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Opportunities for today’s AND tomorrow’s fuel/engine systems




Co-Optimization of Fuels and Engines
better fuels. better vehicles. sooner.

Draws on collaborative expertise of
two DOE research offices, nine national laboratories,
and numerous industry and academic partners.

Co-Optima Project:



Current fuels constrain engine design
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What fuel properties do GDI engines want?
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Biomass can provide fuels with advantageous properties
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Biomass can provide fuels with advantageous properties

Higher mass and energy 36
density than ethanol

High RON

Hydrocarbon blendstock
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basis) similar to gasoline

Equivalent effective RON
to E30 attained at much
lower blend level, with
negligible effect on
volumetric energy content
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An overview of how fuel
properties impact
particulate formation




Premixed vs non-premixed (diffusion) flames

Methane (CH,)
Premixed: gas stove, homogeneous
gasoline engine, etc
Non-premixed (diffusion): candle,
pool fire, SIDI piston-top fire, diesel
combustion, etc

Diffusion Flame ’ \5 Pre-Mixed Flame




It's the local equivalence (fuel/air) ratio that matters

Diesel engines are overall
fuel-lean but sooting is
significant




Fuel-air ratio impacts soot formation

e Excess oxygen inhibits soot
formation C/0O=0,65 Clo = 0,85

* Insufficient oxygen promotes
soot formation

Acetylene/oxygen flame
C/O = ratio of carbon/oxygen;

C/0 =1 -> stoichiometric fuel/air mixture Paur et al., Nanotechnology 16 (2005) $354-5361



Critical fuel/air ratio for onset of gasoline sooting ~ 1.35

The critical equivalence ratio for onset of sooting = 1.35 (C/O = 0.461-0.462)

for gasoline certification fuel
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Hagerman et al., Proc. Combust. Inst. (2015) V35 (3), 2949




Fuel structure impacts soot formation

Sooting implies formation of
carbon framework comprised of
graphitic networks

Fuels with structures that facilitate
formation of graphitic rings will
have higher sooting tendency




Soot formation processes

Fuel Precursor PAH Particle Surface reaction/
oxidation molecules formation inception coagulation  Agglomeration Oxidation
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Some fuels do not soot readily

Sooting threshold for methanol flames occurs around
equivalence ratio of ~ 7

C-O bond is strong; C not available for soot formation
reactions

@,




Oxygenation fuel strategy

B. Liang et al. / Journal of Aerosol Science 57 (2013) 22-31
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Not all oxygenates are alike — structure matters

Esters are not as effective as /O\J\OAI/O\)\OH
ethers for lowering soot because

they can lead to prompt CO, tri-propylene glycol mono-methyl
production, wasting ¥ of their ether (TPGME), C4oH2,0,
oxygen O

Fueling with a neat poly-ether "o —

can prevent in-cylinder soot di-butyl maleate (DBM), C,,H,,0,
production

See Mueller et al., SAE 2001-01-3631, 2001-01-3632,
2002-01-1631, 2003-01-1791, 2005-01-2088
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Fuel effects on PM emissions: PMI

Particulate Matter Index (PMI) works (surprisingly) well for conventional fuels

Fuel

Tendency to form soot
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DBE = double bond equivalents = (2C + 2 — H)/2

Wt. = weight fraction of compound

VP(443K) = vapor pressure at 443K (170° C)
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Fuel effects on PM emissions: PMI

Particulate Matter Index (PMI) works (surprisingly) well for conventional fuels
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Aikawa et al. SAE 2010-01-2115.
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Does PMI breakdown for ethanol?

e Some studies show PM reductions

with mid-level ethanol blends,
while other show increases

e Results reflect competition

between chemical/physical effects

- Chemical — reduced soot
formation tendency

- Physical — cooling effect of
ethanol due to high heat of
vaporization
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Ethanol-gasoline blend distillation curves
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Distillation properties impacted by blending

Higher ethanol levels suppress aromatic distillation
60 — until virtually all the ethanol has evaporated - effectively

ushing aromatic evaporation to higher temperatures
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Does PMI breakdown for other oxygenates?

Higher PM observed
for oxygenated
aromatics

Heat of vaporization
of blends similar, so
results must reflect

chemical effect
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Ratcliff et al / SAE Int. J. Fuels Lubr. / Volume 9, Issue 1 (April 2016)
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Phenolics readily form soot precursors

Formation of cyclopentadienyl radical is relatively facile, which couples
to form the soot precursor naphthalene

CH,
0/

O—O— 00—

Scheer, A., et al., J. Phys. Chem. A 2010, 114, 9043-9056
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Conclusions

e Fuel structure and physical properties significantly impact PM
emissions from GDI engines

 Many of the hardware and fuel changes that increase gasoline engine
efficiency exacerbate PM formation

 Biomass-derived oxygenates have beneficial properties but some have
chemical and physical properties that could impact PM emissions
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Questions?
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Backup slides
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Cycloalkanes are “clandestine” aromatics

e Cycloalkanes have DBE =2 and
thus are more prone to sooting
than paraffins
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Cycloalkanes are “clandestine” aromatics

e Cycloalkanes have DBE =2 and
thus are more prone to sooting
than paraffins
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Cycloalkanes are “clandestine” aromatics

e Cycloalkanes have DBE =2 and
thus are more prone to sooting
than paraffins

e Cycloalkane ring can
dehydrogenate to benzene
before flame zone

* Diesel engine experiments show
that soot formation tendency
can be ~ half that of aromatics
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Direct Injection S| Engine PM Emissions Fuel Blend

* Yet many studies show increased
emissions of particles for DI

e Fuel spray may impinge on
cylinder wall or piston top
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Higher injection pressure reduces PM

But this comes at a cost and has limitations
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