
USC

Improved Air Quality and Children's Respiratory Health

Does Cleaning the Air Lead to Better Health?

Jim Gauderman Department of Preventive Medicine Keck School of Medicine of USC JimG@usc.edu

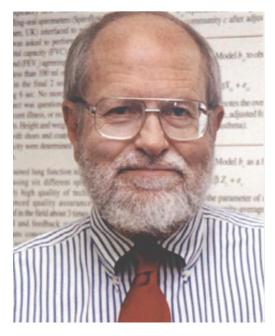
Our Path Today...

- A quick review of the Children's Health Study (CHS)
- Air quality trends in southern California
- How children's health changed as air quality changed

Children's Health Study

• A "10-year" health study (est. 1992) ...going on 23 years now!

• Funded by:


California Environmental Protection Agency

& the Hastings Foundation

The USC Children's Health Study

Original PI: John Peters

Original Co-Investigators

Ed Avol Stephanie London Bill Navidi Duncan Thomas

Original Advisors

David Bates Glen Cass Mort Lippmann Jon Samet Frank Speizer Jack Spengler Scott Zeger Arthur Winer Jim Whittenberger

CHS Investigators

John Peters Frank Gilliland Rob McConnell Ed Avol **Jim Gauderman Duncan Thomas Kiros Berhane** Nino Kuenzli Mike Jerrett Ed Rappaport Stephanie London William Navidi Sandy Eckel **Meredith Franklin Josh Millstein** Talat Islam **Towhid Salam** Scott Fruin Heather Volk **Carrie Breton Tracy Bastain** Andrea Hricko Bill Linn (LAREI) Henry Gong (LAREI) Fred Lurmann (STI)

Lupe Valencia Cindi Woo Dana Takamoto Deborah Kim Lori Nasi Milena Lopez **Rudy Caldera** Letty Caldera Lisa Grossman Linda Smith Julie Hulett **Gilbert Ramos Christine Fust** Andrea Nunez **Henry Valencia Reshama Damle** Ned Realiza **Reyna Leyva Blanca Garcia** Martha Duarte **Brenda Figueroa Patty Duran** Jane Cabazon Lisa Valencia Susie Hutfless Nadia Lupercio **Jeanine Hanna**

USC Field Teams

Steve Howland

<u>Staff</u>

Robert Urman Jun Manilla Hita Vora Feifei Liu Jassy Molitor Allison Padilla

Rima Habre John Morrison

...and many other staff , post docs, and students

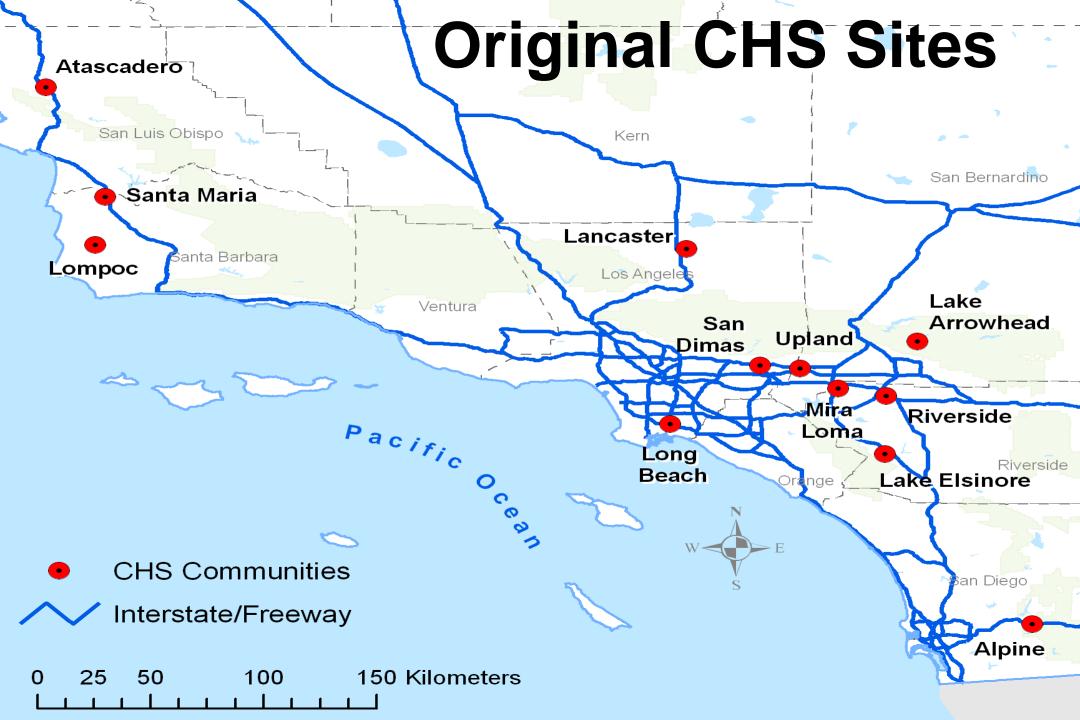
Sonoma Technology, Incorporated Rancho Los Amigos Medical Center / LAREI Aerosol Dynamics, Inc South Coast Air Quality Management District San Diego Air Pollution Control District San Luis Obispo/Tri-Counties Air Pollution Control District Mojave Air Pollution Control District

Antelope Valley Air Pollution Control District

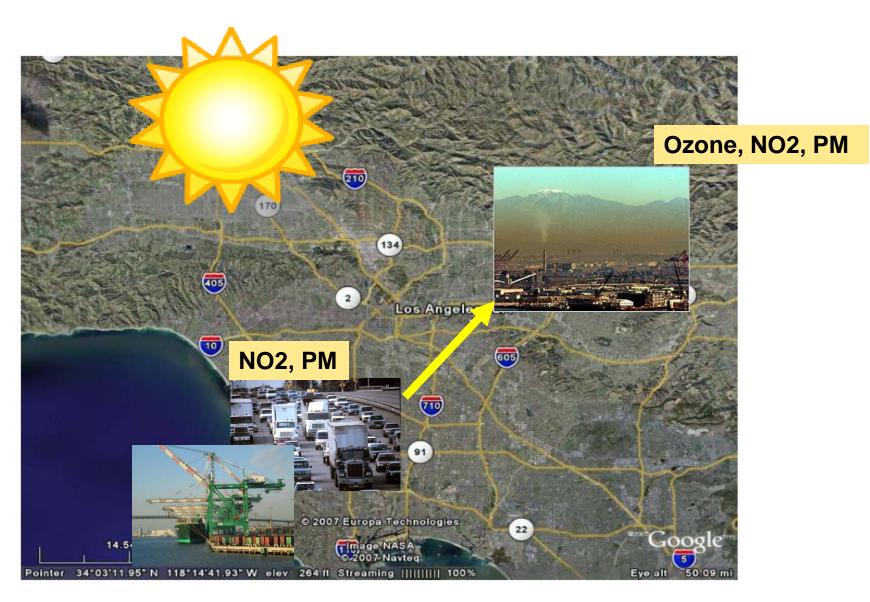
California Air Resources Board

Public Health Question...

