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Background: The promise of identifying causal relationships between, for example, air pollu-
tion exposure and human health, has rightly generated ample enthusiasm in air pollution research.
However, confusion remains as to what exactly makes a method a causal one, how exactly such
methods differ from traditional approaches, and where evidence derived from causal methods fits
with the large body of research on the relationships between air pollution and health.

Workshop Objective: To promote literacy among the general air pollution community on
issues related to inferring causal relationships in observational air pollution research. To provide a
framework for the general consumer of air pollution research to understand and assess the increas-
ing amount of work being labeled as “‘causal.”

Target Audience: The general informed consumer of air pollution research. Expertise in
statistical methods and/or econometrics is not required, but participants are expected to have fa-
miliarity with the epidemiological literature pertaining to air pollution and health.

Description of Workshop: This workshop will provide a broad overview of inferring causal
relationships in air pollution studies. The focus is not instruction on specific statistical methods,
but rather the description of a foundational perspective on methods for causal inference that un-
derlie a large body of air pollution research. Frequent and interactive use of familiar examples will
help illustrate how a potential-outcomes perspective on causal inference can shed light on different
types of research studies and designs, regardless of whether such studies are explicitly labeled as
“causal.” Participants should leave this workshop with: a) improved ability to determine what
makes a particular research study “causal,” b) a framework with which to evaluate the assump-
tions underlying the causal validity of a particular result, c) improved ability to place the evidence
from causal studies in proper context with the vast literature on the relationships between pollution
exposure and human health.

Requested background reading:

• Glass et al. (2013). Causal inference in public health. Annual Review of Public Health 34.

• Zigler and Dominici (2014). Point: Clarifying Policy Evidence With Potential-Outcomes
Thinking - Beyond Exposure-Response Estimation in Air Pollution Epidemiology. American
Journal of Epidemiology 180(12).
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Outline

I. Introduction: Causal Inference: What it is (and what it is not)

i. Introduction of familiar “causal” questions that will be used to anchor workshop discus-
sion

ii. What causal inference is: A general analytic perspective

iii. What causal inference is not: A specific method or a magic silver bullet

iv. “Classical” paradigm for causal inference and biologic causality

v. “Potential Outcomes” paradigm for causal inference and consequences of (possibly hy-
pothetical) actions

II. Framing Observational Studies as Approximate Randomized Experiments

i. Prelude: Why randomized experiments are the “gold standard” for causal inference

ii. The experimental paradigm for observational data: “Designing” a hypothetical experi-
ment that defines a causal effect

iii. “Analyzing” the hypothetical experiment to estimate the causal effect

iv. Key assumptions for causal validity

v. An overview of some relevant methods

• Methods for observed confounding adjustment

• Methods for unmeasured confounding

————— Break —————

III. Rapid Fire Examples

Discussion (with audience participation via Q/A sheet distributed during the break)
of several familiar studies from the literature, all from a causal inference perspective.
Examples will involve studies that have been explicitly labeled as “causal” as well as
those that have not, including (among others) a causal evaluation of the Six Cities
Study.

IV. Putting it All Together: Illustrative Case Study: Causal effects of PM2.5 Nonattainment
Designations

V. Questions/Open Discussion
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Abstract

The regulatory environment surrounding air pollution control policies warrants a new type of epidemiolog-

ical evidence. Whereas air pollution epidemiology has typically informed policies with estimates of exposure-

response relationships between pollution and health outcomes, these estimates alone cannot support current

debates surrounding the actual health impacts of air quality regulations. This commentary argues that directly

evaluating specific control strategies is distinct from estimating exposure-response, and that increased empha-

sis on estimating effects of well-defined regulatory interventions would enhance the evidence supporting policy

decisions. Appealing to similar calls for accountability assessment of whether regulatory actions impact health

outcomes, we aim to sharpen the analytic distinctions between studies that directly evaluate policies and those

that estimate exposure-response, with particular focus on perspectives for causal inference. Our goal is not to

review specific methodologies or studies, nor is it to extoll the advantages of “causal” versus “associational”

∗Corresponding author

1



evidence. Rather, we argue that potential-outcomes perspectives can elevate current policy debates with more

direct evidence of the extent to which complex regulatory interventions impact health. Augmenting the existing

body of exposure-response estimates with rigorous evidence of the causal effects of well-defined actions will

ensure that the highest-level epidemiological evidence continues to support regulatory policies.

Key words: Accountability, Air pollution, Clean Air Act, Health outcomes, Particulate matter

Abbreviations: Clean Air Act (CAA), Environmental Protection Agency (EPA)

1 A New Regulatory Environment Invites a New Brand of Epidemiolog-

ical Evidence

The claim that exposure to ambient air pollution is harmful to human health is hardly controversial in this day

and age, due in large part to the evidence amassed through decades of air pollution epidemiological research.

This body of research historically focused on hazard identification and more recently estimation of exposure-

response (or, more formally, concentration-response) functions relating how health outcomes differ with spatial

and/or temporal variations in ambient pollution exposure [1–9]. Although considerable uncertainty remains with

regard to essential finer-grade issues such as the specific shape of the exposure-response functions, the mechanics

of exactly how pollution harms the human body, and the achievement of an “adequate margin of safety” dictated

by the US Clean Air Act (CAA), evidence of the exposure-response relationship between pollution and health has

motivated a vast array of air quality control policies in the US and abroad. The collection of these measures has

undeniably improved ambient air quality over the past several decades [10, 11].

