Oil and Gas Emission Inventories and Applications for Estimating Impacts to Health and Welfare

Tom Moore, WESTAR-WRAP
John Grant and Amnon Bar-Ilan, Ramboll
Outline

- O&G regulatory air emission inventories
 - Regulatory drivers and structure
 - Scope and methods
 - Strengths and limitations
- Health and welfare analysis applications
 - Basis for estimating exposure
 - Sample applications
Clean Air Act - Emissions Management Structure

- Cumulative environmental burden - NAAQS, Regional Haze, PSD increment
 - Pollution allowed – track emissions rates and change over time
 - CAA cooperative federalism - focus on emissions mgmt. structures in state programs
 - Solutions at appropriate geographic scale reduce air quality impact and environmental exposure

- Challenges for consistent-accurate-precise O&G emission inventories
 - Rapid / continuing change in production types, practices, technologies, commodity price swings, end-user demand, geographic variation, processing and transportation, et cetera
 - Need for projected future emissions incorporating growth / control
 - Future emissions are to be based on changes from a well-characterized historic base year, to assess air quality response
Regulations

• State permitting, registration, and/or reporting (tracking) via rules and emissions control strategies in “implementation plans”
 • At source / process level – compiled in national databases and basin studies
 • Allows integrated GHG, health (criteria), and air toxics pollutant strategies
 • Ancillary benefit - less waste of O&G commodity products

• Federal technology-based control rules / national GHG emissions reporting

• Federal mineral leasing process - NEPA analysis
Scope

• Sources: wells → gathering/processing → transmission/distribution → end user (domestic)
 • Source category classification (SCC): process specific
 • E.g., tank flashing, pneumatic controllers, drill rig diesel engine, 4-stroke natural gas engines)
• Pollutants: Criteria pollutants / air toxics / GHGs
• Spatial: US-wide
 • Point: Source location (lat/lon)
 • Nonpoint: County-level
• Temporal: Annual
 • US-wide: triennial (historical), several future years
 • Project/NEPA: project dependent
Methods

- Point sources: Direct reporting to State/Local/Tribal Agencies
- Nonpoint sources: Emissions = Activity × Emission factors
- Emission factors
 - Reference compilations/models (e.g., AP-42, MOVES)
 - Manufacturer Specifications
 - Industry models (e.g., E&P Tank, ProMax)
 - Based on evolving equipment and control configurations
 - Timely update is critical
Strengths, Limitations

• **Strengths**
 • Existing requirements to develop emission inventories (e.g., US-wide triennial updates, NEPA)
 • Consistency in organizational structure
 • Comprehensive: wells → end user
 • Designed to be used within CAA and NEPA regulatory framework
 • Controls strategy analysis, air quality impacts analysis

• **Limitations and Future Improvements**
 • Analysis required to develop health and welfare analyses
 • Inconsistent data collection and/or methods can lead to regional differences
 • Emission factor updates typically lag research
Inventories – Fundamental Input for Estimating Exposure

• Emissions control technology and strategy rules lead to lower emissions rates in the future
 • Per capita, unit-level, process activity emissions rates are all lower for new equipment and operational practices – competition and regulation interact
 • Equipment turnover and best practices implementation are both fundamental regulatory assumptions
• Future air quality impacts and exposure estimates are from projections of individual emissions sectors like O&G exploration and production
 • Emissions standards and operating costs for all other sectors are interlinked with O&G E&P – electricity production, mobile engine fuel consumption, et cetera
 • Assessed in cumulative impact modelling that include O&G with other source sectors
• Rural vs. Urban
• Production estimates from economic forecasts provide one means to assess future emissions
• Basins are geographic areas with infrastructure investments and cultural / economic knowledge of O&G E&P, so historic trends also affect future emissions estimates
Application Examples for Regulatory Inventories

- Analyses of criteria pollutant and air toxics monitoring data
- Nonattainment planning to achieve NAAQS
- Regional haze planning for progress in reducing anthropogenic emissions
- NEPA project and resource mgmt. planning
- Tracking of national / state criteria pollutant trends / GHG emissions goals
- Regional modelling of background / transported ozone, PM, regional haze
- Chronic exposure studies – linkages to emissions regulation strategies
Modeling Applications

Local (AERMOD, CalPuff)

- Local applications to estimate exposure at nearby receptors
- Modeled exposures typically compared to reference exposure limits (RELs)
- Example map, well drilling concentration gradients:

Regional (CAMx, CMAQ)

- Regional, multi-source applications to estimate by sector/cumulative impacts
- Model chemistry allows for modeling of more pollutants than can be measured
- Example map, O&G development contributions to ozone in Colorado:
Acknowledgements & Sample Resources

- EPA
 - EPA Triennial National Emission Inventory (compiled from state inputs)
 - EPA Modeling Platforms
 - Inventory of U.S. Greenhouse Gas Emissions and Sinks
 - Greenhouse Gas Reporting Program
- BLM
 - NEPA Project and Planning
 - Colorado Air Resources Management Modeling Study
- WESTAR-WRAP
 - O&G Emissions Inventory Project: Greater San Juan and Permian Basin
 - O&G Emissions Inventory Project: ND-SD-MT Williston and MT North Central (Great Plains) Basins
 - Regional Planning Organizations (WESTAR-WRAP, MARAMA, CenSARA, LADCO, SESARM)
 - National Oil and Gas Emissions Analysis project
 - National Oil & Gas Emissions Committee Information Repository
 - Regional modeling studies for air quality planning
- State and Tribal Inventory Studies
Thank you.

Tom Moore
tmoore@westar.org

John Grant
jgrant@ramboll.com

Amnon Bar-Ilan
abarilan@ramboll.com

“They have very strict anti-pollution laws in this state.”