, tensions, and conflicts may also become problematic where concerns about 
potential environmental contamination from drilling and production activities lead to widespread 
perceptions of risks to human health and safety and to distrust of individuals and organizations 
charged with protecting environmental quality or community health and welfare (Boudet et al. 
2014; Brasier et al. 2011; Jacquet 2014; Kroll-Smith and Couch 1989; Ladd 2013; Perry 2012; 
Slovic et al. 1991; Stedman et al. 2012; Theodori et al. 2013). Effects such as these can lead to 
increased stress at the individual level and to corrosive social relations at the collective level 
(Freudenburg 1997; Freudenburg and Jones 1991; Jacquet 2014; Kroll-Smith and Couch 1989; 
Ladd 2014; Perry 2012; Picou et al. 2004). Stigmatization of local residents and of entire local 
communities can occur when others in the area characterize them as undesirable or potentially 
“contaminated” in terms of environmental or social conditions (Edelstein 1988; Kroll-Smith and 
Couch 1989; Muehlenbachs et al. 2013; Perry 2013; Weigle 2011; Wulfhorst 2000).     
 
Although the literature addressing the social effects of unconventional oil and gas development 
has expanded considerably in recent years, many of the studies conducted to date have been 
somewhat limited with respect to topics such as the range of development contexts considered or 
the number of interviews conducted, and none has provided a longitudinal analysis of change 
patterns across significant periods of time. Most studies have focused on the subjective 
perceptions and attitudes of residents and officials in affected areas, with little evidence of an 
extension of research to include the examination of more “objective” data, addressing topics such 
as crime rates, changes in social service agency caseloads, and rates of mental health treatment.    
 
In addition, the thresholds at which an interaction of development intensity, remote location, and 
rural conditions may combine to produce difficult-to-manage effects of boom growth have not 
been determined. Although earlier research focused on other energy development contexts has 
suggested that many adverse social effects may be short lived and that adaptation and improved 
well-being can occur over the longer term (Brown et al. 2005; Smith et al. 2002), the nature and 
timing of such adaptations have not been clearly established across various areas affected by 
unconventional oil and gas development. Because no studies have been conducted assessing the 
longer-term consequences of unconventional oil and gas development, it is not known whether 
the patterns of declining economic opportunity and well-being associated with many forms of 
“resource dependency” will also be associated with these newer forms of extraction, especially 
given the unique spatial and temporal patterns that characterize them (Jacquet et al. 2014). 
 
An additional source of uncertainty relates to the fact that virtually all of the literature addressing 
the social consequences of unconventional oil and gas development has addressed impacts only 
at aggregated levels of analysis, typically focusing on changes and stresses that may be observed 
at the community or county levels. Such approaches fail to address the likelihood that both 
positive and negative impacts will be unequally distributed and differentially experienced at 
different spatial scales and among various groups and types of residents — for example, younger 
versus older persons, newcomers versus long-term residents, women versus men, lower-income 
versus higher- income populations, those who own undeveloped land versus those who do not, 
and renters versus homeowners (Beckley 1998; Branch et al. 1984). Further assessment and 
more refined research designs are needed to address these types of distributive impact issues and 
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more clearly determine which subsets of local residents will tend to experience changes that 
make them relative “winners” or “losers” with respect to the benefits and costs of oil and gas 
development. 
 
Finally, the relationships between social and psychosocial effects and human health 
consequences are not yet clearly understood or carefully documented. Although it seems clear 
that the alteration of valued biophysical and social landscapes, reduced interpersonal familiarity 
and social engagement, increased risk perception, loss of trust, increased interpersonal conflict, 
corrosive communitywide conflicts, and other social effects as outlined above can lead to 
individual- level stress effects and perhaps to “collective trauma” (Jacquet 2014; Perry 2013), 
concrete evidence of associated adverse effects on human mental or physical health remains 
unavailable. Although the potential social and psychosocial effects of unconventional oil and gas 
development are important in their own right and merit careful assessment, additional research is 
needed to track their possible implications for human health. 

4. NEXT STEPS 
 
There continues to be debate about the potential impacts of 21st century oil and gas development 
in the peer-reviewed scientific literature, in governmental and nongovernmental reports, in the 
communities, and in the press. Although more peer-reviewed studies have been published in 
recent months now that the rapid increase in gas development has been underway in Appalachia 
for several years, the Committee finds that more research is needed to understand what types of 
impacts might have occurred in the past, might be ongoing, or might develop in the future. Data 
gaps plague our understanding of even the most commonly discussed potential impacts, as 
discussed in Section 3 of this report. Given this paucity of data, it is even more challenging to 
look ahead to the information needed to answer future questions about cumulative impacts on 
people and communities near well pads and ancillary facilities, on workers during all stages of 
oil and gas development, and on the environment and ecologic systems of the Appalachian 
region.  
 
Many agree about the need for more study of potential impacts and have formulated research 
recommendations. Table 6 summarizes recent recommendations, assembled from peer-reviewed 
scientific literature and reports from non-governmental research organizations, industry, and 
governmental agencies.  This summary captures the primary essence of recommendations; more 
detailed information can be found in the underlying publications. Some data collection and 
research alternatives appear in the literature more frequently than others. The recommendations 
that appear most frequently involve data collection to support research, notably baseline air and 
water quality data representative of conditions in the absence of oil and gas operations, and data 
needed to understand exposure to oil and gas-related stressors for oil and gas workers, nearby 
community members, and ecologic systems.  
 
The Committee believes that these recommendations provide very useful input to its research 
planning deliberations. The Committee’s Research Plan – to be released in mid-2015 – will 
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address a wide range of potential environmental, ecologic, human health, and social impacts that 
today’s oil and gas development might have at the local and regional level.  

 
Table 6. Summary of recent research recommendations from the peer-reviewed scientific literature and reports 
from industry, non-governmental research organizations, and governmental agencies 

ENVIRONMENT 
Air, Water, and Soil Quality 
Characterize baseline air and water quality  and monitor over well lifetime1,2,3,4,5,6,8,9,11,15,18,19,22 
Determine fate and transport of fracturing-related fluids in the subsurface 2,6,15,18,22 
Assess cumulative impacts on air, water, and soil over well lifetime 3,4,9,19,22 
Establish local and regional emissions inventories1,3,15 
Characterize and model air and water quality  changes during each stage of development (e.g., drilling, fracturing, etc.)3,5,15 
Determine the likelihood of aquifer contamination due to subsurface migration1,6,22 
Determine the severity  of erosion and siltation resulting from oil and gas development 9,22 
Identify  signature chemicals associated with oil and gas development for water quality  monitoring1,15 
Water Quantity 
Predict and measure the quantity  and impacts of water withdrawal, particularly  in arid or low-flow regions1,4,9,11,15 
Develop new technologies to reduce water use1,15,22 
Wellbore Integrity 
Assess wellbore integrity  throughout well lifetime1,15,21 
Hydraulic Fracturing 
Determine the general probability  of well re-fracturing 1,2,4,15 
Test fracturing fluid and produced water for hazardous physical and chemical constituents 2,6,22  
Waste Management 
Determine the physical (e.g., naturally  occurring radioactive materials) and chemical (e.g., heavy metals, tox ic components) 
characteristics of drilling and hydraulic fracturing wastewater (e.g., flowback and produced water)1,2,6,8,11,22 
Determine the safest and most effective methods to manage and treat wastewater, particularly  produced water2,6,18,22 
Determine chemical and radiologic composition of solid wastes (e.g., cuttings)11,22 
Assess the env ironmental risks resulting from accidental releases of wastewater 18  
Accidental Releases and Upset Conditions 
Create inventory of orphaned/abandoned wells3 and investigate the role of such wells in the migration of gas and fluid 8,18,21 
Study the occurrence and severity  of wastewater spills 2,20,22 
Induced Seismicity 
Assess the potential for and mitigation of induced seismicity  from fracturing fluid disposal v ia deep injection wells1,11,15,17 
Test for preex isting fault systems at deepwater injection sites; associate various factors (e.g., temperature, pressure) with the size 
and incidence of seismic events1,17 