Does outdoor air pollution cause <u>chronic</u> health effects? Downtown LA,~1950s



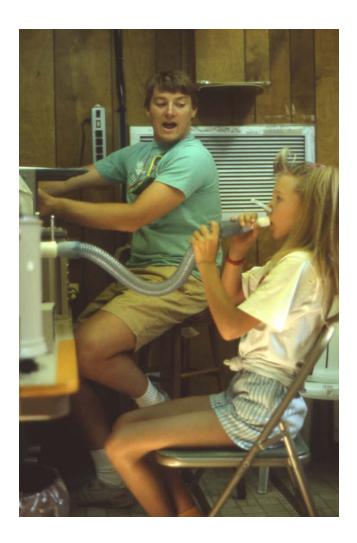
Downtown LA,~1990s



Pollution in the L.A. Basin

CHS Cohorts, By School Year & Class Grade

											Sc	hool	Year										
Co- hort	Ν	'93	'94	'95	'96	'97	'98	'99	'00	'01	'02	'03	'04	'05	'06	'07	'08	'09	'10	'11	'12	'13	'14
Α	938	10	11	12																			
В	937	7	8	9	10	11	12																
С	1806	4	5	6	7	8	9	10	11	12													
D	2081				4	5	6	7	8	9	10	11	12										
Е	5927										κ	1	2	3	4	5	6	7	8	9	10	11	12
(ALL)	11689																						



Annual Spirometry

Lung function measures:

- Forced expiratory volume in first second of exhalation (FEV₁)
- Forced vital capacity (FVC)
- > Maximal mid-expiratory flow (MMEF)
- > Peak expiratory flow rate (PEFR)

Annual Questionnaires about health & home operating characteristics

Active smoking? Height? Weight? Pets? Asthma? Gas stove?

Respiratory illnesses?

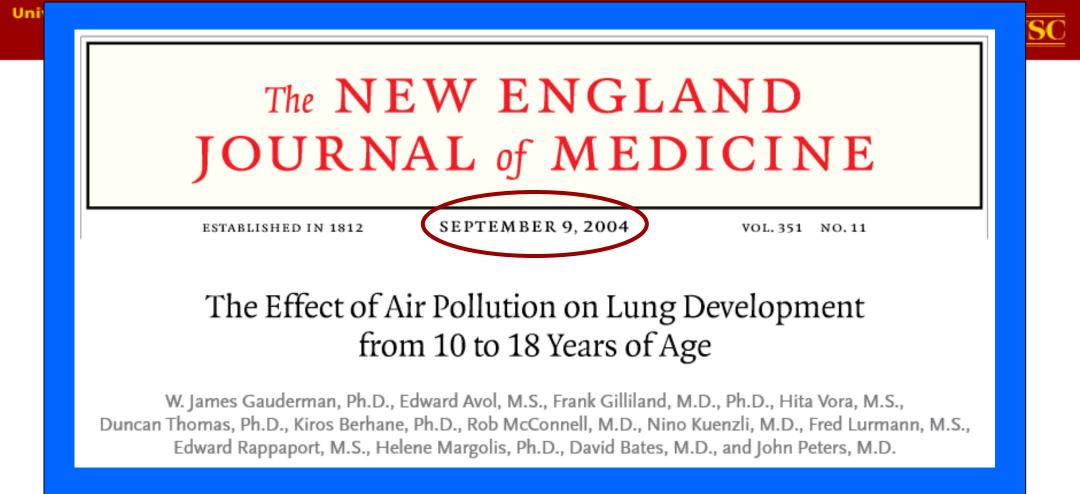
Passive Smoking? Exercise? Diet

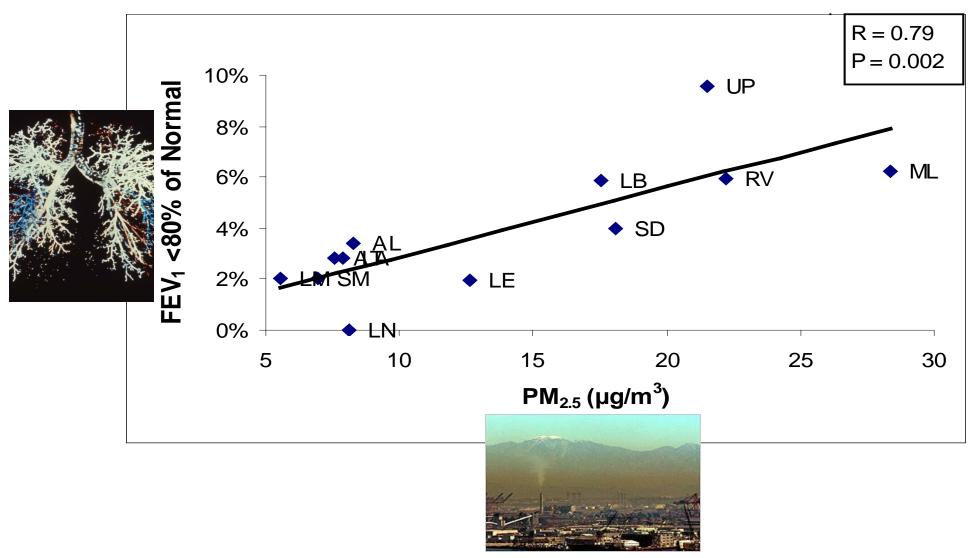
mold?

Medication?

