Black Carbon Particle Emissions from GDI Vehicles Operating on Different Fuels

Tak Chan

Emissions Research and Measurement Section,
Air Quality Research Division, Environment Canada

Workshop on Effects of Fuel Composition on PM
December 8, 2016
Renaissance Chicago O’Hare Suites (Salon AB), Chicago
Studies exploring fuel effects on PM

- **Ambient air study**
 - Study conducted during a local diesel bus strike event
 - Compare physical and chemical properties of ambient particles collected before, during, and after the strike

- **Laboratory based emissions study**
 - Particle emission characteristics from GDI and PFI vehicles
 - GDI PFI particle morphology
 - Ambient temperature effect on particle and black carbon emissions
 - Fuel composition on particle and black carbon emissions
Ambient particle measurements

Ambient air sampling

Air flow

~ 4 m

Photo by T. Chan
Ambient particle composition

Mass concentration (ng/m³)

- NAP = Naphthalene
- ACY = Acenaphthylene
- ACE = Acenaphthene
- FLU = Fluorene
- PHEN = Phenanthrene
- ANTH = Anthracene
- FLT = Fluoranthene
- PYR = Pyrene
- BaA = Benzo[a]anthracene
- BaP = Benzo[a]pyrene
- CHR = Chrysene
- BbF = Benzo[b]-fluoranthene
- BkF = Benzo[k]fluoranthene
- IcdP = Indeno[1,2,3-cd]pyrene
- DBahA = Dibenz[a,h]anthracene
- BghiP = Benzo[ghi]perylene

Page 4 – December-12-16

Ding et al. (2009) Atmos. Environ. 43, 4894-4902.
Lab based particle sampling system

Key Equipment & Measurements

- **DMM**: Dekati mass monitor
- **LII**: Laser induced incandescence
- **Micro aeth.**: micro-aethalometer
- **EEPS**: Engine exhaust particle sizer
- **EECPC**: Engine exhaust condensation particle counter
- **UCPC**: Ultrafine condensation particle counter
- **ESP**: Electrostatic precipitator
- **PND**: Particle number dilution

(Near-)Real-time particle info:

- Particle mass
- Black carbon mass
- Particle number/distribution
- Particle morphology

Graph:

- **FTP-75**: FTP-75 phase 1 phase 2
- **FTP-75 phase 3**: US06 US06

Flowchart Description:

- **Dilution air**
- **Exhaust flowmeter**
- **Dekati thermodenuder**
- **2.5 micron cyclone**
- **Volatile Particle Remover**
- **ET**
- **PND1**
- **PND2**
- **EEPC**
- **UCPC**

Flowchart Notes:

- **Filter packs**
- **VOC bags**
- **DNPH cartridges**
- **Blower**

Graph Notes:

- **Graph X-axis:** Time (s)
- **Graph Y-axis:** Speed (km/h)

Environment and Climate Change Canada

Environment et Changement climatique Canada
PFI engine particle morphology

MY2009 2.4L PFI engine operated on Tier 2 certification gasoline

TEM photos are shown in various resolutions for clarification
GDI engine particle morphology

MY2012 2.0L GDI vehicle operated on Tier 2 certification gasoline

TEM photos are shown in various resolutions for clarification
GDI engine particle morphology

- GDI soot morphology is independent of the driving condition.
- GDI soot morphology is comparable to diesel soot morphology.
- Area-equivalent particle diameter is consistent with particle size distribution measurements.

<table>
<thead>
<tr>
<th>Cycle</th>
<th>DF</th>
<th>D (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTP-75 cold-start</td>
<td>1.8</td>
<td>88</td>
</tr>
<tr>
<td>FTP-75 urban</td>
<td>1.8</td>
<td>80</td>
</tr>
<tr>
<td>FTP-75 hot-start</td>
<td>1.7</td>
<td>85</td>
</tr>
<tr>
<td>US06</td>
<td>1.8</td>
<td>78</td>
</tr>
</tbody>
</table>
Fuel composition and properties

- Alcohol is not the only compound in fuel that can influence particle emissions. Various hydrocarbons have different soot formation tendencies.
- Hydrocarbon soot formation tendency: Paraffins < isoparaffins < mono-olefins < naphthenes < alkynes < aromatics