Despite the success of such regulatory policies for cleaning the air, an evolving regulatory and political envi-

ronment is placing new demands on input from the scientific community. With the prospect of increasing costs

resulting from proposed tightening of air quality standards, the evidence motivating these policies is being subject

to unprecedented scrutiny, and the scientific community must adapt by providing new types of evidence to support

current and future regulatory strategies [11, 12]. Policy makers, legislators, industry, and the public increasingly
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emphasize questions of whether past efforts have actually yielded demonstrable improvements to public health,

whether the costs associated with implementation of control policies such as the CAA (e.g., annual costs of the

1990 Amendments reaching $65 billion by 2020 [13]) are justified, and which existing strategies have provided

the greatest health benefits. These considerations reflect a shifting demand towards evidence of effectiveness of

specific regulatory interventions. Starting most notably with a 2003 report from the Health Effects Institute [14],

questions of so-called accountability assessment - assessment of the extent to which regulatory actions taken to

control air quality impact health outcomes - have been propelled to the forefront of policy debates. A National

Research Council report commissioned by the US Congress recommended that an enhanced air quality manage-

ment system strive to take a more performance-oriented approach by tracking effectiveness of specific control

policies and creating accountability for results, with similar calls for the importance of accountability echoed by

others, including the Environmental Protection Agency (EPA) [15–18]. Increased emphasis on the direct study of

the effectiveness of specific actions is one essential avenue to ensuring that epidemiological research continues to

inform air quality control policies amid the current regulatory climate.

While the ten-plus years following HEI’s initial report has seen an increase in studies framed as accountabil-

ity (see Table 1 as well as [19–22]), these studies have been heterogeneous with regard to analytic perspective

and specificity of evidence. Many share accountability objectives but are actually the type of exposure-response

studies that have been common in air pollution epidemiology for decades, and as such are not the most direct

means for evaluating the effectiveness of specific policies. Relatively few accountability studies are designed to

directly evaluate policies in line with the initial recommendations in [14], and consideration of complex long-term

interventions of direct relevance to regulatory policy has been particularly sparse. The goal of this commentary

is to sharpen the distinctions initially raised in [14], with particular regard to analytic perspectives on causal

inference using observational data. Ultimately, we argue for increased emphasis on perspectives rooted in a

potential-outcomes paradigm for causal inference to directly evaluate air quality regulations, highlighting distinc-

tions between this endeavor and estimating exposure-response. Section 2 contextualizes existing accountability

studies as either direct or indirect accountability. Section 3 discusses the role of causal inference in air pollution

accountability. Section 4 highlights several salient challenges with illustrative examples.
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2 Existing Accountability Studies: Direct or Indirect Assessment?

Table 1 lists a variety of studies that have been integral to the discussion of accountability assessment and the

formation of existing air quality control policies. Each study is classified according to the scientific question of

interest. Studies in Categories A and B, which we term “indirect” accountability studies, answer questions of the

form: “What is the relationship between exposure to pollution and health outcomes?”. This type of question has

been at the center of air pollution epidemiology for decades, and answers typically come in the form of exposure-

response relationships between (changes in) pollution exposure and (changes in) health outcomes. Importantly,

these studies do not consider the effectiveness of any specific regulatory action, but provide valuable evidence

for indirectly predicting the impact of policies. For example, EPA routinely uses exposure-response estimates

to estimate the expected benefits of current and future policies; if a policy reduces (or is expected to reduce)

pollution by a certain amount, then the exposure-response relationship indirectly implies the health impact of

the policy insofar as the relationship can be deemed causal [10, 13, 23]. We defer discussion of causality to

Section 3, but note here that this approach assumes that any observed exposure-response relationship would

persist amid the complex realities of actual regulatory implementation that will typically impact a variety of

factors. As a consequence, health impacts of regulatory interventions may not be accurately characterized by

indirectly applying exposure-response estimates to accountability assessments.

In contrast, studies labeled as Category C in Table 1 target a different scientific question of more direct rele-

vance to accountability assessment. Rather than investigate the relationship between pollution and health, these

studies answer the question “What is the relationship between a specific regulatory intervention and health?”.

These studies are “direct” accountability studies in that they directly evaluate the effectiveness of well-defined

regulatory actions, which more definitively informs questions as to the actual health benefits of these actions.

While relatively less common to air pollution epidemiology than studies of exposure-response, we argue that

direct accountability assessments are best equipped to meet the demands of a shifting regulatory environment

wrought with questions surrounding the effectiveness of specific policies. Of particular importance is the noted

lack of direct evaluations of broad, complex regulatory interventions, which are of utmost relevance to policy
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debates [20–22].

3 Causal Associations, Causal Effects, and the Experimental Paradigm

The role of causality is of obvious import for informing policy decisions, and the causal validity (or lack thereof)

of epidemiological evidence has always been central to the integration of scientific evidence into policy recom-

mendations [10]. However, approaches to inferring causality from available observational data can vary depending

on the scientific question of interest and the data available for analysis.

Causal inference in air pollution epidemiology has most commonly been undertaken within a “classical”

paradigm, which construes causal validity on a continuum according to how likely an observed association (e.g.,

between pollution and health) can be interpreted as “causal” [24]. This continuum is explicitly considered in

the approach to Integrated Science Assessments conducted by EPA, which classify evidence of the association

between pollution exposure and health as a “causal relationship,” “likely to be a causal relationship,” “suggestive

of a causal relationship,” “inadequate to infer a causal relationship,” or “not likely to be a causal relationship.”

