Neurotoxic effects of air pollution in early life

Mònica Guxens, MD MPH PhD Assistant Research Professor

Erasmus MC

CREAL

2 aluns

 \square

upf.

Parc de Salut MAR_

HEI's 2015 Annual Conference

Philadelphia May 5th 2015

Minamata 1956 Effects of prenatal exposure to mercury

- Outbreak of an unknown disease of the central nervous system
- Symptoms include ataxia, general muscle weakness, and damage of vision, hearing and speech
- In extreme cases, paralysis, coma,
 - and death follow within weeks of the onset of symptoms

CREAL

Lesson from Minamata

... in every case the mother was healthy, and it was not until more than three months after birth that the symptoms were recognized

Shoji Kitamura (1959)

"You have only one chance to develop a brain" – Prof. Philippe Grandjean

Tau and Peterson. Neuropsychopharmacology. 2010;35:147–168

How do air pollutants reach the brain? - based on animal studies -

Conceptual framework of the neuropsychological developmental process

CREAL³

Forns et al. Neuroepidemiology. 2012;38:203-8

How do we assess children's neuropsychological development?

Psychologist

Computer-based tests

• Reported by mother, father, teacher, child himself

Hyperactivity Scale	Not True	Somewhat True	Certainly True
Restless, overactive, cannot stay still for long	0	1	2
Constantly fidgeting or squirming	0	1	2

CREAL

• Clinical diagnosis by a doctor

Personal prenatal exposure to air pollution

Personal prenatal exposure to air pollution

(CREAL[®])/

Personal prenatal exposure to air pollution

	1y	2у	Зу		5y			7у		9	y
	NYC	NYC	NYC	NYC	Poland	NYC	NYC	Poland	NYC	NYC	NYC
	PAH air	PAH air	PAH air	PAH air	PAH air	PAH-DNA cord blood	PAH air	PAH air	PAH-DNA cord blood	PAH-DNA cord blood	PAH-DNA mother
	(n=181)	(n=181)	(n=181)	(n=240)	(n=214)	(n=96)	(n=253)	(n=170)	(n=205)	(n=162)	(n=233)
General cognition (IQ)	_	_	\checkmark	1				_			
Verbal				1				\checkmark			
Non-verbal				_	√ √			_			
Psychomotor	—	_	—								
Total behaviour			_								
problems											
Anxious/depressed			_			1	1		_		
DSM-Anxiety			_			1	5		_		
problems											
Attention problems			_			1	1		<i>√</i>		
DSM-ADHD problems			_				_			_	√ √
Aggressive behaviour			_								
Other subscales			—								

Residential prenatal exposure to air pollution

Residential prenatal exposure to air pollution

Air Pollution During Pregnancy and Childhood Cognitive and Psychomotor Development

Six European Birth Cohorts

Air Pollution During Pregnancy and Childhood Cognitive and Psychomotor Development

Six European Birth Cohorts

Mònica Guxens,^{a,b,c} Raquel Garcia-Esteban,^{a,b,c} Lise Giorgis-Allemand,^{d,e} Joan Forns,^{a,b,c} Chiara Badaloni,^f Ferran Ballester,^{c,g,h} Rob Beelen,ⁱ Giulia Cesaroni,^f Leda Chatzi,^j Maria de Agostini,^{k,l}

Audrey de Nazelle,^{a,b,c,m} Marloes Eeften. Francesco Forastiere,^f Ulrike Gehring,ⁱ Akh Claudia Klümper,^t Manolis Kogevinas,^{a,b,c,u} Nerea Lertxuni,^{y,z} Mario Murcia,^{c,h} Vlac Rosa Ramos,^{c,o} Theano Roumeliotaki,^j Re Dorothea Sugiri,^t Adonina Tardón,^{c,p} Henn Tanja Vrijkotte,^{gg,hh} Michael Wilhelm,ⁱⁱ Be