ECOLOGY 
Spatial analysis of habitat loss/ fragmentation4,9,11,13  
Model and assess impacts on vulnerable or sensitive species and habitats4,9,15 
Impacts of aquifer contamination (e.g., gas, brine) on terrestrial and aquatic species4,9,11 
Investigate the spread of invasive species4,9 
Determine cumulative impacts on aquatic and terrestrial ecosystems9,15 
Determine ecological thresholds to minimize impacts (e.g., well count, forest loss, tox icity)4,22 
Baseline data on aquatic and terrestrial habitats4,22 
Study habitat impacts of noise and light pollution19 
Determine effectiveness of ecosystem protection and conservation strategies2 
Assess the extent of partial and full well pad reclamation19 

(table continued on next page) 



~ DRAFT ~ 
The Potential Impacts of 21st Century Oil and Gas Development in the Appalachian Basin: 
First Steps Toward a Strategic Research Plan  
 

49 
 
 

Table 6. Summary of recent research recommendations from the peer-reviewed scientific literature and reports 
from industry, non-governmental research organizations, and governmental agencies (continued) 
 

WORKER HEALTH 
Characterize worker exposure to air and water tox ics  (e.g., diesel exhaust, fracturing chemicals, silica, H2S), noise, and naturally  
occurring radioactive materials 5,10,12,15 
Disease surveillance in defined worker population5,12 
Complete targeted and non-targeted biomonitoring in a defined worker population14 
Evaluate the effectiveness of industry  efforts to increase safety  and limit occupational exposures11,12 
Assess the extent of workplace injury  under-reporting12 

INDIVIDUAL COMMUNITY MEMBER HEALTH 
Determine magnitude and duration of  exposure to stressors in air, water, and other env ironmental media 2,5,11,15 
Assess the relationship between exposures and the spatial and temporal distribution of health outcomes in areas experiencing oil 
and gas development 8,10,14  

Perform environmental epidemiology studies to evaluate whether oil and gas-related exposures are associated with adverse health 
outcomes (e.g. cardiovascular disease [air], birth defects [groundwater])6,8,15 
Characterize sensory (odor, noise, light) stressors and link to health effects5,6 
Conduct biomonitoring of a representative population for stressors associated with oil and gas development 14 

Conduct health impact assessments of oil and gas development, particularly  in rural areas with limited baseline disease prevalence 
data11 

TOXICOLOGY 
Conduct tox icological studies, coupled with exposure studies, with particular attention paid to ongoing and likely  future exposures to 
mixtures of stressors and their tox icological modes of action2,6  
Accelerate the tox icological evaluation of chemical and physical stressors associated with hydraulic fracturing6 (e.g., tox icological 
components of the U.S. Environmental Protection Agency study that is underway to understand the potential impact of hydraulic 
fracturing for oil on drinking water resources (http://www2.epa.gov/hfstudy)2  

PEOPLE AND COMMUNITIES 
Develop regional predictions of long-term energy development1,5,7,15 
Seek community  input in the design and completion of ecologic,, human health, and social-psychological research5,6,8,22 
Examine the relationship between social-psychological changes (e.g., stress) and health effects5,7,11 
Identify  the extent and severity  of traffic related impacts7,11,16 
Document legacy economic and social impacts7,11,13 
Monitor the impact of oil and gas development on housing cost and property  values as the market evolves13,16 
Determine the impact of oil and gas development on local infrastructure (e.g., healthcare serv ices)6,8 

REFERENCES 
1Jackson et al. 2014; 2Goldstein et al. 2014; 3Moore et al. 2014b; 4Brittingham et al. 2014; 5Adgate et al. 2014; 6Penning et al. 2014; 
7Jacquet 2014; 8Mary land Institute for Applied Environmental Health 2014; 9Souther et al. 2014; 10Devlin et al. 2014; 11 National 
Research Council 2014b; 12Witter et al. 2014; 13Krupnick et al. 2014; 14Shonkoff et al. 2014; 15 Multi-Agency, 2014; 16 Environmental 
Law Institute and Washington and Jefferson College Center for Energy Policy  and Management 2014; 17National Research Council 
2013; 18Vidic et al. 2013; 19Drohan et al. 2012; 20Brantley et al. 2014; 21Davies et al. 2014; 22National Research Council 2014a 

 
 
The recommendations summarized in Table 6 illustrate the number and complexity of research 
paths that could be pursued, without a clear set of priorities among them. In recognition of this 
complexity, the Committee is developing a decision framework, along with criteria and weights 
assigned to each criterion, to guide its prioritization of research alternatives so that its research 
recommendations can be readily incorporated into a robust research program.  

http://www2.epa.gov/hfstudy
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To facilitate good research planning, HEI and members of the Committee welcome (1) feedback 
on both this draft interim report and the initiative in general, (2) recommendations for research 
needs, and (3) recommendations for criteria to prioritize research alternatives. At its second 
public workshop, on December 10, 2014, in Wheeling, West Virginia, the Committee hopes to 
hear from interested parties who bring a broad perspective to questions about research needs. For 
example, the Committee would like to know the research priorities of people who work in the oil 
and gas industry, oversee some aspect of industry operations, conduct scientific research related 
to potential impacts, manage public lands on which oil and gas development occurs, are 
responsible for protecting public health of communities where oil and gas development is 
underway, live or work near oil and gas operations, represent the public in legislative bodies, and 
many others. Following this workshop, the Committee will begin considering research needs and 
ways to prioritize them, as discussed above, and comments received during and very soon after 
the workshop will be most useful in the process.  A draft of the Committee’s research plan will 
also undergo formal peer review and, after revisions, will be released in time for public review 
and discussion, including at the Committee’s third public workshop, before being finalized in 
mid-2015 (Figure 15).  HEI will share and discuss the final plan with public agencies, private 
industry, and community representatives, and other stakeholders at the state, regional, and 
national levels with the aim of engendering interest in and support for pursuing the filling of key 
knowledge gaps to inform better decisions on 21st century oil and gas development going 
forward. 
 