Even in the absence of the word “causal,” the bulk of air pollution epidemiology has been implicitly undertaken

with this classical approach; an exposure-response relationship between pollution and health is estimated (e.g., in

a cohort study), then a judgment is made as to whether this relationship can be reasonably interpreted as causal,

and finally, hypothetical changes in exposure are input into the exposure-response function to infer the resulting

“health effect” that would be caused by such a change in pollution. Indirect accountability studies undertaken

with a classical approach to causality are classified as Category A in Table 1, and indeed represent the bulk of air

pollution epidemiological research being conducted today.

As an alternative to the classical paradigm, the potential-outcomes paradigm for causal inference has the dis-

tinctive feature that causal effects are explicitly defined as consequences of specific actions [25]. Rather than infer

causality based on belief of whether an estimated association can be interpreted as causal, potential-outcomes

methods entail definition of a clearly-defined action (a “cause”), the effects of which are of interest. This perspec-

tive can clarify many threats to validity that plague accountability studies. Both indirect and direct accountability
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assessments have been undertaken within a potential-outcomes paradigm for causal inference, the common thread

being application of the core tenets of experimentation to observational settings. Section 4 elaborates how framing

accountability studies in this way can clarify scientific objectives and possible threats to causal validity. Studies

in Table 1 classified in Categories B and C represent studies that are (often implicitly) framed as hypothetical ex-

periments within a potential-outcomes paradigm. Importantly, the distinction between categories B and C is not

the approach to causal inference per se, but rather to the type of causal question being asked. Studies in Category

B are framed as hypothetical experiments to estimate the causal effect of differential levels of pollution exposure

on health, rendering them indirect accountability studies of exposure-response. Studies in Category C frame ac-

tual air quality control interventions as hypothetical experiments to estimate causal effects of these interventions,

rendering them direct accountability studies of the effectiveness of specific interventions.

4 Clarifying Accountability Assessment with Potential Outcomes

The purpose of this commentary is not to review specific methodologies or studies, nor is it to extoll the advantages

of “causal” versus “associational” evidence. Rather, we argue that the shifting regulatory environment would be

better informed by evidence of the effectiveness of specific control policies, and that traditional epidemiological

approaches tailored to exposure-response estimation are not the most direct means to provide this evidence. In an

environment that brings skepticism and doubt about results drawn from observational data, analyzing specific

interventions with approaches rooted in potential-outcomes thinking can clarify the basis for drawing causal

inferences and bring a higher level of credibility to evidence used to support policy decisions [12]. Here we

outline this perspective as it relates to direct accountability assessment while alluding to challenges that have

arisen and highlighting distinctions with traditional exposure-response estimation.

4.1 Accountability Studies Framed as Approximate Experiments: Defining “The Cause”

The underlying features of randomized studies that make them the “gold standard” for generating causal evidence

remain pertinent to causal accountability assessment, with potential-outcomes methods framing observational
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studies according to how well they can approximate randomized experiments [26, 27]. The key idea is to define a

(possibly hypothetical) experiment consisting of an “intervention condition” and a “control condition” such that

if populations could be randomly assigned to these conditions, differences in observed health outcomes would

be interpreted as causal effects of the intervention. While defining the “intervention condition” in accountability

studies can be straightforward (e.g., it will likely be a regulatory action that actually occurred), framing account-

ability as a hypothetical experiment forces the specification of some alternative action that might have otherwise

occurred to serve as a relevant “control condition.” This exercise formalizes the research question by explicitly

defining a causal effect as a comparison between what would happen under well-defined competing conditions.

Hence the name of the potential outcomes paradigm; a causal effect of “Action A” relative to “Action B” is defined

as the comparison of the potential outcome if “Action A” were taken with the potential outcome if “Action B”

were taken. Thus, the salient question for accountability is not “Did health outcomes change after the interven-

tion?” but rather “Are health outcomes different after the intervention than they would have been under a specific

alternative action?”. Of utmost importance is that definition of the causal effect of interest is conducted without

regard to any assumed statistical model. Different models could be used to actually estimate this effect, but the

effect itself, along with its interpretation, remains consistent regardless of the modeling approach. This clarity is

essential for producing policy-relevant evidence. Compare this to traditional studies of exposure-response, which

a) do not necessarily explicate an action defining effects of interest and b) define “health effects” with parameters

(e.g., regression coefficients) in a statistical model, i.e., estimated health effects from two different models may

not even share the same interpretation.

4.2 Confounding and Estimating “Counterfactual” Scenarios

Estimating causal effects with comparisons between potential outcomes under competing “intervention” and “con-

trol” conditions is met with the fundamental problem that if the “intervention” is enacted, then outcomes under

“control” are unobserved. For example, evaluating the effect of a past regulatory policy requires knowledge of

what would have potentially happened if the policy had not been implemented. Hypothetical scenarios that never
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actually occurred are often referred to as “counterfactual” scenarios, and estimating what would have happened

under such scenarios is perhaps the most important challenge for direct accountability assessment.

Counterfactual scenarios have been explicitly considered, for example, in EPA cost-benefit analyses of the

CAA mandated by Section 812 of the act, which project two counterfactual pollution scenarios: one that assumes

past exposure patterns would have continued without the 1990 CAA Amendments and another that assumes an

expected change in exposure patterns under full implementation of the 1990 Amendments. These projections

are coupled with exposure-response functions from the epidemiological literature to project counterfactual health

scenarios that form the basis of the health-benefits analyses [13, 23]. However, these counterfactual projections

are not validated against studies of actual interventions, and thus are not sufficient for fully characterizing the

relationships between regulatory strategies and health [14].