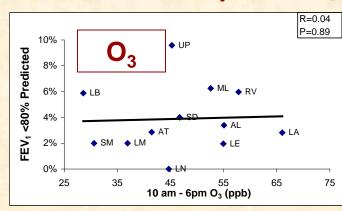
CHS Cohorts, By School Year & Class Grade

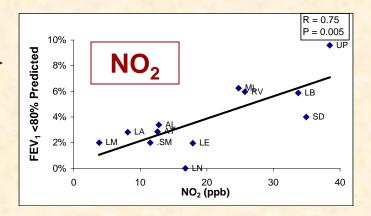

Co- hort	N	'93	'94	'95	'96	'97	'98	'99	'00 '	'01	So '02	hool '03	Year '04	'05	'06	'07	'08	'09	ʻ10	'11	'12	'13	'14
Α	938	10	11	12																			
В	937	7	8	9	10	11	12																
С	1806	4	5	6	7	8	9	10	11	12													
D	2081				4	5	6	7	8	9	10	11	12										
Е	5927										Κ	1	2	3	4	5	6	7	8	9	10	11	12
(ALL)	11689																						

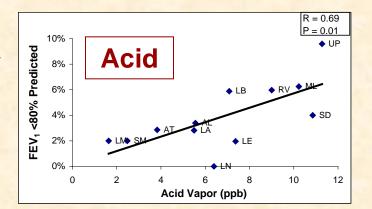

<u>Cohort C</u>: Followed from 10 to 18 years of age

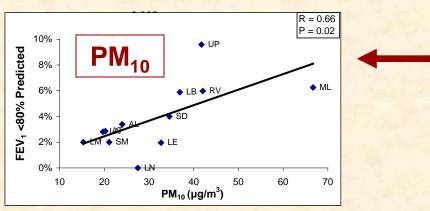


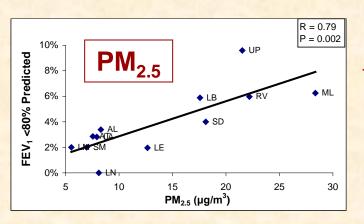
CONCLUSIONS

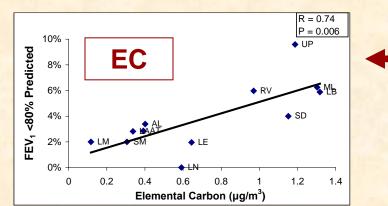

The results of this study indicate that current levels of air pollution have chronic, adverse effects on lung development in children from the age of 10 to 18 years, leading to clinically significant deficits in attained FEV₁ as children reach adulthood.



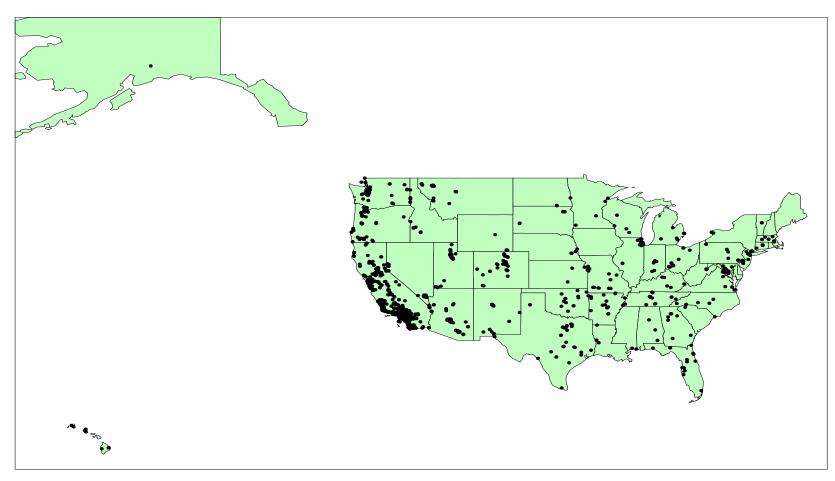

Abnormally Low Lung Function is More Likely in a High PM Community



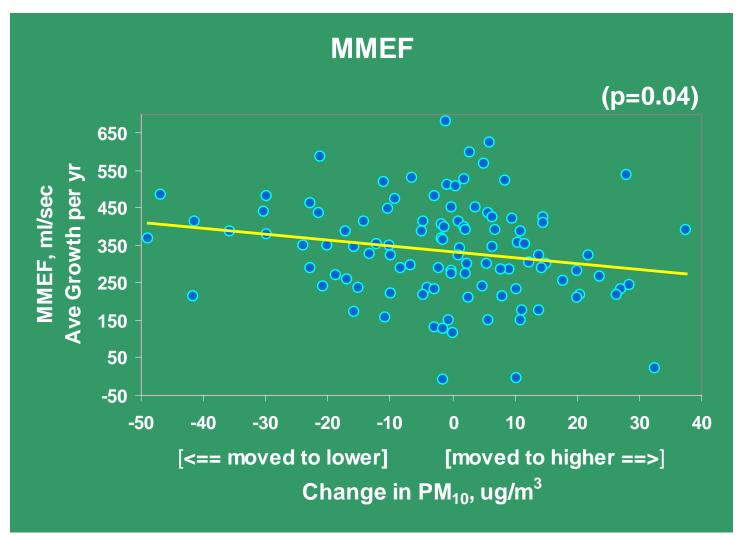

Low FEV₁ at Age 18 vs. Pollution






Abnormally Low Lung Function is More Likely in a Polluted Community

CHS Movers Study


What happens to health when children move?

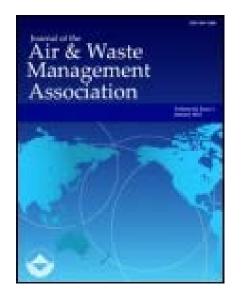
... Some to higher pollution, some to lower ...

Lung Function Growth in Movers

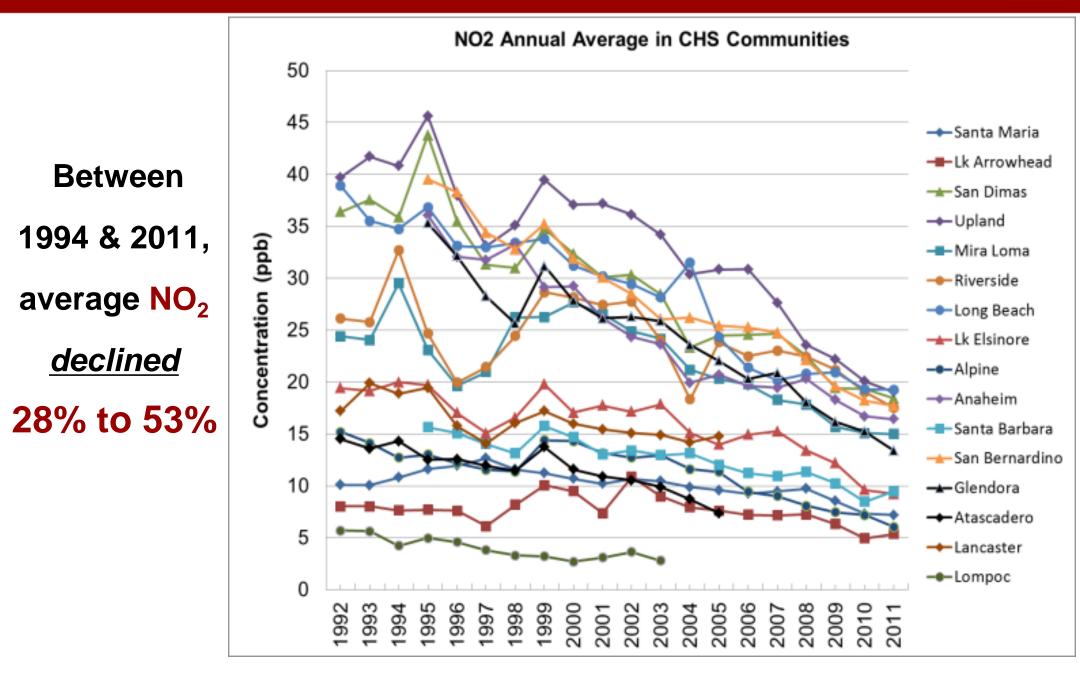
(Avol et al., 2001)

