Successes and Challenges in Reducing Emissions and Ambient NO₂ in High-Traffic Areas

The Near-Road Environment in London

David Carslaw

University of York & Ricardo-AEA

Background

- Emissions of NO_x are important at all scales in atmospheric science
- At the local scale concentrations of NO₂ are of interest from a health perspective
- Much of the interest in NO₂ in Europe is motivated by European ambient air quality Directives
 - Annual mean limit of 40 μg m⁻³ (~ 21 ppb)
 - Hourly limit of 200 µg m⁻³ (~ 105 ppb) not to be exceeded more than 18 times in a calendar year
 - Should have been met by 2010...
- Today, many locations in Europe (mostly close to roads) do not meet the Directive limits

Directly emitted NO₂ and emissions

of NO_x

NO₂ hourly exceedances
 2 in 2002; 463 in 2003 at
 Marylebone Road in
 London

 Importance of directly emitted NO₂ first detected observed – CRT particle filters + ?*

...but expected urban road transport NO_x emissions to decrease by over a factor of two by 2015 – so a non-issue?

2004

2008

year

2012

2016

^{*}Carslaw, D.C. (2005). Evidence of an increasing NO_2/NO_x emissions ratio from road traffic emissions. *Atmospheric Environment*, 39(26) 4793-4802.

Trends in ambient NO_x and NO_2 in London at *roadside* sites

- Simple aggregated mean across 32 sites in London with at least 10 years of data
- More evidence of downward trends elsewhere in the UK and across Europe

Primary NO₂ emissions can be very important

- In 2008: $NO_x = 312 \mu g \text{ m}^{-3}$, $NO_2 = 115 \mu g \text{ m}^{-3}$ hours > 200 $\mu g \text{ m}^{-3} = 812$
- In 2014: $NO_x = 316 \mu g \text{ m}^{-3}$, $NO_2 = 79 \mu g \text{ m}^{-3}$ hours > 200 $\mu g \text{ m}^{-3} = 17$
- Very different NO₂ response is due to primary NO₂ emissions

Road vehicle primary NO₂ across the UK

- Analysis of 49 UK roadside ambient sites*
- Substantial increases since the late 1990s
- Evidence of decreases over past few years

*Carslaw, D.C. and Beevers, S.D. (2005). Estimations of road vehicle primary NO₂ exhaust emission fractions using monitoring data in London. *Atmospheric Environment*, 39(1): 167-177.

Some London roads have very high concentrations of NO₂

- Oxford Street so far in 2015 ...
 - Mean 156 μg m⁻³
 761 hours > 200 μg m⁻³
 maximum = 620 μg m⁻³
 - For EU limits, highest of any concentrations in the world (...to my knowledge!)
- It is important we understand the sources of NO_x and NO₂ if we are to tackle this issue effectively

Vehicle emission remote sensing

- Used the University of Denver instrument for 2 x 6 weeks in 2012 and 2013 measures NO₂ and NH₃
- > 100,000 vehicle measurements mostly in London
 - On-road experiments and controlled conditions

- Focus on quantifying the NO₂ component in exhaust
- Emissions information on buses and taxis – important in central London
- Improved quantification of emissions from different emission technologies
- Measurements of an *urban-optimized* SCR retrofit system on buses
- First on-road Euro 6 remote sensing measurements?

Gasoline passenger car NO_x

Based on > 30,000 measurements

- Modern gasoline vehicles are very low emitters of NO_x and NO₂
- Still useful to accelerate the removal of older non-catalyst and catalyst vehicles though...