Epidemiology. 2014;25:636-47

			2			
		NO ₂ (p	er Δ10 μg/m ³)	N=2,683		
Cohort study, Country-area	Test	Age		Coef (95% CI)	N	
DUISBURG, Germany	BSID-II	2y	•	-1.92 (-4.54, 0.70)	178	
RHEA, Greece	BSID-III	1.5y		1.01 (-1.24, 3.27)	520	
INMA, Spain-Asturias	BSID-I	1.5y		-0.74 (-1.66, 0.17)	381	
INMA, Spain-Gipuzkoa	BSID-I	1.5y —		-0.59 (-3.54, 2.37)	519	
INMA, Spain-Valencia	MSCA	бу		-0.72 (-1.99, 0.55)	490	
INMA, Spain-Sabadell	MSCA	4y		-0.08 (-1.29, 1.13)	426	
INMA, Spain-Granada	MSCA	4y		- 1.69 (-0.14, 3.51)	169	
Overall (I-squared = 31.9%	ó, p = 0.185)		\bigcirc	-0.23 (-0.96, 0.50)		
NOTE: Weights are from ra	andom effects :	analysis				
		-4 -3	-2 -1 0 1 2 3	4		

Cognitive

development

Air pollution exposure during pregnancy and childhood ADHD symptomatology in eight European cohort studies

Joan Forns, Raquel Garcia-Esteban, ..., Jordi Sunyer, Mònica Guxens

In preparation

Cohort study, Country-area	Test	Age		OR (95% CI)	N
CATSS,Sweden	A-TAC	10y -		0.79 (0.60, 1.05)	2439
DNBC,Denmark	SDQ	7y	_	0.94 (0.86, 1.03)	10049
ABCD, The Netherlands	SDQ	5y		0.85 (0.72, 1.00)	4223
GENERATION R, The Netherlands	CBCL 1/2-5	бу		0.89 (0.69, 1.16)	3718
GINI/LISA,Germany-Wesel	SDQ	10y		- 1.06 (0.70, 1.58)	1548
GINI/LISA,Germany-Munich	SDQ	10y		0.98 (0.76, 1.28)	2030
EDEN,France-Nancy	SDQ	3у		0.88 (0.64, 1.20)	395
EDEN,France-Poitiers	SDQ	Зу –		1.13 (0.60, 2.14)	386
GASPII,Italy	CBCL 1/2-5	4y		1.20 (0.93, 1.54)	483
(NMA,Spain-Gipuzkoa	DSM-IV	4y 🤆		1.02 (0.26, 3.91)	284
NMA,Spain-Sabadell	DSM-IV	4y		1.03 (0.75, 1.41)	400
INMA Spain-Valencia	DSM-IV	5y		0.98 (0.69, 1.40)	385
aleneta		4		0.77 (0.43, 1.39)	121
INMA,Spain-Granada	DSM-IV	4y —		((((((),((),((),())))))))))))))))))))))	121

Residential postnatal exposure to air pollution

Residential postnatal exposure to air pollution

Residential postnatal exposure to air pollution

	INMA	Cincinnati	Bos	oston	
	Project	study	stu	udy	
	NO2	EC	B	BC .	
	4y	7y	7-14y	8-11y	
	(n=210)	(n=576)	(n=174)	(n=202)	
General cognition (IQ)				\checkmark	
Verbal	_			_	
Non-verbal	_			\checkmark	
Memory	_			\checkmark	
Learning				\checkmark	
Executive function	_				
Working memory					
Attention function			\checkmark		
Gross motor	\checkmark				
Fine motor					
Hyperactivity		\checkmark			
Inattention		_			
Agression		_			
Conduct problems		—			
Atypicality		_			

Exposure to air pollution <u>at school</u>

Exposure to air pollution at school

	Breathe study EC, NO ₂ , UFP	Quanzhou NO ₂ , PM ₁₀	Ranch study NO ₂		Belgium study Combined traffic factor	
	7-10y (n=2,715) 39 schools	8-10y (n=861) 2 schools	9-10y (n=719) 22 schools	9-11y (n=553) 24 schools	15y (n=606)	
Working memory		2 5610015		24 56110015		
Attention function	\checkmark	\checkmark		_	\checkmark	
Memory		\checkmark	_	\checkmark	_	
Visuo-motor coordination		\checkmark				
Psychomotor				_	_	
Non-verbal				_		
Reading comprehension			_			

Exposure to air pollution at school

CREAL

Association between Traffic-Related Air Pollution in Schools and Cognitive Development in Primary School Children: A Prospective Cohort Study