But what if, over time, the air got *cleaner*

HEI contract to answer this question

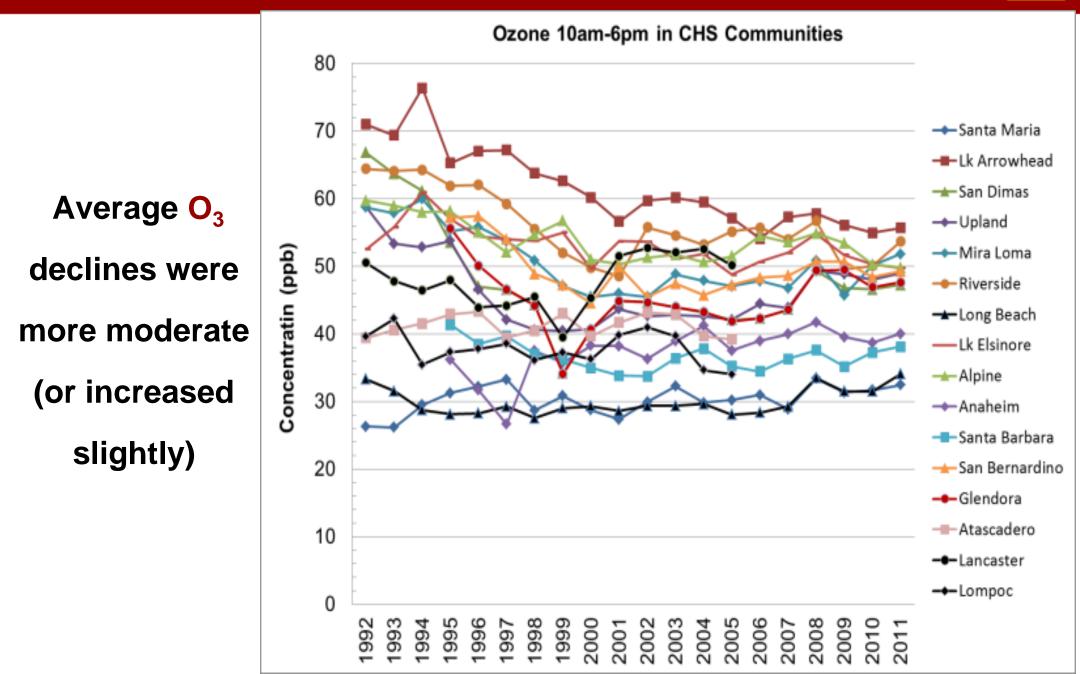

where they stayed & grew up?

Emissions reduction policies and recent trends in Southern California's ambient air quality JAWMA, 65:3, 324-335, (2015)


Fred Lurmann,¹ Ed Avol,^{2,*} and Frank Gilliland²

¹Sonoma Technology, Incorporated, Petaluma, CA, USA
²Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
*Please address correspondence to: Ed Avol, Department of Preventive Medicine, University of Southern California, 2001 N. Soto St, Los Angeles, CA 90089, USA; e-mail: avol@usc.edu

University of Southern California



PM2.5 Annual Average in CHS Communities 35 -Alpine 30 Anaheim **Between** ----Glendora 25 ----Lake Arrowhead 1994 & 2011, Concentration (ug/m3) ----Lake Elsinore Long Beach average PM_{2.5} 20 —Mira Loma ----Riverside declined 15 ---San Bernardino ---San Dimas 13% to 54% ----Santa Barbara 10 ----Santa Maria ----Upland 5 Atascadero -e-Lancaster ----Lompoc 0 1997 1998 1999 2000 2001 2003 2005 2005 2005 2005 2006 2006 2008 2009 992 993 994 2010 995 966 201

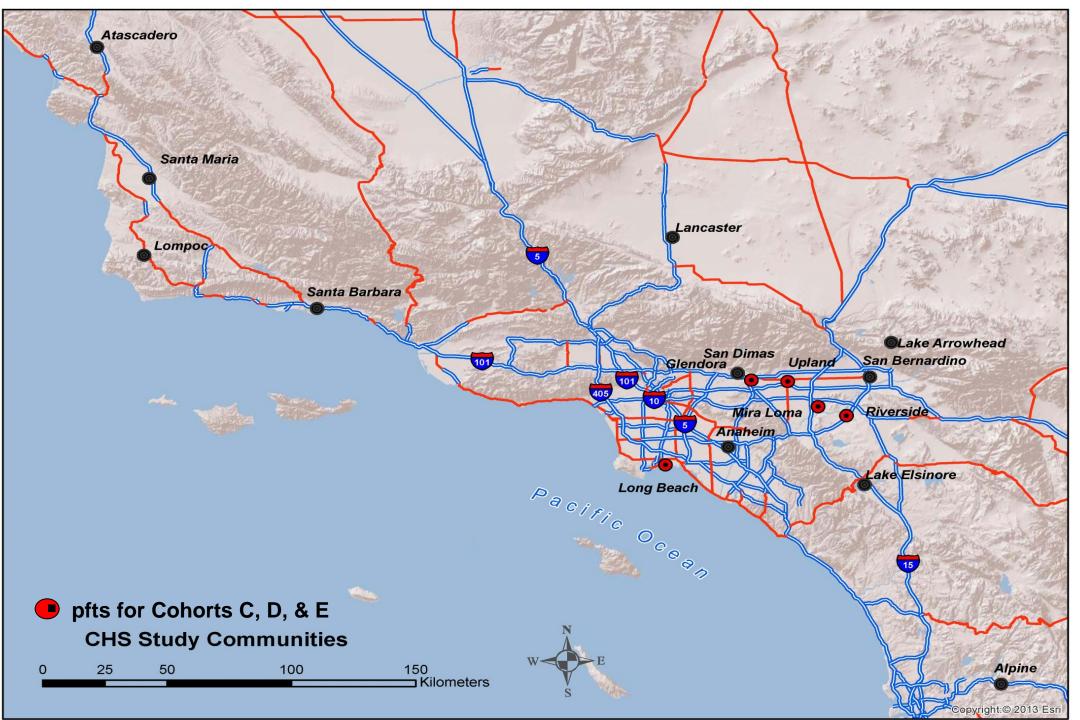
Regulatory Policies Affecting Trends in California (1985-2012)