 
Figure 15.  Timeline and principal milestones for completion of the Committee’s work.  
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where he is the Director of the Vanderbilt Institute for Energy and the Environment. He has a 
shared appointment as the Craig E. Philip Professor of Engineering and as Professor of Earth and 
Environmental Sciences. He previously was a professor at the University of Virginia for many 
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Alan M. Ducatman is a Professor in the School of Public Health and School of Medicine at 
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clinical laboratory scientists and clinicians to create comparative effectiveness research for 
laboratory utilization practices. For both types of research, his aspiration is to improve the health 
of populations. Dr. Ducatman received the MD degree from Wayne State University and the 
MSc in Environmental Health from the City University of New York. He completed his 
residency training at Brown University and at the Mayo Clinic, and he is board-certified in 
Internal Medicine and in Occupational Medicine. Dr. Ducatman is a frequent consultant to 
industry, government, nonprofit organizations, and patient or community groups regarding 
occupational and environmental health, and public health interventions. He has been a 
Department chair and interim founding dean of a new school of public health at West Virginia 
University. His national service includes chairmanship of the Residency Review Committee in 
Preventive Medicine, and Chairmanship of the Scientific Board of Counselors of the Agency for 
Toxic Substances and Disease Registry (ATSDR) – National Center for Environmental Health 
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John K. Jackson is a Principal Investigator of the Entomology group at the Stroud Water 
Research Center in Pennsylvania.  He is also Adjunct Professor of Entomology and Applied 
Ecology at the University of Delaware and Adjunct Professor of Biology at the University of 
Pennsylvania.  Dr. Jackson’s research interests span a variety of applied and basic subjects, 
including population and evolutionary ecology of stream insects, the role of abiotic and biotic 
processes in determining the structure and function of stream assemblages, energy and nutrient 
exchange within streams and between streams and their surrounding watersheds, and benthic 
monitoring and water quality assessment. Specific projects that address these research interests 
include studies of growth and development of aquatic insects, the influence of dispersal, 
population dynamics, and environmental variation on genetic structure of stream organisms, the 
evolutionary and ecological significance of disturbance in aquatic insect ecology, spatial and 
temporal variation in the distribution and abundance of stream insects, and organic matter 
dynamics and secondary production. Dr. Jackson received his BS in Biology from the University 
of Notre Dame, his MS in Zoology from Arizona State University, and his PhD in Entomology 
from the University of California. In 1998, he was a Fulbright Senior Scholar at Institut fur 
Zoologie und Limnologie, Universitat Innsbruck, Austria. 
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William (Bill) M. Kappel is a hydrogeologist who served as the Section Chief of the Study 
Section for the U.S. Geological Survey Water Sciences Center in Ithaca, New York from 1979 to 
2013.  Since that time, Mr. Kappel continues to work with Emeritus status.  He has extensive 
experience with water resource investigations. He coordinated USGS water resource information 
and study efforts related to shale gas development in New York and in collaboration with other 
Water Science Centers across the Marcellus ‘Play’ from West Virginia to New York.  Mr. 
Kappel received his BS in Physical Sciences from Pennsylvania State University, and his MS in 
Forest Hydrology from Pennsylvania State University. 
  
Richard (Rick) S. Krannich is Professor of Sociology, Director of the Institute for Social 
Science Research on Natural Resources and, beginning in July 2013, Director of the graduate 
program in Sociology at Utah State University. He joined the USU faculty in 1980 after 
receiving a PhD in Sociology from Pennsylvania State University. Dr. Krannich's research 
interests and experience include social impacts of oil and gas development and other extractive 
industries; public attitudes and actions pertaining to natural resource use and policy; social 
aspects of radioactive and hazardous waste management; human dimensions of wildlife 
management; and the socio-economic implications of large-scale renewable energy technologies.  
He has completed much research related to community adaptation and long-term social well-
being in communities affected by energy-related boom growth.  Currently he is engaged in 
research focusing on the implications of utility-scale renewable energy developments for social 
organization and social well-being in western rural communities. His recent professional 
activities have included service as editor of the journal Society and Natural Resources, as 
President of the Rural Sociological Society, and as Executive Director of the International 
Association for Society and Natural Resources. Dr. Krannich has also contributed to social 
assessment projects as a consultant for the Bureau of Land Reclamation, the USDA Forest 
Service, the Federal Energy Regulatory Committee, and other federal and state agencies. 
 
Vince Matthews is a geologist who serves as Principal of Leadville Geology LLC, and recently 
was Interim Executive Director of the National Mining Hall of Fame and Museum.  He retired as 
State Geologist and Director of the Colorado Geological Survey at the beginning of 2013. As a 
former executive in the natural resources industry for Amoco, Lear, Union Pacific, and Penn 
Virginia, Matthews explored for oil and gas in virtually every basin in the U.S., including Alaska 
and the Gulf of Mexico. Part of his experience in the natural resources industry included 
responsibility for coal, lime, and limestone activities in New Jersey, Virginia, and Tennessee.  
Vince received Bachelors and Masters degrees in Geology from the University of Georgia and a 
Ph. D. from the University of California, Santa Cruz and holds Outstanding Alumnus Awards 
from both institutions.  He held tenured positions at two universities and has taught geology at 
the University of California, University of Northern Colorado, Arizona State University, the 
Frank Lloyd Wright School of Architecture, and the University of Texas of the Permian Basin.  
He is the author of more than 70 technical articles and abstracts and was senior editor of the 
multiple, award-winning publication, Messages in Stone: Colorado’s Colorful Geology and the 
map, A Tourist Guide to Colorado Geology. Matthews is a Senior Fellow in the Geological 
Society of America where he served as General Chair of the 125th Anniversary Meeting last fall. 
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He is the 2014 recipient of the Pioneer Award from the American Association of Petroleum 
Geologists. Vince serves on the Board of Directors of the National Mining Hall of Fame and 
Museum, the Geology Advisory Committee at Colorado State University, and the Advisory 
Committee for the J. P. Morgan Center for Commodities of the University of Colorado-Denver’s 
Business School. 
 
