PM Fuel Effects Results from EPAct/V2/E-89 Study and Related Work Since

Presented by Aron Butler US EPA Office of Transportation & Air Quality December 8, 2016

Three analyses of two test programs:

- Original design analysis of EPAct test program
- PM Index analysis of EPAct test program
- PM Pilot Study and results

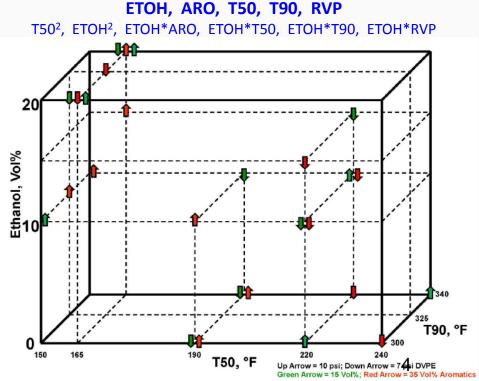
Background on EPAct Study

Energy Policy Act of 2005 gave statutory direction for EPA to produce updated models of fuel property effects on emissions

- These models drive inventory and air quality assessments
- No data on fuel effects from Tier 2 vehicles with which to assess validity of existing models

Useful model requires a statistically-designed fuel matrix covering relevant properties across the range of in-use fuels

- Need ability to compare present and past years, multiple localities, and varying regulatory scenarios
- Splash blending studies are unable to discern the effects of ethanol's presence from changes in other fuel properties, and therefore do not meet EPA's modeling needs (or the statutory directive)
- Performed literature review to select most relevant parameters and interactions


Overview of EPAct Study Design

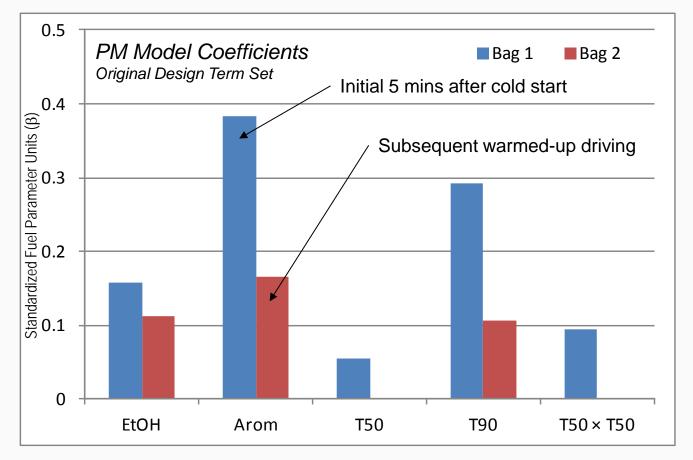
Design and data collection spanned ~4 years 2006-10

- 27 test fuels carefully blended from refinery streams to represent the range of in-use fuels
- 15 high-sales MY 2008 LD vehicles, Tier 2 compliant (all PFI)
- LA92 cycle at 75F, 2+ test replicates per vehicle/fuel combination (956 tests)
- Detailed procedures for vehicle and fuel handling
- Measured several gaseous emissions plus particulate matter (PM)

Brand	Model	Engine Size
Chevrolet	Cobalt	2.2L 14
Chevrolet	Impala FFV	3.5L V6
Saturn	Outlook	3.6L V6
Chevrolet	Silverado FFV	5.3L V8
Toyota	Corolla	1.8L I4
Toyota	Camry	2.4L 14
Toyota	Sienna	3.5L V6
Ford	Focus	2.0L 14
Ford	Explorer	4.0L V6
Ford	F150 FFV	5.4L V8
Dodge	Caliber	2.4L 14
Jeep	Liberty	3.7L V6
Honda	Civic	1.8L I4
Honda	Odyssey	3.5L V6
Nissan	Altima	2.5L 14

Key steps:

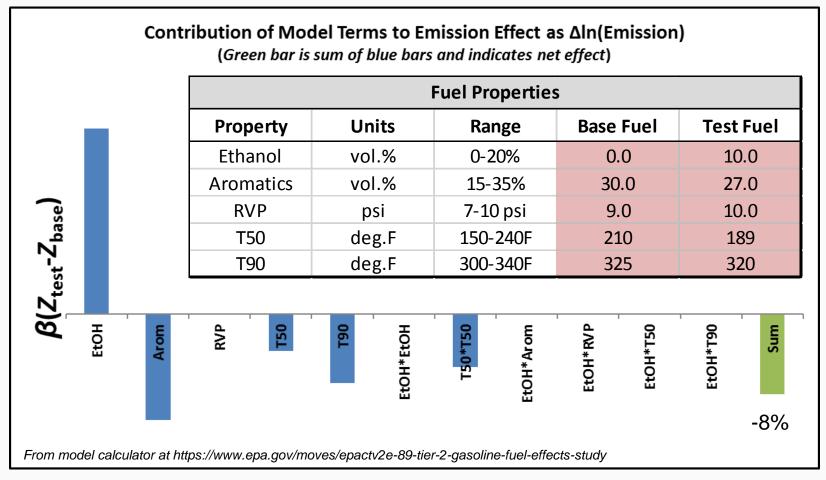
- Fuel property values were standardized into z-scores
- Emission data were transformed using natural logarithm
- Models were fit using maximum likelihood estimation
 - Allows inclusion of all tests including those producing "censored" measurements (i.e., below detection limits)
 - Bag 1 PM data contains 45 zeros, bag 2 has 47 zeros (out of 955 obs.)
 - Omission of tests containing zeros from the analysis could bias the model results
- Reduced via backwards elimination based on goodness of fit using likelihood ratio tests


Detailed analysis report and peer review comments available on EPA website (search for "epact study")

Original Findings on PM

First comprehensive look at gasoline PM fuel effects

• Positive correlation with aromatics, T90, T50, and ethanol



Example Model Application

Positive coefficient doesn't necessarily mean PM goes up for ethanol blends; depends on other fuel properties

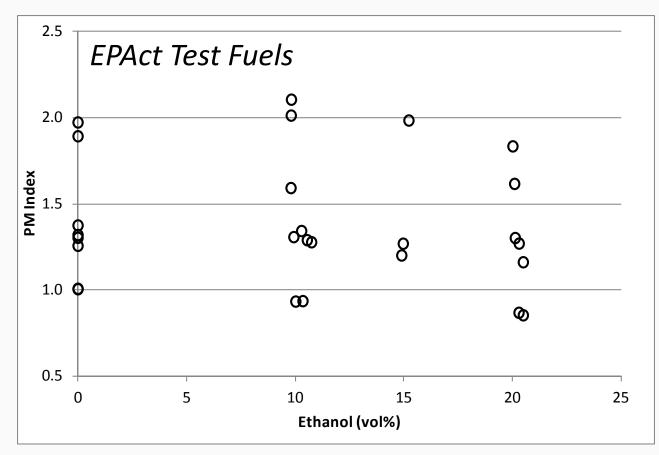
• Example shows reduced cold-start PM for E10 splash blend

Contemporary to EPAct data collection and analysis, researchers at Honda published the PM index (or PMI)

Correlates PM emissions to molecular structure and volatility using fuel speciation data

$$PM Index = \sum_{i=1}^{n} \frac{DBE_i + 1}{VP_i} \times Wt\%_i$$

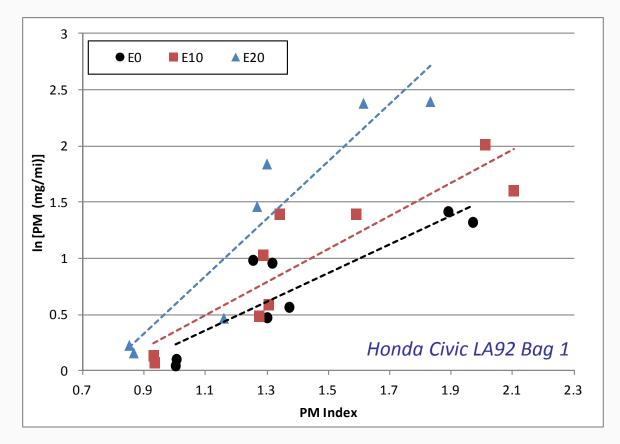
i = fuel component from speciation analysis $DBE_i =$ double bond equivalent of component i $VP_i =$ vapor pressure in kPa of component i at 443K $Wt\%_i =$ weight percent of component i in fuel


