The Global Burden of Disease Due to Air Pollution and Its Major Sources: Estimates from the GBD 2013 Study

Aaron J Cohen
Health Effects Institute

May 2, 2016

on behalf of the GBD Air Pollution Core Analytic Team: Richard Burnett, H Ross Anderson, Mohammad Forouzanfar, Joseph Frostad and the Global Burden of Disease Collaboration
• The Global Burden of Disease (GBD) project

• Global health patterns that underlie burden due to the ambient air pollution

• Estimating the burden of disease attributable to air pollution

• Global burden of disease attributable to ambient air pollution 1990-2013

• GBD MAPS Estimating the burden of disease from specific air pollution sources
What is the Global Burden of Disease?

- Systematic quantification of health loss due to diseases, injuries and risk factors
- Disease, injury, & risk burden estimates for 1990 – 2013 using comparable methods for 188 countries (+ sub-country analyses)
 - incidence and prevalence of 301 diseases and injuries and 2,337 relevant disabling sequelae, stratified by sex and 20 age groups
 - Role of 79 modifiable risk factors
 - Burden measured as “Disability Adjusted Life Years” (DALYs) – lost years of healthy life; premature deaths in a given year
- Global collaboration coordinated by Institute for Health Metrics and Evaluation and involves > 1,600 collaborators
- GBD 2013 updates previous GBD estimates with new data, methods
- Major GBD 2013 results for Mortality, Healthy Life Expectancy and Years Lived with Disability, and Risk Factor burden published in *The Lancet* 2014-2015
- Annual updates beginning in 2016
 http://www.healthdata.org/gbd
Changes in Life-Expectancy at Birth 1970-2013

Life Expectancy at Birth by GBD Region, 1970 and 2013

- Life Expectancy (years), 1970
- Life Expectancy (years), 2013

Regions marked include:
- Western Europe
- Australasia
- High-income Asia Pacific
- Eastern Europe
- Caribbean
- Central Europe
- Southern Latin America
- Central Latin America
- Tropical Latin America
- East Asia
- Southeast Asia
- North Africa and Middle East
- Andean Latin America
- Western Sub-Saharan Africa
- Eastern Sub-Saharan Africa
- Central Sub-Saharan Africa
- South Asia
- Oceania
Percent of DALYs from Non-Communicable Diseases in 2013
General approach

Exposure to Ambient Air Pollution

Worldwide Health Evidence

Concentration –Response Relationships

Baseline Incidence

Country-Specific Mortality, Disease

Global Burden, DALYs, Mortality

Two different air pollution mixtures:
\(\text{PM}_{2.5} \)
Ozone
Estimating Global Exposure to PM$_{2.5}$

- Final estimates based on average of (1.4 million) grid cell values (SAT, TM5) and calibrated (regression model) with measurements
 - 0.1° x 0.1° resolution
 - extrapolated to 2013 using 2010-2011 trend in SAT
- Incorporate variance between two estimates and measurements in uncertainty assessment
- Unique contributions from each approach

Calibration Regression Model
By Super-Region

Adjusted R^2: 0.64
$N = 4,073$

$\text{PM}_{2.5} = \exp(0.41765 + (0.86953 \times \text{LN(Avg)})])$

Brauer et al., 2015
2013 Annual Average PM$_{2.5}$

87% global population in areas exceeding WHO Air Quality Guideline (10 μg/m3 PM$_{2.5}$ annual average)

Brauer et al. 2015
1990 – 2013 Change in Annual Average PM$_{2.5}$

Brauer et al. 2015
Exposure to Ambient Air Pollution

Worldwide Health Evidence

Concentration –Response Relationships

Country-Specific Mortality, Disease

Baseline Incidence

Population Attributable fraction X Deaths (cause-specific)
Population Attributable fraction X DALYs (cause-specific)

Global Burden, DALYs, Mortality

Cause-specific mortality/incidence at national and subnational level (China, Mexico, UK)
Diseases affected by air pollution: 4 of the top 5 causes of the global burden of disease in 2013