Allen L. Robinson is the Raymond J. Lane Distinguished Professor and Head of the Department 
of Mechanical Engineering at Carnegie Mellon University.  He is also a Professor in the 
Department of Engineering and Public Policy and a member of the Center for Atmospheric 
Particle Studies.  Dr. Robinson first joined the faculty at Carnegie Mellon in 1998.  Dr. 
Robinson’s research examines the impact of emissions from energy systems on air quality and 
global climate.  A major focus of his research has been the atmospheric transformation of 
particulate matter emissions from cars, trucks, and other combustion systems.  He is also actively 
working on field measurements and chemical transport modeling to quantify the impact of 
emissions from unconventional gas development on local and regional air quality and climate.  
In 2012-2013, he was a faculty member at Colorado State University in the Departments of 
Atmospheric Science and Mechanical Engineering.  In 2009-2010, he was a visiting faculty 
fellow at the Cooperative Institute for Research in Environmental Science at the University of 
Colorado in Boulder.  He holds a BS in Civil Engineering from Stanford University, and an MS 
and PhD in Mechanical Engineering from the University of California at Berkeley.  Dr. 
Robinson received the Carnegie Institute of Technology Outstanding Research Award in 2010, 
the Ahrens Career Development Chair in Mechanical Engineering in 2005, and the George 
Tallman Ladd Outstanding Young Faculty Award in 2000.  He is currently serving on the 
Research Committee of the Health Effects Institute, the Environmental Protection Agency Clean 
Air Scientific Advisory Committee (CASAC) Air Monitoring and Methods Subcommittee, the 
Editorial Advisory Board of Aerosol Science and Technology, and the Editorial Board of 
Progress in Energy and Combustion Science.  He has authored or co-authored more than 100 
peer-reviewed archival journal papers.  His research is supported by United States federal 
agencies (e.g., U.S. Environmental Protection Agency, Department of Energy, Department of 
Defense, Department of Interior, and the National Science Foundation), state and local 
government (e.g., the Allegheny County Health Department), industry (e.g., Electric Power 
Research Institute), and foundations (e.g., Heinz Endowments).  Dr. Robinson teaches graduate 
and undergraduate courses on thermodynamics, atmospheric chemistry, air pollution control, 
climate change mitigation, combustion, and air quality engineering.   
 
Dale P. Sandler is Chief of the Epidemiology Branch in the Division of Intramural Research at 
the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health, 
and head of the Chronic Disease Epidemiology Group. She is adjunct professor of Epidemiology 
at the University of North Carolina at Chapel Hill, past editor of the journals, Epidemiology and 
the American Journal of Epidemiology, and a past president of the American College of 
Epidemiology.  Dr. Sandler has published more than 250 scientific articles, reviews and 
commentaries.  She received an M.P.H. from Yale University in 1975 and a Ph.D. in 
Epidemiology from The Johns Hopkins University in 1979.  Dr. Sandler’s research focuses on 
risk factors for a wide range of chronic diseases, including chronic kidney disease, leukemia, and 
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breast cancer.  She has studied the role of early life and reproductive factors in risk for diseases 
later in life as well as potential health effects of passive smoking, radon and agricultural 
exposures. In 1993, Dr. Sandler partnered with investigators from the National Cancer Institute 
and the Environmental Protection Agency to develop the Agricultural Health Study, an ongoing 
prospective study of the health of licensed pesticide applicators and their spouses. She is 
Principal Investigator of The Sister Study, a prospective study of more than 50,000 sisters of 
women who have had breast cancer, which is designed to identify environmental and genetic 
factors that contribute to breast cancer risk and outcomes after diagnosis. A related study, The 
Two Sister Study, uses a family design to explore genetic and environmental risk factors for 
early onset breast cancer.  More recently, Dr. Sandler became the Principal Investigator of a 
prospective study of the health of Gulf of Mexico Deepwater Horizon disaster clean-up workers.  
This study, known as the GuLF STUDY, has recruited nearly 33,000 persons involved in some 
aspect of oil-spill clean-up and carried out home-based clinical assessments with more than 
11,000 persons living in Gulf states. 
 
Susan L. Stout (Federal Liaison to the committee) is a Research Project Leader and Research 
Forester at the Northern Research Station of the United States Department of Agriculture Forest 
Service in Irvine, PA.  She has served in this position since 1991; before that, she was a Research 
Forester with the Northeastern Research Station from 1981-1991. She received her A.B. from 
Radcliffe College of Harvard University, her M.S. in Silviculture from the State University of 
New York, and her D.F. from Yale University. Her research interests include measuring 
crowding and diversity in forests, deer impact on forests, silvicultural systems, and translating 
results from ecosystem research into practical management guidelines for Pennsylvania's forests 
and beyond. Since 2011, Stout has been a regional co-lead on identifying research needs related 
to oil and gas development for the Northern Research Station.  This team co-sponsored the 2012 
Penn State Goddard Forum, “Oil and Gas Impacts on Forest Ecosystems: Research and 
Management Challenges.”  In addition, Dr. Stout was the US Forest Service representative to a 
federal interagency task force concerning research needs related to unconventional oil and gas 
development.  Dr. Stout was named a Fellow of the Society of American Foresters in 2003. 
 
Deborah L. Swackhamer is a Professor of Science, Technology, and Public Policy in the 
Humphrey School of Public Affairs, and a Professor of Environmental Health Sciences in the 
School of Public Health at the University of Minnesota. She also directed the Water Resources 
Center from 2002 until 2014. She received a BA in Chemistry from Grinnell College, IA and MS 
and PhD degrees from the University of Wisconsin-Madison in Water Chemistry and Limnology 
& Oceanography, respectively. After two years of post-doctoral research in Chemistry and 
Public & Environmental Affairs at Indiana University, she joined the Minnesota faculty in 1987. 
She studies the processes affecting the behavior of and exposures to toxic chemicals in the 
environment, and she works on policies to address these potential risks.  In 2012 Dr. 
Swackhamer completed a 4-year term as Chair of the Science Advisory Board of the U.S. 
Environmental Protection Agency (USEPA), and served as a member of the Science Advisory 
Board of the International Joint Commission of the U.S. and Canada from 2000-2013. She 
recently served on the National Research Council, National Academy of Sciences (NAS) 
committee addressing Sustainability Linkages in the Federal Government and currently serves on 
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the NAS Committee evaluating the USEPA Laboratory Enterprise. She is a Governor appointee 
on the Minnesota Clean Water Council and was President of the National Institutes of Water 
Resources in 2011-2012. Dr. Swackhamer is a member of the Editorial Advisory Board for the 
journal Environmental Science & Technology, is a Fellow in the Royal Society of Chemistry in 
the UK, and is the recipient of the 2007 Harvey G. Rogers Award from the Minnesota Public 
Health Association. In 2009 she received the prestigious Founders Award from the Society of 
Environmental Toxicology and Chemistry for lifetime achievement in environmental sciences. 
She was also the 2010 recipient of the University of Minnesota’s Ada Comstock Award.  
 
Junfeng (Jim) Zhang is a Professor of Global and Environmental Health and Director of the 
Exposure Biology and Chemistry Laboratory at Duke University’s Nicholas School of the 
Environment & Duke Global Health Institute.  Dr. Zhang joined the Duke Faculty in the Fall of 
2013 from the University of Southern California where he had been a Professor of 
Environmental and Global Health and Director of the Environmental and Biomarkers Analysis 
Laboratory since 2010. His prior positions include Professor, Department Chair, and Associate 
Dean at the Rutgers School of Public Health. Dr. Zhang has more than 140 peer-reviewed 
publications. His work has been featured in major international media such as Time, the New 
York Times, BBC, ABC, CBS, and Yahoo News. His early work on characterizing sources of 
non-methane greenhouse gases made him one of the officially recognized contributors to the 
2007 Nobel Peace Prize awarded to the Intergovernmental Panel on Climate Change. He is the 
2012 recipient of the Jeremy Wesolowski Award, the highest award of the International Society 
of Exposure Science. He also received a Distinguished Alumni Award from the Rutgers 
Graduate School. Dr. Zhang’s research interests include developing novel biomarkers of human 
exposure and health effects, assessing health and climate co-benefits of air pollution 
interventions, and examining biological mechanisms by which environmental exposures exert 
adverse health effects. Dr. Zhang has led a number of international collaborations to study air 
pollution health effects and underlying pathophysiologic mechanisms. He is currently leading 
two multidisciplinary, multi-institutional centers studying the health impact of engineered 
nanomaterials. 
 