HC Species	DBE	
Paraffins	0	
Monocycloparaffins	1	
Monoaromatics	4	
Naphthalenes	7	
Ethanol	0	

• Suggested total aromatics as modeled in EPAct study may have been too broad a parameter for trying to understand and predict PM emissions

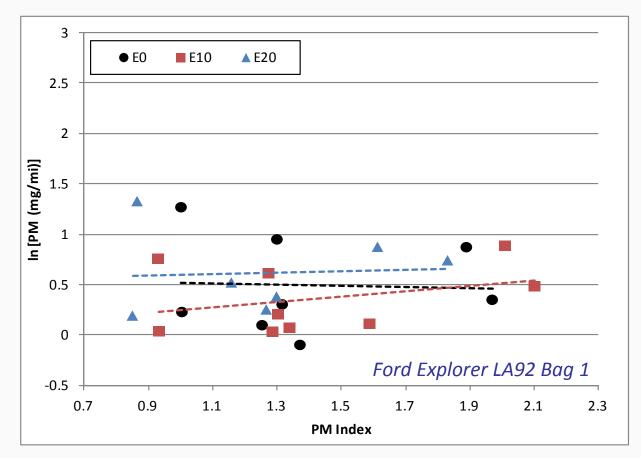
Low correlation between PMI and ethanol allowed further analysis

• Aromatic content of EPAct test fuels was specified by carbon number to reflect proportions typical in market fuels



9

PM Index and Ethanol – More Sensitive Vehicles


10 of 15 vehicles showed a strong correlation between PM emissions and PM Index, and ethanol having a reinforcing effect

PM Index and Ethanol – Less Sensitive Vehicles

5 of 15 vehicles showed no clear effect of PM Index or ethanol on emissions

Before fitting models, needed to consider whether PMI is correlated with other terms

- Pearson coefficients:
 - Total aromatics (0.71)
 - T90 (0.64)
 - T50 (-0.07)

Used the same procedures as outlined earlier

Original Design	PMI Term Set	
EtOH	EtOH	
Arom	RVP	
RVP	T50	
T50	PMI	
T90	T50 imes T50	
T50 imes T50	$EtOH \times EtOH$	
EtOH imes EtOH	EtOH imes T50	
EtOH - Arom	EtOH imes RVP	
EtOH imes T50	$PMI \times EtOH$	
EtOH × T90	$PMI \times RVP$	
EtOH imes RVP	$PMI \times PMI$	
	$PMI \times T50$	

Table shows reduced model coefficients (statistically significant)

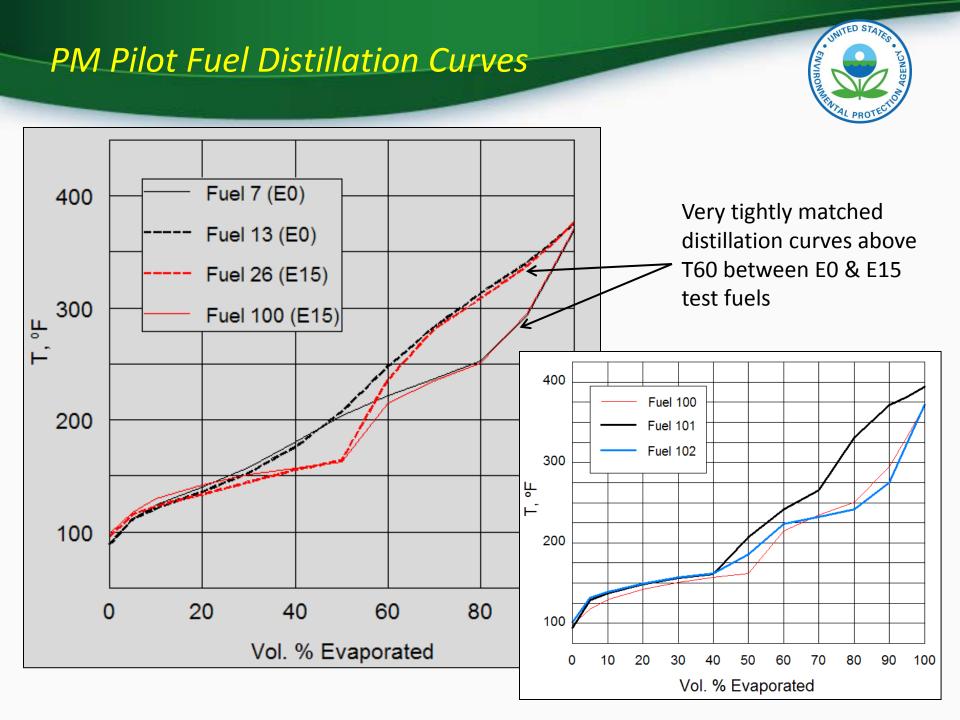
	Original Design		PMI Term Set	
Model Term	Bag 1	Bag 2	Bag 1	Bag 2
Arom	0.3833	0.1662		
T90	0.2923	0.1072		
PMI		<u>م</u>	0.4815	0.2133
EtOH	0.1582	0.1126	0.2287	0.1300
T50	0.0550		0.1063	
T50 imes T50	0.0935			
$PMI \times EtOH$			0.0836	

