

Emission Control Systems for NO_x and PM: Beyond the 2010 Standard

Sougato Chatterjee

HEI Conference Philadelphia, 2015

Outline of the Presentation

Diesel Engine Emissions and Global Regulations

Emission Control Components

- DOC
- DPF
- SCR

Current SCR Technologies

- SCR for Euro IV/V
- SCR for Euro VI/US 2010
- Non-road Systems

Future Regulations

Future Technology Trends

- Next generation of SCR catalysts
- Capabilities of, and Challenges with, the SCRF[®] Component
- Low Temperature NOx Storage and Release: the dCSC[™] Component
- Ammonia Availability at Low Temperature
- System Strategies

Summary

Outline of the Presentation

Diesel Engine Emissions and Global Regulations

Emission Control Components

- DOC
- DPF
- SCR

Current SCR Technologies

- SCR for Euro IV/V
- SCR for Euro VI/US 2010
- Non-road Systems

Future Regulations

Future Technology Trends

- Next generation of SCR catalysts
- Capabilities of, and Challenges with, the SCRF[®] Component
- Low Temperature NOx Storage and Release: the dCSC[™] Component
- Ammonia Availability at Low Temperature
- System Strategies

Summary

Diesel Engine Emissions:
•CO, HC, NO_x, SO_x
•Particulate Matter (PM)

Emissions lead to:

photochemical smog (sunlight + HC + NO_x)
acid rain (water + NO_x, SO_x)
health effects (PM + NO_x)

Pollutants are created in the on-road sector as well as in the non-road sector due to the benefits and high usage of diesel vehicles and equipment

Global HDD On-Road Emission Regulations

Regulations forcing both PM and NO_x emission control from new engines

Heavy Duty Diesel - Global Regulations

		2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	
ON ROAD	Europe			EU V				EL	I VI		EU	VII?	
	North America	EPA10				GHG Regulation						ARB 0.02	
	Japan			JP	09					JP 16			a/hp-hr NO
	South Korea			EU V					EU VI			EU VII?	
	Brazil	EU					EU V				EU	VI?	
	Russia		EU III				EU IV				EU V?		
	India (Main Cities)			EL	N IV				EL	J V		EU VI?	
	India (Nationwide)			EL	III I				EU	J IV		EU V?	
	China (Beijing)		E	U IV			EL	JV			EU VI?		
	China (Nationwide)	EU III				EU IV			EU V?				
NON-													I.
ROAD	Europe	Tier 3b	Tier 3b Tier 4a				Tier 4b Stage V?						
	North America	Tier 3b Tier 4a				Tier 4b							

Brazil		Tier 3a	Tier 3b	Tier 4a?	
South Korea	Tier 3b	Tier 4a	Tier 4b		
Japan	Tier 3b	Tier 4a	Tier 4b		
North America	Tier 3b	Tier 4a	Tier 4b		

Outline of the Presentation

Diesel Engine Emissions and Global Regulations

Emission Control Components

- DOC
- DPF
- SCR

Current SCR Technologies

- SCR for Euro IV/V
- SCR for Euro VI/US 2010
- Non-road Systems

Future Regulations

Future Technology Trends

- Next generation of SCR catalysts
- Capabilities of, and Challenges with, the SCRF[®] Component
- Low Temperature NOx Storage and Release: the dCSC[™] Component
- Ammonia Availability at Low Temperature
- System Strategies

Summary

PM Control by Diesel Oxidation Catalyst (DOC) 20 – 50% JMCC

- To reduce exhaust CO, HC and PM emissions from diesel engines
- To oxidize NO into NO₂ to burn PM when it is placed in front of DPF
- To burn fuel injected across the DOC to generate an exotherm for active regeneration of PM when placed in front of a DPF (DEC use)
- PGM content can be Pt or Pt/Pd

PM and PN Control by Catalyzed Soot Filter (CSF) >90%

- An oxidation catalyst coated onto a diesel particulate filter
- CO, HC and PM emissions are removed under normal conditions
- NO₂ is produced which helps to keep the filter clean via the CRT[®] effect
- Periodic filter cleaning events (active regeneration) require the coating to oxidize injected fuel to obtain temperatures over 600°C
- All types of filter can be coated with Pt or Pt/Pd

Particle Sizing with CRT Filter on Ser 50 Engine NY City Transit Bus under CBD Cycle