<table>
<thead>
<tr>
<th>1990 Rank</th>
<th>2013 Rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Ischemic heart disease</td>
<td>1 Ischemic heart disease</td>
</tr>
<tr>
<td>2 Cerebrovascular disease</td>
<td>2 Cerebrovascular disease</td>
</tr>
<tr>
<td>3 Lower respiratory infections</td>
<td>3 COPD</td>
</tr>
<tr>
<td>4 Diarrheal diseases</td>
<td>4 Lower respiratory infections</td>
</tr>
<tr>
<td>5 COPD</td>
<td>5 Alzheimer disease</td>
</tr>
<tr>
<td>6 Tuberculosis</td>
<td>6 Lung cancer</td>
</tr>
<tr>
<td>7 Neonatal preterm birth</td>
<td>7 Road injuries</td>
</tr>
<tr>
<td>8 Road injuries</td>
<td>8 HIV/AIDS</td>
</tr>
<tr>
<td>9 Lung cancer</td>
<td>9 Diabetes</td>
</tr>
<tr>
<td>10 Malaria</td>
<td>10 Tuberculosis</td>
</tr>
<tr>
<td>11 Neonatal encephalopathy</td>
<td>11 Diarrheal diseases</td>
</tr>
<tr>
<td>12 Alzheimer disease</td>
<td>12 Hypertensive heart disease</td>
</tr>
<tr>
<td>13 Stomach cancer</td>
<td>13 Chronic kidney disease</td>
</tr>
<tr>
<td>14 Congenital anomalies</td>
<td>14 Malaria</td>
</tr>
<tr>
<td>15 Self-harm</td>
<td>15 Self-harm</td>
</tr>
<tr>
<td>16 Diabetes</td>
<td>16 Stomach cancer</td>
</tr>
<tr>
<td>17 Hypertensive heart disease</td>
<td>17 Liver cancer</td>
</tr>
<tr>
<td>18 Other neonatal</td>
<td>18 Colorectal cancer</td>
</tr>
<tr>
<td>19 Drowning</td>
<td>19 Neonatal preterm birth</td>
</tr>
<tr>
<td>20 Measles</td>
<td>20 Neonatal encephalopathy</td>
</tr>
<tr>
<td>21 Liver cancer</td>
<td>21 Congenital anomalies</td>
</tr>
<tr>
<td>24 Colorectal cancer</td>
<td>33 Drowning</td>
</tr>
<tr>
<td>27 Chronic kidney disease</td>
<td>41 Other neonatal</td>
</tr>
<tr>
<td>39 HIV/AIDS</td>
<td>80 Measles</td>
</tr>
</tbody>
</table>

GBD 2013 Mortality and Causes of Death Collaborators *The Lancet* 2014
A Mortality Risk Model for the Global Burden of Ambient PM$_{2.5}$

- All cohort studies of PM$_{2.5}$ and mortality from chronic disease have been conducted in the US and Western Europe at PM$_{2.5}$ 5μg/m3 to 30μg/m3

- Need new models to estimate risk over the entire global range up with annual average PM$_{2.5}$ greater than 100 μg/m3in East and South Asia and other regions

- Estimate risk across the full global range of PM$_{2.5}$ concentrations by integrating epidemiologic evidence on risk of mortality from major sources of exposure to PM$_{2.5}$ (Burnett et al. 2014)
 - active smoking
 - second-hand smoke
 - household burning of solid fuels
 - ambient PM$_{2.5}$

- Key assumption: risk is a function of PM$_{2.5}$ inhaled dose regardless of PM source
GBD 2013 Integrated Exposure Response Functions

TMREL (counterfactual) ~7 μg/m³ midpoint of a uniform distribution bounded by the minimum and fifth percentiles of exposure distributions from ambient air pollution cohort studies (5.9-8.7 μg/m³)

Submitted
Air pollution contributed to 10% of global mortality in 2013 – the 4th highest global risk factor after diet, high BP, and tobacco.