SPECIAL ADVISORS 
 
Alan Krupnick is the Founder and Director of the Center for Energy Economics and Policy 
(CEEP) and a Senior Research Fellow at Resources for the Future (RFF). Dr. Krupnick is also 
the President and a Fellow of the Association of Environmental Resource Economists (AERE). 
He has served regularly on expert committees from the US EPA and the National Academy of 
Sciences, and has co-chaired a federal advisory committee to the US EPA regarding the 
implementation of new ozone and particulate standards. From 1993-1994 he served as a senior 
economist on the President’s Council of Economic Advisors, advising the Clinton administration 
on environmental and natural resource policy issues. Dr. Krupnick has been a consultant to State 
Governments, federal agencies, private corporations, the European Union, the World Health 
Organization, the World Bank, and various Canadian Health and Environmental organizations. 
He has served on the editorial board of Land Economics, and has been a reviewer and/or 
contributor to a myriad of other journals and publications such as the American Economic 
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Review, the Journal of Environmental Economics and Management, and the Oxford University 
Press. His current research focuses on analyzing environmental and energy issues and focuses on 
topics such as air quality, ecosystems, energy, international policy and analysis, risk 
management, and transportation. As director of the CEEP, Dr. Krupnick is currently leading 
research on the risks and issues associated with shale gas development. His primary research 
methodology is to utilize stated preference surveys such as contingent valuation and choice 
experiments. Dr. Krupnick received his BA from Pennsylvania State University and his MA and 
PhD in economics from the University of Maryland.   
 
Bernard D. Goldstein is Emeritus Professor of Environment and Occupational Health and 
former Dean of the University of Pittsburgh’s Graduate School of Public Health. He is a 
physician, board certified in internal medicine, hematology, and toxicology. Dr. Goldstein is 
author of more than 150 publications in the peer-reviewed literature, as well as numerous 
reviews related to environmental health. He is an elected member of the IOM and of the 
American Society for Clinical Investigation. His experience includes service as assistant 
administrator for research and development of the EPA, 1983–1985. In 2001, he joined the 
University of Pittsburgh from New Jersey, where he had been the founding director of the 
Environmental and Occupational Health Sciences Institute, a joint program of Rutgers University 
and Robert Wood Johnson Medical School. He has chaired more than a dozen National Research 
Council (NRC) and IOM committees primarily related to environmental health issues. He has 
been president of the Society for Risk Analysis; and has chaired the NIH Toxicology Study 
Section, EPA’s Clean Air Scientific Advisory Committee, the National Board of Public Health 
Examiners, and the Research Committee of the Health Effects Institute. He has also served as a 
member or chairperson of numerous national and international scientific advisory committees for 
government, industry, and environmental groups. 

 
Michael E. Parker is currently Principal of Parker Environmental and Consulting, LLC, which 
provides environmental and regulatory policy development, technical, and advocacy support on a 
range of issues, focusing on nonconventional oil and gas development including hydraulic 
fracturing, produced water management, water resource management, onshore and offshore 
environmental management issues, and carbon capture and storage issues. Prior to establishing 
his consulting practice, Mr. Parker worked for ExxonMobil Production Company for over 35 
years in a variety of engineering and technical assignments. At retirement, Mr. Parker was a 
Technical Advisor in ExxonMobil’s Upstream Safety, Health, and Environment organization. 
Mr. Parker provided technical support and guidance to ExxonMobil affiliates world-wide on a 
range of issues including drilling and production discharges, underground injection control, spill 
prevention and control, facility decommissioning, artificial reef programs, marine environmental 
issues, carbon capture and storage, hydraulic fracturing and general issue management 
coordination. Mr. Parker has served as Chair of the American  
Petroleum Institute’s Upstream Environmental Subcommittee, the Hydraulic Fracturing  
Workgroup, the Carbon Capture and Storage Work Group and the Water Issues Group and is 
currently involved in the revisions to API’s HF Guidance Documents and  
Recommended Practices. Mr. Parker is a graduate of the University of Texas and Texas  
A&M University and is a registered Professional Engineer in Texas and Louisiana. 
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GLOSSARY 
 
A 
 
Abandon - To cease producing oil or gas from a well when it becomes unprofitable. A wiIdcat (see 
“Wildcat”) may be abandoned after it has been proven nonproductive. Usually, when a well is abandoned, 
some of the casing is removed and salvaged and one or more cement plugs are placed in the borehole to 
prevent migration of fluids between the various formations. In many States, abandonment must be 
approved by an official regulatory agency before being undertaken.  
 
Acidize - To treat oil-bearing limestone or other formations, using a chemical reaction with acid, to 
increase production.  
 
Annulus - The space around a pipe in a wellbore, the outer wall of which may be the wall of either the 
borehole or the casing.  
 
Appalachian Basin - The geological formations that roughly follow the Appalachian Mountain 
range and contain potentially exploitable shale gas resources. The U.S. Department of Energy (DOE) 
associates the Appalachian Basin with the Marcellus Shale, the Devonian Shale and the Utica Shale. 
 
B 
 
Basin - A synclinal structure in the subsurface, formerly the bed of an ancient sea. Because it is composed 
of sedimentary rock and its contours provide traps for petroleum, a basin is a good prospect for 
exploration. For example, the Permian Basin in West Texas is a major oil producer.  
 
Biogenic methane, or biogenic gas (also known as microbial methane or gas) - methane produced by 
microbes as they decompose organic matter, usually from surficial sources (landfills, septic systems, or 
naturally-buried organic material) 
 
Blow Out - To suddenly expel oil/gas-well fluids from the borehole with great velocity.  
 
Brine** - Water containing more dissolved inorganic salt than typical seawater. 
 
C 
 
Casing - Heavy steel pipe place in an open hole and cemented into place. Casing is designed to withstand 
high pressures, large tensile loads and resist chemical reaction and corrosion. A casing string refers to a 
series of connected segments of casing or pipe that serves to prevent the hole from caving, keep the fluids 
inside the casing string from migrating to porous formations, prevent unwanted fluids from entering the 
hole, and protect fresh water aquifers. 
 
                                                           
**Signifies that the definition was found in the OSHA (Occupational Health and Safety Administration) 
Oil and Gas Well Drilling and Servicing online glossary 
(https://www.osha.gov/doc/outreachtraining/htmlfiles/hazglos.html) 
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Cementing - Placing a cement mixture between the casing and a borehole to stabilize the casing and seal 
off the formation. 
 
Cement Plug - A portion of cement placed at some point in the wellbore to seal it.  
 