Diesel car NO_x – comparison with Type Approval emissions

- Type Approval emissions
 - 1000s of new car models tested each year, including CO₂ and NO_x
 - NO_x is legislated NO₂ is not
 - Tested over New European Test Cycle (NEDC)
- Compare with remote sensing data
 - Use *same* measurement unit g NO_x per kg fuel burnt
 - Sample is >25,000 vehicles
- Euro 6 emit 40% less NO_x than Euro 5
 - Type Approval/legislation would suggest a 56% reduction

Primary NO₂ from passenger cars – trends over time

- Gasoline car emissions are consistently very low
- Diesel car NO₂ emissions have increased considerably
- Euro 6 diesel NO₂ is lower than Euro 5
 - Note uncertainties need more measurements
 - Reduction in NO₂ emissions as catalysts become less active over time?

Urban bus emissions – example from Oxford

- Measurements on Oxford High Street
 - Closed to most other vehicle types
 - Exceedances of annual and hourly NO₂ Limit Value
- >1700 measurements of buses
 - Mostly Euro V (83%)
 - Broad mix of technologies including hybrid SCRs

Urban bus emissions

- Large range in NO_x performance
 - Factor of ~6 within Euro V SCR…
 - Some Euro V are higher than earlier Euro classes
- Even larger variation in NO₂ emissions
 - Highest NO_x emitter is lowest NO_2 emitter
 - Very different consequences for ambient NO₂ concentrations

Transport for London (TfL) retrofit bus emissions

DOC

DPF

Ammonia slip catalyst

SCR catalysts

 > 1000 Euro III buses converted to a 'low-NO₂' SCRT

- CRT = Continuously Regenerating Trap
- SCR = Selective Catalytic Reduction
- Thermally optimised + larger catalyst
- Certain bus routes targeted
 - Remote sensing measurements over 2 weeks
 - Ambient measurements over several years
- Our 2012 measurements showed Original Equipment Manufacturer (OEM) SCR systems were largely ineffective at reducing NO_x*
- Is retrofitting with SCRT effective?

^{*}Carslaw, D.C. and Rhys-Tyler, G. (2013). New insights from comprehensive on-road measurements of NO_x, NO₂ and NH₃ from vehicle emission remote sensing in London, UK. *Atmospheric Environment*, Vol. 81 339-347.

Measurements

- Two weeks in west London (on-road measurements)
 - > 700 SCRT buses over a range of speeds/accelerations
 - 122 nominally identical Euro III non-SCRT buses measured
- Controlled measurements at a test track location – single bus
 - Full SCRT
 - SCR only
 - Base bus (just the silencer)
 - Engine/exhaust measurements at 1 Hz
 - [+ black carbon + commercial remote sensing instrument]

On-road measurements in London

- On average we see a 45% reduction in emissions of NO_x
- The corresponding reduction in NO₂ is **61**%
- These reductions are *relatively* substantial compared with the average performance of the bus fleet in London including OEM SCR systems

A closer look at the emissions

- Emissions distribution
 - SCRT buses sometimes behave like 'base' buses
 - Other times there is ~90% reduction in NO_x
- Test track results
 - Importance of SCR inlet temperature
 - ->200°C gives 90% reduction in NO_x
- Expect greater reduction in NO_x where engine runs hotter

350

⁵ speed

(km hr⁻¹)

0.000

150

200

SCR inlet temperature (deg. C)

Concluding remarks

- Two main things have occurred over past 10 years or so
 - Directly emitted NO₂ emissions from diesel vehicles increased, and
 - Diesel total NO_x emissions (light and heavy duty) have not decreased as expected
- Emissions of NO_x and NO₂ from modern gasoline passenger cars are consistently low
- Euro 6 diesel passenger cars show an encouraging reduction in NO_x and to a lesser extent NO_2
 - Need more data from wider range of emission reduction technologies

Concluding remarks

- The wider bus / truck fleet can have highly variable NO_x and NO₂ emissions performance
 - Even for vehicles with nominally the same technology
 - Ambient NO₂ issues could be very dependent on choice of urban bus fleets in many urban areas
- Challenging for emissions inventories...
- NO₂ as an issue in Europe will remain important for many years to come

Acknowledgements

- King's College London
- Defra for funding the emissions measurements
- Don Stedman & Gary Bishop, University of Denver, for use of the FEAT instrument