Rather than project counterfactual scenarios by combining assumed exposure patterns with exposure-response

estimates, potential-outcomes approaches typically use actual data from the “control group” of the hypothetical

experiment to learn about what would have happened without the intervention, rendering identification of a control

population of vital importance. When assessing the impact of regulatory strategies, control populations could be

defined based on time (e.g., a population before promulgation of a regulation), or space (e.g., if some areas are

subject to an intervention and others not). Whether outcomes in the control population can actually characterize

what would have occurred absent the intervention boils down to the familiar concept of confounding, although

what exactly constitutes a “confounder” is slightly different than in the exposure-response setting.

For direct accountability, a comparison between outcomes among the “intervention” and “control” conditions

is unconfounded if the two populations are comparable with regard to factors that relate to outcomes. An un-

confounded comparison of outcomes between the intervention and control conditions yields an estimate of the

causal effect. If the two populations differ on important factors related to outcomes, then such a comparison is a

convolution of differences due to the intervention and differences due to other factors. Thus, if an important factor

relating to health, for example, smoking behavior, is comparable across the intervention and control populations,

then smoking behavior is not a confounder in the assessment of the intervention. Compare this to the typical

setting of exposure-response studies, where a “confounder” is generally regarded as a factor that is simultane-
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ously associated with pollution exposure and health outcomes. In both settings, the definition of a confounder is

a factor that is associated with “exposure” and “outcome,” the key difference being that, in a direct accountability

study, the “exposure” is actually the intervention, whereas in an indirect accountability study, the “exposure” is

air pollution (see Table 1).

There are a variety of analytic tools available to address confounding in nonrandomized accountability studies.

Specialized study designs, often described as “quasi experiments” circumvent the need to consider confounding

directly, as they support assumptions that an intervention was “quasi” randomized in the sense that it is unrelated to

health outcomes [12]. Such studies have been primarily used for indirect accountability assessment (see Table 1).

Absent the availability of such specialized circumstances, methods for confounding adjustment (e.g., matching,

weighting, stratification, or standardization) adjust for differences between intervention and control populations

so that comparison groups can be regarded as similar on the basis of observed factors, thus mimicking the design

of a randomized study. In either case, practical accommodation of confounding can be particularly challenging

for air quality interventions, as we discuss in the context of the examples of Section 4.3.

4.3 Two Examples: Localized Action vs. Regulatory Policy

We use two examples to illustrate specific features of framing direct accountability studies in a potential-outcomes

paradigm. First, consider the accountability study of [28] that investigates health impacts of the ban on the sale and

distribution of black coal in Dublin, Ireland. The coal ban represents a specific localized action that was followed

by significant decreases in the concentration of black smoke immediately following the ban, with concurrent

decreases in mortality. As with many studies of abrupt, localized interventions, definition of the hypothetical

experiment is straightforward; institution of the ban represents the “intervention condition,” with the “control

condition” of no ban, and the causal effect of interest is that of instituting the ban vs. the not instituting the

ban. The counterfactual scenario representing what would have happened without the ban is estimated using

data from the time period immediately preceding the ban, that is, Dublin before the ban serves as a “control

group” for Dublin after the ban. The key assumption permitting pre-ban conditions to represent what would have
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happened without the ban is that of temporal stability, which assumes that pre-ban health outcomes would not

have changed (i.e., remained stable) if no ban had occurred [29]. Localized interventions that result in immediate

changes in pollution and health outcomes can often support assumptions such as temporal stability and obviate

the need for sophisticated statistical methods to infer causality. However, even when studying an abrupt action,

threats to causal validity can arise, as illustrated in extended analyses of the Dublin coal ban revealing that long-

term trends in cardiovascular health spanning implementation of the ban - not the coal ban itself - contributed

to apparent effects on cardiovascular mortality [30]. Thus, pre-ban Dublin was not an adequate “control group,”

because factors relating to cardiovascular health confounded the pre- vs. post-ban comparisons. This violation of

temporal stability was only determined after inclusion of other control areas that were not subject to coal bans.

Similar threats to causal validity were illuminated through the inclusion of control populations in studies of the

impact of transportation changes during the 1996 Olympic Games in Atlanta [3, 31]. These experiences speak

to the importance of careful planning, possibly in the design stage of a prospective study, about inclusion of

appropriate control populations [17]. Contrast the coal-ban example with an accountability assessment of broad-

scale regulatory policy measures such as those emanating from Title IV of the 1990 CAA Amendments placing

emissions limits on power generating facilities, which bears relevance to the current debate over rules proposed

by EPA to limit greenhouse gas emissions. Unlike a localized, abrupt action, measures to reduce power plant

emissions represent a complex process comprised of a variety of actions targeting different pollutants at various

time scales, which vastly complicates causal inference. Many links of the chain of accountability [14] could be

of interest - causal effects on emissions (sulfur dioxide and others), on ambient air, and on health outcomes - but

difficulties arise even in the definition of these effects, as the heterogeneity of actions taken does not point to a

single clearly-defined intervention. Defining the causal effect of instituting the emissions limits vs. not instituting

the limits is complicated by the fact that facilities were subject to different limits at various implementation

phases, employed different strategies to reduce emissions (e.g., scrubbers, fuel shifts, low-sulfur coal, etc.), and

were able to exceed limits by purchasing allowances on the open cap-and-trade market initiated as part of the