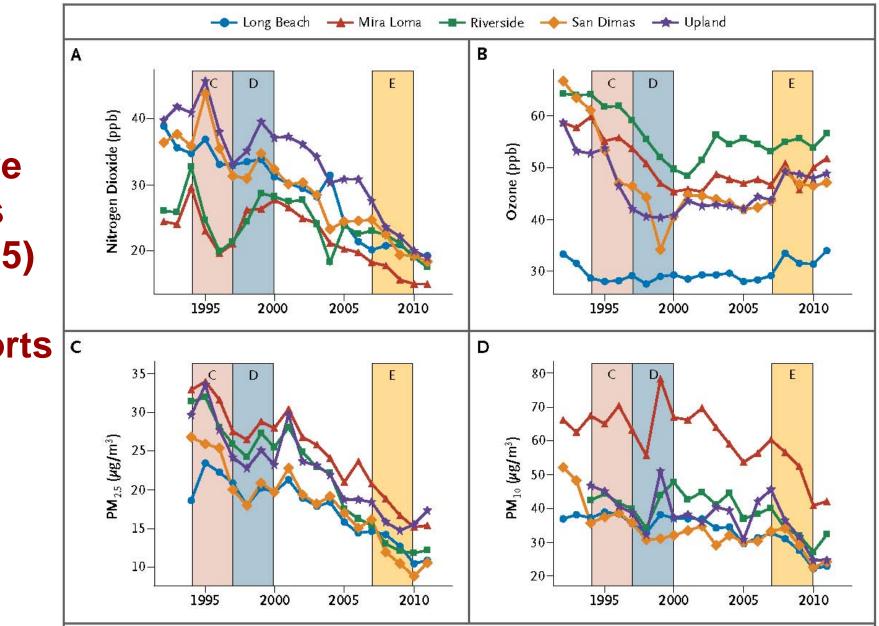
Regulatory Policy	Adoption Date
On-road Emissions:	
Low-emission vehicle standards for light-duty and	1990, 1998
medium-duty vehicles (LEV, LEV II)	
Reformulated gasoline	1988, 1990, 1991
On-board diagnostics standards for light-duty vehicles	1985, 1989
Medium-duty and heavy-duty truck gasoline emission standards	1995
Heavy-duty diesel truck engine emissions standards	1998, 2001
Clean diesel fuel requirements	2003
Financial incentives for replacement or retrofit high-polluting vehicles, engines & equipment (e.g., the Carl Moyer Program)	1998-2012
Cleaner port (drayage) trucks	2007
Off-Road Emissions:	
Cleaner diesel fuel for ocean-going vessels, harbor craft, and trains	2004, 2008
Reduced port auxiliary engines and incinerator use, hoteling	2007
Cleaner locomotive engines in Southern California	1997, 2010
Stationary diesel engines standards for in-use agricultural engines	2007
Stationary Point Sources:	
NOx and SOx reductions from <i>RE</i> gional <i>CL</i> ean Air Incentives Market (RECLAIM)	1994
New Source Review (NSR)	1990
Source-specific emissions standards	1988-2002
Area Sources:	
Low-emission certificate programs for products and equipment	1988-2012
Unpaved and paved road dust control measures	2008
Water heater and small boiler emission standards	1999, 2004

CHS Cohorts, By School Year & Class Grade

											Sc	hool	Year										
Co- hort	Ν	'93	'94	'95	'96	'97	'98	'99	'00	'01	'02	'03	'04	'05	'06	'07	'08	'09	'10	'11	'12	'13	'14
Α	938	10	11	12																			
В	937	7	8	9	10	11	12																
С	1806	4	5	6	7	8	9	10	11	12													
D	2081				4	5	6	7	8	9	10	11	12										
Е	5927										κ	1	2	3	4	5	6	7	8	9	10	11	12
(ALL)	11689																						

Overlap across cohorts: 11 – 15 years of age on average




Association of Improved Air Quality with Lung Development in Children

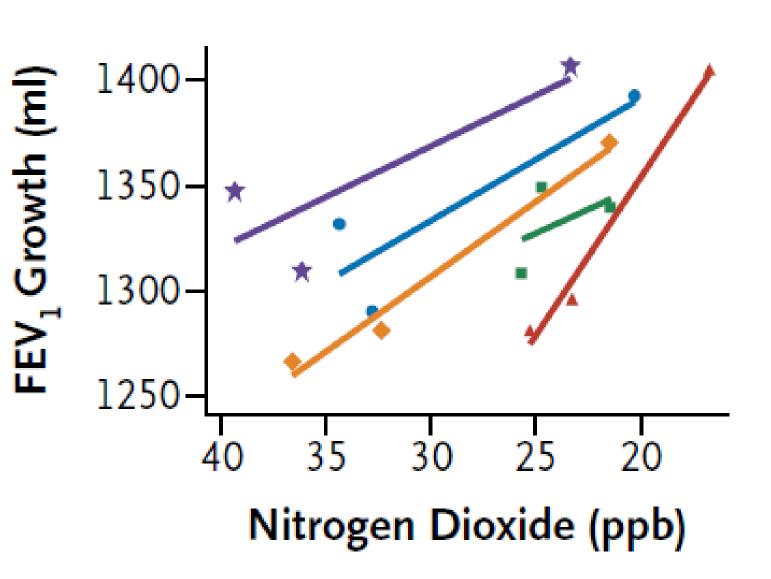
W. James Gauderman, Ph.D., Robert Urman, M.S., Edward Avol, M.S., Kiros Berhane, Ph.D., Rob McConnell, M.D., Edward Rappaport, M.S., Roger Chang, Ph.D., Fred Lurmann, M.S., and Frank Gilliland, M.D., Ph.D.