- 2.9 million deaths (UI 2.7-3.1)
- 1.5 million deaths (UI 1.3-1.7) attributable to Household Air Pollution
- 2.7% of global deaths
- 8th ranking risk factor

217K deaths (UI 161-272) from chronic respiratory disease attributable to ozone.
Global Deaths Attributable to Ambient PM$_{2.5}$ by Cause 1990-2013

Proportion of deaths due to ambient PM$_{2.5}$ 1990-2013 in world’s ten most populous countries
Conclusions, Implications & Challenges

• Ambient air pollution contributed substantially to the global burden of disease in 2013 and the burden has increased over the past 23 years

• This increase reflects both trends in population aging and non-communicable disease rates and increasing levels of air pollution in low and middle-income countries

• Demographic trends suggest that burdens will likely increase even if air pollution levels decrease

• Nonlinear exposure-response functions suggest relatively modest reductions in burden in the most polluted countries unless PM$_{2.5}$ levels are substantially decreased

• Despite these challenges, there is the potential for considerable health benefits because reductions in exposure affect the entire population
Reducing disease burden requires control of emissions from all major sources.
GBD MAPS – Global Burden of Disease from Major Air Pollution Sources

• Multi-year collaboration between the Health Effects Institute (HEI), the Institute for Health Metrics and Evaluation (IHME), Tsinghua University, IIT Mumbai, University of British Columbia and other leading academic centers

• GBDMAPS will estimate:
 • Disease burden due to ambient air pollution from coal burning and other major sources in China (nationally and by province), India and Eastern Europe using Global Burden of Disease (GBD) framework
 • Disease burden due to coal burning overall and for major sectors (power generation, industrial, domestic), as well as burden attributable to other source sectors, (transportation, domestic biomass, open biomass, solvent use, etc.)
 • Coal and other major source contributions to ambient PM$_{2.5}$ and their associated disease burdens under current conditions and future policy scenarios

• China report release June 2016, India report expected 2017
GBD MAPS International Steering Committee

Dan Greenbaum / Bob O’Keefe
Terry Keating
Hao Jiming
Yang Gonghuan

Health Effects Institute
US EPA
Tsinghua University
Peking Union Medical College

Christopher Murray
Majid Ezzati
K Srinath Reddy
Michal Krzyzanowski
Greg Carmichael

IHME
Imperial College
PFHI Delhi
Kings College, London
WMO/U Iowa
GBD MAPS Working Group

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael Brauer (co-chair)</td>
<td>University of British Columbia</td>
</tr>
<tr>
<td>Aaron Cohen (co-chair)</td>
<td>Health Effects Institute</td>
</tr>
<tr>
<td>Wang Shuxiao</td>
<td>Tsinghua University</td>
</tr>
<tr>
<td>Zhang Qiang</td>
<td>Tsinghua University</td>
</tr>
<tr>
<td>Ma Qiao</td>
<td>Tsinghua University</td>
</tr>
<tr>
<td>Zhou Maigeng</td>
<td>China CDC</td>
</tr>
<tr>
<td>Yin Peng</td>
<td>China CDC</td>
</tr>
<tr>
<td>Wang Yuxuan</td>
<td>University of Texas, Galveston</td>
</tr>
<tr>
<td>Kan Haidong</td>
<td>Fudan University</td>
</tr>
<tr>
<td>Randall Martin</td>
<td>Dalhousie University</td>
</tr>
<tr>
<td>Aaron van Donkelaar</td>
<td>Dalhousie University</td>
</tr>
<tr>
<td>Richard Burnett</td>
<td>Health Canada</td>
</tr>
<tr>
<td>Mohammad Forouzanfar</td>
<td>IHME</td>
</tr>
<tr>
<td>Joseph Frostad</td>
<td>IHME</td>
</tr>
<tr>
<td>Kara Estep</td>
<td>IHME</td>
</tr>
<tr>
<td>Chandra Venkataraman</td>
<td>IIT Bombay</td>
</tr>
<tr>
<td>Pankaj Sadavarte</td>
<td>IIT Bombay</td>
</tr>
<tr>
<td>Alok Jhaliyal</td>
<td>IIT Bombay</td>
</tr>
</tbody>
</table>
GBD MAPS methodology

- Estimate coal combustion/major source contribution to ambient PM$_{2.5}$
- Calculate fraction ambient PM$_{2.5}$ attributable to each source

\[f_{\text{coal}} \]

- \(f_{\text{coal}} \times \text{ambient PM}_{2.5} \rightarrow \text{ambient PM}_{2.5} \) attributable to each source

\[\text{PM}_{2.5} \text{ coal} \]

- Use integrated exposure response functions and cause-specific mortality estimates in combination with \(\text{PM}_{2.5} \text{ coal} \rightarrow \text{source contribution to disease burden} \)

\[\text{Disease Burden} \]