Coalbed methane (CBM) - Coalbed methane is a form of natural gas generated by and extracted from 
coal beds. In recent decades it has become an important source of energy in the United States and other 
countries. 
 
Completion Operations - Work performed in an oil or gas well after the well has been drilled to the 
point at which the production string of casing is to be set. This work includes setting the casing, 
perforating, artificial stimulation, production testing, and equipping the well for production, all prior to 
the commencement of the actual production of oil or gas in paying quantities, or in the case of an 
injection or service well, prior to when the well is plugged and abandoned.  
 
Compressor Station – Any combination of facilities that supply the energy to move gas in transmission 
or distribution lines or into storage by increasing the pressure. Compressor stations might include 
equipment to remove liquids, particles, and other impurities from the natural gas, which are disposed of or 
sold as desired. 
 
Condensate - A light hydrocarbon liquid obtained by condensation of hydrocarbon vapors. It consists of 
varying proportions of butane, propane, pentane, and heavier fractions, with little or no ethane or 
methane.  
 
Conductor Casing - A short string of large-diameter casing used offshore and in marshy locations to 
keep the top of the wellbore open and to provide a means of conveying the up-flowing drilling fluid from 
the wellbore to the mud pit.  
 
Continuous (Unconventional) Hydrocarbon Resource - Continuous resources (including 
accumulations known as basin-centered gas, shale gas, tight gas, and coalbed gas) were defined as those 
accumulations generally not trapped by hydrodynamic processes. Transition zones were recognized 
between areas of conventional and continuous resources. A continuous oil or gas accumulation may have 
some or all of the following characteristics - (1) regional in extent, (2) diffuse boundaries, (3) existing 
“fields” commonly merge into a single regional accumulation, (4) no obvious seal and trap, (5) no well-
defined, oil- or gas-water contact, (6) hydrocarbons apparently not held in place by hydrodynamics, (7) 
commonly abnormally pressured, (8) large in-place resource volume, but very low recovery factor, (9) 
geologically controlled “sweet spots”, (10) little free water production (except from coal-bed gas 
accumulations), (11) water commonly found up dip from hydrocarbons, (12) few truly “dry” holes, (13) 
reservoirs generally in close proximity to source rocks, (14) Estimated Ultimate Recovery (EUR) of oil or 
gas from wells are generally lower than EURs from wells in a conventional accumulation, 15) reservoirs 
with very low matrix permeabilities, and (16) natural reservoir fracturing common. 
 
Conventional oil and gas accumulations - Are discrete accumulations with well-defined hydrocarbon-
water contacts, where the hydrocarbons are buoyant on a column of water. Conventional accumulations 
commonly have relatively high matrix permeabilities, have obvious seals and traps, and have relatively 
high recovery factors. 
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Conventional oil and natural gas production -  Crude oil and/or natural gas that is produced by a well 
drilled into a geologic formation in which the reservoir and fluid characteristics permit the oil and/or 
natural gas to readily flow to the wellbore.  
 
Cuttings – see “Drill Cuttings” 
 
D 
 
Dehydrator - removes water from natural gas 
 
Drill Cuttings** - Fragments of rock dislodged by the drill bit and brought to the surface in the drilling 
mud. Washed and dried cuttings samples are analyzed by geologists to obtain information about the 
formations drilled. 
 
Drilling mud or drilling fluid: a mixture of a liquid base (water, oil or synthetic chemicals), clays and 
chemicals, used to lubricate and cool the drill bit as it creates the wellbore. The mud also transports the 
drill cuttings to the surface and helps control pressure within the well. Compressed air may be used 
instead of mud. 
 
Drill Rig - a machine that contains the equipment to drill the wellbore—the hole in the ground that goes 
into the shale formation. 
 
Dry Natural Gas – Natural gas which remains after: 1) the liquefiable hydrocarbon portion has been 
removed from the gas stream; 2) any volumes of non-hydrocarbon gases have been removed where they 
occur in sufficient quantity to render the gas unmarketable. 
 
F 
 
Field - An accumulation, pool, or group of pools of hydrocarbons or other mineral resources in the 
subsurface. A hydrocarbon field consists of a reservoir with trapped hydrocarbons covered by an 
impermeable sealing rock, or trapped by hydrostatic pressure. 
 
Flowback water - Water that returns to the surface after the hydraulic fracturing process is completed 
and the pressure is released and before the well is placed in production; flowback water return occurs for 
several weeks. 
 
Formation - A body of rock strata, of intermediate rank in the hierarchy of lithostratigraphic units, which 
is unified with respect to adjacent strata by consisting dominantly of a certain lithologic type, or by 
possessing other unifying lithologic features. 
 
Formation Fluid - The water originally in place in a formation. 
 
Flare – Burners used to combust excess gases. Flaring is a form of air pollution control, but less effective 
than capturing the gas in pipelines. It can be used as a safety device, to prevent the buildup of dangerous 
gases. Flaring also produces pollutants such as soot and dioxins. Sustained flaring of the associated 
natural gas from oil wells aggravates climate change and wastes the methane that could be used as an 
energy source. 
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Flowback: the mixture of drilling mud, fracturing fluids, produced water, oil, gas, salts, heavy metals, 
and natural gas liquids that comes out of a well after hydraulic fracturing. Flowback contains toxic 
compounds that must be treated or disposed of. 
 
Frac pumps: used to pump fracturing fluids into the well 
 
Fracturing fluid: Composed of mostly water, with small percentages of proppants and chemicals. The 
chemicals used are a mixture of benign products (guar gum) and toxic compounds (carcinogens like 
benzene). Some of the chemicals are harmful at concentrations of parts per million or parts per billion 
when released into the water or air. Many types of fracturing fluids are used, with proprietary 
compositions, and the technology is constantly evolving.  Although the chemicals make up a tiny fraction 
of the fracturing fluids (sometimes less than 1 percent), the overall volumes are so high that a single well 
often requires tens of thousands of gallons of chemicals. 
 
Fugitive Emission – Intentional or unintentional release of greenhouse gases that may occur during 
extraction, processing and delivery of fossil fuels to the point of final use. While methane (CH4) is the 
predominant type of greenhouse gas emitted as a fugitive emission in the oil and gas sector, noteworthy 
fugitive emissions of carbon dioxide (CO2) and, to a much lesser extent, nitrous oxide (N2O), may also 
occur 
 
G 
 
Gas - Also referred to as natural gas, is a naturally occurring hydrocarbon gas mixture consisting 
primarily of methane with up to 20 percent of other hydrocarbons as well as impurities in varying 
amounts. 
 
Gas Reservoir - A subsurface accumulation of hydrocarbons primarily in the gas phase that is contained 
in porous or fractured rock formations. 
 
Gas Well – A well completed for the production of natural gas from one or more gas zones or reservoirs. 
Such wells contain no completion for the production of crude oil. 
 
Gathering Pipeline - A pipeline, usually of small diameter, used in gathering crude oil or natural gas 
from a well or well field to a point on a main pipeline.  
 