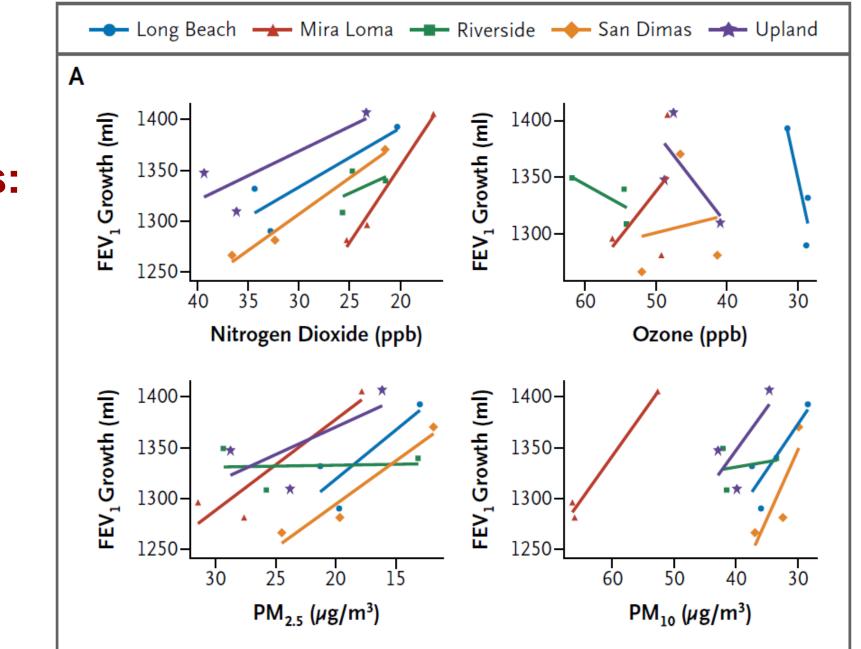
Exposure periods (age 11-15) for CHS Cohorts C,D,E

Change in Exposure: Cohort C to E

Supplemental Table S2: Mean pollutant levels corresponding to the colored bands in Figure 1

Pollutant	Cohort	Years	Long Beach	Mira Loma	Riverside	San Dimas	Upland
NO ₂ (ppb)	С	1994-1997	34.4	23.3	24.7	36.6	39.4
	D	1997-2000	32.9 (-4.5%)	25.3 (8.5%)	25.7 (4.0%)	32.4 (-11.6%)	36.2 (-8.1%)
	Е	2007-2010	20.3 (-41.0%)	16.7 (-28.3%)	21.4 (-13.2%)	21.5 (-41.3%)	23.4 <mark>(-40.7%)</mark>
O ₃ (10a-6p, ppb)	С	1994-1997	28.6	56.2	61.9	52	48.8
03 (104 00, 000)	D	1997-2000	28.8 (0.7%)	49.3 (-12.3%)	54.1 (-12.5%)	41.4 (-20.5%)	40.9 (-16.1%)
	Е	2007-2010	31.4 (10.0%)	48.4 <mark>(-13.9%</mark>)	54.5 (-11.9%)	46.6 <mark>(-10.5%</mark>)	47.5 (-2.6%)
ΡΜ ₁₀ (μg/m ³)	С	1994-1997	37.5	66.5	42.1	36.9	42.9
ι Μ ₁₀ (μ 9 /11)	D	1997-2000	35.9 (-4.2%)	66.0 (-0.7%)	41.5 (-1.4%)	32.5 (-12.0%)	39.9 (-7.1%)
	Е	2007-2010	28.4 (-24.2%)	52.6 <mark>(-20.8%</mark>)	33.4 (-20.7%)	29.9 <mark>(-19.1%</mark>)	34.7 (-19.2%)
PM _{2.5} (μg/m³)	С	1994-1997	21.3	31.5	29.3	24.5	28.7
	D	1997-2000	19.7(-7.5%)	27.6 (-12.2%)	25.7 (-12.2%)	19.6 (-19.9%)	23.8 (-17.2%)
	Е	2007-2010	13.0 (-38.9%)	17.8 (-43.3%)	13.1 (-55.3%)	11.9 (-51.6%)	16.1 (-43.9%)


Mean pollutant level over the indicated 4-yr period in each community (values in parentheses are the percent change compared to Cohort C)



Improved air quality, better lung function growth...

> <u>in all 5</u> towns

Similar patterns: NO₂ PM_{2.5} PM₁₀

4-Yr Lung Function Growth vs. Pollution Decreases

Lung		G	rowth, age 11 to	o 15
Function	Pollutant	D	ifference	P-value
FEV ₁	NO ₂	91.4	(47.9, 134.9)	<0.001
	O ₃ (10-6)	-6.7	(-51.0, 37.5)	0.77
	PM ₁₀	65.5	(27.2, 103.7)	<0.001
	PM _{2.5}	65.5	(17.1, 113.8)	<mark>0.008</mark>
FVC	NO ₂	168.9	(127.0, 210.7)	<0.001
	O ₃ (10-6)	-7.3	(-79.3, 64.6)	0.84
	PM ₁₀	113.1	(60.0, 166.1)	<0.001
	PM _{2.5}	126.9	(65.7, 188.1)	<0.001
Estimated d	lifferences in lung fu	nction growth a	are scaled to dec	reases of
14.1 ppb in	NO ₂ , 5.5 ppb in O ₃ ((10 am - 6 pm),	8.7 μ g/m ³ in PM	10,
and 12.6 μg	/m ³ in PM _{2.5}			

Compared to Cohorts C and D...

- Cohort E has more:
 - Hispanics (58% vs. 32%)
 - Asthma, insurance, A/C, gas stoves

• Cohort E has less:

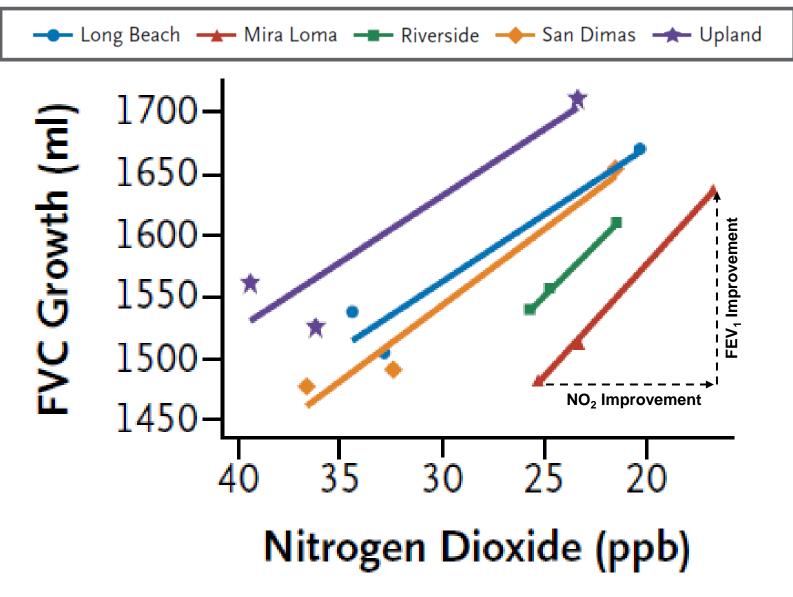
- Smoking, ETS, in-utero smoke exposure
- Pests, pets, dogs, cats, carpet

• All are potential confounders...