<table>
<thead>
<tr>
<th>Abbrev.</th>
<th>Description</th>
<th>Drive cycle tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier 2</td>
<td>EPA Tier 2 certification gasoline</td>
<td>FTP-75, US06</td>
</tr>
<tr>
<td>Tier 2/E10</td>
<td>Splash blended 10%vol ethanol with Tier 2</td>
<td>FTP-75, US06</td>
</tr>
<tr>
<td>Tier 2/iB16</td>
<td>Splash blended 16%vol isobutanol with Tier 2</td>
<td>FTP-75, US06</td>
</tr>
<tr>
<td>Tier 2/E15</td>
<td>Splash blended 15%vol ethanol with Tier 2</td>
<td>FTP-75, US06</td>
</tr>
<tr>
<td>Tier 2/E20</td>
<td>Splash blended 20%vol ethanol with Tier 2</td>
<td>FTP-75, US06</td>
</tr>
<tr>
<td>Tier 3</td>
<td>EPA Tier 3 certification gasoline</td>
<td>FTP-75, US06</td>
</tr>
</tbody>
</table>

EPA Tier 2 certification gasoline

- I-Paraffins: 47%
- Mono-Aromatics: 42%
- Naphthenes: 0%
- Naphtheno/Olefin: 0%
- Iso-Olefin: 0%
- n-Olefin: 0%
- Oxygenates: 0%

EPA Tier 3 certification gasoline

- I-Paraffins: 26%
- Mono-Aromatics: 28%
- Naphthenes: 1%
- Naphtheno/Olefin: 2%
- Iso-Olefin: 7%
- n-Olefin: 8%
- Paraffin: 17%
- Oxygenates: 10%
Fuels and solid particle emissions

- GDI vehicles have very different particle emissions characteristics compared to PFI vehicles.
- For GDI vehicles, particle number emission characteristics could vary from one vehicle to another.
- Effect of alcohol on particle number emissions from GDI and PFI vehicles is minor but varies greatly from one vehicle to the next.
Fuels and black carbon emissions

- Black carbon emissions from GDI vehicles is much different compared to PFI vehicles.
- Variability in black carbon emissions from different GDI vehicles could be larger than from different PFI vehicles.
- Different splash blended alcohol containing fuels have minor influences on GDI than for PFI on black carbon emissions.
Ambient temperature has a large impact on particle and black carbon emissions from both GDI and PFI vehicles. Impact is further enhanced during cold-start emissions.

PFI vehicles could potentially have comparable black carbon emissions as GDI vehicles during cold temperature.
Particle number size distributions generally look similar from vehicle GDI#2 but operating on Tier 2 produced slightly more particles. During aggressive driving condition significant number of ultrafine particles were emitted when operating on Tier 2. Slightly higher sulfur content from Tier 2 (37 ppm) vs. Tier 3 (8.4 ppm) could be one contributing factor.
For the GDI#2 test vehicle, operating on Tier 3 generally led to lower solid particle (>23 nm) emissions by 20-50%.

Operating GDI#2 test vehicle on Tier 3 also led to lower black carbon emissions by 40-60%.
Conclusions

• Compositions of the combustion generated particles are influenced by engine types, vehicle fleet mix, gasoline composition.
• Black carbon particles from GDI vehicles appear to be different than that from traditional PFI vehicles.
• Ethanol and isobutanol could have mixed effects on particle number and black carbon emissions from GDI and PFI vehicles.
• Aromatic hydrocarbons in gasoline could play a role in black carbon formation from gasoline engines.
• Gasoline composition could have different effects on black carbon emissions from different vehicles.
• Vehicle operating condition could add another degree of complexity on black carbon emissions from a passenger car or light-duty truck (current work).
Research gap

• Origin of the variability of the emissions from different vehicles:
 – With respect to GDI: Wall guided vs. spray guided
 – Advanced technologies on emissions: Engine start/stop, cylinder deactivation, hybrids, turbochargers
 – Octane level in gasoline on engine efficiency and particle formation
 – Real-world emissions
 – Non-road engines and equipment

• Understand the fuel composition effect:
 – Presence of various hydrocarbons in gasoline in relation to black carbon formation and emissions from vehicles
 – Vehicular emitted particle composition and fuel composition relationship

• Health effect:
 – Potential health effects of different exhaust emission particles