PMI terms larger than Aro or T90 Ethanol terms persist Ethanol interaction term

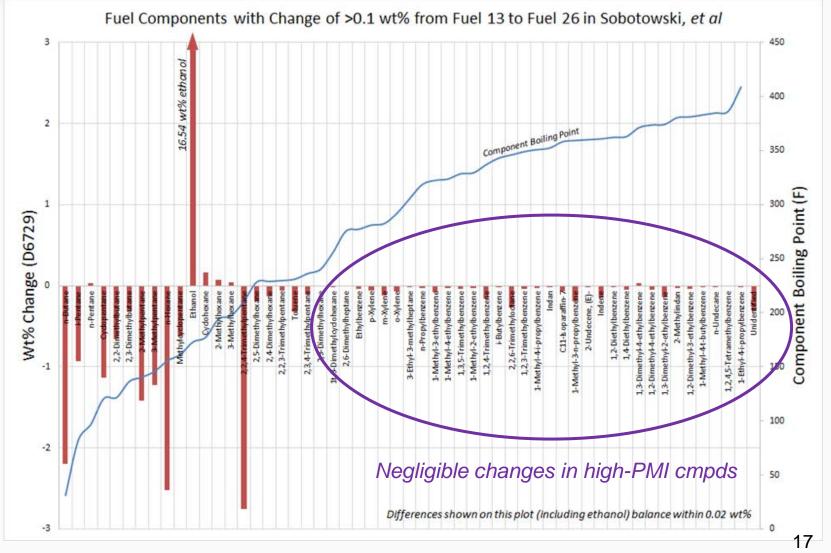
Published these results in an SAE paper (2015-01-1072)

Conducted a pilot study to examine PM fuel effects in more detail

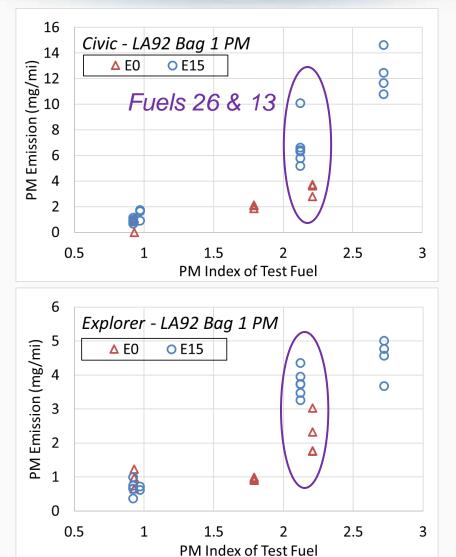
Design goals:

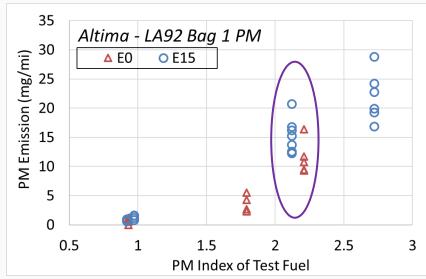

- Confirm published results on PM Index and aromatic carbon number with vehicles from EPAct fleet
 - 3 PFIs with range of sensitivity to fuel properties + 1 GDI
- Create new fuel blends specifically designed to examine ethanol-PM Index interaction
 - Use well-characterized refinery streams to produce test fuels representative of what is in the market

PM Pilot Fuels


Parameter		
DVPE	Fuels 101 and 102 assess	Fuel pairs 7
T50	the effect of the adding	13-26 des
Т60	light and heavy aromatic	examine in
Т70	components to a low-PMI	between
Т80	fuel	etha
Т90	Tuer	etha
Т95		
Ethanol		
Toluene	Certification fuel fills in	
C8 Aromatics	the gap in the PMI range	
C9 Aromatics	of the fuel set and	
C10+ Aromatics		
Total Aromatics	provides a recognizable	
PM Index	reference	

uel pairs 7-100 and L3-26 designed to xamine interaction between PMI and ethanol


Detailed Fuel Comparison Between Ethanol Levels


PM Pilot Study Results

Confirms the conclusions of PMI analysis of EPAct/V2/E-89 data:

- PM index is strongly correlated with PM emissions
- Ethanol has a reinforcing interaction with PM Index

Interaction of ethanol with PMI suggests it exacerbates the propensity of low-volatility fuel components to form PM

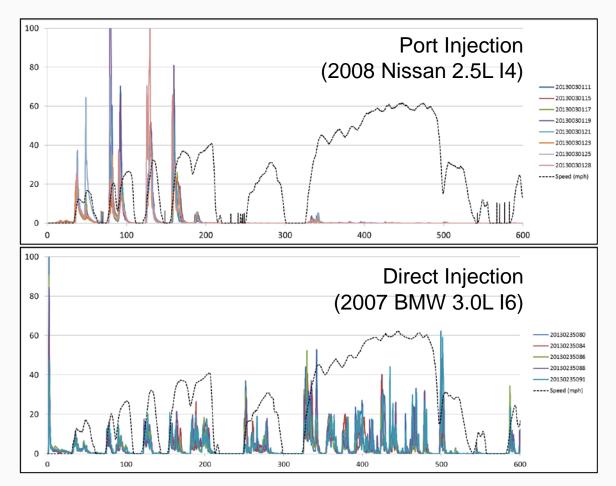
Support in recent literature:

- Association of ethanol's higher heat of vaporization with a cooling effect, with potential to hinder fuel vaporization and lead to increased PM emissions (Stone, et al. 2012; Vuk, et al. 2013)
- Experimental and computational studies of droplet behavior showing slower evaporation when ethanol is added to a hydrocarbon base (Kobashi, et al. 2014)

PM Pilot study published as SAE 2015-01-9071

Range of PM sensitivity to fuel properties suggests important interaction with vehicle-specific characteristics including:

- Engine and intake system design
- Control algorithms and calibrations


Ethanol blending can show different results depending on PM Index of base fuel and other details of the blending process

Small studies of a few splash blends using one or two vehicles are very difficult to interpret

What about GDIs?

Fuel property effects on PM likely to continue

General areas

- How fuel effects may differ in GDIs
- Effect of gasoline components on PM and precursors

Goal of larger collaborative PM study (2018+) building on other recent work:

- CRC E-94-2 GDI PM study
- CRC AVFL-29 development of improved gasoline speciation method
- Environment Canada GDI study
- EPA HEARO Pilot with Environment Canada (launching early 2017) will use GDIs and include SVOC speciation

Results presented here include the work of many colleagues at EPA including Rafal Sobotowski, James Warila, George Hoffman, Paul Machiele, Zuimdie Guerra, Nick Bies, Dave Bochenek, Bill Courtois, Steve George, Bruce Kolowich, Chris Laroo, John Spieth, Nancy Tschirhart, and Rick Zurel.

The EPAct/V2/E-89 study reports and data are available on the web:

https://www.epa.gov/moves/epactv2e-89-tier-2-gasoline-fuel-effects-study

For more information on the PM Pilot study data and publications send me an email (butler.aron@epa.gov)