

Protecting and improving the nation's health

Attribution of all-cause mortality associated with long-term average concentrations of NO₂

Alison Gowers, Air Quality and Public Health Group

ERS, WHO, HEI, ISEE meeting, Brussels 21 and 22 January 2020

Associations of long-term average concentrations of nitrogen dioxide with mortality

A report by the Committee on the Medical Effects of Air Pollutants

Chairman: Professor Frank Kelly

Chairman of the QUARK Working Group on Nitrogen Dioxide: Professor Roy Harrison

Request from Defra:

- How to quantify the benefits of reducing long-term average concentrations of NO₂.
- To support the development of Air Quality Plans to reduce NO₂ concentrations

COMEAP 2018 www.comeap.org.uk

Mortality estimates for NO₂ - HRAPIE

Pollutant metric	Health outcome	Group	RR (95% CI) per 10 µg/m³	Range of concentration	
NO ₂ , annual mean	Mortality, all (natural) causes, age 30+ years	B*	1.055 (1.031–1.080)	>20 µg/m³	

Source of background	Source of CRF	Comments
health data		
MDB (WHO, 2013c), rates for deaths from all natural causes (ICD-10 chapters I–XVIII, codes A–R) in each of the 53 WHO Regional Office for Europe countries, latest available data	Meta-analysis of all (11) cohort studies published before January 2013 by Hoek et al. (2013); RR based on single- pollutant models	Some of the long-term NO ₂ effects may overlap with effects from long- term PM _{2.5} (up to 33%); this is therefore recommended for quantification under Group B to avoid double counting in Group A analysis

New meta-analysis

Random effects summary HR: 1.023 (95% CI 1.008, 1.037) per 10 μg/m³ NO₂

HRs (95% CI) per 10 µg/m³ for cohort studies reporting associations between NO₂ and all-cause mortality

To note:

All-cause mortality only considered (not cause-specific mortality) Cut-off date for literature review – **October 2015** (new studies now available)

Health Matters

NMVOC

Health Matters

Air pollution: sources, impacts and actions

Health Matters

Sources of air pollution

Report of a Workshop to Identify Needs for Research on the Health Effects of Nitrogen Dioxide - London, 2-3 March 2011

Workshop convened by the Air Pollution Group, Health Protection Agency. Commissioned by the Department of Health's Policy Research Programme

ABSTRACT

It is clear from epidemiological and laboratory studies that air pollution has adverse effects on health. However, understanding whether ambient concentrations of nitrogen dioxide (NO_2) have direct adverse effects on health has proved to be difficult, because levels in ambient air correlate closely with those of other pollutants, notably particles. This difficulty arises because NO₂ and particles have similar sources, such as traffic.

COMEAP (2015) Statement on NO₂

- Strengthening evidence for associations with NO₂
- Associations robust to adjustment for other pollutants incl PM
- May act as a marker for TRAP to some extent, but evidence suggests that it would be sensible to regard NO₂ as causing some of the health impact reported in epidemiological studies

Other assessments:

WHO REVIHAAP (2013): NO₂ might represent TRAP but

- Reasonable to infer that NO₂ has some direct effects following short-term exposure (associations robust to adjustment, some mechanistic support for causality - particularly for respiratory outcomes)
- Harder to judge independent effects of NO₂ in studies of long-term exposure. Short-term associations and mechanistic evidence, particularly on respiratory effects, suggest a causal relationship

USEPA ISA (2016)

Health Canada (2016)

Unadjusted coefficient for NO₂

Reflects:

- any causal effect of NO₂
- and also, to some extent, the effects of other pollutants correlated with NO₂

Correlated pollutants:

- PM_{2.5}
- other components of the air pollution mixture eg
 - Ultrafine particles
 - Black Carbon
 - Volatile Organic Compounds etc

Independence from PM mass

Using HRs (per IQR) from studies reporting results from single and two/multi-pollutant models for NO_2 and PM:

Compared:

- HRs from single-pollutant models with
- Combined adj HRs (NO₂ adj for PM; PM adj for NO₂)
- The combined effect using coefficients each adjusted for the effects of the other, is either similar to or only little higher than what would be estimated for either PM_{2.5} or NO₂ alone

Hazard ratios (HRs) expressed per interquartile range (IQR) from single and two pollutant models for NO_2 and $PM_{2.5}$

