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Gasoline: Formulation Issues and Constraints 



Opportunities for today’s AND tomorrow’s fuel/engine systems 



better fuels. better vehicles. sooner. 
Co-Optimization of Fuels and Engines 

Draws on collaborative expertise of  
two DOE research offices, nine national laboratories,  

and numerous industry and academic partners. 

Co-Optima Project: 
o What fuel properties maximize 

engine performance? 

o How do engine parameters 
affect efficiency? 

o What fuel and engine 
combinations are sustainable, 
affordable, and scalable? 

http://energy.gov/eere/bioenergy/co-optimization-fuels-engines 



Current fuels constrain engine design 
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What fuel properties do GDI engines want?  
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Biomass can provide fuels with advantageous properties 
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Biomass can provide fuels with advantageous properties 

• Higher mass and energy 
density than ethanol 

• High RON 

• Heat of vaporization (mass 
basis) similar to gasoline 

• Equivalent effective RON 
to E30 attained at much 
lower blend level, with 
negligible effect on 
volumetric energy content 
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An overview of how fuel 
properties impact 

particulate formation 
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https://en.wikipedia.org/wiki/Flame#/media/File:Bunsen_burner_flame_types.jpg 

Premixed: gas stove, homogeneous 
gasoline engine, etc 

 

Non-premixed (diffusion): candle, 
pool fire, SIDI piston-top fire, diesel 
combustion, etc 

Photo credit: Sandia National Laboratories 

Premixed vs non-premixed (diffusion) flames 

Photo: Wikipedia 
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It’s the local equivalence (fuel/air) ratio that matters 

Mark Musculus, Sandia National Laboratories 

Diesel engines are overall 
fuel-lean but sooting is 
significant 



11 

Fuel-air ratio impacts soot formation 
• Excess oxygen inhibits soot 

formation 

• Insufficient oxygen promotes 
soot formation 

Paur et al., Nanotechnology 16 (2005) S354–S361  

Acetylene/oxygen flame 
C/O = ratio of carbon/oxygen; 
C/O = 1 -> stoichiometric fuel/air mixture 



12 

Critical fuel/air ratio for onset of gasoline sooting ~ 1.35 
The critical equivalence ratio for onset of sooting = 1.35 (C/O = 0.461–0.462) 
for gasoline certification fuel 

Hagerman et al., Proc. Combust. Inst. (2015) V35 (3), 2949  
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Fuel structure impacts soot formation 
Sooting implies formation of 
carbon framework comprised of 
graphitic networks 

 

Fuels with structures that facilitate 
formation of graphitic rings will 
have higher sooting tendency 
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Soot formation processes 
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http://photo.net/photodb/photo?photo_id=904900 

Some fuels do not soot readily 

Methanol flame 

Sooting threshold for methanol flames occurs around 
equivalence ratio of ~ 7 
 
C-O bond is strong; C not available for soot formation 
reactions 

https://commons.wikimedia.org/w/index.php?curid=1999966 
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Oxygenation fuel strategy 
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Not all oxygenates are alike – structure matters 

Esters are not as effective as 
ethers for lowering soot because 
they can lead to prompt CO2 
production, wasting ½ of their 
oxygen 

Fueling with a neat poly-ether  
can prevent in-cylinder soot 
production  
 

tri-propylene glycol mono-methyl  
ether (TPGME), C10H22O4  

di-butyl maleate (DBM), C12H20O4  

See Mueller et al., SAE 2001-01-3631, 2001-01-3632,  
2002-01-1631, 2003-01-1791, 2005-01-2088  
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Fuel effects on PM emissions: PMI 

Tendency to form soot 

Tendency to evaporate & mix 

Particulate Matter Index (PMI) works (surprisingly) well for conventional fuels 
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DBE = double bond equivalents = (2C + 2 – H)/2 
Wti = weight fraction of compound 
VP(443K) = vapor pressure at 443K (170°C) 
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Tendency to evaporate & mix 

Particulate Matter Index (PMI) works (surprisingly) well for conventional fuels 
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DBE = double bond equivalents = (2C + 2 – H)/2 
Wti = weight fraction of compound 
VP(443K) = vapor pressure at 443K (170°C) 

Aikawa et al. SAE 2010-01-2115. 
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Does PMI breakdown for ethanol? 

• Some studies show PM reductions 
with mid-level ethanol blends, 
while other show increases 

• Results reflect competition 
between chemical/physical effects 

- Chemical – reduced soot 
formation tendency  

- Physical – cooling effect of 
ethanol due to high heat of 
vaporization 
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Butler et al., SAE Technical Paper 2015-01-1072,  
2015, doi:10.4271/2015-01-1072.  
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Addition of ethanol to gasoline significantly 
impacts boiling point distribution 

Ethanol-gasoline blend distillation curves 
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Distillation properties impacted by blending  
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p-cymene held constant at 10% 

p-cymene 
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Does PMI breakdown for other oxygenates? 
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Higher PM observed 
for oxygenated 
aromatics  
 
Heat of vaporization 
of blends similar, so 
results must reflect 
chemical effect 
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Phenolics readily form soot precursors 

Formation of cyclopentadienyl radical is relatively facile, which couples 
to form the soot precursor naphthalene 

24 

Scheer, A., et al., J. Phys. Chem. A 2010, 114, 9043–9056 
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Conclusions 

• Fuel structure and physical properties significantly impact PM 
emissions from GDI engines 

 

• Many of the hardware and fuel changes that increase gasoline engine 
efficiency exacerbate PM formation 

 

• Biomass-derived oxygenates have beneficial properties but some have 
chemical and physical properties that could impact PM emissions 
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Questions? 
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Backup slides 
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Cycloalkanes are “clandestine” aromatics 
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• Cycloalkanes have DBE = 2 and 
thus are more prone to sooting 
than paraffins 
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• Cycloalkanes have DBE = 2 and 
thus are more prone to sooting 
than paraffins 
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Cycloalkanes are “clandestine” aromatics 

• Cycloalkanes have DBE = 2 and 
thus are more prone to sooting 
than paraffins 

• Cycloalkane ring can 
dehydrogenate to benzene 
before flame zone 

• Diesel engine experiments show 
that soot formation tendency 
can be ~ half that of aromatics   

31 

Law et al., Proc. Comb. Inst. 31 (2007) 565–573  

Flame front 
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• Yet many studies show increased 
emissions of particles for DI 

• Fuel spray may impinge on 
cylinder wall or piston top 
o Low vapor pressure/high boiling 

components burn as diffusion flame 

Direct Injection SI Engine PM Emissions 

Fatouraie et al., SAE Int. J. Fuels Lubr. 6(1):2013 
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Higher injection pressure reduces PM 

33 

But this comes at a cost and has limitations 

He et al., Energy Fuels 2012, 26, 2014−2027 
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