4-Yr Lung Function Growth vs. Pollution Decreases

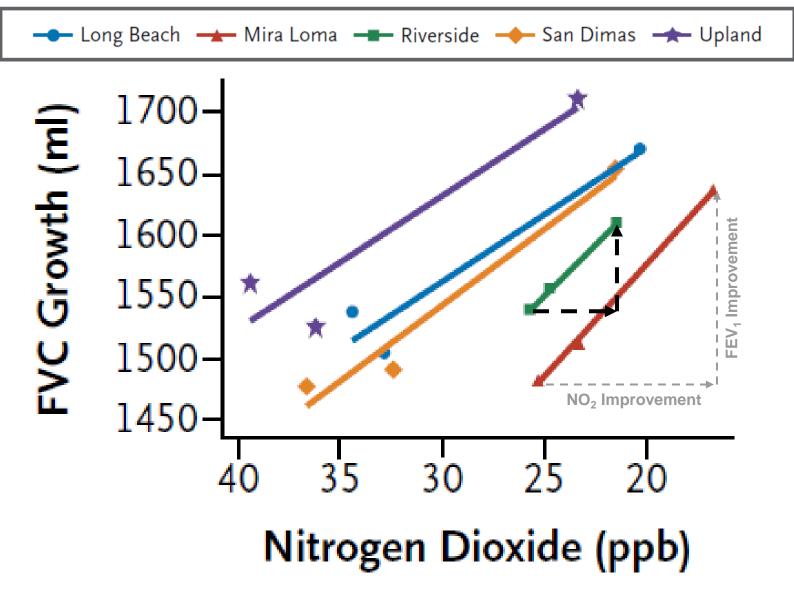
Lung		Growth, age 11 to 15							
Function	Pollutant	D	P-value						
FEV ₁	NO ₂	<u>91.4</u>	(47.9, 134.9)	<0.001					
	O ₃ (10-6)	-6.7	(-51.0, 37.5)	0.77					
	PM ₁₀	65.5	(27.2, 103.7)	<0.001					
	PM _{2.5}	65.5	(17.1, 113.8)	0.008					
FVC	NO ₂	168.9	(127.0, 210.7)	<0.001					
	O ₃ (10-6)	-7.3	(-79.3, 64.6)	0.84					
	PM ₁₀	113.1	(60.0, 166.1)	<0.001					
	PM _{2.5}	126.9	(65.7, 188.1)	<0.001					
Estimated d	lifferences in lung fu	nction growth a	are scaled to dec	reases of					
14.1 ppb in	NO ₂ , 5.5 ppb in O ₃ ((10 am - 6 pm),	8.7 μ g/m ³ in PM	I ₁₀ ,					
and 12.6 μg	/m ³ in PM _{2.5}								

Potential Confounders

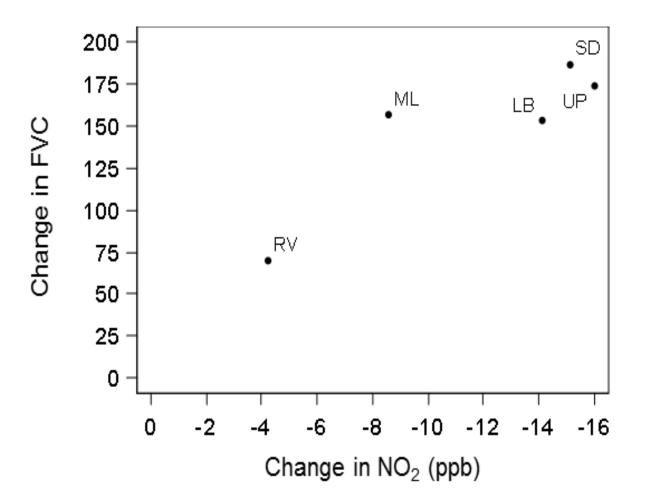

	FEV ₁ growth, age 1	1 to 15	FVC growth, age 11 to 15				
Model	Difference	P-value	Difference	P-value			
Base model (NO ₂)*	91.4 (47.9, 134.9)	<0.001	168.9 (127.0, 210.7)	<0.001			
Additional Adjustments							
Base + education	90.7 (47.6, 133.9)	<0.001	168.4 (126.8, 210.0)	<0.001			
Base + insurance	89.1 (45.6, 132.7)	<0.001	166.5 (127.4, 205.7)	<0.001			
Base + in-utero smoke	90.7 (47.3, 134.1)	<0.001	168.6 (126.8, 210.5)	<0.001			
Base + passive smoke exposure	90.6 (47.4, 133.7)	<0.001	168.5 (126.8, 210.2)	<0.001			
Base + active tobacco smoking	90.9 (47.5, 134.4)	<0.001	167.8 (126.9, 208.7)	<0.001			
Base + acute O ₃	94.0 (51.9, 136.0)	<0.001	169.7 (128.4, 210.9)	<0.001			
Base + asthma	92.6 (49.3, 136.0)	<0.001	168.1 (126.4, 209.9)	<0.001			
Base + pests	89.2 (46.4, 131.9)	<0.001	169.2 (127.2, 211.2)	<0.001			
Base + pets	87.4 (44.1, 130.7)	<0.001	167.4 (125.1, 209.6)	<0.001			
Base + dog	90.7 (46.3, 135.1)	<0.001	169.9 (126.9, 213.0)	<0.001			
Base + cat	88.7 (45.2, 132.1)	<0.001	165.8 (124.5, 207.1)	<0.001			
Base + carpet	88.6 (45.8, 131.5)	<0.001	167.8 (126.1, 209.5)	<0.001			
Base + mildew/mold	91.2 (47.4, 135.0)	<0.001	168.6 (126.7, 210.6)	<0.001			
Base + water damage	91.2 (47.8, 134.7)	<0.001	168.7 (127.0, 210.4)	<0.001			
Base + gas stove	92.0 (48.4, 135.6)	<0.001	170.0 (128.0, 212.0)	<0.001			
Base + air conditioning	90.7 (47.3, 134.2)	<0.001	168.4 (126.9, 209.9)	<0.001			
Base + date of home construction	91.8 (48.1, 135.5)	<0.001	168.7 (126.9, 210.4)	<0.001			

Subgroup Effects?