Study (additional sig figs for HRs obtained from the authors)	Corr NO ₂ / PM _{2.5}	NO ₂ IQR (µg/m3)	ΡΜ _{2.5} IQR (µg/m³)	NO ₂ adj PM _{2.5}	PM _{2.5} adj NO ₂	Combined NO ₂ adj / PM adj	PM _{2.5} Single	NO ₂ Single
Cesaroni et al 2013	0.79	10.7	5.7	1.026	1.004	1.030	1.023	1.029
Carey et al 2013 pers comm	0.85	10.7	1.9	1.001	1.023	1.024	1.023	1.022
Beelen et al 2014 14 cohorts	0.2- <0.7	10.0	5.0	1.007	1.060	1.067	1.070	1.015
Fischer et al 2015 PM ₁₀	0.58 (with PM ₁₀)	10.0	2.4	1.019	1.010	1.029	1.019	1.027
HEI 2000 41 cities	-0.08	81.4 (min,max)	24.5 (min,max)	0.90	1.22	1.09	1.15	0.95
Jerrett et al 2013	0.55	7.7	5.3	1.025	1.015	1.040	1.032	1.031

Coefficient for NO₂ adjusted for PM_{2.5}

Excludes, as far as possible:

 effects associated with PM_{2.5} concentrations, and other components of the air pollution mixture that are more closely correlated with PM_{2.5} concentrations than with NO₂ concentrations

Reflects:

- any causal effect of NO₂ and also, to some extent, of other pollutants closely correlated with NO₂
- The extent to which the effect is likely to be causally related to NO₂ is unclear

Uncertainty related to causality

A key point of COMEAP's discussions:

Uncertainty in the extent to which the effects associated with NO_2 in epidemiological studies are caused by NO_2 itself

- How to take the uncertainty into account quantitatively when predicting the benefits that would be expected from interventions (eg in cost-benefit assessments)
- Some Members doubtful that the evidence is sufficient to allow a robust recommendation for quantification
- The majority thought it important to attempt to estimate the possible mortality benefit from reducing NO₂ concentrations

COMEAP – HIA Recommendations

HIA of reductions in all traffic-related pollutants:

- Use summary unadjusted NO₂ coefficient:
- ➤ 1.023 (95% CI 1.008, 1.037) per 10 µg/m³
- (Alternatively, could assess based on PM_{2.5} reductions)
 HIA of interventions which target NO_x emissions
- Use 25 55% of summary unadjusted coefficient
- ➤ 1.006 1.013 per 10 µg/m³ "central range"

Informal expert judgement approach equivalent to:

- Reduction of approx 20% on adjustment for PM
- 30 70% of adjusted coefficient may be causal

Advised: assessment on the basis of reductions of both NO_2 and PM (unadjusted) is likely to result in an overestimate

Implementation in CBA

In practice:

Modelling combines predicted changes in pollutant concentrations arising from a range of proposed interventions

- CBA guidance includes mortality benefits associated with reductions in both
 - NO₂ (reduced coefficient)
 - PM_{2.5} (unadjusted)

Analysts should

- Acknowledge this limitation
- Undertake sensitivity analyses

COMEAP: Research recommendations

 Studies to reduce uncertainties in understanding the effects of long-term exposure to NO₂ on health

- Toxicological, epidemiological, exposure errors

- Studies to improve quantification of effects associated with air pollution mixtures
 - Develop multi-pollutant and statistical methods
- Investigation of reasons for between-study variability in reported associations

Summary and discussion points

Science-policy interface:

- NO₂ has been less-studied than PM_{2.5}
- But evidence for independent effects of NO₂ grows
- Nonetheless, there is more certainty about the health benefits of interventions that reduce both PM_{2.5} and NO₂ (and other co-pollutants)
- Communicating uncertainty is important
 to allow informed policy decisions to be taken
- New studies and method developments will continue to inform scientific thinking and policy development

Acknowledgements

Current and former members of COMEAP and its Quantification (QUARK) subgroup, particularly:

 Richard Atkinson, Paul Wilkinson, Fintan Hurley, Heather Walton, Frank Kelly

Current and former members of the AQPH Group and COMEAP Secretariat, particularly:

• Karen Exley, Britta Gadeberg, Inga Mills

Thank you !