1.0E+10 $\overline{}$ •—OE 1.0E+09 O - OE & ULSD -ULSD & CRDPF 1.0E+08 1.0E+07 Number (#/cc) 1.0E+06 1.0E+05 1.0E+04 1.0E+03 1.0E+02 1.0E+01 1.0E+00 30 270 420 1670 60 110 180 680 1100 2600 4200 6800 Size (nm)

Particle Sizing with CRT Filter on DDC Ser 60 Engine Class 8 Truck under SS Cycle

Contributions to NO_x Emissions in California

Source: CARB Heavy Duty Technology & Fuels Assessment – 2015 - DRAFT

Selective Catalytic Reduction (SCR) Effective NOx Control Technology

Use ammonia (NH_3) to reduce NO_x to N_2 under oxidizing conditions

$$4 \text{ NO} + 4 \text{ NH}_3 + \text{O}_2 \longrightarrow 4 \text{ N}_2 + 6 \text{ H}_2\text{O}$$

$$6 \text{ NO}_2 + 8 \text{ NH}_3 \longrightarrow 7 \text{ N}_2 + 12 \text{ H}_2\text{O}$$

NO₂ promotes SCR activity; pre-DOC helps:

$2NH_3 + NO + NO_2 \rightarrow 2N_2 + 3H_2O$ VERY FAST REACTION

Ammonia can be derived from a number of sources (e.g. urea, ammonium carbamate, aqueous ammonia etc.)

Vanadium based catalysts mostly used (Euro IV), now zeolite based catalysts have been introduced for advanced markets (Japan 09 & US 10)

NO_x Control by Selective Catalytic Reduction (SCR)

- Reduce NO_x to N₂ under high oxygen (lean) conditions. Extra reductant (usually urea) is injected into the exhaust upstream of the catalyst
- Base metal and zeolite-based catalysts offer the widest operating temperature window.
- Optional slip catalyst can be added downstream to remove unreacted reductant

Outline of the Presentation

Diesel Engine Emissions and Global Regulations

Emission Control Components

- DOC
- DPF
- SCR

Current SCR Technologies

- SCR for Euro IV/V
- SCR for Euro VI/US 2010
- Non-road Systems

Future Regulations

Future Technology Trends

- Next generation of SCR catalysts
- Capabilities of, and Challenges with, the SCRF[®] Component
- Low Temperature NOx Storage and Release: the dCSC[™] Component
- Ammonia Availability at Low Temperature
- System Strategies

Summary

Euro IV/V: Primary Strategy SCR Only

May use ASC = Ammonia Slip Control Catalyst

-70% NO_x conversion

-85% NO_x conversion

-PM met by engine

Challenges for Euro IV

Challenges for Euro V

JM offers:

EU IV SCR + ASC allows higher urea dosing to meet EU V

Vanadium-SCR: Catalyst of Choice for Euro IV/V

JM Extruded and Coated V-SCR Well Proven Solutions

Current System Designs in the On-Road Market

JM🛠

Currently, the European, North American and Japanese regulations are all met using the same systems architecture:

DOC + CSF + SCR + ASC

DOC – Diesel Oxidation Catalyst

- Removes CO and HC
- Oxidises fuel to drive active filter regeneration
- Converts some NO into NO₂

CSF – Catalysed Soot Filter

- Traps particulate matter (carbon)
 - For subsequent removal by NO_2 and / or O_2
- Enables particle number (PN) compliance

SCR – Selective Catalytic Reduction

Removes NO_x via reaction with NH₃

ASC – Ammonia Slip Catalyst

 Removes any ammonia (NH₃) slip and converts it to (predominantly) nitrogen (N₂)

EPA 10/Euro VI Systems: DOC + CSF + SCR + ASC

JM Offers Variety of SCR Technologies to Meet High NOx Reduction

For systems with CSF (active regeneration systems), thermally durable SCR is required

- Zeolite-based SCR systems will be used; Also developing new V based one
- JM offers Cu or Fe zeolite catalysts
 - Cu SCR requires high temperature treatment for de-sulfation (ie higher fuel, higher PGM DOC)
 - Fe requires NO₂ and management of coke/HC level (ie high PGM DOC)

SCR	NO2 Need	Sulfur sensitivity	HC Coking	Thermal Resistance	DOC/CSF PGM Loading
Cu	Low	High	Low	Very high	Med
Fe	High	Low	High	High	High
v	Med	Low	Low	Low	Low