Generators: Usually powered by diesel. Needed to provide electricity for lights, hydraulic pumps, etc. 
because most well pads are in remote locations off the grid. Once a well is in the production phase, 
electricity is often routed to the well pad, and the generators are removed. 
 
H 
 
Horizontal or directional drilling: an advanced drilling method where the wellbore is first drilled 
vertically, then gradually turned until it's sandwiched within the shale layer. A horizontal well can go on 
for more than a mile within the shale. 
 
Hydraulic fracturing: an oil and gas stimulation method first introduced commercially in the 1940s, 
when water and sand were pumped underground to free up tightly-bound oil and gas. The process has a 
evolved a lot since then. For increased efficiency, companies experimented by pumping down brine, 
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diesel, and mixtures of chemicals. The type of fracturing used today—high volume hydraulic fracturing—
is quite different from the 1940's technique: there's a lot more pressure, greater use of chemicals and 
much higher amounts of fracturing fluids, up to millions of gallons per well. That's because many wells 
are created via horizontal drilling, and the deeper, longer wells require more liquids to fracture. The 
combination of high-volume fracturing and horizontal drilling is responsible for the recent shale boom. 
 
High Volume Hydraulic Fracturing (HVHF) – A term that denotes the newer form of hydrocarbon 
development from tight shale and sandstone formations.  Related to unconventional- continuous 
hydrocarbon resource development, but in particular, that which has been evolving (and continues to 
evolve) over the last ~ 20 years. 
 
Hydrocarbons - Organic compounds of hydrogen and carbon, whose densities, boiling points, and 
freezing points increase as their molecular weights increase. Although composed of only two elements, 
hydrocarbons exist in a variety of compounds because of the strong affinity of the carbon atom for other 
atoms and for itself. The smallest molecules of hydrocarbons are gaseous; the largest are solid.   
 
M 
 
Marcellus Formation – An organic carbon-rich black shale which underlies an area of approximately 
95,000 mile2 along the Appalachian basin.   
 
Microbial methane, or microbial gas (also known as biogenic methane or gas) - methane produced by 
microbes as they decompose organic matter, usually from surficial sources (landfills, septic systems, or 
naturally-buried organic material) 
 
Mud – See “Drilling mud”  
 
N 
 
Natural Gas - See also "gas." Hydrocarbons that exist as a gas or vapor at ordinary pressure and 
temperature. Methane is the most important, but ethane, propane, and others may be present. Common 
impurities include nitrogen, carbon dioxide, and hydrogen sulfide. Natural gas may occur alone or 
associated with oil. 
 
Natural Gas Field - A region or area that possesses or is characterized by natural gas. 
 
Natural gas liquids: a mix of hydrocarbons present in natural gas and oil wells. These compounds, which 
include ethane, propane, butane, pentane and hexane, are used as feedstock in chemical plants and 
refineries. The larger hydrocarbons in natural gas liquids (mostly pentanes and above) are collectively 
referred to as condensate. 
 
Natural gas wells: wells that extract the raw natural gas that comes out of the ground, which contains 
methane (the target compound) and sometimes includes various impurities: water, carbon dioxide, VOCs, 
H2S, natural gas liquids and condensate. The relative amounts of these impurities varies by formation and 
well. "Sour" wells have higher levels of H2S. Gas wells are considered "dry" if they contain only 
methane, or only methane and water without the other impurities. 
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NORM (Naturally Occurring Radioactive Materials) - All naturally occurring radioactive materials 
where human activities have increased the potential for exposure compared with the unaltered situation. 
 
O 
 
Oil - A naturally occurring complex liquid hydrocarbon, which after distillation and removal of impurities 
yields a range of combustible fuels, petrochemicals, and lubricants. Crude oil refers to oil as it emerges 
from a well but before refining or distillation. 
 
Oil/Gas Field - The surface area overlying an oil/gas reservoir or reservoirs. Commonly, the term 
includes not only the surface area but also the reservoir, wells, and production equipment.  
 
Oil wells: wells that produce oil and natural gas liquids. Most oil wells in the Eagle Ford contain oil, gas 
and natural gas liquids. Operators will decide what to do with each type of product depending on market 
forces. Natural gas liquids are used in petrochemical plants and refineries. Due to the low price of natural 
gas, some operators will burn off (flare) the associated gas from oil wells because it's cheaper than 
building pipelines to collect the gas. 
 
P 
 
Perforate - To pierce the casing wall and cement to provide holes through which formation fluids may 
enter or to provide holes in the casing so that material may be introduced into the annulus between the 
casing and the wall of the borehole. Perforating is accomplished by lowering into the well a perforating 
gun, or perforator, that fires bullets org’ shaped charges that are electrically detonated from the surface.  
 
Permeability - A measure of the ease with which fluids can flow through a porous rock.  
 
Porosity - The quality or state of possessing pores (as a rock formation). The ratio of the volume of 
interstices of a substance to the volume of its mass.  
 
Produced water: Naturally-occurring water from the shale formation that flows out of the well after 
fracturing. Produced water contains salts, heavy metals, leached minerals, dissolved solids, naturally-
occurring radiation and other toxic compounds. 
 
Production - The phase of the petroleum industry that deals with bringing the well fluids to the surface 
and separating them and with storing, gauging, and otherwise preparing the product for the pipeline.  
 
Production Casing - The last string of casing or liner that is set in a well, inside of which is usually 
suspended the tubing string.  
 
Proppant (Propping agent)- a granular substance (silica sand, aluminum pellets, or other material) that 
is carried in suspension by the fracturing fluid and that serves to keep the cracks open when fracturing 
fluid is withdrawn after a fracture treatment. 
 
R 
 
Recoverability - The condition of being physically, technologically, and economically extractable. 
Recovery rates and recovery factors may be determined or estimated for coal resources without certain 
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knowledge of their economic minability; therefore, the availability of recovery rates or factors does not 
predict recoverability.  
 
Reserves - Are those quantities of petroleum anticipated to be commercially recoverable by application of 
development projects to known accumulations from a given date forward under defined conditions. 
Reserves must further satisfy four criteria - they must be discovered, recoverable, commercial, and 
remaining (as of the evaluation date) based on the development project(s) applied. 
 
Reserve Pit - Drilling related pit used to store and/or dispose of used drilling muds and drill cuttings. 
 
Reservoir - A subsurface, porous, permeable rock body in which oil or gas or both are stored. Most 
reservoir rocks are limestones, dolomites, sandstones, or a combination of these. The three basic types of 
hydrocarbon reservoirs are oil, gas, and condensate. An oil reservoir generally contains three fluids - gas, 
oil, and water- with oil the dominant product. In the typical oil reservoir, these fluids occur in different 
phases because of the variance in their gravities. Gas, the tightest, occupies the upper part of the reservoir 
rocks; water, the lower part; and oil, the intermediate section. In addition to occurring as a cap or in 
solution, gas may accumulate independently of the oil; if so, the reservoir is called a gas reservoir. 
Associated with the gas, in most instances, are salt water and some oil. In a condensate reservoir, the 
hydrocarbons may exist as a gas, but when brought to the surface, some of the heavier ones condense to a 
liquid or condensate. At the surface the hydrocarbons from a condensate reservoir consist of gas and a 
high-gravity crude (i.e., the condensate). Condensate wells are sometimes called gas-condensate 
reservoirs.  
 