Acid Rain Program. As one simplistic example to illustrate the specificity required to define causal effects in this

setting, consider an accountability assessment of the extent to which installation of sulfur dioxide scrubbers on
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coal-burning plants during the first few years of the Acid Rain Program (1995-1997) impacted emissions, ambient

air quality, and health outcomes. Figure 1 depicts the locations of 407 coal-burning power plants that participated

in the Acid Rain Program during 1995-1997, distinguishing the 113 plants that installed sulfur dioxide scrubbers

from the 294 plants that did not. Figure 2 depicts monthly sulfur dioxide emissions in these plants from 1995-

2012. The hypothetical experiment can be defined with an “intervention condition” comprised of the pattern of

scrubber installation that actually occurred during these years, and the “control condition” the hypothetical setting

where no such scrubbers were installed during this time. This defines the causal effect of the scrubber installations

on emissions, ambient air quality, and health outcomes, independently from other concurrent measures that may

have been taken to control emissions.

To characterize the counterfactual scenario with no scrubbers during 1995-1997, the long time lag between

scrubber installation and any measurable impact on health renders an analysis assuming temporal stability (e.g.,

pre vs. post scrubber comparisons) tenuous at best. Information about what would have happened without the

scrubbers could be gleaned during the same time frame from facilities that did not install scrubbers. Using fa-

cilities without sulfur dioxide scrubbers as a “control group” for those that did install scrubbers is met with at

least two important complications. First is the reality that actions taken at a given plant could impact pollution

and health outcomes in distant areas, including no-scrubber areas. This transport phenomenon, known in the

statistical literature as “interference,” is an active area of current research in potential-outcomes methods [32, 33].

Second, the success of using no-scrubber facilities to learn about what would have happened in and around facili-

ties that did install scrubbers hinges on the ability to adjust for confounders to parse consequences of the scrubbers

from inherent differences between types of facilities and their surroundings. Informally, confounding adjustment

would ensure that emissions, ambient pollution, and health outcomes in and around facilities that installed a

scrubber are only compared against those from a no-scrubber area that is comparable with respect to confound-

ing factors (facility characteristics, controls for other pollutants, population demographics, historical pollution,

etc.). Compare this perspective with one rooted in estimation of exposure-response, which would rely on esti-

mates of the relationship between changes in sulfur dioxide emissions and changes in health outcomes, possibly

comprised of separate estimates of the emissions-ambient air link and the ambient air-health link. Reliance on
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exposure-response functions in this setting would obscure the goal of accountability for specific, well-defined ac-

tions relative to a hypothetical experiment defining the causal effects of installing scrubbers (versus not installing

scrubbers) on all outcomes of interest. Using a potential-outcomes approach for direct accountability assessment

cannot escape the inherent difficulties of inferring causality with observational data, but can serve to clarify the

link between quantitative methods and the realities of evaluating broad, long-term regulatory policies. This clarity

is essential for producing policy-relevant evidence.

5 Conclusion

Over the past ten years, important progress in accountability assessment has initiated a new dimension to the

scientific evidence available for informing policy decisions. Important challenges remain, in particular for evalu-

ating large-scale regulatory policies that are not characterized by a single action. We have attempted to sharpen

the distinction between analytic perspectives for exposure-response estimation and for estimating causal effects of

well-defined actions. While the former has indirect relevance to accountability assessment, we argue that the latter

perspective is necessary in order to advance accountability assessment beyond evaluation of localized, abrupt ac-

tions and towards informing policy debates with evidence of the effects of broad and complex regulations. While

no single analytic strategy can overcome all the challenges inherent to accountability, the best science should

be generated from a variety of available approaches. We argue that rigorous efforts to directly evaluate causal

effects of well-defined regulatory interventions constitute one such approach that, while distinct from traditional

epidemiological tools, is essential to the current regulatory climate.
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Table 1: Existing accountability studies classified according to the causal question of interest, 1993–2013.

Direct or Indirect Causal Analysis
Category Study Study Name Description Accountability Questions

A Dockery, 1993 [1] Six Cities PM2.5,PM10, Mortality Indirect What is the association between
A Laden, 2006 [5] Six Cities Follow Up PM2.5. Mortality Indirect pollution exposure and health?
A Zeger, 2008 [6] US PM2.5, Mortality Indirect Is this a causal association?
A Pope III, 2009 [7] US PM2.5, Life Expectancy Indirect (Classical Paradigm)
A Correia, 2013 [8] US PM2.5, Life Expectancy Indirect
B Pope III, 1996[2] Utah Valley Steel Mill PM10, Various Health Indicators Indirect
B Chay, 2003[34] 1981-1982 Recession TSP, Infant Mortality Indirect What is the causal effect
B Pope III, 2007 [35] Copper Smelter Strike SO2−4, Mortality Indirect of differential exposure to
B Moore, 2010 [36] Southern California O3, Asthma Indirect pollution on health?
B Currie, 2011 [37] New Jersey E-Z Pass Birth outcomes Indirect (Potential Outcomes Paradigm)
B RIch, 2012[38] Beijing Olympics PM2.5, cardiovascular biomarkers Indirect
B Chen, 2013 [9] Huai River Policy TSP, Life Expectancy Indirect
C Friedman, 2001 [3] Traffic, 1996 Atlanta Olympics O3, Asthma Direct
C Hedley, 2002 [39] Hong Kong Sulfur Restriction Sulfur dioxide, Mortality Direct What is the causal effect
C Clancy, 2002 [28] Dublin Coal Ban Black Smoke, Mortality Direct of the intervention
C Tonne, 2008[40] London Traffic Charging NO2,PM10, Life Expectancy Direct on health?
C Chay, 2003 [41] 1970 CAA TSP, Adult Mortality Direct (Potential Outcomes Paradigm)
C Greenstone, 2004 [42] 1970 CAA Sulfur dioxide Direct
C Zigler, 2012 [43] 1990 PM10 Nonattainment PM10, Mortality Direct
C Deschenes, 2012 [44] NOx Budget Program O3, pharmaceutical expenditures, mortality Direct