Current System Designs in the Non Road Market

JM🛠

Non-road

- Aligned standards in Europe, North America and Japan
- 80% reduction in NO_x limit for Tier 4b (2014)
 - Optimised SCR systems required
- No particle number limit
- Filters **not required** to meet the non-road Tier 4b regulations
- **SCR** is required; typical systems:
 - SCR + ASC
 - **DOC** + **SCR** + **ASC**
 - **DOC** + **CSF** + **SCR** + **ASC**

On Road (EUVI, EPA10) vs Non Road (T4B) Regulations

T4B has higher limits and no need for DPF on all engines

	EU VI	EPA10	Tier 4B
NO _x (mg/kWh)	400	270	400
PM (mg/kWh)	10	13	25
PN (#/kWh)	6 x 10 ¹¹ (WHTC) 8 x 10 ¹¹ (WHSC)	No limit	No limit
Cycles	ESC & ETC (WHSC & WHTC)	FTP & SET	NRTC & NRSC
OBD	Yes	Yes	In preparation
Introduction	12/31/13	1/1/10	1/1/14 (130-560kW) 1/1/15 (56-130kW)

Outline of the Presentation

Diesel Engine Emissions and Global Regulations

Emission Control Components

- DOC
- DPF
- SCR

Current SCR Technologies

- SCR for Euro IV/V
- SCR for Euro VI/US 2010
- Non-road Systems

Future Regulations

Future Technology Trends

- Next generation of SCR catalysts
- Capabilities of, and Challenges with, the SCRF[®] Component
- Low Temperature NOx Storage and Release: the dCSC[™] Component
- Ammonia Availability at Low Temperature
- System Strategies

Summary

So What Will Change Going Forward?

- Further fuel economy improvements
 - Increases in engine-out NO_x (and NO_x /PM ratios)
 - Reductions in exhaust temperature
 - Reductions in system backpressure
- Further regulatory reductions in NO_x emissions
 - Increases in system NO_x conversion requirements
- Further implementation of DPFs (PN compliance)
 - eg non road Stage V in Europe
- Increased focus on other emissions
 - N₂O, NO₂, CH₄, Black Carbon etc.

Strengthening the Current Standard: Off-Cycle NOx Emissions Are a Concern

Source: CARB (Erik White) SAE HDD Symposium Presentation: September 2014

Future ARB Regulations

- Proposed Optional Standards
 - 0.10 g/hp-hr
 - 0.05 g/hp-hr
 - 0.02 g/hp-hr
- GHG neutral, so very high NO_x conversion required
 - For 3g NO_x engine, **98.4% cold FTP + 99.5% hot FTP**
 - Strong focus expected on cold start NO_x control:
 - \succ New cold start NO_x control technologies needed
- Possible approaches:
 - How far can Natural Gas-based approaches take us?
 - Can they get to 0.02 g/hp-hr?
 - Could NG-hybrids hit 0.01 g/hp-hr?
- 25% of engine families certified to below 0.2 g/hp-hr in 2007-12
 - 0.03 0.14 g/hp-hr

Outline of the Presentation

Diesel Engine Emissions and Global Regulations

Emission Control Components

- DOC
- DPF
- SCR

Current SCR Technologies

- SCR for Euro IV/V
- SCR for Euro VI/US 2010
- Non-road Systems

Future Regulations

Future Technology Trends

- Next generation of SCR catalysts
- Capabilities of, and Challenges with, the SCRF[®] Component
- Low Temperature NOx Storage and Release: the dCSC[™] Component
- Ammonia Availability at Low Temperature
- System Strategies

Summary

Incoming Technologies: Extruded/High Porosity Substrate with Increased Cell Density

- The SCR reaction is kinetically controlled at low temperatures
 - Increasing the number of active sites will promote low temperature activity
- The SCR washcoat loading can be effectively increased by using an extruded catalyst or by using a high washcoat loading on a High Porosity Substrate (HPS)
 - Enabling enhanced low temperature performance with minimal backpressure increase
- Increasing the cell density from e.g. 400 to 600 cpsi leads to improved high temperature performance
 - The SCR reaction is mass transfer limited at high temperatures

High Porosity (HP) Substrate Material

High Porosity (HP) 50% (~65%) Porosity

Catalyst coating into pores of the honeycomb-body

- Lower pressure drop with the same catalyst loading
- Higher catalyst loading under the same pressure drop (Higher NOx conversion)

The 13th Hyundai Kia International Powertrain Conference – NGK Insulators, Ltd.