S 
 
Sandstone - A sedimentary rock composed of individual mineral grains of rock fragments between 0.06 
and 2 millimeters (0.002 and 0.079 inches) in diameter and cemented together by silica, calcite, iron 
oxide, and so forth. The relatively high porosity and permeability of sandstones make them good reservoir 
rocks. 
 
Sediment - The matter that settles to the bottom of a liquid; also called tank bottoms, basic sediment, and 
so forth 
 
Separator - An item of production equipment used to separate the liquid components of the well stream 
from the gaseous elements. Separators are vertical or horizontal and are cylindrical or spherical in shape. 
Separation is accomplished principally by gravity, the heavier liquids falling to the bottom and the gas 
rising to the top. A float valve or other liquid-level control regulates the level of oil in the bottom of the 
separator. 
 
Shale: a type of sedimentary rock. Because oil and gas are tightly bound within the shale, operators 
almost always need hydraulic fracturing or another stimulation method to increase the shale's 
permeability so oil and gas can flow out of the well. 
 
Shale Gas -  Shale gas refers to natural gas that can be generated and trapped within shale units. 
 
Shale Shaker - A series of trays with sieves that vibrate to remove cuttings from the circulating fluid in 
rotary drilling operations. The size of the openings in the sieve is carefully selected to match the size of 
the solids in the drilling fluid and the anticipated size of cuttings. It is also called a shaker.  
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Sour Gas - Natural gas or any other gas that contains hydrogen sulfide or another sulfur compound. 
Natural gas is usually considered “sour” if there is more than 5.7 milligrams H2S per cubic meter of 
natural gas 
 
Source Rock - Rocks containing relatively large amounts of organic matter that is transformed into 
hydrocarbons. 
 
Stray Gas - Gas contained in the geologic formation outside the wellbore that may be mobilized by 
drilling and/or hydraulic fracturing or may migrate naturally along fractures or enter an uncased (in 
bedrock) drinking-water well. (Government Accountability Office, 2014, EPA Program to Protect 
Underground Sources from Injection of Fluids Associated with Oil and Gas Production Needs 
Improvement: Washington, DC, Government Accountability Office  report GAO-14-555, 103p.) 
 
Sweet Gas – Natural gas that does not contain significant amounts of hydrogen sulfide.  
 
T 
 
Thermogenic methane, or thermogenic gas - methane produced by intense heat and pressure within 
organic-rich bedrock such as the Marcellus shale 
 
Tight Gas - Is natural gas trapped in a highly mixed mineralogy sandstone, shale, or limestone 
formations which has very low permeability and porosity. While conventional natural gas accumulations, 
once drilled, contain gas that can usually be extracted quite readily and easily, a great deal more effort, 
including hydraulic fracturing, has to be put into extracting gas from a tight formation. 
 
Tight rock -  Describing a relatively impermeable reservoir rock from which hydrocarbon production is 
difficult. Reservoirs can be tight because of smaller grains or matrix between larger grains, or they might 
be tight because they consist predominantly of silt- or clay-sized grains, as is the case for shale reservoirs 
 
Trap - A geologic feature that permits the accumulation and prevents the escape of accumulated fluids 
(hydrocarbons) or injected carbon dioxide from the reservoir. 
 
Tubing - Small diameter pipe that is run into a well to serve as a conduit for the passage of oil and gas to 
the surface.  
 
U 
 
Unconventional Hydrocarbon Resource - see “Continuous (Unconventional) Hydrocarbon Resource” 
 
Unconventional Oil and Natural Gas Production* - An umbrella term for oil and natural gas that is 
produced by means that do not meet the criteria for conventional production. See Conventional oil and 
natural gas production. Note - What has qualified as "unconventional" at any particular time is a complex 
interactive function of resource characteristics, the available exploration and production technologies, the 
current economic environment, and the scale, frequency, and duration of production from the resource. 
Perceptions of these factors inevitably change over time and they often differ among users of the term 
 
V 
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Vented Gas – Gas released into the air on the production site or at processing plants.  
 
Volatile - Readily vaporized.  
 
 
W  
 
Wellbore - A borehole; the hole drilled by the bit. A wellbore may have casing in it or may be open (i.e., 
uncased); or a portion of it may be cased and a portion of it may be open.  
 
Well Completion - The activities and methods necessary to prepare a well for the production of oil and 
gas; the method by which a flow line for hydrocarbons is established between the reservoir and the 
surface. The method of well completion used by the operator depends on the individual characteristics of 
the producing formation or formations. These techniques include open-hole completions, conventional 
perforated completions, sand-exclusion completions, tubingless completions, multiple completions, and 
miniaturized completions. 
 
Wellhead - The equipment used to maintain surface control of a well, including the casing head, tubing 
head, and Christmas tree.  
 
Well pad: a central location for the wells and equipment. A well pad may be several acres in size. 
Operators often place multiple wells on a single well pad 
 
Well Stimulation - Any of several operations used to increase the production of a well.  
 
Wet Gas - Natural gas that contains less methane (typically less than 85% methane) and more ethane and 
other more complex hydrocarbons. 
 
Wildcat - A well drilled in area where no oil or gas production exists.  

 
Sources:  
 Schlumberger: http://www.glossary.oilfield.slb.com/en/Terms.aspx 
 U.S. Occupational Safety and Health Administration: 

https://www.osha.gov/SLTC/etools/oilandgas/glossary_of_terms/glossary_of_terms_a.html  
 Bureau of Safety and Environmental Enforcement: http://www.bsee.gov/BSEE-

Newsroom/Publications-Library/Glossary-of-Terms 
 U.S. Geological Survey: http://energy.usgs.gov/GeneralInfo/HelpfulResources/EnergyGlossary.aspx 
 U.S. Energy Information Administration: http://www.eia.gov/tools/glossary/index.cfm  
 Government Accountability Office. 2014 EPA Program to Protect Underground Sources from 

Injection of Fluids Associated with Oil and Gas Production Needs Improvement: Washington, DC, 
Government Accountability Office Report GAO-14-555, 103p. 

 International Panel on Climate Change. 2011. Good Practice Guidance and Uncertainty Management 
in National Greenhouse Gas Inventories. Background paper, Fugitive emissions from oil and natural 
gas activities. 105.  

http://www.glossary.oilfield.slb.com/en/Terms.aspx
https://www.osha.gov/SLTC/etools/oilandgas/glossary_of_terms/glossary_of_terms_a.html
http://www.bsee.gov/BSEE-Newsroom/Publications-Library/Glossary-of-Terms
http://www.bsee.gov/BSEE-Newsroom/Publications-Library/Glossary-of-Terms
http://energy.usgs.gov/GeneralInfo/HelpfulResources/EnergyGlossary.aspx
http://www.eia.gov/tools/glossary/index.cfm
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