Particulate Matter (PM10 ,PM2.5); Ozone (O3); Total Suspended Particles (TSP); Nitrogen Oxides (NOx , NO2); Sulfur Dioxide (SO2), Sulfate (SO4); Clean Air Act (CAA)
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Figure 1: Locations of 407 coal-burning power plants participating in the Acid Rain Program during 1995-1997.
Size of plotting symbol is proportional to the average number of sulfur dioxide tons emitted at each location
during 1995-1997.

Figure 2: Monthly sulfur dioxide emissions from 1995-2012 among coal-burning power plants participating in
the Acid Rain Program during 1995-1997. Thick, bold lines are for facilities at deciles of sulfur dioxide emissions
during 1995-1997.
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INTRODUCTION

The report by Dr. Corwin Zigler and colleagues, 
Causal Inference Methods for Estimating Long-
Term Health Effects of Air Quality Regulations, is 
the latest in a series of reports funded as part of 
HEI’s accountability research program. Established 
15 years ago, this program has aimed at evaluat-
ing whether regulatory and other actions taken to 
improve air quality have resulted in the intended 
improvements in air quality, exposure, and health 
outcomes. 

Zigler and his colleagues tackled a number of 
important questions that have remained unan-
swered by previous air pollution accountability 
research. A major goal of the study was to use both 
established methods and newly developed methods 
that would enable a “direct” accountability assess-
ment of air pollution interventions — that is, to as-
sess from a statistical standpoint whether the inter-
vention had caused changes in pollutant levels or 
health outcomes. This “direct” approach contrasts 
with the “indirect” accountability approach in 
which the future health benefits of an intervention 
are estimated from the intervention’s projected 
impact on future exposures combined with the ex-
posure–response relationships derived from retro-
spective epidemiological studies. 

As part of demonstrating their methods, they 
applied them in two well-developed case studies 
of interventions designed to have long-term im-
pacts on health, not just the shorter term interven-
tions that have been the focus of much previous 
accountability research. Longer term effects of air 
pollution interventions on health are important 
because they account for the majority of the esti-
mated benefits from improving air quality. Another 

Causal Inference Methods for Estimating Long-
Term Health Effects of Air Quality Regulations

What This Study Adds
•	 Zigler	and	colleagues	have	provided	a	

well-written	primer	on	how	more	systematic	
approaches	to	testing	of	causality	(i.e.,	
through	use	of	causal	inference	frameworks	
and	methods)	could	be	adapted	to	the	
assessment	of	the	effects	of	air	pollution	
interventions	on	air	quality	and	health.

•	 In	a	major	undertaking,	they	successfully	
demonstrated	the	use	of	existing	and	newly	
developed	methods	in	two	case	studies	
of	regulatory	actions:	the	designation	of	
counties	to	be	in	nonattainment	with	the	
National	Ambient	Air	Quality	Standards	for	
PM10	and	the	installation	of	SO2	scrubbers	
on	power	plants.	

•	 The	scrubber	case	study	provides	both	
newly	developed	methods	and	a	rare	
comparison	of	two	different	but	analogous	
statistical	approaches	—	principal	
stratification	and	causal	mediation	
analysis	—	applied	to	the	same	complex	
multipollutant	problem.	

•	 Their	work	demonstrated	the	critical	
importance	of	involving	multidisciplinary	
teams	with	detailed	technical	knowledge	
of	the	interventions	to	ensure	appropriate	
study	design	and	interpretation.	

•	 The	Committee	concluded	that	these	
accountability	methods	are	an	important	
addition	to	the	“toolkit”	and	should	continue	
to	be	further	explored,	but	cannot	wholly	
substitute	for	accountability	assessments	
that	rely	on	evidence	from	other	scientific	
methods,	including	more	traditional	
epidemiology	analyses.
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important feature of this project is the investigators’ 
development of new methods for evaluating the im-
pacts of interventions on multiple pollutants and the 
pathways via which the interventions and pollutants 
may affect exposure and health outcomes. To provide 
expertise on the complexities of the air pollution in-
terventions chosen, Dr. Zigler added to their team 
Mr. John Bachmann, former Associate Director for 
Science/Policy and New Programs for the U.S. EPA’s 
Office of Air and Radiation. Finally, in a commitment 
to transparency and data access, they plan to make 
publicly available the statistical code necessary both 
to assemble and link their data sources and to imple-
ment their newly developed methods. 