Jordi Sunyer *^{1,2,3,4}, Mikel Esnaola^{1,2,3}, Mar Alvarez-Pedrerol^{1,2,3}, Joan Forns^{1,2,3}, Ioar Rivas^{1,2,3,5}, Mònica López-Vicente^{1,2,3}, Elisabet Suades-González^{1,2,3,6}, Maria Foraster^{1,2,3}, Raquel Garcia-Esteban^{1,2,3}, Xavier Basagaña^{1,2,3}, Mar Viana⁵, Marta Cirach^{1,2,3}, Teresa Moreno⁵, Andrés Alastuey⁵, Núria Sebastian-Galles², Mark Nieuwenhuijsen^{1,2,3}, Xavier Querol⁵

PLoS Med. 2015;12(3):e1001792

visit

<u>Dashed line</u> = high traffic air pollution <u>Continuous line</u> = low traffic air pollution <u>Gray shading</u> = 95% Cls

Air pollution and autism spectrum disorders

Traffic-Related Air Pollution, Particulate Matter, and Autism

Heather E. Volk, PhD, MPH; Fred Lurmann; Bryan Penfold; Irva Hertz-Picciotto, PhD; Rob McConnell, MD

JAMA Psychiatry. 2013;70(1):71-7

Ambient Air Pollution and Autism in Los Angeles County, California

Tracy Ann Becerra,¹ Michelle Wilhelm,¹ Jørn Olsen,¹ Myles Cockburn,² and Beate Ritz¹

Environ Health Perspect. 2013;121:380-6

Autism Spectrum Disorder and Particulate Matter Air Pollution before, during, and after Pregnancy: A Nested Case–Control Analysis within the Nurses' Health Study II Cohort

Raanan Raz,¹ Andrea L. Roberts,² Kristen Lyall,^{3,4} Jaime E. Hart,^{1,5} Allan C. Just,¹ Francine Laden,^{1,5,6} and Marc G. Weisskopf^{1,6}

Environ Health Perspect. 2015;123:264-70

Particulate Matter Exposure, Prenatal and Postnatal Windows of Susceptibility, and Autism Spectrum Disorders

Amy E. Kalkbrenner,^a Gayle C. Windham,^b Marc L. Serre,^c Yasuyuki Akita,^c Xuexia Wang,^a Kate Hoffman,^d Brian P. Thayer,^a and Julie L. Daniels^c

Epidemiology. 2015;26:30-42

Air Pollution and Newly Diagnostic Autism Spectrum Disorders: A Population-Based Cohort Study in Taiwan

Chau-Ren Jung, Yu-Ting Lin, Bing-Fang Hwang*

CREAL

PLoS One. 2013;8(9):e75510

Air pollution and autism spectrum disorders

Air pollution exposure during pregnancy and childhood autistic traits in four European population-based cohort studies

Mònica Guxens,^{1,2,3,4} Akhgar Ghassabian,^{4,5} Tong Gong,⁶ Raquel Garcia-Esteban,^{1,2,3} Daniela Porta,⁷ Lise Giorgis-Allemand,^{8,9} Catarina Almavist,⁶ Aritz Aranbarri,^{10,11} Rob Beelen,¹² Chiara Badaloni,⁷ Giulia Cesaroni,⁷ Audrey de Nazelle,^{1,2,3,13} Marisa Estarlich,^{3,14} Francesco Forastiere,⁷ Joan Forns,^{1,2,3,12} Ulrike Gehring,¹³ Jesús Ibarluzea,^{3,11,16} Vincent W.V. Jaddoe,^{5,17,18} Michal Korek,¹⁹ Paul Lichtenstein,⁶ Mark J. Nieuwenhuijsen,^{1,2,3} Marisa Rebagliato,^{3,20} Rémy Slama,^{8,9} Henning Tiemeier,^{4,18,21} Frank C. Verhulst,⁴ Heather E. Volk,²² Göran Pershagen,¹⁹ Bert Brunekreef,^{12,23} Jordi Sunyer^{1,2,3,24}

Environ Health Perspect 2015 (provisionally accepted)