Comparison of CuSCR on Various Substrates

HPS and Extruded potentially enable up to 50% volume reduction

Incoming Technologies: SCRF® Component

- Applying an SCR coating to the filter enables:
 - SCR component to get hotter earlier increased NO_x conversion
 - Increased SCR volume in the system increased NO_x conversion
 - Increased PN filtration efficiency
 - Increased competition for NO₂ between PM combustion and NO_x conversion
 - potential reduction in passive filter regeneration

SCRF Provides Significant Performance Advantages

Optimized Formulation Can Provide Significant Volume Reduction

AT Volume optimization strategy	2013	SCRF [®] Only	SCRF [®] +SCR
volume reduction of catalyst	<u>base</u>	<u>~ 38%</u>	<u>~ 20%</u>

- Potential for significant system volume reduction
- Allow high engine-out NO_x
 - Promote passive regen (high NO_x /PM)
 - Improve fuel efficiency and GHG control

Very High Average Daily NO_x Conversion After 1 Year in Operation

DOC + SCRF + SCR + ASC

Incoming Technologies: dCSC (Diesel Cold Start **Catalyst)** Component

NOx Storage:

Concept: Trap NOx from cold start, and release when downstream SCRF[®] component is hot enough to convert the **NOx; Passive System**

NOx Release:

Conditions: Ramp at 100°C/min, SV = 60k, Aged components

Under Low Temperature Cycle, dCSC[™] + SCRF[®] Combination Provides Very High NOx Removal

Incoming Technologies: Low Temperature Ammonia Availability

- Under Cold temperature conditions, limitation in Urea dosing limits NH₃ availability
- Auxiliary side reactor based NH₃ dosing system can be designed to deliver NH₃ at low temperature
- Side system pulls hot exhaust from pre-turbo
- Urea is injected into side system, hydrolysis catalyst converts urea to NH₃
- Gaseous NH₃ is delivered to SCRF component inlet at low temperature
- Side NH₃ doser and main urea injection used in tandem during transient cycle

Innovative System Configurations will Allow for Very High NO_x Removal

Reference System DOC + CSF + SCR + SCR

Future System – 1: Early NH₃ dCSC + SCRF + SCR

Future System – 2: Early NH₃ + Heating dCSC + SCRF + SCR

Innovative System Configurations Will Allow for Very High NO_x Removal

Innovative System Configurations Will Allow for Very High NO_x Removal

Outline of the Presentation

Diesel Engine Emissions and Global Regulations

Emission Control Components

- DOC
- DPF
- SCR

Current SCR Technologies

- SCR for Euro IV/V
- SCR for Euro VI/US 2010
- Non-road Systems

Future Regulations

Future Technology Trends

- Next generation of SCR catalysts
- Capabilities of, and Challenges with, the SCRF[®] Component
- Low Temperature NOx Storage and Release: the dCSC[™] Component
- Ammonia Availability at Low Temperature
- System Strategies

Summary

Summary

- PM control using DOC/DPF and NO_x (NO + NO₂) control using SCR is established methods for Diesel Engine emission control
- SCR is highly efficient and cost effective way of catalytic reduction of NO_x; It is the primary method utilized in Euro IV/V/VI and future systems
- Highly active V-based SCR catalysts have been developed and well proven for Euro IV/V applications
- Advanced regulations such as US 10/Euro VI require more advanced integrated systems and use zeolite based SCR catalysts along as well as V SCR
- Further improved SCR catalysts are being developed to meet proposed future regulations for ultra low NOx emissions, emphasising on cold start conditions
- Besides tradition SCR catalyst, multifunctional SCRF and dCSC systems have been developed to achieve very high NO_x conversions & improved fuel economy
- Low temperature NO_x conversion can be increased by a range of strategies such as early NH₃ dosing, thermal management, etc., in combination with advanced multifunctional system

Contacts

Sougato Chatterjee

Technology Manager – HDD Johnson Matthey 900 Forge Avenue, Suite 100 Audubon, PA 19403 USA (484) 320-2215 chatterjee@jmusa.com

www.matthey.com