APPROACH

As in other published work on causal methods, the 
first important feature of their approach was the re-
framing of air pollution interventions as a hypothetical 
randomized experiment, analogous to a randomized 
clinical trial in which some subjects are randomly as-
signed to receive “treatment” and others receive none, 
the “controls.” Randomized studies are considered the 
optimal study design for determining the efficacy, or 
causal influence, of treatment because randomization 
typically results in balance of potential confounders be-
tween the treatment and control groups. 

The next important feature of their approach 
was to apply and extend two different but conceptu-
ally analogous methods, principal stratification and 
causal mediation, to investigate the importance of 
alternative causal pathways for the interventions. The 
causal pathways are the pathways through which an 
intervention may act to cause changes in the outcome 
of interest. The pathway may represent the direct ef-
fect of one factor on an outcome (e.g., air pollution 
on health outcomes) or may involve the mediation by 
some intermediate step or factor. 

Principal stratification involves comparison of 
outcomes between key strata or groupings of the data 
(for example, the effects on health in areas where an in-
tervention has caused a reduction in air pollution and 
those where it has not). Using this general example, it 
defines “associative” effects as those effects on health 
that occur when an intervention caused a meaningful 
reduction in air pollution and “dissociative” effects as 
the effects on health outcomes that occur when the 
intervention did not have a causal effect on air pollu-
tion. The size of the associative effects relative to the 
dissociative effects provides an indication of the rela-
tive importance of the two pathways, in this example 
an indication of the intermediate role of the reduction 

in air pollution. Causal mediation methods are also 
designed to evaluate the effect of mediators or inter-
mediate steps on an outcome of interest but in a more 
formal way. Using our general air pollution example, 
causal mediation divides the effects of an intervention 
into two components: (1) the “natural direct” effect, 
defined as the direct effect of the intervention on the 
outcome, and (2) the “natural indirect” effect, defined 
as the causal effect mediated by changes in some in-
termediate factor like a specific air pollutant. However, 
unlike in principal stratification, these two effects sum 
to the total effect. The authors demonstrated the use of 
these methods in two case studies of different regula-
tory interventions.

In the first case study, the authors evaluated the 
effect on air quality and on health outcomes of des-
ignating areas of the Western United States to be in 
“non-attainment” with the 1987 National Ambient Air 
Quality Standards for PM10 in the period 1990–1995. 
Specifically, they examined the causal effects of these 
designations on ambient PM10 concentrations in 
1999–2001 and on all-cause mortality and on hospi-
talizations for cardiovascular and respiratory diseases 
in 2001. In the framing of the analysis like a random-
ized controlled experiment, the areas designated as in 
nonattainment are considered to be assigned to “treat-
ment” whereas attainment areas served as “controls.” 
Because these two groups were not actually selected 
via a randomized process, the authors developed and 
used propensity scores, an aggregate measure of mul-
tiple potential confounding factors, to identify groups 
of nonattainment (219) and attainment areas (276) 
that appeared comparable. The first step was to esti-
mate the causal effects of nonattainment designation 
on PM10 concentrations and on Medicare health out-
comes, which they did using regression techniques. 

The investigators next used principal stratification 
to examine whether causal effects of non-attainment 
designation on health outcomes were more likely than 
not to have occurred via causal reduction in ambient 
PM10 concentrations. For this case study, they defined 
“associative” effects as the effects on health when the 
nonattainment designation was found to cause a re-
duction in ambient PM10 by at least 5 µg/m3, and “dis-
sociative” effects as the effects on health outcomes 
that occurred when the designation did not have a 
causal effect on PM10. 

The second case study was designed to evaluate 
the causal impacts on emissions and ambient PM2.5 
of installing a range of scrubber technologies on coal-
fired power plants pursuant to requirements to reduce 
emissions of multiple pollutants (SO2, NOx, and CO2) 
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under the Acid Rain Program, a program created by the 
1990 amendments to the Clean Air Act. The effects of 
scrubbers on pollutant emissions and ambient PM2.5 
concentrations have been well-studied and under-
stood, so this intervention provided a good opportu-
nity to test whether the new methods would perform 
as expected. 

The investigators estimated the causal effect of 
scrubber installation on emissions by comparing 
the 2005 emissions of SO2, NOx, and CO2 and levels 
of ambient PM2.5 observed for 63 power plants that 
were equipped with scrubbers (“treated”) with the 
emissions from those 195 power plants that were not 
(“controls”). Zigler and colleagues then applied both 
principal stratification and causal mediation methods 
to evaluate the extent to which the causal effect of a 
scrubber on ambient PM2.5 was mediated through re-
duced emissions of SO2, NOx, and CO2. This analysis is 
notable because it involves assessment of the roles of 
multiple pollutants whereas most accountability as-
sessments consider only one. It is also a rare applica-
tion of the two methods to the same complex problem. 

The principal stratification analysis compared 
the “associative” effects of scrubbers on PM2.5 — the 
causal effects of a scrubber on ambient PM2.5 among 
power plants where emissions of SO2, NOx, and CO2 
were causally affected by the presence of a scrubber 
— with the “dissociative” effects — the causal effects 
of a scrubber on ambient PM2.5 among power plants 
where the emissions were not meaningfully affected. 

Zigler and colleagues developed new Bayesian 
nonparametric methods to conduct their multipollut-
ant causal mediation analysis. In this case study, they 
defined the “natural direct” effect as the effect that the 
presence of scrubbers had on PM2.5 and the “natural 
indirect” effects as the causal effects on PM2.5 medi-
ated by changes in the emissions of the three pollut-
ants, either individually or in various combinations 
with each other. 