NO₂ (per $\Delta 10 \,\mu g/m^3$)

N=8,079

Air pollution and brain MRI

Air pollution, cognitive deficits and brain abnormalities: A pilot study with children and dogs

Lilian Calderón-Garcidueñas^{a,b,*}, Antonieta Mora-Tiscareño Gilberto Gómez-Garza^a, Gerardo Barragán-Mejía^a, James B Gildardo Valencia-Salazar^a, Valerie Jewells^e, Robert R. Mar Beatriz Pérez-Guillé^a, Ricardo Torres-Jardón^h, Lou Herrit^b, Maria E. Monroy^a, Angelica González-Maciel^a, Rafael Revn Anna C Solt^j, Randall W. Engle^{c,1}

Brain Cogn. 2008;68(2):117-27

November 24, 2006

July 13, 2006

February 13, 2007

Exposure to severe urban air pollution influences cognitive outcomes, brain volume and systemic inflammation in clinically healthy children

Lilian Calderón-Garcidueñas a,b, Randall Engle^c, Antonieta Mora-Tiscareño^a, Martin Styner^d, Gilberto Gómez-Garza^a, Hongtu Zhu^e, Valerie Jewells^f, Ricardo Torres-Jardón^g, Lina Romero^a, Maria E. Monroy-Acosta^a, Christopher Bryant^e, Luis Oscar González-González^a, Humberto Medina-Cortina^a, Amedeo D'Angiulli^{h,*}

Brain Cogn. 2011;77(3):345-355

White Matter Hyperintensities, Systemic Inflammation, Brain Growth, and Cognitive Functions in Children Exposed to Air Pollution

Lilian Calderón-Garcidueñas^{a,b,*}, Antonieta Mora-Tiscareño^a, Martin Styner^c, Gilberto Gómez-garza^a, Hongtu Zhu^d, Ricardo Torres-Jardón^e, Esperanza Carlos^a, Edelmira Solorio-López^a, Humberto Medina-Cortina^a, Michael Kavanaugh^b and Amedeo D'Angiulli^f

J Alzheimers Dis. 2012;31:183-91

Effects of Prenatal Exposure to Air Pollutants (Polycyclic Aromatic Hydrocarbons) on the Development of Brain White Matter, Cognition, and Behavior in Later Childhood

JAMA Psychiatry. 2015

Bradley S. Peterson, MD; Virginia A. Rauh, ScD; Ravi Bansal, PhD; Xuejun Hao, PhD; Zachary Toth, BA; Giancarlo Nati, BA; Kirwan Walsh, BA; Rachel L. Miller, MD; David Semanek, BA; Frederica Perera, DrPH, PhD

A Correlations with prenatal PAH levels

Effects of Prenatal Exposure to Air Pollutants (Polycyclic Aromatic Hydrocarbons) on the Development of Brain White Matter, Cognition, and Behavior in Later Childhood

JAMA Psychiatry. 2015

Bradley S. Peterson, MD; Virginia A. Rauh, ScD; Ravi Bansal, PhD; Xuejun Hao, PhD; Zachary Toth, BA; Giancarlo Nati, BA; Kirwan Walsh, BA; Rachel L. Miller, MD; David Semanek, BA; Frederica Perera, DrPH, PhD

Correlations with prenatal PAH levels

Α

Challenges

- Assess the appropriate brain function at the appropriate age and using the appropriate tool
- Which specific air pollutant is behind this association?
- Which is the role of noise exposure?
- Which is the most critical period of neurotoxicity?
- Why air pollution was associated to autism spectrum disorders in US studies but was not associated with autistic traits in European studies?

Future directions

- Brain structural and functional MRI will help to understand better which brain areas and brain functions are affected
- Studies including a more detailed exposure assessment (PM composition, UFP, source apportionment, multipollutant models, etc)
- Studies including noise exposure
- Studies including a more comprehensive exposure assessment along children's lifetime
- Replicate US studies on autism spectrum disorder in Europe following a similar study design

CREAL

Conclusions

 Air pollution exposure during pregnancy and in the first years of life seems to be associated to a decreased children's brain development

Sick Individuals and Sick Populations

GEOFFREY ROSE

Thank you very much! (mguxens@creal.cat)