	FEV ₁ growth, age 1	11 to 15	FVC growth, age 1	1 to 15
Model	Difference	P-value	Difference	P-value
Base model (NO ₂)*	91.4 (47.9, 134.9)	<0.001	168.9 (127.0, 210.7)	<0.001
Subgroups				
Girls only	70.9 (29.3, 112.5)	<0.001	113.0 (71.4, 154.6)	<0.001
Boys only	112.4 (43.1, 181.8)	0.002	236.3 (165.4, 307.2)	<0.001
Non-hispanic white	84.2 (21.3, 147.1)	0.0087	168.8 (109.3, 228.4)	<0.001
Hispanic white	104.4 (42.8, 165.9)	0.0009	179.0 (107.3, 250.7)	<0.001
Non-asthmatics only	82.2 (35.1, 129.4)	<0.001	139.2 (97.0, 181.4)	<0.001
Asthmatics only	150.8 (43.2, 258.5)	0.006	306.9 (195.0, 418.9)	<0.001
Complete data at ages 11 and 15	87.8 (45.3, 130.2)	<0.001	161.7 (122.0, 201.3)	<0.001

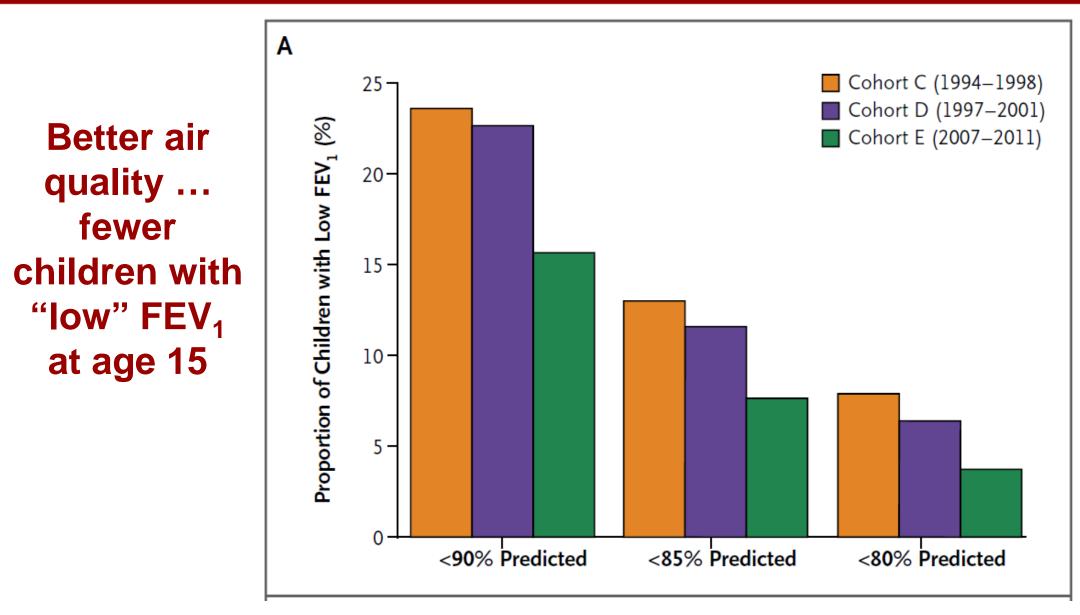

No 'Control' community

But degree of improvement across towns varies



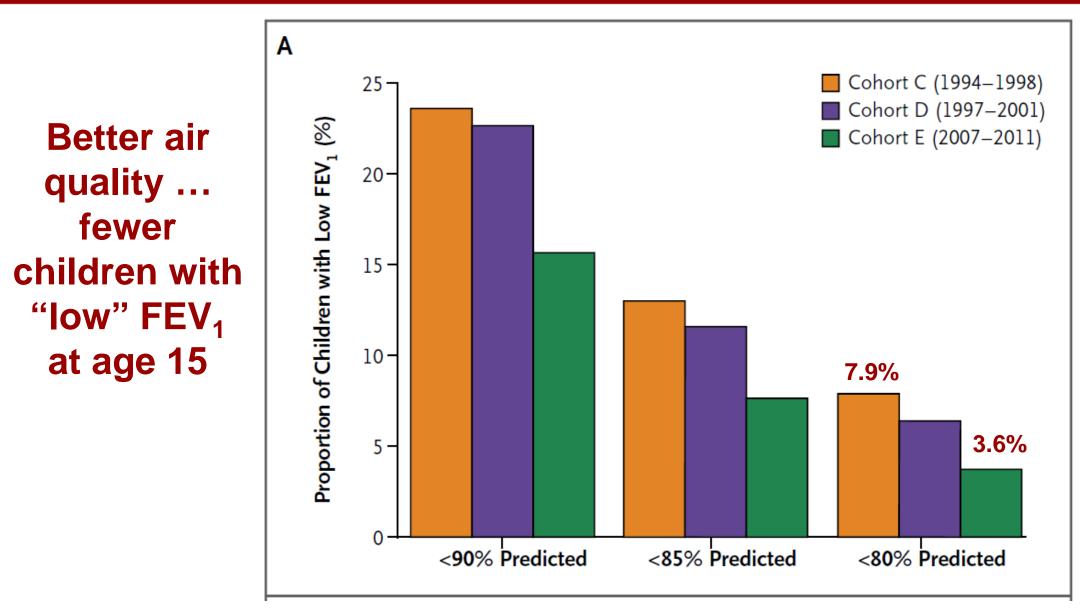
No 'Control' community

But degree of improvement across towns varies


Change in FVC growth vs. Change in NO₂

→ We might expect little change in lung function growth with zero change in NO₂

University of Southern California



Adjusted for age, sex, race, ethnicity, height, height², BMI, BMI², respiratory illness

University of Southern California

Adjusted for age, sex, race, ethnicity, height, height², BMI, BMI², respiratory illness

 Reductions in air pollution are associated with measurable improvements in children's health

Summary

- We can't get complacent:
 - NAAQS not yet achieved for PM, O₃ in so. Cal.
 - More cars, trucks, industry, population, etc. are projected
- Future reductions in pollution may be difficult...

Summary

- We can't get complacent:
 - NAAQS not yet achieved for PM, O₃ in so. Cal.
 - More cars, trucks, industry, population, etc. are projected
- Future reductions in pollution may be difficult...

...but hard work to improve air quality pays off!

University of Southern California

Questions?