RESULTS AND INTERPRETATION

In their evaluation of the effect of nonattainment 
designation, the authors concluded that there was some 
evidence that the intervention caused a small reduction, 
on average, in ambient PM10 levels, in all-cause mortal-
ity, and in hospitalizations for respiratory disease among 
Medicare beneficiaries. They did not find a reduction in 
hospitalizations for cardiovascular disease. 

With their principal stratification analysis, Zigler 
and colleagues found differing results for the interme-
diary role of PM10 in causal effects on the three health 

outcomes. Contrary to expectations, their analysis sug-
gested a reduction, on average, in mortality even in areas 
where their analyses reported that PM10 was not causally 
affected. The authors suggested that the observed causal 
effect of nonattainment designation on mortality, in the 
absence of a strong associative effect for PM10, may be 
due to causal pathways other than the one involving re-
duction of PM10. However, they suggested their results 
provide evidence that PM10 played a causal role in the 
reduction of hospitalization for respiratory disease, but 
again, not for cardiovascular disease. 

As the authors noted, all of the estimates from 
these analyses were accompanied by substantial un-
certainty, indicated by broad posterior 95% confi-
dence intervals that included zero. As a result, the HEI 
Health Review Committee thought the investigators 
generally overstated the average causal effects of non-
attainment designation and the role of PM10 in this 
study. The Committee agreed that a major contributor 
to the uncertainty in the results was the ambiguity of 
the intervention; that is, that nonattainment designa-
tion is not a discrete intervention, but is subject to a 
number of sources of heterogeneity in the actions 
implemented over space and time. 

In their second case study, Zigler and colleagues 
found results that were consistent with what is known 
about scrubbers. They estimated that installation 
of scrubbers had, on average, caused reductions in 
SO2, but not in NOx and CO2 emissions, and had also 
caused modest reductions in ambient PM2.5 concen-
trations. Their multipollutant causal pathways analy-
ses using principal stratification and causal mediation 
methods yielded broadly similar results. That is, both 
led the authors to conclude that the observed causal 
reductions in ambient PM2.5 among power plants 
equipped with scrubbers were effected principally 
through the causal reduction of SO2 emissions rather 
than through reductions in emissions of NOx and CO2. 
Their causal mediation analysis provided a somewhat 
clearer support for that conclusion because the re-
duction in PM2.5 mediated by SO2 (the natural indi-
rect effect) was statistically significant and larger than 
those mediated either by NOx and CO2, which were all 
close to zero. The 95% posterior intervals for all the re-
sults in the principal stratification analysis were quite 
broad and included zero.

Although the scrubber case study was conceptu-
ally clearer for demonstrating the methods, the authors 
had made a number of simplifying assumptions that 
could have contributed to uncertainties in the results, 
a question that could be explored more fully in fu-
ture analyses. The investigators’ first iteration of the 



Research Report 187

Recycled Paper

H E A L T H
E F F E CTS
INSTITUTE
75 Federal Street, Suite 1400

Boston, MA 02110, USA

+1-617-488-2300 phone 
+1-617-488-2335 fax

pubs@healtheffects.org 

www.healtheffects.org

analysis yielded results that ran counter to established 
knowledge (i.e., the results suggested SO2 scrubbers’ 
effects on ambient PM2.5 were not causally mediated 
by changes in SO2 emissions) that led them to identify 
and correct for additional important characteristics in 
their final analysis. It is still difficult to know if there 
were other regulation-related activities undertaken 
that blurred the distinctions between treated and un-
treated facilities and that could explain the high de-
gree of uncertainty observed in the results. 

CONCLUSIONS 

The Committee concluded that Zigler and his 
colleagues provided a well-conducted study and a 
well-written report that makes a major contribution 
to the field of accountability research in the context 
of air pollution and health. The statistical framework 
described in this report provides a particularly clear 
and explicit approach to thinking about the health im-
pacts of all kinds of interventions designed to reduce 
emissions and ambient air pollution. Although most 
of the causal inference methods Zigler and colleagues 
used were not new, their extensions to two substantive 
air pollution interventions and to multiple pollutants 
were a major undertaking in and of themselves. The 
advances they made in applying the methods in real 

applications have moved us further than other meth-
odological studies and provided a clearer path toward 
further development and deployment of the methods 
in other settings. 

What the considerable methodological work in 
this study indicates, however, is that the presence of a 
clear causal framework is not a substitute for detailed 
consideration of potentially important covariates and 
the testing of the sensitivity of results to key assump-
tions made in implementing the methods. Both these 
case studies demonstrated the critical importance of 
involving multidisciplinary teams with detailed tech-
nical knowledge of the interventions being studied. 
Even so, it is difficult to be sure to what extent the 
uncertainty in the causal effects estimated is attribut-
able to weakness in the causal relationship or to the 
imprecision in the problem definition and underlying 
data. Finally, not all questions can necessarily be ad-
dressed in a causal framework, for example, situations 
in which suitable “controls” do not exist or in which 
analysts need to predict the potential impacts of some 
future intervention. The Committee concluded that 
these and other “direct” accountability methods are 
an important addition to the “toolkit” and should con-
tinue to be further explored, but cannot wholly substi-
tute for “indirect” accountability methods.


	1. HEI Causal Inference Workshop Outline
	2. Biosketches_Demystifying Causal Inference
	3. Zigler and Dominici Publication
	4. HEI Review Committee Statement_ Zigler

